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Brief Self Introduction

Pooyan Jamshidi

Assistant Professor @ USC (CSE), since August 2018
Postdoc 2 @ Carnegie Mellon University (US), 2016 - 2018 =
Postdoc 1 @ Imperial College London (UK), 2014 - 2016
Ph.D. from Dublin City University (Ireland), 2010 - 2014
M.Sc. from Amirkabir University of Technology (Iran), 2006
B.Sc. from Amirkabir University of Technology (Iran), 2003
Worked with Google and NASA

Homepage: https://pooyanjamshidi.github.io/

Email: pjamshid@cse.sc.edu

Research and Teaching in:

Machine Learning Systems = AI/ML + Computer Systems

Autonomous Robots = AI/ML + Robotics

Causal AI = Causal Inference, Causal Representation Learning, Transfer Learning
Neural Architectures + Hardware Accelerators

AI/ML Systems (See CSCE 585)

Autonomous and Adaptive Systems (NASA Autonomous Space Lander)
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Artificial Intelligence and Systems Laboratory (AlSys)

https://pooyanjamshidi.github.io/AlSys/

Research Areas:

- Causal Al
- ML for Systems g .3
- Systems for ML ' N
. -0, - ‘
- Adversarial ML Sonam Kharde M.A. Javidian Fatemeh Ghofrani Nasrin Imanpour Kimia Saeid Ghafouri
- Robot Learning (Postdoc) (Postdoc) (PhD student) hD student) Noorbakhsh (RA) (RA)
= I i o P . |
Sponsors: -

Hamed Damirchi Shahriar Igbal ~ Jianhai Su Abir Hossen  Mahdi Sharifi Morteza Maleki
(PhD student) (PhD student) (PhD student) (PhD student)  (PhD student) (RA)




Key Research Directions 1n
Computer Architecture at AISys

Low-latency and Energy-efficient Neural Architectures
o Software-Hardware Co-Design

o Neural Architecture Search

o Hardware Accelerators

Domain-Specific Architectures

a Architectures for AI/ML
o Hardware Accelerator for LLMs



Course Information

Course Website: htips://pooyanjamshidi.github.io/csce212/
Piazza (Communications):
o Discussion boards for each assignment and the course overall

Please post all questions on Piazza so that others can
benefit from your questions

Answer others’ questions - if you know the answer ;-)
Learn from others’ questions and answers
GradeScope (Assignments)

Teaching Assistant

o Rasool Sharifi

o Homepage: https://rasool-sharifi.github.io/
o Email: ASHARIFI@email.sc.edu



https://pooyanjamshidi.github.io/csce212/
https://rasool-sharifi.github.io/
mailto:ASHARIFI@email.sc.edu

Textbook (Harris & Harris)

Digital Design and
Computer Architecture

SECOND EDITION

David Money Harris & Sarah L. Harris

o

- Chapter 6 (Architecture)
- Chapter 7 (Microarchitecture)
- Chapter 8 (Memory?)
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Evaluation (subject to minor changes)

Assignments | 50%
Midterm 25%
Final 25%
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Please volunteer to present a related topic

to architecture if you are excited about it!
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Basic Goals & Structure the
Computer Architecture Course
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What Will We Learn in This Course?

How Computers Work
(from the ground up)



We Will Study How Something Like This Works

Sensors

with lots of
compute
& caches

Apple M1 Ultra System (2022)

Main Memory Main Memory

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php



Major High-lLevel Goals of This Course

In Introduction to Computer Architecture

Understand the basics
Understand the principles (of design)
Understand the precedents

Based on such understanding:

Q

o o O 0O

learn how a modern computer works underneath

evaluate tradeoffs of different designs and ideas

implement a principled design (a simple microprocessor)

learn to systematically debug increasingly complex systems
Hopefully enable you to develop novel, out-of-the-box designs

The focus is on basics, principles, precedents, and how to
use them to create/implement good designs
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Why These Goals?

Because you are here for a Computer Science degree!

Regardless of your future direction, learning the principles
of computer architecture will be useful to

design better hardware

design better software

design better systems

make better tradeoffs in design

understand why computers behave the way they do
solve problems better

think “in parallel”

think critically

o o o o o o o o o

18



Course Components

Lectures (understanding concepts)

Readings (reinforcing & going deeper)
Homework (problem-solving & preparation)
Project (hands-on experience in some concepts)
Exam (test of understanding)

In all, you have the freedom to adapt to your learning style

My advice: Focus on learning & scholarship &
understanding

19



Learning & Exam

= We will enable you to learn + prepare you for the exam

= My suggestions:
o focus on understanding, learning, mastering the material
= lectures, readings, labs, HWs all enable this and prepare you
o reinforce problem solving skills with homeworks

a do not worry about the exam while listening to lectures
= most of you will pass this course (historically >80%)

= We will release a lot of material to help you with the exam
o Problem solving sessions
o Exam guidance

o All past exams (and basic solutions) are already online 20



Summary

= Learning is for life (never ends)

Focus on
learning and scholarship




How to Approach This Course

Learning experience

Long-term tradeoff
analysis
Critical thinking &
decision making




How to Approach This Course

Your mindset
will determine
what you
get out of the course




How to Approach This Course

Find and choose
the learning style
that works best for you




What Will We Learn 1n This Course?




Answer

How Computers Work
(from the ground up)



Answer Continued

And Why We Care



Why Do We Have Computers?




Why Do We Do Computing?




Answer

To Solve Problems



Answer Reworded

To Gain Insight

Hamming, “Numerical Methods for Scientists and Engineers,” 1962. !



Answer Extended

To Enable
a Better Life & Future



How Does a Computer
Solve Problems?




Answer

Orchestrating Electrons

In today’s dominant technologies



How Do Problems
Get Solved by Electrons?




So, I Hope You Are Here tor This

“C” as a model of computation

CSCE 145/206

Programmer’s view of how
a computer system works

How does an assembly
program end up exeCUtmg as Architect/microarchitect’s view:

digital logic? How to design a computer that
. o) meets system design goals.
What happens in-between: Choices critically affect both

How is a computer designed the SW programmer and
using logic gates and wires the HW designer
to satisfy specific goals?

HW designer’s view of how
a computer system works

CSCE 211 Digital logic as a

model of computation
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The Transtormation Hierarchy

(expanded view) (narrow view)

Computer Architecture SW/HW Interface Computer Architecture
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Levels of Transformation

“The purpose of computing is [to gain] insight” (Richard Hamming) A
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is
guaranteed to terminate where
each step is precisely stated
and can be carried out by a
computer

- Finiteness
- Definiteness
- Effective computability

Many algorithms for the same
problem
Microarchitecture

An implementation of the ISA

Problem

Algorithm

Program/Language

Runtime System

ISA (Architecture)

ISA -
(Instruction Set Architecture)

Interface/contract between
SW and HW.

What the programmer
assumes hardware will
satisfy.

Digital logic circuits

Building blocks of micro-arch (e.g., gates)
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Computer Architecture

IS the science and art of designing computing platforms
(hardware, interface, system SW, and programming model)

to achieve a set of design goals

Q

Q

E.g., highest performance on earth on workloads X, Y, Z

E.g., longest battery life at a form factor that fits in your
pocket with cost < $$$ CHF

E.g., best average performance across all known workloads at
the best performance/cost ratio

Designing a supercomputer is different from designing a
smartphone - But, many fundamental principles are similar
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Axiom

To achieve the highest energy efficiency and performance:

we must take the expanded view
of computer architecture

Problem

Program/Language
System Software || Co-design across the hierarchy:
SW/HW Interface Algorithms to devices

Specialize as much as possible
within the design goals

40



Difterent Plattorms, Different Goals

41

Source: http://www.sia-online.org (semiconductor industry association)



Difterent Plattorms, Different Goals

o..'
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Source: https://ig.intel.com/5-awesome-uses-for-drone-technology/



Difterent Plattorms, Different Goals

Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



Difterent Plattorms, Different Goals
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Source: http://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg



Difterent Plattorms, Different Goals
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Difterent Plattorms, Different Goals

Source: https://fossbytes.com/wp-content/uploads/2015/06/Supercomputer-TIANHE2-china.j



Difterent Plattorms, Different Goals
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Source: https://www.itmagazine.ch/artikel/72401/Fugaku_Der_schnellste_Supercomputer_der_Welt.html



Difterent Plattorms, Different Goals

R

VR

i Partial Sums
o[22 [
: ' | » = . )_] — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input is read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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Difterent Platforms, Different Goals

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @
 Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board




Difterent Plattorms, Different Goals

= ML accelerator: 260 mm?2, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.

https://www.youtube.com/watch?v={0z4FweCy4M


https://www.youtube.com/watch?v=j0z4FweCy4M

Difterent Plattorms, Different Goals

Tesla Dojo Chip & System
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https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s

Difterent Plattorms, Different Goals
Tesla Dojo Chip & System

Neural Network Training - Compute

2021: 3x Clusters

5760 GPUs

12PB NVME
4032 GPUs it
1752 GPUs 8PB NVME Infiniband HDR

5PB NVME Infiniband EDR
Infiniband EDR

Auto-labelling Training Training

o
08-19 1-19 02-20 05-20 08-20 11-20 02-21 05-21

P Pl ) 1:4520/3:03:20 - Hardware Integration >

https://www.youtube.com/watch?v={0z4FweCy4M&t=6340s


https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s

Difterent Plattorms, Different Goals
= Tesla Dojo Chip & System

Software

Compute Cluster

System

Chip

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s
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Difterent Plattorms, Different Goals
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Up to 7X HighAer I?erfc_)rmance for HPC
. . . - . . . pplications
NVIDIA is claiming a 7x improvement in dynamic programming

algorithm (DPX instructions) performance on a single H100
versus naive execution on an A100.

https://www.nvidia.com/en-us/data-center/h100/ T


https://www.nvidia.com/en-us/data-center/h100/

Difterent Plattorms, Different Goals

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2
NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning g5
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
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Difterent Plattorms, Different Goals

Mohammed Alser, Zulal Bingél, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” |EEE Micro, August 2020.

MinIlON from ONT

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396



https://arxiv.org/pdf/2008.00961.pdf

Difterent Plattorms, Different Goals
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Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM i motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i ‘The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key i First, we conduct an i ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,

databases, data analytics, graph processing, neural networks, bioi image ing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM
on the UPMEM PIM and compare their and energy to their state-

of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM

systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM =
system, programming recommendations for software designers, and suggestions and hints for hardware and ]
architecture designers of future PIM systems. n . . ™
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https://arxiv.org/pdf/2105.03814.pdf

Axiom

To achieve the highest energy efficiency and performance:

we must take the expanded view
of computer architecture

Problem

Program/Language
System Software || Co-design across the hierarchy:
SW/HW Interface Algorithms to devices

Specialize as much as possible
within the design goals

58



What 1s Computer Architecture?

The science and art of designing, selecting, and
interconnecting hardware components and designing the
hardware/software interface to create a computing system
that meets functional, performance, energy consumption,
cost, and other specific goals.

59



Why Study Computer Architecturer?

Enable better systems: make computers faster, cheaper,
smaller, more reliable, ...
o By exploiting advances and changes in underlying technology/circuits

Enable new applications

o Life-like 3D visualization 20 years ago? Virtual reality?
o Self-driving cars?

o Personalized genomics? Personalized medicine?

Enable better solutions to problems

o Software innovation is built on trends and changes in computer architecture
> 50% performance improvement per year has enabled this innovation

Understand why computers work the way they do
60



Computer Architecture Today (I)

Today is a very exciting time to study computer architecture

Industry is in a large paradigm shift (to novel architectures)
— many different potential system designs possible

Many difficult problems motivating and caused by the shift
Huge hunger for data and new data-intensive applications
Power/energy/thermal constraints

Complexity of design

Difficulties in technology scaling

Memory bottleneck

Reliability problems

Programmability problems

Security and privacy issues

No clear, definitive answers to these problems

o O 0 O 0 0O O o
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Computer Architecture Today (1I)

= Computing landscape is very different from 10-20 years ago

= Applications and technology both demand novel architectures

Hybrid Main Memory

Hterogeneous Persistent Memory/Storage
Processors and )
Every component and its

Accelerators

nnnnnnnnnnnnn

interfaces, as well as
entire system designs

are being re-examined
General Purpose GPUs

62



Historical: Opportunities at the Bottom

There's Plenty of Room at the Bottom

From Wikipedia, the free encyclopedia

"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of
Physics" was a lecture given by physicist Richard Feynman at the annual American

Physical Society meeting at Caltech on December 29, 1959.[1] Feynman considered the

few popular magazines, it went largely unnoticed and did not inspire the conceptual
beginnings of the field. Beginning in the 1980s, nanotechnology advocates cited it to
establish the scientific credibility of their work.

https://en.wikipedia.org/wiki/There%27s Plenty of Room at the Bottom 65



https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

Historical: Opportunities at the Bottom (11)

There's Plenty of Room at the Bottom

From Wikipedia, the free encyclopedia

Feynman considered some ramifications of a general ability to manipulate matter on an atomic
microscopes that could see things much smaller than is possible with scanning electron
microscopes. These ideas were later realized by the use of the scanning tunneling microscope,
the atomic force microscope and other examples of scanning probe microscopy and storage
systems such as Millipede, created by researchers at IBM.

Feynman also suggested that it should be possible, in principle, to make nanoscale machines
that "arrange the atoms the way we want", and do chemical synthesis by mechanical
manipulation.

He also presented the possibility of "swallowing the doctor", Jan idea that he credited in the essay

to his friend and graduate student Albert Hibbs. This concept involved building a tiny,
swallowable surgical robot.

https://en.wikipedia.org/wiki/There%27s Plenty of Room at the Bottom 66
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Historical: Opportunities at the Top

REVIEW

There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?

Charles E. Leiserson’, © Neil C. Thompson'-2*, ® Joel S. Emer'-3, © Bradley C. Kuszmaul'-*, Butler W. Lampson'+#,
+ See all authors and affiliations

Science 05 Jun 2020:

Vol. 368, Issue 6495, eaam9744

DOI: 10.1126/science.aam9744

Much of the improvement in computer performance comes from decades of miniaturization
of computer components, a trend that was foreseen by the Nobel Prize—winning physicist
Richard Feynman in his 1959 address, “There’'s Plenty of Room at the Bottom,” to the American
Physical Society. In 1975, Intel founder Gordon Moore predicted the regularity of this
miniaturization trend, now called Moore’s law, which, until recently, doubled the number of

transistors on computer chips every 2 years.

Unfortunately, semiconductor miniaturization is running out of steam as a viable way to grow

computer performance—there isn't much more room at the “Bottom.” If growth in computing
power stalls practically all mdustrles will face challenges to their productmty Nevertheless

https://www.science.org/doi/10.1126/science.aam9744
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Axiom, Revisited

There is plenty of room both at the top and at the bottom
but much more so
when you
communicate well between and optimize across

the top and the bottom
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Hence the Expanded View

Computer Architecture SW/HW Interface

(expanded view)
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Computer Architecture

Why Is It So Exciting Today?




Many Interesting Things
Are Happening Today

in Computer Architecture




Many Interesting Things
Are Happening Today

in Computer Architecture

Performance
Energy Efficiency
Sustainability




Many Interesting Things
Are Happening Today

in Computer Architecture

Reliability
Safety
Security
Privacy




Many Interesting Things
Are Happening Today

in Computer Architecture

More Demanding Workloads




Many Interesting Things
Are Happening Today

in Computer Architecture

New (Device) Technologies




Many Interesting Things
Are Happening Today

in Computer Architecture




Many Interesting Things
Are Happening Today

in Computer Architecture

Performance
Energy Efficiency
Sustainability




Do We Want This?

Source: V. Milutinovic
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Or This?

79

Source: V. Milutinovic



Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable




Many Ditficult Problems: Climate

Source: https://farm9.staticflickr.com/8571/16376102935 8628150df8 o.jpg
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Many Ditticult Problems: Intelligence

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Many Ditticult Problems: Intelligence

Deep Learning’s Carbon
Emissions Problem

Rob Toews Contributor ®
Al

I write about the big picture of artificial intelligence.

. TeChnOIOQy Featured Topics  Newsletters Events  Podcasts Signin Subscribe
% Review

'\\‘:ARTIFICIAL INTELLIGENCE

Training a single Al model can emit as much

carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

By Karen Hao June 6,2019

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg 83
Source: https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/

Source: https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/



Many Ditticult Problems: Congestion
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Many Ditticult Problems: Public Health

Source: https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 85



Many Ditticult Problems: Genome Analysis

development of high-throughput
sequencing (HTS) technologies

Nati

genome

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes ’
1,62
Sequenced AN

2014 2015 2016 2017 Source: IHumina

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 86
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Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute

2018 2019 2020+ i
o MSET-AT (1) In just 2 years

e MT-NLG (530B)
® GPT-3 (175B)

100,000

10,000

1,000

e T5(11B)

o I-NLG (17B) Tomorrow, multi-trillion

EEmE (':"ggBi‘tron'LM i3 parameter models
. b .

100

R «BERT Large (340M)

¢ BERT Base (110M)

Total training compute, PFLOP-days

1 10 100 1,000 10,000 100,000
] Model memory requirement, GB ‘

P P ) 443/10815 up @ O [& O I3

Source: https://youtu.be/Bh131dwcb0Q?t=283 87



Computation vs. Data Storage Dichotomy

Sensors

compute
& caches

Apple M1 Ultra System (2022)

Main Memory Main Memory

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php



Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




Data Movement vs. Computation Energy

10000 mEnergy (p]J) =e=ADD (int) Relative Cost 6400X

| —
o
o
o

100

—
o
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o
| —

ergy for a 32-bit Operation (log scale)

A memory access consumes 6400X

the energy of a simple integer addition



Challenge and Opportunity for Future
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with
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandwidth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM UPME M UPMER LIPMEM UPMEM UPMEM
PIM PN PIM PN PIM PiN piM
chip chip chip i chip ¢hig chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 92
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM Memory Modules

= E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz

O P21: 16‘ e fim = IN\NTARARA /Y o o\ MmNl o A\ n I\IIHZ

www.upmem.com
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2.560-DPU

Processing-in-Memory System
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PIM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM i motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i ‘The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key i First, we conduct an i ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,

databases, data analytics, graph processing, neural networks, bioi image ing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM
on the UPMEM PIM and compare their and energy to their state-

of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

https://arxiv.org/pdf/2105.03814.pdf
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FPGA-based Processing Near Memory

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive

Applications”
IEEE Micro (IEEE MICRO), to appear, 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos’ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology =~V IBM Research Europe
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Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEws | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the
industry’s first High Bandwidth Memory (HBM) integ
HBM-PIMJ The new processing-in-memory (PIM) architecture brings powerful Al computing capabilities inside high-

rated with artificial intelligence (Al) processing power — the

performance memory, to accelerate large-scale processing In data centers, nigh perrormance computing

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our

groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads

such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al

solution providers for even more advanced PIM-powered applications.” —
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Samsung Function-in-Memory DRAM (2021)

B FIMDRAM based on HBM2

SID1
Core-die -
(HBM2)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

128DQ / 8CH / 16 banks / BL4
32 PCU blocks (1 FIM block/2 banks)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaghoon Lee', Sang-Hyuk Kwon',

Je Min Ryu, Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo?, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

‘Samsung Electronics, Hwaseong, Korea
*Samsung Electronics, San Jose, CA
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Samsung Function-in-Memory DRAM (2021)

Programmable Computing Unit

B Configuration of PCU
block

Interface unit to control
data flow

Execution unit to perform
operations

Register group

32 entries of CRF for
instruction memory

- 16 GRF for weight and
accumulation

16 SRF to store constants
for MAC operations

Programmable Computing Unit Block

Register File Controller

Register Group

GRFA_IO

\ 4

GRF_A

4

(256b x 8entries)

256 DQ for
even bank_

SRFM_IO| |

SRF_M
(16b x 8entries)

GRFB_IO

\ 4
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256 DQ for

SRFA_IO

Execution Unit
DATA_IN .
RA[0;13] Pipeline (o6 crrL
CA[1:5] Decoder 9
DQJ0:63] 0T/1T/2T/3T | A
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ACT control master || @ » Gﬁr:;ialy_ 16 =
RSTB é ( ultiplierx
g §MAC_MAD_PATH
PCU Clock = FP16 Add |arec_cTRL
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FIM_mode (FP16 adder x16)
FIM_INSTRUCTION
RA/CA |
T CRF Sequencer

SRF_A
(16b x 8entries)

INSTR_IO

CRF
(32b x 32entries)

odd bank R

[Block diagram of PCU in FIMDRAM]

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',
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'Samsung Electronics, Hwaseong, Korea

*Samsung Electronics, San Jose,
*Samsung Electronics, S
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Samsung Function-in-Memory DRAM (2021)

[Available instruction list for FIM operation]

Type CMD Description
ADD FP16 addition
Floating MUL FP16 multiplication
Point MAC FP16 multiply-accumulate
MAD FP16 multiply and add
Data Path MOVE Load or store data
FILL Copy data from bank to GRFs
NOP Do nothing
Control Path JUMP Jump instruction
EXIT Exit instruction

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications




Samsung Function-in-Memory DRAM (2021)

hip Implementation
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Samsung AXDIMM (2021)

Baseline System

RDIMM
= DDRx-PIM
e D system
CHo; CH1! cn-lzi
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

DIMM

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others
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SK Hynix Accelerator-in-Memory (2022)

SKhynix Newsroom ® e -

INSIGHT SK hynix STORY PRESS CENTER MULTIMEDIA Search Q

SK hynix Develops PIM, Next-Generation Al Accelerator

February 16, 2022 in)(f)(w) SRS

Seoul, February 16, 2022

SK hynix (or “the Company”, www.skhynix.com) announced on February 16 that it has developed PIM", a next-

generation memory chip with computing capabilities.

*PIM(Processing In Memory): A next-generation technology that provides a solution for data congestion issues for Al and big data by adding

computational functions to semiconductor memory

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK
hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory,

has found a breakthrough solution with the development of the latest technology.

SK hynix plans to showcase its PIM development at the world's most prestigious semiconductor conference, 2022 111 A1ynm1.25V 8Gb, 16Gh/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and
Various Activation Functions for Deep-Learning Applications
Seongiju Lee, SK hynix, Icheon, Korea

technology to bring the memory-centric computing, in which semiconductor memory p|ay5 a central role, a step closer In Paper 11.1, SK Hynix describes an 1ynm, GDDR6-based accelerator-in-memory with a command set for deep-learning operation. The
8Gb design achieves a peak throughput of 1TFLOPS with 1GHz MAC operations and supports major activation functions to improve

to the reality in devices such as smartphones. accuracy.

ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this

*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of “Intelligent Silicon for a
Sustainable World”

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AIM (Accelerator” in
memory). The GDDR6-AIM adds computational functions to GDDR6™ memory chips, which process data at 16Gbps. A
combination of GDDR6-AIM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times

faster. GDDR6-AIM is widely expected to be adopted for machine learning, high-performance computing, and big data

computation and storage.
102
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AliBaba PIM Recommendation System (2022)

ISSCC 2022 / February 24, 2022 / 8:30 AM
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf 107
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erebras’s Wafer Scale ML Engine (2019)

= The largest ML
accelerator chip

= 400,000 cores

J TS
T TAIWAN 1723A1

PFBY82.M00 ‘&i
8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2
NVIDIAT%TArN

. ) ) 112
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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Cerebras’s Wafer Scale M. Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

NVIDIA Ampere GA100

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
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Apple M1 Max System on Chip (2021)
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Source: https://www.anandtech.com/show/17024/apple-m1-max-performance-review
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Bigger and More Powertul Systems (2021)

12
Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html 0
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Bigger and More Powertul Systems (2022)

Neural Engine

Memory
Controller
Memory Capacity

Encode/
Decode

usB

Transistors

Mfc. Process

Apple Silicon SoCs

4x High

16MB Shared L2

4x High Efficiency (Blizzard?)
4MB Shared L2

“Next Generation"
10-Core
3.6 TFLOPS

16-Core
15.8 TOPS

LPDDR5-6400
8x 16-bit CH
100GB/sec Total Bandwidth (Unified)
24GB

8K
H.264, H.265, ProRes, ProRes RAW

USB4/Thunderbolt 3
2x Ports

20 Billion

“"Second Generation 5nm”
TSMC N5P?

https://www.anandtech.com/show/17431/apple-announces-m2-soc-apple-silicon-updated-for-2022

4x High i
12MB Shared L2

4x High Efficiency (Icestorm)
4MB Shared L2

8-Core
2.6 TFLOPS

16-Core
11TOPS

LPDDR4-4266
8x 16 CH
68GB/sec Total Bandwidth (Unified)
16GB

4K
H.264, H.265

USBA4/Thunderbolt 3
2x Ports
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TSMC N5
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Google’s Video Coding Unit (2021)

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild
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(a) Chip floorplan (b) Two chips on a PCBA
Figure 5: Pictures of the VCU
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Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723
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Google’s Video Coding Unit (2021)

(@ reCHNcA e o o o o amcoana: s

I WONDER IF NETFLIX WANTS TO BUY SOME —

YouTube is now building its own video-
transcoding chips

Google throws custom silicon at YouTube's massive video-transcoding workload. Table 1: Offline two-pass single output (SOT) throughput in
RON AMADEO - 4/22/2021, 8:24 PM VCU vs. CPU and GPU systems
System | Throughput [Mpix/s] Perf/TCO?
H.264 VP9 H.264 VP9
Skylake 714 154 1.0x 1.0x
4xNvidia T4 2,484 - 1.5x -
8xVCU 5,973 6,122 4.4x 20.8x
20xVCU 14,932 15,306 7.0x 33.3x

Encoding Throughput: Table 1 shows throughput and perf/TCO
(performance per total cost of ownership) for the four systems and
is normalized to the perf/TCO of the CPU system. The performance
is shown for offline two-pass SOT encoding for H.264 and VP9.
For H.264, the GPU has 3.5x higher throughput, and the 8xVCU
and 20xVCU provide 8.4x and 20.9x more throughput, respectively.
For VP9, the 20xVCU system has 99.4x the throughput of the CPU
baseline. The two orders of magnitude increase in performance
clearly demonstrates the benefits of our VCU system.

Enlarge / A Google Argos VCU. It transcodes video very quickly.

Google has decided that YouTube demands such a huge transcoding workload that it needs to build its own
server chips. The company detailed its new "Argos" chips in a YouTube blog post, a CNET interview, and in a
paper for ASPLOS, the Architectural Support for Programming Languages and Operating Systems
Conference. Just as there are GPUs for graphics workloads and Google's TPU (tensor processing unit) for Al
workloads, the YouTube infrastructure team says it has created the "VCU" or "Video (trans)Coding Unit,"
which helps YouTube transcode a single video into over a dozen versions that it needs to provide a smooth, 1 23

Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723
Source: https://arstechnica.com/gadgets/2021/04/youtube-is-now-building-its-own-video-transcoding-chips/



https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

TESLA Full Selt-Driving Computer (2019)

= ML accelerator: 260 mm?2, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.

https://youtu.be/UcpO0T TmvgqOE?t=4236


https://youtu.be/Ucp0TTmvqOE?t=4236

Tesla Dojo ML Training Chip (2021)

Tesla Dojo Chip

D1 Chip
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https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s

Tesla Dojo ML Training System (2021)

Tesla Dojo System

Neural Network Training - Compute

2021: 3x Clusters

5760 GPUs
12PB NVME

4032 GPUs Infiniband HDR

1752 GPUs 8PB NVME
5PB NVME

Auto-labelling Training Training

-

4 .
R e e e
A R i i

0
08-19 1-19 02-20 05-20 08-20 1-20 02-21 05-21

} >l ‘D 1:45:20 / 3:03:20 - Hardware Integration »

https://www.youtube.com/watch?v={0z4FweCy4M&t=6340s


https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s

Tesla Dojo ML Training System (2021)
= Tesla Dojo Chip & System

Compute Cluster

System

Chip

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s


https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s

erebras’s Wafer Scale ML Engine (2019)

= The largest ML
accelerator chip

= 400,000 cores

J TS
T TAIWAN 1723A1

PFBY82.M00 ‘&i
8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2
NVIDIAT%TArN

https://www.cerebras.net/cerebras-wafer-scale-enqine-why-we-need-biq-chips-for-deep-lear1r12|r§q/



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Wafer Scale M. Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

NVIDIA Ampere GA100

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Google Tensor Processing Unit (~2010)

R

VR

i Partial Sums
TETENE
] | i = . ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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Google TPU Generation 11 (2017)

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference
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Google TPU Generation 111

HEM
8GB

Core Core
scalar/ vector scalar/ vector
units units
oooooooo oooooooo
oooooooo oooooooo
Doooooono ooooooao
Oooooooo Oooooooo
0Oooooooo oooooooo
oooooooo oooooooo
OoOoOooooaoo OooOooooao
oooooooo 0Doooooo
MXU MXU
128x128 128x128

mo BE@
] am
1 am
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mae BE®
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EEER [E]a] HEEEEEENE (FEEEEEN
ERIEEENE DERREENE@ HIEEEREN (AEEEEEEN
MXU MXU MXU MXU
128x128 128x128 128x128 128x128

TPU v2 - 4 chips, 2 cores per chip

More
High Bandwidth Memory

AL

TPU v3 - 4 chips, 2 cores per chip

More

Systolic Arrays

https://cloud.google.com/tpu/docs/system-architecture
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Google TPU Generation IV (2021)

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @
 Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board




An Example Modern Systolic Array: TPU (11

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

N

I
Y
: L j Pairtial Sums
ey

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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An F anmple Modern Systolic Array: TPU (I11)
@ | DDR3 DRAM Chips | |

) 30 GiB/s
14 GiB/s DDR3 30 GiB/s M \yeight FIFO
Interfaces |::> (Weight Fetcher)
o o
e N BEEE
- SEEH
badl _ Unified - Matrix Multiply
g £ . @ 10 GiB/s Buffer Systolic Tnit
14 GiB/s | © % 14 GiB/s “E (Loca| Data 1 '(64!'(; er uyuw’
(] % % |
<:::> o- <::> 8 Activation Setup j I
o £ Storage) J
§ |
= - \ j & Accumulators
1 Activation
T 167 GiB/s
—__J = Normalize / Pool
|:| Off-Chip /0 l |
I:I Data Buffer
— [ = e
. Control

Not to Scale

Figure 1. TPU Block Diagram. The main computation part 1s the

yellow Matrix Multiply unit in the upper right hand corner. Its inputs

are the blue Weight FIFO and the blue Unified Buffer (UB) and its

output 1s the blue Accumulators (Acc). The yellow Activation Unit 135
performs the nonlinear functions on the Acc, which go to the UB.




Many (Other) AI/ML Chips

= Alibaba

= Amazon

= Facebook

= Google

= Huawel

= Intel

= Microsoft

= NVIDIA

= Tesla

= Many Others and Many Startups...

= Many More to Come...
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Many (Other) AI/ML Chips (2021)

= MLPerf results available
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All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.

https://basicmi.github.io/AI-Chip/
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https://basicmi.github.io/AI-Chip/

Recall Our Axiom

To achieve the highest energy efficiency and performance:

we must take the expanded view
of computer architecture

Problem

Program/Language
System Software || Co-design across the hierarchy:
SW/HW Interface Algorithms to devices

Specialize as much as possible
within the design goals
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Many Interesting Things
Are Happening Today

in Computer Architecture

Reliability
Safety
Security
Privacy




Collapse of the “Galloping Gertie”

140

Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm



Another View

141

Source: AP Source: http://www.seattlepi.com/science/article/A-Tacoma-Narrows-Galloping-Gertie-bridge-6617030.php



How Secure Are These People?

Security is about preventing unforeseen consequences

142

Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg



How Safe & Secure Is This Platform?

Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



Security: RowHammer (2014)
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The Story of RowHammer

One can predictably induce bit flips in commodity DRAM chips
o All tested DRAM chips are vulnerable

First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics

SSSSSSSSSSSSSSSSSSSSS

ik FORGET SOFTWARE—NOW
- MACKERS ARE EXPLOITING
PHYSICS

CCCCCCC




Modern DRAM is Prone to Disturbance Errors

Row of Cells Wordline

Hammere = V oew

Repeatedly reading a row enough times (before memory
gets refreshed) induces disturbance errors in adjacent rows
in most real DRAM chips you can buy today

Fltipping Bits in Mlemory Without Accessing Them: An EXperimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014) S



http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Most DRAM Modules Are Vulnerable

A company B company C company

Up to Up to Up to
1.0x10 2.7X10  3.3x10
7 6 5

errors errors errors

-------

Disturbance Errors, (Kim et al., ISCA 2014)



http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P r'oj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn+, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Security: RowHammer (2014)
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More Security Implications (1I)

“Can gain control of a smart phone deterministically”

Hammer And Root

cNOA01D

Millions of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, ccs'ts

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/



More Security Implications (VI)
= IEEE S&P 2020

RAMBIleed

RAMBIeed: Reading Bits in Memory Without
Accessing Them

Andrew Kwong Daniel Genkin Daniel Gruss Yuval Yarom
University of Michigan University of Michigan  Graz University of Technology  University of Adelaide and Data61
ankwong @umich.edu genkin @umich.edu daniel.gruss @iaik.tugraz.at yval@cs.adelaide.edu.au



More Security Implications (VII)

e Emn Immw s e - o PN

Terminal Brain Damage: Exposing the Graceless Degradation
in Deep Neural Networks Under Hardware Fault Attacks

Sanghyun Hong, Pietro Frigo', Yigitcan Kaya, Cristiano Giuffrida®, Tudor Dumitras

University of Maryland, College Park
f Vrije Universiteit Amsterdam

A Single Bit-flip Can Cause Terminal Brain Damage to DNNs
One specific bit-flip in a DNN'’s representation leads to accuracy drop over 90%
L]

Our research found that a specific bit-flip in a DNN’s bitwise representation can
cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on
average, that can lead to the accuracy drop over 10% when individually
subjected to such single bitwise corruptions...

Lo

Read More




More Security Implications (VIII)

DeepHammer: Depleting the Intelligence of Deep Neural Networks
through Targeted Chain of Bit Flips

Fan Yao Adnan Siraj Rakin Deliang Fan
University of Central Florida Arizona State University
fan.yao@ucf.edu asrakin@asu.edu dfan@asu.edu

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, 10 output classes
Before attack, Accuracy 90 2% After attack, Accuracy: ~10% (1/10)




Can We Truly Depend on Computers?

Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



Security: Meltdown and Spectre (2018)
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MELTDOWN JFLUIT

Source: J. Masters, Redhat, FOSDEM 2018 keynote talk.



Silent Data Corruption In-the-Field (2021)

We have a new problem: cores that disobey instructions

EPU coras that Initial Instruction Initial
state of state of
e repeatedly memory registers

but not always
mis-calculate
certain computations
without giving any obvious signal
“Mercurial cores” committing - >

Wrong . Wrong
Corrupt Execution Errors next state Next | | next state

of of
memory \_ registers )

Due to local silicon defects, not eg cosmic rays

Google

P> Pl o) 0:19/9:14 - We have a new probleme cores that disobey instructions »

HotOS 2021: Cores That Don’t Count (Fun Hardware)

159
https://www.youtube.com/watch?v=QMF 3rghjYuM



https://www.youtube.com/watch?v=QMF3rqhjYuM

Silent Data Corruption In-the-Field (2021)

Silent Data Corruptions at Scale

Harish Dattatraya Sneha Pendharkar Matt Beadon Chris Mason
Dixit Facebook, Inc. Facebook, Inc. Facebook, Inc.
Facebook, Inc. spendharkar@fb.com mbeadon@fb.com clm@fb.com

hdd@fb.com
Tejasvi Chakravarthy Bharath Muthiah Sriram Sankar

Facebook, Inc. Facebook, Inc. Facebook Inc.
teju@fb.com bharathm@fb.com sriramsankar@fb.com

Cores that don’t count

Peter H. Hochschild Rama Govindaraju David E. Culler
Paul Turner Parthasarathy Amin Vahdat
Jeffrey C. Mogul Ranganathan Google
Google Google Sunnyvale, CA, US

Sunnyvale, CA, US Sunnyvale, CA, US

160
https://www.youtube.com/watch?v=QMF 3rghjYuM



https://www.youtube.com/watch?v=QMF3rqhjYuM

Many Interesting Things
Are Happening Today

in Computer Architecture

More Demanding Workloads




Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute

2018 2019 2020+ i
o MSET-AT (1) In just 2 years

e MT-NLG (530B)
® GPT-3 (175B)

100,000

10,000

1,000

e T5(11B)

o I-NLG (17B) Tomorrow, multi-trillion

EEmE (':"ggBi‘tron'LM i3 parameter models
. b .

100

R «BERT Large (340M)

¢ BERT Base (110M)

Total training compute, PFLOP-days

1 10 100 1,000 10,000 100,000
] Model memory requirement, GB ‘

P P ) 443/10815 up @ O [& O I3

Source: https://youtu.be/Bh131dwcb0Q?t=283 162



Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali X, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck
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https://arxiv.org/pdf/1711.08774.pdf

Why Do We Care? An Example

200 Oxford Nanopore sequencers have left UK for China, to support
rapid, near-sample coronavirus sequencing for outbreak surveillance

Fri 31st January 2020

Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional
200 MinlON sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current
coronavirus outbreak, adding to a large number of the devices already installed in the country.

Each MinlON sequencer is approximately the size of a stapler, and
can provide rapid sequence information about the coronavirus.

700Kg of Oxford Nanopore sequencers and consumables are on
their way for use by Chinese scientists in understanding the
current coronavirus outbreak.
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https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample

Population-Scale Microbiome Profiling

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 166



https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Clty—Scale Microbiome Proﬁhng

i Swab(3 mln) 2. Annotate 3 GPS tag/tlmestamp
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HiSeq2500 125x125 Sequences
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U

MetaPhlAN classification Afshinnekoo+, "Geospatial Resolution of Human and
Bacterial Diversity with City-Scale Metagenomics”, Cell
Figure 1. The Metagenom.e of New York City SystemS 20 1 5

4

(A) The five boroughs of NYC include (1) Manhattan (green)

- (B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data

entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. 67
(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to

disrern taxa nresant



https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2
https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Example: Rapid Surveillance of Ebola Outbreak

Figure 1: Deployment of the portable genome surveillance system in Guinea.

Quick+, “"Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016
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https://www.nature.com/articles/nature16996

High-Throughput Genome Sequencers

Oxford
Nanopore
PromethION |

Pacific
Biosciences
Sequel Il

Oxford Nanopore MinION

Oxford
Nanopore
SmidglON

lllumina NovaSeq 6000 Pacific Biosciences RS II

.. and more! All produce data W|th dlfferent properties.
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High-Throughput Genome Sequencers

Mohammed Alser, Zulal Bingél, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” |EEE Micro, August 2020.

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

MinIlON from ONT
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https://arxiv.org/pdf/2008.00961.pdf

The Genomic Era

development of high-throughput
sequencing (HTS) technologies

nnnnnnn

T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes ’
Sequenced AN

2014 2015 2016 2017 Source: IHumina

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 17
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We Need Faster & Scalable Genome Analysis

Understanding genetic variations,
species, evolution, ... abundance of microbes in a sample

20-0

o, -

Rapid surveillance of disease outbreaks Developing personalized medicine

And, many, many other applications ... 173



Our Dream (circa 2007)

An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

Q

Q

Which of these DNAs does this DNA segment match with?

What is the likely genetic disposition of this patient to this
drug?

What disease/condition might this particular DNA/RNA piece
associated with?

What potential viruses & variants might be lurking around?
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Software Acceleration: Ellminate Useless Work

= Download the source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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http://mrfast.sourceforge.net/

Hardware Acceleration: Vectorizable Algorithms

https://qgithub.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford3, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

GateKeeper: FPGA-Based Acceleration

st

Alignment
Filter FPGA-based
o Alignment Filter.

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x103

mappings
- oo

x1012

ATATATACGTACTAGTACG
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ATATATACGTACTAAAGTACS
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3ACGGGGAGTA A
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Billions of Short Reads

DOPAPAP-HOD>

E High throughput DNA Read Pre-Alignment Filtering Read Alignment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper: FPGA-Based Acceleration

= Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for
Accelerating Pre-Alighment in DNA Short Read Mapping”
Bioinformatics, [published online, May 31], 2017.

[Source Code]

[Online link at Bioinformatics Journal]

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

178


https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan
Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,

"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies”

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January
2018.

[Slides (pptx) (pdf)]

[Source Code]

[arxiv.org Version (pdf)]

[Talk Video at AACBB 2019]

GRIM-Filter: Fast seed location filtering in
DNA read mapping using
processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018
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https://arxiv.org/pdf/1711.01177.pdf
https://arxiv.org/pdf/1711.01177.pdf
http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pdf
https://github.com/CMU-SAFARI/GRIM
https://arxiv.org/pdf/1711.01177.pdf
https://www.youtube.com/watch?v=j5-I84iNVd8

Shouji (FF—F-) [Alser+, Bioinformatics 2019]

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alighment"
Bioinformatics, [published online, March 28], 2019.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser’?3*, Hasan Hassan’, Akash Kumar?, Onur Mutlu'3*
and Can Alkan®*
'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, 2Chair for Processor Design, Center For

Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol —
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019 1 80


https://people.inf.ethz.ch/omutlu/pub/shouji-genome-prealignment-filter_bionformatics19.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Shouji
https://doi.org/10.1093/bioinformatics/btz234

SneakySnake [Alser+, Bioinformatics 2020]

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, to appear in 2020.

rSOU rce COd e] Bioinformatics
[Online link at Bioinformatics Journal] doi.10.1093/bioinformaticsho0o0cx
Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

SneakySnake: A Fast and Accurate Universal
Genome Pre-Alignment Filter for CPUs, GPUs, and
FPGAs

Mohammed Alser 1-2*, Taha Shahroodi', Juan Gémez-Luna ':2,
Can Alkan%*, and Onur Mutlu 1-2:3,4:*

' Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland

2Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland
3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
4Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
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https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

GenASM Framework [MICRO 2020]

= Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal BingolY Can Firtina® Lavanya Subramanian Jeremie S. Kim®?
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori™
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan” Saugata Ghose*T  Onur Mutlu®TV
TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs Y Bilkent University ~ °ETH Ziirich

YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

SeGraM Framework [ISCA 2022]

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for

Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali' Konstantinos Kanellopoulos?  Joél Lindegger? Ziilal Bingol®
Gurpreet S. Kalsi* Ziyi Zuo®> Can Firtina?® Meryem Banu Cavlak? Jeremie Kim?
Nika Mansouri Ghiasi* Gagandeep Singh® Juan Gémez-Luna® Nour Almadhoun Alserr?
Mohammed Alser® Sreenivas Subramoney* Can Alkan® Saugata Ghose® Onur Mutlu?

1Bionano Genomics 2ETH Ziirich 3Bilkent University — “Intel Labs
>Carnegie Mellon University ~ ®University of Illinois Urbana-Champaign

https://arxiv.org/pdf/2205.05883.pdf 183



https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf

FPGA-based Near-Memory Analytics

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive

Applications”
IEEE Micro (IEEE MICRO), 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos’ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology =~V IBM Research Europe
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https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

In-Storage Genome Filtering [ASPLOS 2022]

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computing
System for Genome Sequence Analysis"

Proceedings of the 27/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim! Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar* Mohammed Alser! Onur Mutlu!

1ETH Ziirich 2Bionano Genomics 3KMUTNB *University of Toronto
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf

Future of Genome Sequencing & Analysis

Mohammed Alser, Zulal Bingél, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” |EEE Micro, August 2020.

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

MinIlON from ONT
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https://arxiv.org/pdf/2008.00961.pdf

COVID-19 Nanopore Sequencing (1)

SARS-CoV-2 Whole genome sequencing

RT Step ~1 hr

PCR ~ 2.30 hr

Add Barcodes ~1hr ; h r
Add Adapter ~30m

Sequence ~1 hr

Analyse ~1hr RNA to

answer

Of which ~1 hr
sequencing time

From ONT (https://nanoporetech.com/covid-19/overview)



https://nanoporetech.com/covid-19/overview

COVID-19 Nanopore Sequencing (11)

How are scientists using nanopore sequencing {ONANOPORE
to research COVID-19?

—> + SARS-CoV-2 positive samples
Samples

are collected ) SARS-CoV-2 negative samples:
used as negative controls

How can this be used? What are the results? How?
Genomic epidemiology: analyse variants From RNA to full Targeted amplification of Targeted SARS-CoV-2 +
& mutation rate, track spread of virus, SARS-CoV-2 consensus ~ SARS-CoV-2 genome + multiplexed, nanopore sequencing ' «————=
identify clusters of transmission sequence in ~7 hours rapid nanopore sequencing

-

How? What are the results? How can this be used?
+ Metagenomic 1 x RNA metagenomic RNA: data for RNA viruses (including Characterise co-infecting bacteria
. sequencing run SARS-CoV-2) + microbial transcripts & viruses, identify any correlation
- nanopore sequencing 1 x DNA metagenomic DNA: data for bacteria + DNA viruses of risk factors, research potential
sequencing run future treatment implications

SARS-CoV-2 Direct RNA whole Immune repertoire: assess Whole human genome
genome sequencing: assess response of the immune system to sequencing: investigate what

viral genome in its native RNA SARS-CoV-2 infection by might cause different responses What's next?
form and the effect of base sequencing of full-length immune to the virus in different people
modifications cell receptor genes and transcripts based on their genome

Find out more at nanoporetech.com/covid19 MINION™ m=xm GridION™ ’ PromethION™ IR

Oxford Nanopore Technologies, the Wheel icon, GridION, PromethlON and MinlON are registered trademarks of Oxford Nanopore Technologies in various countries. © 2020 Oxford Nanopore Technologies. All rights reserved. Oxford Nanopore Technologies' products are currently for research use only. IG_1061(EN)_V1_03April2020

From ONT (https://nanoporetech.com/covid-19/overview)



https://nanoporetech.com/covid-19/overview

Accelerating Genome Analysis: Overview

= Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (TEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zirich University of lllinois at Urbana-Champaign and
Ziilal Bingl Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

ETH Zurich and Carnegie Mellon University Bilkent University 189


https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A

Beginner Reading on Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations to Scientific Discovery:
Intelligent Algorithms and Architectures for Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022

[Source code]

11@D101001 @R 01010810

wgpogpooiggl BTOTECHNOLOGY

01010101001 (01010010
noxoxowoxMxo J O URNAL

El. SEVIER journal homepage: www.elsevier.com/locate/csbj o

o ggmmgoooc COMPUTATIONAL
R ;‘:;‘:T ANDSTRUCTURAL

Review

From molecules to genomic variations: Accelerating genome analysis via = M)
intelligent algorithms and architectures e

Mohammed Alser *, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh,
Juan Gomez-Luna, Onur Mutlu *

ETH Zurich, Gloriastrasse 35, 8092 Ziirich, Switzerland

https://arxiv.org/pdf/2205.07957.pdf 190



https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
https://arxiv.org/pdf/2205.07957.pdf
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Many Interesting Things
Are Happening Today

in Computer Architecture

More Demanding Workloads




The Problem

Computing
IS Bottlenecked by Data




Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
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Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]



Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]




Data is Key for Future Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
VP9 VP9
@ O VouTube © O Voulube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Data Overwhelms Modern Machines

f

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Data Movement Overwhelms Accelerators

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,
Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

> 90% of the total system energy
Is spent on memory in large ML models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand '™ Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo E Oliveira® Xiaoyu Ma?® Eric Shiu® Onur Mutlu*7

T Carnegie Mellon Univ. ®Stanford Univ. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM
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Data Movement vs. Computation Energy

10000 mEnergy (p]J) =e=ADD (int) Relative Cost 6400X

| —
o
o
o

100

—
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o
| —

ergy for a 32-bit Operation (log scale)

A memory access consumes 6400X

the energy of a simple integer addition



Many Interesting Things
Are Happening Today

in Computer Architecture




Many Novel Concepts Investigated Today

New Computing Paradigms (Rethinking the Full Stack)
o Processing in Memory, Processing Near Data

o Neuromorphic Computing, Quantum Computing

o Fundamentally Secure and Dependable Computers

New Accelerators & Systems (Algorithm-Hardware Co-Designs)
o Artificial Intelligence & Machine Learning

o Graph & Data Analytics, Vision, Video

o Genome Analysis

New Memories, Storage Systems, Interconnects, Devices
o Non-Volatile Main Memory, Intelligent Memory Systems, Quantum
o High-Speed Interconnects, Disaggregated Systems
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Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.
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Increasingly Diverging/Complex Tradeoffs
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Increasingly Complex Systems

Past systems

Microprocessor Main Memory Storage (SSD/HDD)
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Increasingly Complex Systems

FPGAS

Modern systems

108D 1]

Memory

Hterogeneous Persistent Memory/Storage

Processors and
Accelerators

eeeeeeeeeeeee
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(General Purpose) GPUs
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Increasmgly Complex Systems on Chip
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Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested



https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Bigger and More Powertul Systems (2021)

211
Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html



https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

Computer Architecture Today

= Computing landscape is very different from 10-20 years ago

= Applications and technology both demand novel architectures

Hybrid Main Memory

Hterogeneous Persistent Memory/Storage

Processors and
Accelerators

nnnnnnnnnnnnn

Every component and its
interfaces, as well as
entire system designs

are being re-examined
General Purpose GPUs
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Computer Architecture Today (1I)

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined
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Computer Architecture Today (1I)

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly) :

IH
STRUC TURI

SCIEN TTFIC
REVOLUTIONS

WITH AN INTRODUCTORY ESSAY BY AN HACKING

Q Pre-pare THOMAS S.KUH? 2 eld

things (I'S&&
o Revoluti

anomalies
examined
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Takeaways

It is an exciting time to be understanding and designing
computing architectures

Many challenging and exciting problems in platform design
o That no one has tackled (or thought about) before
o That can have huge impact on the world’s future

Driven by huge hunger for data (Big Data), new applications
(ML/AI, graph analytics, genomics), ever-greater realism, ...

o We can easily collect more data than we can analyze/understand

Driven by significant difficulties in keeping up with that
hunger at the technology layer
a Five walls: Energy, reliability, complexity, security, scalability
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Let’s Start with Some Puzzles

a.k.a. Computer Architecture resembles Building Architecture
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What Is This?

Source: https://www.flickr.com/photos/tambako/2286064777/in/photostream/




What About This?
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Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256




What Do the Following

Have in Common?




Gare do Oriente, Lisbon

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903



Milwaukee Art Museum

Source: By Andrew C. from Flagstaff, USA - Flickr, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=379223



Athens Olympic Stadium

Source: By Spyrosdrakopoulos - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16172519



City of Arts and Sciences, Valencia
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Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107



Florida Polytechnic University (I)
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Source: http://www.architectmagazine.com/design/buildings/florida-polytechnic-university-designed-by-santiago-calatrava_o



Oculus, New York City
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What do All Those Have in Common
with Bahnhof Stadelhofen?




Answer: All Designed by a Famous Architect

= ETH Alumnus, PhD Civil Engineering

= The train station has several of the features that became

signatures of his work; straight lines and right angles are
rare.”

Santiago Calatrava Valls (born 28 July 1951) is a
Spanish architect, structural engineer, sculptor and
painter, particularly known for his bridges supported by
single leaning pylons, and his railway stations, stadiums,
and museums, whose sculptural forms often resemble
living organisms.['! His best-known works include the
Milwaukee Art Museum, the Turning Torso tower in
Malmo, Sweden, the Margaret Hunt Hill Bridge in Dallas,
Texas, and the Museum of Tomorrow in Rio de Janeiro,
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Source: By #25E A F# #8145 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava



https://commons.wikimedia.org/w/index.php?curid=31493356

Your First Comp. Architecture Assignment

Go and find the closest Calatrava building to this classroom

a For those who like a challenge, find the furthest building that was
designed by Calatrava to his classroom ©

Appreciate the beauty & out-of-the-box and creative thinking
Think about tradeoffs in the design
o Strengths, weaknesses, goals of design

Derive principles on your own for good design and innovation

Due date: Any time during or after this course
o Later during the course is better

o Apply what you have learned in this course

o Think out-of-the-box
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But First, Today’s First Assignment
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Find The Differences of
This and That
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Source: By Toni_V from Zurich, Switzerland - Stadelhofen2, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256




That

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944 - Géttingen, DE



http://cookiemagik.deviantart.com/art/Train-station-207266944

Many Tradeotts Between Two Designs

= You can list them after you complete the first assignment...
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Aside: Evaluation Criteria for the Designs

Functionality (Does it meet the specification?)
Reliability

Space requirement

Cost

Expandability

Comfort level of users

Happiness level of users

Aesthetics

Security

How to evaluate goodness of design is always a critical

question = “Performance™ evaluation-and metrics -~



A

Key Question

How was Calavatra able to design especially his key buildings?
Can have many guesses

o O O 0O 0 0O 0 o0 0 o

Strong understanding of and commitment to fundamentals
Principled design

(Very) hard work, perseverance, dedication (over decades)
Experience

Creativity, Out-of-the-box thinking

A good understanding of past designs

Good judgment and intuition

Strong skill combination (math, architecture, art, engineering, ...)
Funding luck, initiative, entrepreneurialism

You will be exposed to and hopefully develop/enhance many of
these skills in this course
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Principled Design

“To me, there are two overriding principles to be found in
nature which are most appropriate for building:

a one is the optimal use of material,

o the other the capacity of organisms to change shape, to grow,
and to move.”

a Santiago Calatrava

“Calatrava's constructions are inspired by natural forms like
plants, bird wings, and the human body.”
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Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Gare do Oriente, Lisbon, Revisited

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/




A Principled Design

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal

forms as the inspirational basis and blueprint for architectural

design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."[!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!3!
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What Does This Remind You Of?

- JL[, "'
POy VR Rl
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Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/



The Architect’s Answer

Design [edit]

Calatrava said that the Oculus resembles a bird being
released from a child's hand. The roof was originally
designed to mechanically open to increase light and
ventilation to the enclosed space. Herbert Muschamp,
architecture critic of The New York Times, compared the
design to the Bethesda Terrace and Fountain in Central Park,
and wrote in 2004
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Source: https://en.wikipedia.org/wiki/World_Trade Center_station (PATH)




Strengths and Praise

Santiago Calatrava's design for the World
Trade Center PATH station should satisfy
those who believe that buildings planned for
ground zero must aspire to a spiritual
dimension. Over the years, many people
have discerned a metaphysical element in
Mr. Calatrava's work. | hope New Yorkers will
detect its presence, too. With deep
appreciation, | congratulate the Port
Authority for commissioning Mr. Calatrava,
the great Spanish architect and engineer, to
design a building with the power to shape the

future of New York. It is a pleasure to report,
for once, that public officials are not
overstating the case when they describe a
design as breathtaking.[43!

Source: https://en.wikipedia.org/wiki/World_Trade Center_station (PATH)
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Design Constraints and Criticism

However, Calatrava's original soaring spike design was scaled back because of security issues. The New

York Times observed in 2005:

in number and its wings have lost their interstices of glass.... [T]he main transit hall,
between Church and Greenwich Streets, will almost certainly lose some of its delicate

In the name of security, Santiago Calatrava's bird has grown a beak| Its ribs have doubled

quality, while gaining structural expressiveness| It may now evoke a slender stegosaurus

more than it does a bird.[*%!

Source: https://en.wikipedia.org/wiki/World_Trade_Center_station_(PATH)
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Stegosaurus

From Wikipedia, the free encyclopedia

For the pachycephalosaurid of a similar name, see Stegoceras.

dinosaur. Fossils of this genus date to the Late Jurassic

T
period, where they are found in Kimmeridgian to early |
Tithonian aged strata, between 155 and 150 million years

ago, in the western United States and Portugal. Several "

Source: https://en.wikipedia.org/wiki/Stegosaurus

Susannah-Maidment.-et-al.-&-Natural-History-Museum,-London---Maidment SCR, Brassey C, Barrett PM (2015)

The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops 243
(Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, U.S.A. PLoS ONE 10(10):

e€0138352. doi:10.1371/journal.pone.0138352



Design Constraints: Noone 1s Immune

However, Calatrava's original soaring spike design was scaled back because of security issues. The New
York Times observed in 2005:

In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled
in number and its wings have lost their interstices of glass.... [T]he main transit hall,
between Church and Greenwich Streets, will almost certainly lose some of its delicate
quality, while gaining structural expressiveness. It may now evoke a slender stegosaurus
more than it does a bird.[4°!

The design was further modified in 2008 to eliminate the opening and closing roof mechanism because of

budget and space constraints.!*6!

The Transportation Hub has been dubbed "the world's most expensive transportation hub'| for its massive
cost for reconstruction—$3.74 billion dollars.[*8I58] By contrast, the proposed two-mile PATH extension
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Source: https://en.wikipedia.org/wiki/World_Trade Center_station (PATH)




The Lecture Was Slightly Different
When I Was at CMU




What Is This?

Source: https://roadtrippers.com/stories/falling-water




Answer: Masterpiece ot A Famous Architect

Fallingwater

From Wikipedia, the free encyclopedia

Fallingwater or Kaufmann Residence is a house designed by architect Frank Lloyd Wright
in 1935 in rural southwestem Pennsylvania, 43 miles (69 km) southeast of Pitisburgh.[*l The
home was built partly over a waterfall on Bear Run in the Mill Run section of Stewart
Township, Fayette County, Pennsylvania, in the Laurel Highlands of the Allegheny
Mountains.

Time cited it after its completion as Wright's "most beautiful job"[% it is listed among

Smithsonians Life List of 28 places "to visit before you die."®! It was designated a Ndtional

Historic Landmark in 1966.1%) In 1991, members of the American Institute of Architects
named the house the "best all-time work of American architecture" and in 2007, it was
ranked twenty-ninth on the list of America's Favorite Architecture according to the AlA.
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Source: https://en.wikipedia.org/wiki/Fallingwater



Find The Differences of
This and That




http://www fallingwater.org/




This
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A

Key Question

How was Wright able to design his masterpiece?
Can have many guesses

o O O 0O 0 0O 0 o0 0 o

Strong understanding of and commitment to fundamentals
Principled design

(Very) hard work, perseverance, dedication (over decades)
Experience

Creativity, Out-of-the-box thinking

A good understanding of past designs

Good judgment and intuition

Strong skill combination (math, architecture, art, engineering, ...)
Funding luck, initiative, entrepreneurialism

You will be exposed to and hopefully develop/enhance many of
these skills in this course
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A Quote from The Architect Himself

= architecture [...] based upon principle, and not upon
precedent”

Source: http://www fallingwater.org/



A Principled Design

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.
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A

Key Question

How was Wright able to design his masterpiece?
Can have many guesses

o O O 0O 0 0O 0 o0 0 o

Strong understanding of and commitment to fundamentals
Principled design

(Very) hard work, perseverance, dedication (over decades)
Experience

Creativity, Out-of-the-box thinking

A good understanding of past designs

Good judgment and intuition

Strong skill combination (math, architecture, art, engineering, ...)
Funding luck, initiative, entrepreneurialism

You will be exposed to and hopefully develop/enhance many of
these skills in this course
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Takeaways

It all starts from the basic building blocks and design
principles

And, knowledge of how to use, apply, enhance them

Underlying technology might change (e.g., steel vs. wood)
o but methods of taking advantage of technology bear resemblance
o methods used for design depend on the principles employed
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The Same Applies to Processor Chips

= There are basic building blocks and design principles

Memory Controller

Intel Core i7 IBM Cell BE IBM POWER7
8 cores 8+1 cores 8 cores

[ o 1 . e . 4

Nvidia Fermi Intel SCC Tilera TILE Gx

Sun Niagara Il 448 “cores” 48 cores, networked 100 cores, networked
8 cores
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The Same Applies to Computing Systems

= There are basic building blocks and design principles

258
source: http://www.sia-online.org (semiconductor industry association)



The Same Applies to Computing Systems

= There are basic building blocks and design principles
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Source: http://datacentervoice.com/wp-content/uploads/2015/10/data-center.jpg



Difterent Plattorms, Different Goals

o."
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Source: https://ig.intel.com/5-awesome-uses-for-drone-technology/



Difterent Plattorms, Different Goals

Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



Difterent Plattorms, Different Goals
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Source: http://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg



Difterent Plattorms, Different Goals

Source: https://fossbytes.com/wp-content/uploads/2015/06/Supercomputer-TIANHE2-china.j



Difterent Plattorms, Different Goals
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Source: https://www.itmagazine.ch/artikel/72401/Fugaku_Der_schnellste_Supercomputer_der_Welt.html



Apple M1 Max System on Chip (2021)
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Source: https://www.anandtech.com/show/17024/apple-m1-max-performance-review



https://www.anandtech.com/show/17024/apple-m1-max-performance-review

Google Tensor Processing Unit (~2010)

R

VR

i Partial Sums
TETENE
] | i = . ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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Google TPU Generation IV (2021)

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @
 Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board




TESLA Full Selt-Driving Computer (2019)

= ML accelerator: 260 mm?2, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.

https://youtu.be/UcpO0T TmvgqOE?t=4236


https://youtu.be/Ucp0TTmvqOE?t=4236

Cerebras’s Wafer Scale M. Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

NVIDIA Ampere GA100

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Google’s Video Coding Unit (2021)

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild

== ERETE
-

PCle  Encoder Encoder Encoder Encoder Encoder -
Core Core Core Core Core \

[T

'Decoder Encoder EncoderEncoder|Encoder

~ Cores Encoder Core Core Core | Core
| _ Core

= 5;5_—&.4

(a) Chip floorplan (b) Two chips on a PCBA
Figure 5: Pictures of the VCU
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Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723



https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandwidth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM UPME M UPMER LIPMEM UPMEM UPMEM
PIM PN PIM PN PIM PiN piM
chip chip chip i chip ¢hig chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 271
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Difterent Plattorms, Different Goals
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Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM i motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i ‘The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key i First, we conduct an i ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,

databases, data analytics, graph processing, neural networks, bioi image ing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM
on the UPMEM PIM and compare their and energy to their state-

of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM

systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM =
system, programming recommendations for software designers, and suggestions and hints for hardware and ]
architecture designers of future PIM systems. n . . ™

272


https://arxiv.org/pdf/2105.03814.pdf

Samsung Function-in-Memory DRAM (2021)

B FIMDRAM based on HBM2

SID1
Core-die -
(HBM2)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

128DQ / 8CH / 16 banks / BL4
32 PCU blocks (1 FIM block/2 banks)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaghoon Lee', Sang-Hyuk Kwon',

Je Min Ryu, Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo?, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

‘Samsung Electronics, Hwaseong, Korea
*Samsung Electronics, San Jose, CA

273

Electronics, Suwon, Korea



Samsung AXDIMM (2021)

Baseline System

RDIMM
= DDRx-PIM
e D system
CHo; CH1! cn-lzi
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

DIMM

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others
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Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



AliBaba PIM Recommendation System (2022)

ISSCC 2022 / February 24, 2022 / 8:30 AM

Neural Engine Region
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Recall: Takeaways

It all starts from the basic building blocks and design
principles

And, knowledge of how to use, apply, enhance them

Underlying technology might change (e.g., steel vs. wood)
o but methods of taking advantage of technology bear resemblance
o methods used for design depend on the principles employed
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Basic Building Blocks

Electrons

Transistors

Logic Gates

Combinational Logic Circuits

Sequential Logic Circuits
o Storage Elements and Memory

Cores
Caches
Interconnect
Memories
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Reading Assignments for This Week

Digital Design and
Computer Architecture

SECOND EDITION

= Chapter 1in
Harris & Harris

= Supplementary

Lecture Slides on
. . sanja j. patel Blnary Numbers
Introduction fo

compufing susrgms

from bits & gates fo C & beyond

= Chapters 1-2 in
Patt and Patel
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Recall: High-level Goals of This Course
In Digital Design & Computer Architecture

Understand the basics
Understand the principles (of design)
Understand the precedents

Based on such understanding:

o learn how a modern computer works underneath

evaluate tradeoffs of different designs and ideas

implement a principled design (a simple microprocessor)

learn to systematically debug increasingly complex systems
Hopefully enable you to develop novel, out-of-the-box designs

o o O 0O

The focus is on basics, principles, precedents, and how to

use them to create/implement good designs
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Recall: Why These Goals?

Because you are here for a Computer Science degree

Regardless of your future direction, learning the principles
of digital design & computer architecture will be useful to

design better hardware

design better software

design better systems

make better tradeoffs in design

understand why computers behave the way they do
solve problems better

think “in parallel”

think critically

o o o o o o o o o
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Course Info and Logistics
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If You Need Help

Post your question on Moodle Q&A Forum

o https://moodle-
app?2.let.ethz.ch/course/view.php?id=19395

2 We will create a forum on Moodle for each activity
o Preferred for technical questions

Write an e-mail to:
o digitaltechnik@lists.inf.ethz.ch
2 The instructor and all assistants will receive this e-mail

Come to office hours
2 We will provide office locations & Zoom links
a2 TBD
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Where to Get Up-to-date Course Info?

= Website:
o https://pooyanjamshidi.github.io/csce212/
o Lecture slides and (videos)
2 Readings
o Course schedule, handouts, FAQs
o Software
2 Any other useful information for the course
o Check frequently for announcements and due dates
o This is your single point of access to all resources

= TA
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Reading Assignments for This Week

Digital Design and
Computer Architecture

= Chapter 1 in
Harris & Harris

ale n. paft

sanjay |. pafel

i Infroduction fo
= Chapters 1-2 in Compufing sigtems
Patt and Patel from bits & gates fo C & beyond
(encouraged) S
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Reading Assignments for Next Week

Combinational Logic chapters from both books
a Harris and Harris, Chapter 2
o Patt and Patel, Chapter 3

Check the course website for all future readings
o Required

o Recommended

o Mentioned
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Future Lectures and Assignments

= You can also anticipate (and plan for) future lectures and

assignments based on Spring 2023 schedule:
o https://pooyanjamshidi.github.io/csce212/lectures/
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Takeaways

It is an exciting time to be understanding and designing
computing architectures

Many challenging and exciting problems in platform design
o That no one has tackled (or thought about) before
o That can have huge impact on the world’s future

Driven by huge hunger for data (Big Data), new applications
(ML/AI, graph analytics, genomics), ever-greater realism, ...

o We can easily collect more data than we can analyze/understand

Driven by significant difficulties in keeping up with that
hunger at the technology layer
a Five walls: Energy, reliability, complexity, security, scalability
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Major High-lLevel Goals of This Course

In Computer Architecture

Unc
Unc

Unc

erstanc
erstanc

erstanc

t
t
t

ne basics
ne principles (of design)

ne precedents

Based on such understanding:

a learn how a modern computer works underneath

o evaluate tradeoffs of different designs and ideas

o implement a principled design (a simple microprocessor)

o Hopefully enable you to develop novel, out-of-the-box designs

The focus is on basics, principles, precedents, and how to
use them to create/implement good designs, tradeoffs are
important!
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Why These Goals?

Because you are here for a Computer Science degree

Regardless of your future direction, learning the principles
of computer architecture will be useful to

design better systems (software + hardware)

make better tradeoffs in design

understand why computers behave the way they do
solve problems better

think “in parallel”

think critically

o o o o o o O

292



I presume you all know the number systems?

Binary Number

Hexadecimal Numbers

Bits, Bytes, Words

least significant bit (Isb), most significant bit (msb)
Least Significant Byte (LSB), Most Significant Byte (MSB)
KB, MB, GB, TB

Binary Addition

Signed Binary Numbers
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