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A Note on Hardware vs. Software

This course might seem like it is only "Computer Hardware”

However, you will be much more capable if you master both
hardware and software (and the interface between them)

a Can develop better software if you understand the hardware
o Can design better hardware if you understand the software
a Can design a better computing system if you understand both

This course covers the HW/SW interface and microarchitecture
o We will focus on tradeoffs and how they affect software

Recall the example chips & platforms we surveyed



... but, first ...

Let’s understand the fundamentals...

You can change the world only if you understand it well
enough...

o Especially the basics (fundamentals)

Past and present dominant paradigms

And, their advantages and shortcomings — tradeoffs

And, what remains fundamental across generations

And, what techniques you can use and develop to solve
problems

Q
Q
Q
Q



Fundamental Concepts




What 1s A Computer?

= Three key components

= Computation
= Communication

= Storage/memory

Computing System

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing E 5 Communication E 5 Memory/Storage
Unit Unit Unit
Memory System Storage System

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/




What 1s A Computer?

= Three key components
= Computation
= Communication

- Storage/ memory Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What 1s A Computer?

We will cover all three components

Processing

control
(sequencing)

datapath

Memory
dorogram /O
and data)




Recall: The Transtormation Hierarchy

(expanded view) (narrow view)

Computer Architecture SW/HW Interface Computer Architecture




What We Will Cover (I)

= Combinational Logic Design
= Hardware Description Languages (Verilog)
= Sequential Logic Design
= Timing and Verification

= ISA (MIPS and LC3b as examples)

l SW/HW Interface |

= Assembly Programming




What We Will Cover (1)

= Microarchitecture Fundamentals
= Single-cycle Microarchitectures

= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Dependence Handling,
State Maintenance and Recovery, ...

SW/HW Interface

= Branch Prediction

s Out-of-Order Execution

= Superscalar Execution



What We Will NOT Cover (I1I)

= Memory Technology and Organization

Memory Hierarchy
Caches

Multi-Core Caches
Prefetching

Virtual Memory

SW/HW Interface
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Processing Paradigms We Will Partially Cover

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)
= Superscalar Execution

= VLIW

= Decoupled Access-Execute
= Systolic Arrays System Software
= SIMD Processing (Vector & Array) S R
= GPUs

12



Combinational Logic Circuits
and Design
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What Will We Learn Today?

Basic building blocks of modern computers
o Transistors
o Logic gates

Boolean algebra
Combinational logic circuits

How to use Boolean algebra to represent combinational
circuits

Minimizing logic circuits (if time permits)
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General Purpose vs. Special Purpose Systems

General Purpose Special Purpose
FPGAs ASICs

Nvidia GTX 1070

Xilinx Spartan Cerebras WSE-2

o

Flexible: Can execute any program Efficient & High performance
Easy to program & use (Usually) Difficult to program & use
Not the best performance & efficiency Inflexible: Limited set of programs




General Purpose vs.

Special Purpose Systems

General Purpose

( ™= e — P
& o6 ((HERESCENN ) ‘r 3
- Y4

Flexible: Can work with any bolt
Easy to use
Not the best fit, results or efficiency

Special Purpose

Efficient & High performance
(Usually) Difficult to use
Inflexible: Only for fitting bolts

https://www.ubuy.vn/en/product/2MBUW8M-crescent-8-adjustable-wrench-carded-ac28vs
https://capritools.com/shop/bolt-extractor-wrench-set-metric-8-19-mm/
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General-Purpose Microprocessors
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Modern General-Purpose Microprocessors

The first personal computer
chip built with this

cutting-edge technology. Pk "gl--:
L

——
il
2

16 billior
transi

The most we've ever put
into a single chip.

18

Source: https://www.apple.com/mac/m1/



https://www.apple.com/mac/m1/

Modern General- Purpose M1croprocessors
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Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested



https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Modern General-Purpose Microprocessors
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Source: https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html



https://www.golem.de/news/m1-pro-max-dieses-apple-silicon-ist-gigantisch-2110-160415.html

Apple M1 Ultra (

€M1 Pro €M1 Max

®M1 Ultra

https://www.theverge.com/2022/3/9/22968611/apple-m1-ultra-gpu-nvidia-rtx-3090-comparison




Apple M1 Ultra (2022)

14 Silicon interposer with
(ProRes) 4 Snmprocess w5 BTBJs

800GBIs ;
~V— M1

ULTRA UltraFusion
architecture

20-core 64-core

CPU GPU

Up to
32-core Neural Engine a Industry-leading 1 ZSGB

performance per watt

22 trillion operations per second Secure Enclave unified memory

https://stadt-bremerhaven.de/apple-neuer-m1-ultra-chip-ist-offiziell/
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Modern GPUs
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Modern FPGASs
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Source: https://www.mouser.ch/new/xilinx/xilinx-zyng-7000-zc702-eval-kit/
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Special-Purpose ASICs (App-Specitic Integrated Circuits)
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Modern Special-Purpose ASICs

—> —> —>» Data

R

VR

i Partial Sums
o[22 [
] | ,| ) ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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Modern Special-Purpose ASICs

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @
 Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board




Modern Special-Purpose ASICs

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

NVIDIA Ampere GA100

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Modern Special-Purpose ASICs

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild

== ERETE
-

PCle  Encoder Encoder Encoder Encoder Encoder -
Core Core Core Core Core \

[T

'Decoder Encoder EncoderEncoder|Encoder

~ Cores Encoder Core Core Core | Core
| _ Core

= 5;5_—&.4

(a) Chip floorplan (b) Two chips on a PCBA
Figure 5: Pictures of the VCU

31
Source: https://dl.acm.org/doi/pdf/10.1145/3445814.3446723



https://dl.acm.org/doi/pdf/10.1145/3445814.3446723

They All Look the Same

=
=
=l 2
=
N

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything
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They All Look the Same

%
==
L
E
L

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything
Program minutes days months

Development Time
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They All Look the Same

%
g
E
e

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything

Program minutes days months

Development Time

Performance 0 + ++
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They All Look the Same
—m?

=
&
=
=
N

In short: Common building Reconfigurable You customize
block of computers  hardware, flexible everything

Program minutes days months

Development Time

Performance 0 + ++

Good for Ubiquitous Prototyping Mass production,

Simple to use Small volume Max performance

35



They All Look the Same

In short:

Program

Development Time

Performance
Good for

Programming
Languages
Main Companies

Common building
block of computers

minutes

o

Ubiquitous
Simple to use

Executable file
C/C++/Java/...

Intel, ARM, AMD,
Apple, NVIDIA

Reconfigurable
hardware, flexible

days

+

Prototyping
Small volume

Bit file
Verilog/VHDL
Xilinx, Altera

x

You customize
everything

months

++

Mass production,
Max performance

Design masks
Verilog/VHDL

TSMC,
Globalfoundries

36



I.abs: Build A Microprocessor on FPGA

A\

Want to — — By
learn how S - program
these S el ming
work IS these
Common building Reconfigurable
block of computers/\ hardware, flexible

Program minutes days months
Development Time
Performance 0
Good for Ubiquitous
impl
_ Simple to us-e Using this language

Programming Executable file ]
Languages C/C++/Java/... Verilog/VHDL Verilog/VHDL
Main Companies Intel, ARM, AMD, Xilinx, Altera TSMC,

Apple, NVIDIA Globalfoundries
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All Computers are Built Upon
the Same Building Blocks




Building Blocks of Modern
Computers




Transistors

40




Transistors

Computers are built from very large numbers of very
small (and relatively simple) structures: transistors

o Intel 4004, in 1971, had 2300 MOS transistors

o Intel’s Pentium IV microprocessor, 2000, was
made up of more than 42 Million MOS transistors

o Apple’s M2 Max, offered for sale in 2022, is made Runtime System
up of more than 67 Billion MOS transistors (VM, OS, MM)

Problem

Algorithm

Program/Language

ISA (Architecture)

This lecture
Microarchitecture

o How the MOS transistor works (as a logic

element) _
- -

o How these transistors are connected to form logi
gates Electrons

o How logic gates are interconnected to form larger units that
are needed to construct a computer

41



MOS Transistor

= By combining
o Conductors (Metal)
o Insulators (Oxide)
o Semiconductors

= We get a Transistor (MOS)

= Why is this useful?
o We can combine many of these to realize simple logic gates

= The electrical properties of metal-oxide semiconductors are
well beyond the scope of what we want to understand in
this course

o They are below our lowest level of abstraction

42
Sections 1.6 and 1.7 in Harris and Harris provide lower-level explanations



Ditterent Types of MOS Transistors

There are two types of MOS transistors: n-type and p-type
i

Gate{ Gate {h—'

n-t;r:e p-t[;/mge

They both operate “logically,” very similar to the way wall
switches work

43



How Does a Transistor Work?

ﬁ
i Wall Switch | I

L—

~
[Power Supply

o In order for the lamp to glow, electrons must flow

o In order for electrons to flow, there must be a closed circuit
from the power supply to the lamp and back to the power
supply

o The lamp can be turned on and off by simply manipulating the
wall switch to make or break the closed circuit

44



How Does a Transistor Work?

Instead of the wall switch, we could use an n-type or a p-
type MOS transistor to make or break the closed circuit

Drain

J If the gate of an n-type transistor is
supplied with a high voltage, the
@ connection from source to drain acts like a
_‘ piece of wire (i.e., the circuit is closed)
Source Depending on the technology,

high voltage can range from 0.3V to 3V

Schematic of an n-type
MOS transistor

If the gate of the n-type transistor is
supplied with zero voltage, the connection
between the source and drain is broken
(i.e., the circuit is open)

45



How Does a Transistor Work?

The n-type transistor in a circuit with a battery and a bulb

S SR
D

A\

i B Volt—l

Gate —|
v/ )
. P |
Qhorthand notatlcy [ ower Supply

The p-type transistor wor

ks in exactly the opposite fashion

from the n-type transistor

Drain Drain

The circuit is closed
when the gate is
supplied with 3V

n-type

]

-

The circuit is closed
when the gate is
supplied with OV

p-type

Source Source

46



Logic Gates

47




One Level Higher in the Abstraction

= Now, we know how a MOS transistor works
= How do we build logic structures out of MOSteancictare

Problem
= We construct basic logical units out of Algorithm
individual MOS transistors Program/Language
Runtime System
_ _ _ (VM, OS, MM)
= These logical units are called logic gates ISA (Architecture)

o They implement simple Boolean functions

George Boole, “The Mathematical Analysis of Logic,” 1847. 8



Making Logic Blocks Using CMOS Technology

Modern computers use both n-type and p-type transistors,

nMOS + pMOS = CMOS

The simplest logid¥tructure that exists in a modern
computer
_1 p-type

In (A) Out (Y) What does this circuit do?

_| n-type

49



Functionality ot Our CMOS Circuit

A\

What happens when the input is connected to 0V?

1
]

oV —

3V

— Out (Y)

3V

p-type transistor
pulls the output up

24 o

Y

=3V

p-type transistors are good at pulling up the voltage

50



Functionality ot Our CMOS Circuit

A\

What happens when the input is connected to 3V?

A= 3V

—

_|

3V

Out (Y)

3V

\

R

V4
oV

— Y =0V

n-type transistor pulls
the output down

n-type transistors are good at pulling down the voltage




CMOS NOT Gate (Inverter)

= This is actually the CMOS NOT Gate =L
= Why do we call it NOT? —p
o IfFA=0VthenY =3V In (A)— L out(Y)
o IfA=3VthenY =0V N
= Digital circuit: one possible interpretation
o Interpret OV as logical (binary) 0 value \V4
o Interpret 3V as logical (binary) 1 value v
0 ON OFF 1 Y =A4

OFF  ON 0

52



CMOS NOT Gate (Inverter)

3V
This is actually the CMOS NOT Gate
Why do we call it NOT? —iLP
L IFA = OVthen Y = 3V nA— o
2 IfA=3VthenY = OV N
Digital circuit: one possible interpretation
o Interpret OV as logical (binary) 0 value ov
o Interpret 3V as logical (binary) 1 value Y=A
Truth table: shows what is the logical
A —_— Y output of the circuit for each possible input
AlY
We call this a NOT gate 0 7
or an inverter 1 0

(bubble indicates inversion)
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Another CMOS Gate: What Is This?

Let’s build more complex gates!

1

In (A)

In (B)

3V

|

P1

ol

S

b

Out (Y)

=

2L_1|=

N

2<

54



CMOS NAND Gate

= Let’s build more complex gates!

3V

<§§< HJ. —{[P2
F VA B P1 P2 N1 N2
In(A)

N1 0 OJON ON OFF OFF
mm +—[N2 0 1]]ON OFF OFF ON
1 OJOFF ON ON OFF
1 1JOFF OFF ON ON

O H = — [

o P1 and P2 are in parallel; only one must be ON to pull up
the output to 3V

o N1 and N2 are connected in series; both must be ON to - #
pull down the output to 0V g




CMOS NAND Gate

Let’s build more complex gates!

3V

\y péf *f{
S s
L
B )Of Y

We call this a NAND gate
(bubble indicates inversion)

= AB
A BIlY
0 0|1
0 1|1
1 0|1
1 1o
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CMOS AND Gate

How can we make an AND gate? V'=A4-B=4b
A B |Y A—
0 O 0 Y
0 1 0 B — )
1 0 0
1 1 1

3V

We make an AND gate using

ol

one NAND gate and |gl1 —
one NOT gate
i In (A)
In (B) ®
Food for thought: Can we not use fewer
transistors for the AND gate?

¢

=
(Y

=l
N

24

57



CMOS NOT, NAND, AND Gates

AlY A B Y A B Y
0 1 0 0 1 0 0 |0
1 | o 0o 1 1 o 1 |o
1 0 1 1 0 | o
1 1 | o 1 1 1

3V
Et—‘i p2 P1 —{[P2 r%%;

P Out (Y) Out (Y)
In (A) Out (Y) In (A) _| N1 In (A) |—| N3

—{[N1
N
In(8) ——&—|[N2 in(8) —&—|[N2 N
ov ov ov
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General CMOS Gate Structure

The general form used to construct any inverting logic gate,

such as: NOT, NAND, or NOR

The networks may consist of
transistors in series or in
parallel

When transistors are in
parallel, the network is ON if
one of the transistors is ON

When transistors are in series,

the network is ON only if all
transistors are ON

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

—

-

Inputs

+

.

pMOS

pull-up
network

~

/

-

NS

nMOS
pull-down
network

~

/

%

output
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General CMOS Gate Structure (11)

Exactly one network should be ON, and the other network

should be OFF at any given time

If both networks are ON at the
same time, there is a short
circuit - likely incorrect

operation

If both networks are OFF at
the same time, the output is
floating = undefined

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

Inputs

—

-

.

pMOS

pull-up
network

~

/

-

NS

nMOS
pull-down
network

~

/

%

output
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Digoing Deeper: Why This Structure?

MOS transistors are imperfect switches

pPMOS transistors pass 1’s well but 0’s poorly (holes carry
charge)

nMOS transistors pass 0’s well but 1's poorly (electrons carry
charge)

pMOS transistors are good at “pulling up” the output
nMOS transistors are good at “pulling down” the output

3v 3v
pMOS
pull-up
‘ "%1 _Cl P2 ﬁ%; network
Out (Y) . t
In (A) —{[N1 |—| N3 INputs
In(e) ——&—{[N2

output

ov
nMOS

pull-down
network

ov

See Section 1.7 in H&H 62



Diggoing Deeper: Latency

Which one is faster?
o Transistors in series
o Transistors in parallel

Series connections are slower than parallel connections
o More resistance on the wire i

inputs

How do you alleviate this latency?

Figure 1.39 Generic pseudo-nM0S

o See H&H Section 1.7.8 for an example:
pseudo-nMOS Logic i

Used In the paSt When pMOS tranSIStOI’S Figure 1.40 Pseudo-nMOS four-
could not be fabricated well input NOR gate

63



Diggoing Deeper: Power Consumption

Dynamic Power Consumption
o Power used to charge capacitance as signals change (0 <> 1)
o C*¥V2x*f

C = capacitance of the circuit (wires and gates)

V = supply voltage

f = charging frequency of the capacitor

Static Power consumption
o Power used when signals do not change

o V* Ileakage
supply voltage * leakage current

Energy Consumption

o Power * Time

See more in H&H Chapter 1.8 o
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Larger Gates

We can extend the gates to more than 2 inputs

Example: 3-input AND gate, 10-input NOR gate

See your readings

A 1
5 n
C

v

Figure 1.35 Three-input NAND
gate schematic
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Aside: Moore’s Law:
Enabler of Many Gates on a Chip




An Enabler: Moore’s Law
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Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.
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Moore’s Law: The number of transistors on microchips doubles every two years [SHaWeuL

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Recommended Reading

Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, 1965.

Only 3 pages

A guote:

"With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single sificon chip.”

Another quote:

"Will it be possible to remove the heat generated by tens of

thousands of components in a single silicon chip?”
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How Do We Keep Moore’s Law: Innovation

Manufacturing smaller transistors/structures
o Some structures are already a few atoms in size

Finding materials with better properties

o Copper instead of Aluminum (better conductor)

o Hafnium Oxide, air for Insulators

o Making sure all materials are compatible is the challenge

Enabling precision manufacturing
o Extreme ultraviolet (EUV) light to pattern <10nm structures

Creating new device technologies

o FinFET, Gate All Around transistor, Single Electron Transistor...
73



A 5-Minute Video on Transistor Innovation

Sapphire
Rapids



https://www.youtube.com/watch?v=Z7M8etXUEUU

A 5-Minute Video on Transistor Innovation

P Pl ) 14/50

Evolution of Transistor Innovation

12,460 views * Feb 22, 2022 b 628 GJ DISLIKE > SHARE $¢ CLIP =+ SAVE ...

B - Ry [ svoscuo: [N
75
https://www.youtube.com/watch?v=Z7M8etXUEUU



https://www.youtube.com/watch?v=Z7M8etXUEUU

Enabling Manufacturing Tech: EUV

= & . WS 2 G s oo \N B VIDEO COURTESY OF ASMI .
P Pl O o038/420 e @ & @ O I3

#EUV #chip #Intel
Behind this Door: Learn about EUV, Intel's Most Precise, Complex Machine

78,354 views * Dec 21,2021 b LIKE Gl DISLIKE > SHARE 3¢ CLIP =+ SAVE ...

Intel Newsroom SUBSCRIBE
— 25.9K subscribers r—

https://www.youtube.com/watch?v=Jv40Viz-KTc 76



https://www.youtube.com/watch?v=Jv40Viz-KTc

Innovation At the Bottom Enables Computing

ISA (Architecture
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Historical: Opportunities at the Bottom

There's Plenty of Room at the Bottom

From Wikipedia, the free encyclopedia

"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of
Physics" was a lecture given by physicist Richard Feynman at the annual American

Physical Society meeting at Caltech on December 29, 1959.[1] Feynman considered the

few popular magazines, it went largely unnoticed and did not inspire the conceptual
beginnings of the field. Beginning in the 1980s, nanotechnology advocates cited it to
establish the scientific credibility of their work.

https://en.wikipedia.org/wiki/There%27s Plenty of Room at the Bottom 78



https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

Historical: Opportunities at the Bottom (11)

There's Plenty of Room at the Bottom

From Wikipedia, the free encyclopedia

Feynman considered some ramifications of a general ability to manipulate matter on an atomic
microscopes that could see things much smaller than is possible with scanning electron
microscopes. These ideas were later realized by the use of the scanning tunneling microscope,
the atomic force microscope and other examples of scanning probe microscopy and storage
systems such as Millipede, created by researchers at IBM.

Feynman also suggested that it should be possible, in principle, to make nanoscale machines
that "arrange the atoms the way we want", and do chemical synthesis by mechanical
manipulation.

He also presented the possibility of "swallowing the doctor", Jan idea that he credited in the essay

to his friend and graduate student Albert Hibbs. This concept involved building a tiny,
swallowable surgical robot.

https://en.wikipedia.org/wiki/There%27s Plenty of Room at the Bottom 79



https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom

Extra Assignment 2: Moore’s Law (I)

= Paper review

s G.E. Moore. "Cramming more components onto integrated
circuits," Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Gradescope — Deadline: March 1
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https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

How to Do the Paper/Talk Reviews

1:

U

W o N O 0

(M

U1

Summary

What is the problem the paper is trying to solve?

What are the key ideas of the paper? Key insights?

What are the key mechanisms? What is the implementation?
What are the key results? Key conclusions?

: Strengths (most important ones)

Does the paper solve the problem well? Is it well written? ...

: Weaknesses (most important ones)

This is where you should think critically. Every paper/idea has a
weakness. This does not mean the paper is necessarily bad. It means
there is room for improvement and future research can accomplish this.

: Can you do (much) better? Present your thoughts/ideas.
: Takeaways: What you learned/enjoyed/disliked? Why?
: Any other comments you would like to make.

Review should be short and concise (~one page)
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Advice on Paper/Talk Reviews

When doing the reviews, be very critical

Always think about better ways of solving the problem or
related problems

o Question the problem as well

This is how things progress in science and engineering (or
anywhere), and how you can make big leaps

o By critical analysis

Sample reviews provided online
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Extra Assignment 2: Moore’s Law (11)

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1
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https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Combinational Logic Circuits
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We Can Now Build Logic Circuits

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important

components of the microarchitecture of a computer

= A logic circuit is composed of: rf . A
- functional spec
2 Inputs inputs —>» : outputs
o Outputs > timing spec
\_ /

= Functional specification (describes relationship between
inputs and outputs)

w [iming specification (describes the delay between inputs
changing and outputs responding)




Types ot Logic Circuits

s
_)

inputs
_)

\_

functional spec

timing spec

~

_>

5 outputs

J

Combinational Logic

o Memoryless

o Outputs are strictly dependent on the combination of input
values that are being applied to circuit right now

o In some books called Combinatorial Logic
Later we will learn: Sequential Logic

o Has memory

Structure stores history - Can “store” data values
o Outputs are determined by previous (historical) and current

values of inputs

[ R))
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Boolean LLogic Equations

<L>> M)
Y
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Functional Specification

Functional specification of outputs in terms of inputs
What do we mean by “function”?

o Unique mapping from input values to output values

o The same input values produce the same output value every
time

o No memory (does not depend on the history of input values)

Example (full 1-bit adder — more later):

A S \

B—| ¢ [ °
5 = F(Al BI Gn) C L I Cout
CZ)ut — G(Al B/ qn) "

S =A®B®C
C.=AB+AC_+BC_ .

58 7



Simple Equations: NOT / AND / OR

A (reads “not A”) is 1iff A is 0 414
0 |1
A D _
A 1 |o
A * B (reads “A and B”) is 1iff A and B areboth1 A4 B|A°B
00f 0
A — - 01| 0
AeB
5 10| 0
11| 1
A + B (reads “A or B”) is 1iff either A or B is 1 A B|A+B
0 0
A 0 1
} A+B
1 1




Boolean Algebra: Big Picture

An algebra on 1's and 0’s
o with AND, OR, NOT operations

What you start with

o Axioms: basic things about objects and operations
you just assume to be true at the start |

What you derive first

o Laws and theorems: allow you to manipulate Boolean expressions
o ...also allow us to do simplification on Boolean expressions

What you derive later

o More “sophisticated” properties useful for manipulating digital
designs represented in the form of Boolean equations - L
2

George Boole, “The Mathematical Analysis of Logic,” 1847.



Boolean Algebra: Axioms

Formal version

1. B contains at least two elements,
0 and 1, such that 0 # 1

English version

Math formality...

2. Closure a,b € B,
i) at+bEB
(il) a* b€ B

Result of AND, OR stays
in set you start with

3. Commutative Laws: a,b € B,

For primitive AND, OR of

83) 2 inputs, order doesn’t matter
4. Identities: 0,1 € B There are identity elements
(1) for AND, OR, that give you back
(i1) what you started with
5 D .z'.s‘trz'butz've Lasws: * distributes over +, just like algebra
83) ...but + distributes over ®, also (!!)
6. Compl L
(io)mp erent There is a complement element;
(i) AND/ORing with it gives the iden”




Boolean Algebra: Duality

Observation
o All the axioms come in “dual” form
o Anything true for an expression also true for its dual

o So any derivation you could make that is true, can be flipped into
dual form, and it stays true

Duality — More formally

o A dual of a Boolean expression is derived by replacing
Every AND operation with... an OR operation
Every OR operation with... an AND
Every constant 1 with... a constant O
Every constant 0 with... a constant 1

Example as(b+c)=(a*b)+(a°c)
— a+(bec)=(a+h)°(a+c)

92



Boolean Algebra: Useful Laws

Dual
Operations with 0 and 1: 1 AND, OR with identities
1. X+0=X 1D. Xe1=X gives you back the original
2. X+1=1 2D. X0=0 variable or the identity
Idempotent Law:
3. X+X=X 3D. XX =X AND, OR with self = self
Involution Law:
4.(X) =X double complement =
no complement
Laws of Complementarity: _ AND, OR with complement
5. X +X=1 5D. XeX=0

gives you an identity

Commutative Law:
6. X+Y=Y+X

6D. XeY=YX

Just an axiom...

o3



Usetul LLaws (continued)

Associative Laws: .
7. X+Y)+Z=X+(Y+7Z) 7D. X*Y)*Z =X (Y*Z) Parenthesis order
=X+Y+Z =XeYeZ does not matter

Distributive Laws:
8. Xe(Y+Z)=(X*Y)+(X*Z) 8D. X+ (YZ)=X+Y)*sX+7Z) Axiom

Simplification Theovems:

9. 9D.
Useful for

10. 10D. simplifying

expressions
11. 11D.

/|

A
N\

9 ) )

Actually worth remembering — they show up a lot in real designs.. ~

Y



Boolean Algebra: Proving Things

Proving theovems via axtoms of Boolean Algebra:
EX: Prove the theorem: Xe*Y + Xey =X
Distributive (5)
Complement (6)
Identity (4)

EX2: Prove the theorem: X + XeY =X
Identity (4)
Distributive (5)
Identity (2)
Identity (4)




DeMorgan’s Law: Enabling Transformations

DeMovrgan's Law: o
2.X+Y+Z+-)=X.Y.Z..
+

12D.(X.Y.Z..)=X+Y+Z

Think of this as a transformation

Let’s say we have:

F=A+B+C

Applying DeMorgan’s Law (12), gives us

F=(A+B+C) =(A.B.C)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false
96




DeMorgan’s Law (Continued)

These are conversions between different types of logic functions
They can prove useful if you do not have every type of gate...
Or, if some types of gates are more desirable to use than others...

A=(X+Y)=XY );:"DWA X Y|X+Y | X|¥ | XY
00 1 1|1 1
i i 0 1 0o |1|of o
NOR is equivalent to AND X
it A 10| o |Jof1] o
with inputs complemented yD
1 1 0 |(ofo]| o
B=XY)=X+Y ?;: )wB xv| xv |x|v
oo 1 |[1]1
01 1 |1]o0
NAND is equivalentto OR  y . Tof 1 101
with inputs complemented Y@ 11| 0 o0




Using Boolean Equations
to Represent a Logic Circuit




Boolean Equations Enable Us To...

= Represent the function of a combinational logic block
o Functional Specification

= Methodically transform the function into simpler functions
o which lead to different hardware realizations
o Logic Minimization or Logic Simplification

o We can automate this process - Computer-Aided Design or
Electronic Design Automation

= Different Boolean expressions lead to different logic gate

- Different hardware area, cost, latency, energy properties

implementations
C g



Standardized Function Representations

= Enable a single, universally-agreed-on way of representing
a Boolean function starting from its truth table

o Also called “canonical representations”

= Sum of Products (SOP) form

= Product of Sums (POS) form

100



Sum of Products Form: Key Idea

Assume we have the truth table of Boolean Function F

How do we express the function in terms of the inputs in a
standard manner?

Idea: Sum of Products form

Express the truth table as a two-level Boolean expression

o that contains all input variable combinations that result in a 1
output

o If ANY of the combinations of input variables that results in a 1
is TRUE, then the output is 1

o F = OR of all input variable combinations that result in a 1

101



Some Detinitions (for a 3-Input Function)

s Complement: variable with a bar over it

A,B,C

= Literal: variable or its complement
A, A,B,B,C,C

= Implicant: product (AND) of literals
(A-B-C) ,(A-C) ,(B-C)

= Minterm: product (AND) that includes all input variables
(A-B-C) ,(A-B-C) ,(A-B-0)

= Maxterm: sum (OR) that includes all input variables
(A+B+C) ,(A+B+C),(A+B+C)

102



Two-Level Canonical (Standard) Forms

Truth table is the unique signature of a Boolean function ...
o But, it Is an expensive representation

A Boolean function can have many alternative Boolean
expressions

o i.e., many alternative Boolean expressions (and gate
realizations) may have the same truth table (and function)

o If they all specify the same thing, why do we care?

Different Boolean expressions lead to different logic gate
implementations = Different cost, latency, energy properties

Canonical form: standard form for a Boolean expression

o Provides a unique algebraic signature 103



Two-lLevel Canonical Forms: SOP

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

011 100 101 110 11 1
F=ABC + ABC + ABC + ABC + ABC

<
N o

o © o=

<
D

== ==O0 0000
= =00 KMKROOIW
= OROKEROKEKOQOIM

Each row in a truth table has a minterm
A minterm is a product (AND) of literals
Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

Find all the input combinations (minterms) for which the output of the function is TRUE.



SOP Form — Why Does It Work?

This input

011 100 10 1+—110 111

F=ABC + ABC +[ABC |+ ABC + ABC

Activates
this ter

SR I -E-X-K=]1s

=== 0 0|™

R ROooOoRKROO|IW
= ORORORO|O

Only the shaded productterm — ABC =1-0-1—willbe 1

No other product terms will “turn on” — they will all be 0

So if inputs A B C correspond to a product term in expression,
o Weget 0+0+..+1+ ...+ 0+ 0 =1 for output

If inputs A B C do not correspond to any product term in expression
o Weget0+ 0+ ...+ 0 =0 for output

The function evaluates to TRUE (i.e., output is 1)
if any of the Products (minterms) causes the output to be 1 105



Standard Notation for SOP Form

Standard “shorthand” notation

o If we agree on the order of the variables in the rows of truth
table...

then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

A B C|F
0 0 00O
0 0 1]0
01 00
01 1|1
1 0 0|1 100 = decimal 4 so this is minterm #4, or m4
10 11
11 011
1 1 111 111 = decimal 7 so this is minterm #7, or m7

We can write this as a sum of products

—-h
|

Or, we can use a summation notation

106



Canonical SOP Form

A B C | minterms F in canonical form:

0 0 0] ABC =m0

0 0 1| ABC =ml F(A,B,C) = Ym(3,4,5,6,7)

0 1 0| ABC =m2 =m3 + m4 + m5 + m6 + m7
0 1 1| ABC =m3

1 0 0| ABC =m4 F =

1 0 1| ABC =m5

1 1 0| ABC =m6

1 1 11 ABC =m7

canonical form # minimal form

Shorthand Notation for
Minterms of 3 Variables

F

2-Level AND/OR
Realization

107



From SOP to Gates

m SOP (sum-of-products) leads to two-level logic

m Example:Y=(4-B-C)+(A-B-C)+(A-B-C)
A B c

Vil Vs Ve

}— minterm: ABC

_\ | -
minterm: ABC

-

RN _ _
minterm: ABC

-

\/

Y

SOP form does NOT directly lead to minimal logic 108



Canonical Sum of Products Form: Key Idea

Any 1-bit function can be represented as a Sum of Products

A “Product” is the Boolean AND that includes ALL input
variables of the function 2 minterm

The 1-bit Output of the Function can be represented as
o Sum (OR) of all minterms that lead to a 1 in the Output

Logically

o The function evaluates to TRUE (i.e., output is 1) if ANY of the
Products (minterms) causes the Output to be 1

o SOP form represents the function as the SUM (OR) of all
Products (minterms) that cause the Output to be 1 109



Alternative Canonical Form: POS

DeMorgan of SOP of F

Find all the input combinations (maxterms) for which the output of the function is FALSE.
product
Product of Sums (POS) _
= (A+B+C)(A+€+C},+B+C)

Each sum term represents one of the
“zeros” of the function

This input

o

F=(A4+B+ )(A+B+C) (A+B+C)

e e S

Activates this term

sums

For the given input, only the shaded sum term
will equal 0

A+B+C=0+1+0

= === 00 0|>
= = 00K MKOO|IW
HOROKORO|ID

Anything ANDed with 0 is 0; Output F will be 0

-l L dr [ 4. 4. AL [ 4. - 0D\
ITIC TUTICLOIN ©vVdiudlcs U FrALOL (1.C., OUlpPpUl IS U)

if any of the Sums (maxterms) causes the output to be 0 1o



Consider A=0, B=1, C=0

Input

_|_
o]
+
o

=== =000 0>

010—> F= i+B+C)(A+

RN
VRNV,

|

B =OO0OKMKOO|IW
HMOROKORO|®
O O O™

1

T~~~

\

1

|

|
F=0
Only one of the products will be 0, anything ANDed with 0 is 0
Therefore, the outputis F=0
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POS: How to Write It

F=(A+B+C)(A+B+C)(A+B+C)
I

a

t

1;

= == =000 0>
= =00 MEQOO|I®
_|_
(vo]]
_|_

FORROREROKEOID
O O O™
v ]

)

Maxterm form:
1. Find truth table rows where F is 0

2. 0 in input col — true literal
3. 1 in input col — complemented literal

4. OR the literals to get a Maxterm
5. AND together all the Maxterms

Or just remember” POS of F is the same as the DeMorgan of SOP of F

112



Notation for the Canonical POS Form

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

Maxterms

A+B+C =MO
A+B+C =M
A+B+C =M2
A+B+C =M3
A+B+C =M4
A+B+C =M5

A+B+C =M6
Z+E+E=M7ﬁ>
Maxterm shorthand notation

for a function of three variables

- O = 0O =20 -=_20|NM

F=(A+B+C)(A+B+C)(A+ B+ ()

1_[ M(0,1,2)

MO OOO|

HHEHOOKKOO|x

HOMROKOERO|A

OO Oy

Note that you
form the
maxterms around
the “zeros” of the
function

This is not the
complement of
the function!
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Useful Conversions

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

E.g., F(4,B,C) =Y m(3,4,5,6,7) = [ M(0,1,2)

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g., F(4,B,C) =[[M(0,1,2) = Ym(3,4,5,6,7)
3. Expansion of F to expansion of F:

E.g.,F(4,B,C) = Z m(3,4,567) —— F(ABC()= Z m(0,1,2)

_ 1_[ M(0,1,2) . - 1_[ M(3,4,5,6,7)

4.  Minterm expansion of F to Maxterm expansion of F:
rewrite in Maxterm form, using the same indices as F

E.g F(4,BC) = Zm(3,4, 56,77 ., F(4,B,(C)=][IM(3,45,6,7)

= 1_[ M(0,1,2) — = Z m(0,1,2)
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Logic Simplification (or Minimization)

= Using Boolean Algebra, we can simplify the SOP or POS
form of any function in @ methodical way

= Starting with the canonical SOP or POS form enables
convenience and automation
a Truth table = SOP/POS form - Boolean Simplification Rules

s Example (full 1-bit adder — more later):

A Y ‘
— S
S =FA45G) 51 % | ¢,
C:)ut = G(Al B/ qn) "

S =A®B®C.
C . =AB+AC_+BC._

out
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Logic Simplitication Example: SOP Form

s SOP (sum-of-products) form of function Y

m Example:Y=(4-B-C)+(A-B-C)+(A-B-C)

A

- Va

B

Vs

C

Ve

Y

U

\/

Y

minterm: ABC

minterm: ABC

minterm: ABC

SOP form does NOT directly lead to minimal logic
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Logic Simplification Example: Simplified

s SOP (sum-of-products) form of function Y

s Example: Y =(R-C)+(A-R)
A B C

Y Y

UHJ
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Let’s Cover Some
Basic Combinational Blocks
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Combinational Building Blocks
used in Modern Computers




Orr™O0O

OO

XOR

Or@¥mOr

OO0 r™r

0111

XNOR

Or@¥mOr

OO0 rrr

—O00O0

OR

Or@0Or

OO0 rr

OO0OOTr

NOR

Or@0Or

OO0 rr

—-—_-—-0

)z

AND

A —
B —

Common Logic Gates

Or@¥m0Or

OO0 r™r

Buffer

-z

NAND

A —
B —

Inverter

Or@¥mOr

OO0 r™rr

Recall
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Combinational Building Blocks

Combinational logic is often grouped into larger building
blocks to build more complex systems

Hides the unnecessary gate-level details to emphasize the
function of the building block

We now examine:

o Decoder

o Multiplexer

o Full adder

o PLA (Programmable Logic Array)



Decoder
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Decoder

“Input pattern detector”
n inputs and 2" outputs
Exactly one of the outputs is 1 and all the rest are 0s

The output that is logically 1 is the output corresponding to
the input pattern that the logic circuit is expected to detect

Example: 2-to-4 decoder

2:4
A AlYs Y Y Y, Decoder
1|— v,
0 o0l o0 o0 0 1 3
o 1]l0 o 1 o A — 10— Y
1 olo 1 o o Ao — 01— Y,
1 1011 o o o 00— Yo
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Decoder (I)

n inputs and 2" outputs
Exactly one of the outputs is 1, and all the rest are 0s

The output that is logically 1 is the output corresponding to
the input pattern that the logic circuit is expected to detect

. . A=1 * g
1ifABis 00 £B=0

1ifA B is 01

1ifABis 10

1ifABis 11

Joot
afefel:




Decoder (I1)

The decoder is useful in determining how to interpret a bit
pattern

o It could be the A=1 —
address of a location ﬁB d

in memory, that the

processor intends to ! -
read from | } o

o It could be an — T
instruction in the
program and the
processor needs to |
decide what action to ¢
take (based on
instruction opcode)
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Multiplexer (MUX)




Multiplexer (MUX), or Selector

Selects one of the Ninputs to connect it to the output
o based on the value of a log,\*bit control input called select

Example: 2-to-1 MUX

S D, Dy| Y

0 0 o0 0 S

0o 0o 1|1 —_

0 1 o0 o Dy —0

0o 1 1|1 Ly
1 0 o0 o D, — 1

1 0 1| o0 -

1 1 o0 1

1 1 1|1




Multiplexer (MUX), or Selector (1I)

Selects one of the Ninputs to connect it to the output
o based on the value of a log,\*bit control input called select

Example: 2-to-1 MUX

A B A B

| "2
U




Multiplexer (MUX), or Selector (111)

The output C is always connected to either the input A or
the input B

o Output value depends on the value of the select line S

A B

| |
HHE—a

C
Your task: Draw the schematic for an 4-input (4:1) MUX
o Gate level: as a combination of basic AND, OR, NOT gates
o Module level: As a combination of 2-input (2:1) MUXes
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A 4-to-1 Multiplexer

S, S,
So S V V
\I\ DO _
Do —0 j
D, )\
Dy — 1 [~ J
I 0 D, B
- Y _/
D> —0 1/ D \
Dy — 1 d
_—
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Aside: Logic Using Multiplexers

= Multiplexers can be used as lookup tables to perform logic

Fiin~iAnec

A B Y
0 0 0
o 1] o0 A
1 o] o A B Y A Y
1 1 1 (0 0 0
Y=AB v ag 01 0)—)@3 go
AB 10 0)-)@ B) B—1
1 1 |1
00
01
10 Y
T 114

v

Figure 2.59 4:1 multiplexer
implementation of two-input AND
function

Idea: Formulate the truth table as a multiplexer "'



Aside: Logic Using Multiplexers (1I)

= Multiplexers can be used as lookup tables to perform logic
functions

Y=A®B

132



Aside: Logic Using Multiplexers (111)

= Multiplexers can be used as lookup tables to perform logic
functions

A BC
A B C|Y L ||
o o0 o0 | 1 _
0 0 110 000
o 1 o011 o0 001
0 1 1 1 010
1 0 0 1 011 Ly
1 0 1| 1 100
1 1 0| o0 101
1 1 11]o0 110
111
Y=AB+BC+ ABC vV L

Read H&H Chapter 2.8 133



8-Input Lookup Table (I.LUT)

3-bit input LUT (3-LUT)

---------------- » Data Input

000
001
010
011 .
output (1 bit)
100
Multiplexer (Mux):
101 _--=¥ Chooses one of the 8 data inputs
11 -~ that corresponds to the 3-bit select
0 input
111

_-~» Select Input

-

input (3 bits)

3-LUT can implement
any 3-bit input function 134



An Example of Programming a LUT

Let’s implement a function that outputs ‘1’ when there are

at least two ‘1's in a 3-bit input
In an FPGA:

InC: e ——— » Data Input
int count = 0; 000 0
for(int i = 0; i < 3; i++) { . .
count += input & 1; 001 0 Configuration Memory
input = input >> 1;
} 010 0
if(count > 1) return 1; 011 1 tput (1 bit)
outpu |
return 0; 100 0
switch(input){ 101 1
case 0:
case 1:
case 2: 110 1
case 4:
return 0; 111 1
default:
return 1;} ] _
input (3 bits)

135



Aside: Logic Using Decoders (I)

= Decoders can be combined with OR gates to build logic
functions.

2:4
Decoder Minterm
11 AB
A — 10 AB
B — 01 AB
00 AB
Y=A®B

Y

Figure 2.65 Logic function using
decoder

Read H&H Chapter 2.8 136



Full Adder




Full Adder (T)

Binary addition

o Similar to decimal addition
o From right to left

o One column at a time

o One sum and one carry bit

an_lan_z nun alaO
bn_lbn_z nus blbO

Truth table of binary addition on one column of bits within

two n-bit operands

-

il sl =R e el T,

Cn Ch1 Cq
Sn-1 5150
b; carry; |carry;.; S;
0 O 0 0
0o 1 0 1
1 0 0 1
1 1 1 0
0 O 0 1
0o 1 1 0
1 0 1 0
1 1 1 1
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Full Adder (IT)

Binary addition
o N 1-bit additions
o SOP of 1-bit addition

Full Adder (1 bit)

Ci+1

an_lan_z nun alaO

b, 1b,_ 5 ..bibg

Cn Cn—l Cl
Sn-1 5150

a; b; carry;|carry;.; S;
0 0 O 0 0
o 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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4-Bit Adder from Full Adders

Creating a 4-bit adder out of 1-bit full adders
o To add two 4-bit binary numbers A and B

b; a; b, a, b; a;

rrooTrrorrIr

<c—4 Full Adder <C—3 Full Adder <«— Full Adder <«— Full Adder <«—0

(o)) C1
R T S
as adp, aq1 Qo 1 0 1 1
+ b, b, by b + 1 0 o 1
C4 C3 Cp Cq 1 0 1 1
S$S3 S2 S$1 Sy 0 1 0 0
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Adder Design: Ripple Carry Adder

O

Figure 5.5 32-bit ripple-carry adder
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Adder Design: Carry LLookahead Adder

B74 A74 B30 A30

31 28 A31 28 27 24 A27 24

4bit CLA | C27| a-bitcLA |Ces C7 | abitcLA | C3 | a-bitcLA
out Block Block Block Block |n

31 28 27 24

( | Example of

Vet voer vt v . | logic specialization:
L A Specialized logic for
fast carry generation
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Programmable LLogic Array (PLA)




PI.A: Recall: SOP Form

m SOP (sum-of-products) leads to two-level logic

m Example:Y=(4-B-C)+(A-B-C)+(A-B-C)
A B c

RARARA

}— minterm: ABC

_\ | .
minterm: ABC

-

RN _ _
minterm: ABC

-

\/

Y

A PLA enables the two-level SOP implementation of any N-input M-output function



The Programmable Logic Array (PLA)

The below logic structure is a very common building block
for implementing any collection of logic functions one

wishes to A
An array of AND gates B

followed by an array of OR .
gates

How do we determine the
number of AND gates?

o Remember SOP: the
number of possible minterms

Connections

LA

iigpiigipugigl

PYYYYYYY

o For an n-input logic function, we need a PLA with 2" n-input
AND gates
How do we determine the nhumber of OR gates? The

number of output columns.in the truth table
A PLA enables the two-level SOP implementation of any N-input M-output function



The Programmable Logic Array (PLA)

How do we implement a logic function?
o Connect the output of an AND gate to the input of an OR gate
if the corresponding minterm is included in the SOP

o This is a simple programmable 4
logic construct

B

Programming a PLA: we ¢
program the connections from
AND gate outputs to OR gate
inputs to implement a desired
logic function

Connections

MV

T T AL

PYYYYYYY

Have you seen any other type of programmable logic?
o Yes! An FPGA...

o An FPGA uses more advanced structures, as we see in the labs

A PLA enables the two-level SOP implementation of any N-input M-output functi%6



PLA Example (I)

Inputs
v
4 )
AND Impligants
Array "N
1\ J

OR
Array

1p
Qutputs

Read H&H Chapter 5.6.1
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PLA Example Function (1I)

OR Array
(" ﬁ V ﬁ ) 4 )
. o ® ABC @
- - - ABC -
- - AB -
. J N\ J
AND Array
X Y

Read H&H Chapter 5.6.1
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PLA Example Function (I11I)

OR ARRAY
N | ABC
J
N | ABC
J
| AB
J
\ ) L )
AND ARRAY |
X Y

Read H&H Chapter 5.6.1 149



Implementing a Full Adder Using a PLLA

=
—0 X
B ﬁg_>_ %:)7
c 1 This input should not be
9 Y We do not need
") connections = _-— connected to any outputs |
T this output
[ I |
S ai—
s = >z ﬂlﬁ i T x
. T\
—o} b; 0 : |
B, — | |
¢ )T |
9 \ I | ] C'.,.
Truth table of a full adder — '
T\ |
a; b; carry; |carry;.; S; = ) |
0 0 0 0 0 — . | )
o o0 1 0 1 — i |
o 1 0 0 1 = ) | |
o 1 1 1 0 — | |
1 0 0 0 1 | ==
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Logical Completeness




Logical (Functional) Completeness

Any logic function we wish to implement could be
accomplished with a PLA
o PLA consists of only AND gates, OR gates, and inverters

o We just have to program connections based on SOP of the
intended logic function

The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

NAND is also logically complete. So is NOR.

o—Your-task:—Prove-this. 152



More Combinational Blocks




More Combinational Building Blocks

H&H Chapter 2 in full
o Required Reading
o E.g., see Tri-state Buffer and Z values in Section 2.6

H&H Chapter 5
o Will be required reading soon.

You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

o Sections 5.1 and 5.2
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Comparator

155




Equality Checker (Compare 1t Equal)

= Checks if two N-input values are exactly the same
= Example: 4-bit Comparator

A B
! G G,

Equal

Az
Bs—
Ay
By —
Ap 2
By —
Ay
Bo —

+ Equal

slvjvlv




ALU (Arithmetic Logic Unit)




ALU (Arithmetic Logic Unit)

= Combines a variety of arithmetic and logical operations into
a single unit (that performs only one function at a time)

= Usually denoted with this symbol:

Table 5.1 ALU operations

A B Fs Function
YN AN
[ v . 000 A AND B
\ ALU /7§F 001 A OR B
AN 010 A+B
Y
011 not used
Figure 5.14 ALU symbol 100 A AND B
101 A ORB
110 A-B

111 SLT




Example ALU (Arithmetic Logic Unit)

A B
AN AN
Table 5.1 ALU operations
000 A AND B 1
> | F
_ °
001 A OR B TN
010 A+B =
011 not used
100 A AND B
101 A OR B
110 A-B
111 SLT
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More Combinational Building Blocks

See H&H Chapter 5.2 for

o Subtractor (using 2's Complement Representation)
Shifter and Rotator

Multiplier

Divider

o o O 0O
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More Combinational Building Blocks

H&H Chapter 2 in full
o Required Reading
o E.g., see Tri-state Buffer and Z values in Section 2.6

H&H Chapter 5
o Will be required reading soon.

You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.

o Sections 5.1 and 5.2

161



Tri-State Buffer




Tri-State Buffer

A tri-state buffer enables gating of different signals onto a
wire

Tristate
Buffer

E

AAI > Y
A tri-state buffer

acts like a switch

H R o olm
Hor olx
F o N N|<

Figure 2.40 Tristate buffer

Floating signal (Z): Signal that is not driven by any circuit
o Open circuit, floating wire
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Example: Use ot Tri-State Buffers

Imagine a wire connecting the CPU and memory

o At any time only the CPU or the memory can place a value on
the wire, both not both

o You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time
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Example Design with Tri-State Butters

GateCPU

[ CPU

GateMem

[ Memory

Shared Bus

165



Another Example

p
Processor ent

to bus

Ay

from bus
\_ J

s
Video en2

to bus

XY

from bus
\_ J

- N shared bus
Ethernet en3

to bus

Ay

from bus
\_ J

-
Memory en4

to bus

Ay

from bus
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Multiplexer Using Tri-State Butters

S

s[5

0
P

"~
Dy —T1>

/

Y=D,S+D;S

Figure 2.56 Multiplexer using
tristate buffers

>
| [
0|

3
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Recall: A 4-to-1 Multiplexer

S, S,

\SI"\ o V|V

Dy — 0 ” T

D,

ot - B
T T D

D> —0 _1/ Ds D

Dy — 1 d
/
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We Covered Combinational LLogic Blocks

Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
Decoder

Multiplexer

Full Adder

Programmable Logic Array (PLA)

Comparator
Arithmetic Logic Unit (ALU)
Tri-State Buffer

Standard form representations: SOP & POS
Logical completeness
Logic simplification via Boolean Algebra
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Logic Simplification using

Boo.

ean Algebra Rules




Recall: Full Adder in SOP Form Logic

O A 10+ 0O0O0 -

O OO 1 O v

b; carry; |carry;.; S;

a;

Ci+1

O 1 O +d1 0O+ O

OO 1 =+ OO i

O OO0 O i v

Full Adder

—0

D
-
B
-
D

[
+——=
+——
[
+——
P
[
[
+——

a;
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Goal: Simplified Full Adder

Full
Adder
/|4 ? S=A®B® C;, 3-input XOR
c. Y / c. Cout=AB+AC;,+ BC,, 3-input majority
S

Ch, A B | Cyu S

0 0 0| 0 O

o 0 1| 0 1

o 1 0| 0 1

o 1 1 1 0 S _

1 0 o 0 1 How do we simplify Boolean logic?
1 0 1 1 0

P10 21 1 Y How do we automate simplification?
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Quick Recap on Logic Simplitication

The original Boolean expression (i.e., logic circuit) may not
be optimal [

F=~A(A+B)+ (B+ AA)A + ~B) ]

Can we reduce a given Boolean expression to an equivalent
expression with fewerterms?

F=A+B ]

The goal of logic simplification:
o Reduce the number of gates/inputs

o Reduce implementation cost (and potentially latency & power)
A basis for what the automated design tools are doing today
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Logic Simplitication

Systematic techniques for simplifications
o amenable to automation
Key Tool: The Uniting Theorem — F = AB + AB

A B |[F F= AB+AB=AB+B)=4(1)=4
O 0 |0
B's value changes within the rows where F==1 ("ON set”)

0 1 /VA'S value does NOT change within the ON-set rows
1 2/4/ If an input (B) can change without changing the output, that input
1 ‘/1 1 value is not needed

— B is eliminated, A remains
A B |G — - - —
O\E‘\ G= AB+AB=(A+A)B =8B

TSNS

0 1 B's value stays the same within the ON-set rows
1| —0—H1 A's value changes within the ON-set rows
1 1 0 — A is eliminated, B remains
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Logic Simplitication

= Systematic techniques for simplifications

o amenable to automation
Key Tool: The Uniting Theorem — F = AB + AB

A B |[F F= AB+AB=AB+B)=4(1)=4

Find two-element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

— B is eliminated, A remains

B's value stays the same within the ON-set rows

' A's value changes within the ON-set rows
1 0 — A is eliminated, B remains

%\% G= AB+AB=(A+A)B=B
0
1
1
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Logic Simplification Example: Priority Circuit

= Priority Circuit
o Inputs: "Requestors” with priority levels
o Outputs: “Grant” signal for each requestor
o Example 4-bit priority circuit
o Real life example: Imagine a bus requested by 4 processors

Az Ay Al A|Ys Yo Y7 Y
0 0 0 0 0
—— Ag Yy —— 0 0 g 0 0 g
0 0 1 O 0 0 1 0
— 4 v, — s E b
0 1 0 0 1 0
0 1 0 0 1 0
 — Ao Y0 — 0 1 0 0
Priority 1 o B 0
Circuit 1 11 0
1 0 1 0
1 1 1 0
1 0 1 0
1 1 1 0
1 0 1 0
1 1 1 0

PR RPRPROOOO
PR OORFRROORRE OO
s loNeNoNeNoNele)

s NoNeNoNeoNoNecNoNoNoNole
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Simplified Priority Circuit

= Priority Circuit
o Inputs: "Requestors” with priority levels
o Outputs: “Grant” signal for each requestor

o Example 4-bit priority circuit
AsA A A,

>
@

>
N
>

>
S

Q.

0

R O o oo
M= o o o
XX P O o
XX X PO
R oo oo
or—\ooo,\;<
ocor ool X
OOOI—‘OO‘<

X0

Figure 2.29 Priority circuit truth table with

don’t cares (X’s)

FRRPRRPRPRRPEPRPOOOOOOOO
PFRRPRPOOOORRRREROOOO
FRPOORRFROORRFPOORKE OO
PFoOrRrORORORORORORO
PRRPREPPRRROOO0OOOOOSX
©OCoocooocoor kPR OOoOoOo<
OCooooocooocooooorkoolx
©Coocoocoooooooooookr o<

X (Don’t Care) means | don'’t care what the value of this input is
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Logic Simplification:
Karnaugh Maps (IK-Maps)




Karnaugh Maps are Fun...

A pictorial way of minimizing circuits by visualizing
opportunities for simplification

They are for you to study on your own...

See backup slides
Read H&H Section 2.7
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We Are Done with Combinational Logic

= Building blocks of modern computers
o Transistors
o Logic gates

= Combinational circuits
= Boolean algebra
= Using Boolean algebra to represent combinational circuits

= Basic combinational logic blocks

= Gimplifvi hinational logic circu
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Backup Slides on
Karnaugh Maps (IK-Maps)




Complex Cases

One example B B B
Cout = ABC + ABC + ABC + ABC

Problem

o Easy to see how to apply Uniting Theorem...

o Hard to know if you applied it in all the right places...
o ...especially in a function of many more variables

Question
o Is there an easier way to find potential simplifications?
o i.e., potential applications of Uniting Theorem...?

Answer
o Need an intrinsically geometric representation for Boolean f( )
o Something we can draw, see...
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Karnaugh Map

= Karnaugh Map (K-map) method

o K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

o Physical adjacency < Logical adjacency

2-variable K-map 3-variable K-map 4-variable K-map
Ih 0 1 ACOO 01 11 10 ABDOO 01 11 10
01 0 | 000 | 001 | o011 | 010 00 |oo00 [0001 |0011 |0010

1120 |12 1 | 100 | 101 | 111 | 110 01 |o100 |o101 |0111 |0110

11 |1100|1101 |1111 |1110

10 (1000 |1001 [1011 1010

Numbering Scheme: 00, 01, 11, 10 is called a

“Gray Code” — only a single bit (variable) changes
from one code word and the next code word
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Karnaugh Map Methods

Adjacent

X¢00 01 11 10 T o] e [ 12

01 101
0 | ooo | 001 | 011 | 010 011|111

1 {100 | 101 | 111 | 110 {000{010{110{100
\001\01 1 \1 1 1\ 101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column
Wrap around from top row to bottom row
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K-map Cover - 4 Input Variables

F(A B,CD) = Z m(0,2,5,8,9,10,11,12,13,14,15)

L F=A+BD + BCD

Strategy for “circling” rectangles on Kmap:

Biggest “oops!” that people forget:
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Logic Minimization Using IK-Maps

Very simple guideline:

a Circle all the rectangular blocks of 1's in the map, using the
fewest possible number of circles

Each circle should be as large as possible
o Read off the implicants that were circled

More formally:

o A Boolean equation is minimized when it is written as a sum of
the fewest number of prime implicants

a Each circle on the K-map represents an implicant
a The largest possible circles are prime implicants
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K-map Rules

What can be legally combined (circled) in the K-map?
o Rectangular groups of size 2k for any integer k
o Each cell has the same value (1, for now)

o All values must be adjacent
Wrap-around edge is okay

How does a group become a term in an expression?
o Determine which literals are constant, and which vary across group

o Eliminate varying literals, then AND the constant literals
constant 1 — use X, constant 0 — use X

What is a good solution?
o Biggest groupings — eliminate more variables (literals) in each term
o Fewest groupings — fewer terms (gates) all together

o OR together all AND terms you create from individual groups
188



K-map Example: Two-bit Comparator

F1 F2 F3

1

0

1

1

1

1
1

0O O

1

1
1

0O O

A B C D
O 0 O O

1

O 0 O

1 0 |0

0

=CD

O 0|0 O

1

0O |0

1

O 0 O |0 O

1
1

1

0O O

F1 RE

F2 AB < CD

O 0|0 O

1

Design Approach:

O |0 O

1

Write a 4-Variable K-map
for each of the 3

output functions
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Example: Two-bit Comparator (2)

K-map

11

01

K-map for F1

Dgg

C
AB\
00

01

11
10

A

‘o : o i o o

(<] MO (<] MO MO (<]

Ol - © H:0 H © H:O H © ) (=]

Olo o = 1.0 © = 1.0 o = .0 i

mj|lo © © O W W = = © O O i i

IO ©O ©O 0O 000 O W W w i
Q

F1
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Example: Two-bit Comparator (3)

K-map

MO MO MO (=)
o O © ©:0 : O o
Qlo =« © 1m0 - O 1m0 - O 0 -T O w
O|lo o = 1.0 o w 1.0 o w .0 O = =
Nm|ioo © O 0 =W = = © 00 O ™ v e =
<|O ©O ©O 0O 0000 W w w e B I
aa)
O el
2 o |

W _t
S \ - 5
N~ ] o
N = >
X o
m =i w“—
\ = e
¢ o
(&)
o
S a
Q) —
O/ 0 wW w o o

BO o =i =i

< L. L
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K-maps with “Don’t Care”

Don't Care really means 7 don't care what my circuit outputs if this
appears as input

o You have an engineering choice to use DONT CARE patterns
intelligently as 1 or 0 to better simplify the circuit
A BCDIF G

| can pick 00, 01, 10, 11

X X «—/ independently of below

0110

0111

1000XxX \

1001 | can pick 00, 01, 10, 11

independently of above
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Example: BCD Increment Function

BCD (Binary Coded Decimal) digits
o Encode decimal digits 0 - 9 with bit patterns 0000, — 1001,
o When incremented, the decimal sequenceis O, 1, ..., 8,9, 0, 1

A B C D W X Y Z

0 0 0 O 0 0 1

0 0 0 1 0 1 O

0 0 1 0O 0o 1 1

0o 0 1 1 1 0 O

0 1 0 O 1 0 1

0o 1 0 1 1 1 0

0o 1 1 0 1 1 1

o 1 1 1 0 0 O

1 0 0 O 0 0 1

1 0 0 1 0 0 O B

1 0 1 O X X X

: (1) (1, (1, ; ; ; These input patterns_ shoulo!

1 1 0 1 X X X never be e_ncountered in practice
1 1 1 0 X X X (hey -- it’'s a BCD number?!)

1 1 1 1 X X X So, associated output values are

“Don’t Cares”
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K-map tor BCD Increment Function

4 )
ag| £ (without don't cares) = b
— Z (with don’t cares) =
WX

10[ 1 X | X 10 X | x
Y .Z

e\

CD
ap\ 00 01 11 10 »L00 01 11 10
00 1 1 00
01 1 01
B

1
11| X | X X (111X | X
]\ S

X

10 X
\/

D

X

X




K-map Summary

Karnaugh maps as a formal systematic approach
for logic simplification

2-, 3-, 4-variable K-maps

K-maps with "Don’t Care” outputs

H&H Section 2.7
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