Introduction to Computer Architecture

Lecture 4: Sequential Logic Design

Pooyan Jamshidi

Week 4-5: January 30, February 1,6,8

CSCE 212: Introduction to Computer Architecture I Spring 2024 I https://pooyanjamshidi.github.io/csce212/

First, We Will Complete

Combinational Logic

We Covered Combinational Logic Blocks

- Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
- Decoder
- Multiplexer
- Full Adder
- Programmable Logic Array (PLA)
- Comparator
- Arithmetic Logic Unit (ALU)
- Tri-State Buffer
- Standard form representations: SOP \& POS
- Logical completeness
- Logic simplification via Boolean Algebra

Recall: Implementing a Full Adder Using a PLA

This input should not be

connected to any outputs
We do not need

Truth table of a full adder

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logical Completeness

Logical (Functional) Completeness

- Any logic function we wish to implement could be accomplished with a PLA
- PLA consists of only AND gates, OR gates, and inverters
- We just have to program connections based on SOP of the intended logic function
- The set of gates \{AND, OR, NOT\} is logically complete because we can build a circuit to carry out the specification of any truth table we wish, without using any other kind of gate
- NAND is also logically complete. So is NOR.
- Your task: Prove this.

More Combinational Blocks

More Combinational Building Blocks

- H\&H Chapter 2 in full
- Required Reading
- E.g., see Tri-state Buffer and Z values in Section 2.6
- H\&H Chapter 5
- Will be required reading soon.
- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
- Sections 5.1 and 5.2
- E.g., Adder, Subtractor, Comparator, Shifter/Rotator, Multiplier, Divider

Comparator

Equality Checker (Compare if Equal)

- Checks if two N-input values are exactly the same
- Example: 4-bit Comparator

ALU (Arithmetic Logic Unit)

ALU (Arithmetic Logic Unit)

- Combines a variety of arithmetic and logical operations into a single unit (that performs only one function at a time)
- Usually denoted with this symbol:

Table 5.1 ALU operations

Figure 5.14 ALU symbol

$F_{2: 0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND $\overline{\mathrm{B}}$
101	A OR $\overline{\mathrm{B}}$
110	A -B
111	SLT

Example ALU (Arithmetic Logic Unit)

Table 5.1 ALU operations

$F_{2: 0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND $\overline{\mathrm{B}}$
101	A OR $\overline{\mathrm{B}}$
110	A - B
111	SLT

More Combinational Building Blocks

- See H\&H Chapter 5.2 for
- Subtractor (using 2's Complement Representation)
- Shifter and Rotator
- Multiplier
- Divider

More Combinational Building Blocks

- H\&H Chapter 2 in full
- Required Reading
- E.g., see Tri-state Buffer and Z values in Section 2.6
- H\&H Chapter 5
- Will be required reading soon.
- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
- Sections 5.1 and 5.2
- E.g., Adder, Subtractor, Comparator, Shifter/Rotator, Multiplier, Divider

Tri-State Buffer

Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire

Tristate
Buffer

$$
\begin{array}{cc|c}
E & A & Y \\
\hline 0 & 0 & Z \\
0 & 1 & Z \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

A tri-state buffer acts like a switch

Figure 2.40 Tristate buffer

- Floating signal (Z): Signal that is not driven by any circuit
- Open circuit, floating wire

Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
- At any time only the CPU or the memory can place a value on the wire, both not both
- You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Example Design with Tri-State Buffers

Another Example

Multiplexer Using Tri-State Buffers

Figure 2.56 Multiplexer using tristate buffers

Recall: A 4-to-1 Multiplexer

Digging Deeper: Tri-State Buffer in CMOS

- How do you implement Tri-State Buffers using transistors?

We Covered Combinational Logic Blocks

- Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
- Decoder
- Multiplexer
- Full Adder
- Programmable Logic Array (PLA)
- Comparator
- Arithmetic Logic Unit (ALU)
- Tri-State Buffer
- Standard form representations: SOP \& POS
- Logical completeness
- Logic simplification via Boolean Algebra

Logic Simplification using Boolean Algebra Rules

Recall: Full Adder in SOP Form Logic

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Goal: Simplified Full Adder

Full

Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S=A \oplus B \oplus C_{\text {in }} \quad$ 3-input XOR
$C_{\text {out }}=A B+A C_{\text {in }}+B C_{\text {in }}$ 3-input majority
How do we simplify Boolean logic?
How do we automate simplification?

- The original Boolean expression (i.e., logic circuit) may not be optimal

$$
F=\sim A(A+B)+(B+A A)(A+\sim B)
$$

- Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$
F=A+B
$$

- The goal of logic simplification:
- Reduce the number of gates/inputs
- Reduce implementation cost (and potentially latency \& power)

A basis for what the automated design tools are doing today

Logic Simplification

- Systematic techniques for simplifications
- amenable to automation

Key Tool: The Uniting Theorem - F=A昰+AB

$\rightarrow B$ is eliminated, A remains

Logic Simplification

- Systematic techniques for simplifications
- amenable to automation

Key Tool: The Uniting Theorem - F=A信+AB

Logic Simplification Example: Priority Circuit

- Priority Circuit
- Inputs: "Requestors" with priority levels
- Outputs: "Grant" signal for each requestor
- Example 4-bit priority circuit
- Real life example: Imagine a bus requested by 4 processors

Simplified Priority Circuit

- Priority Circuit
- Inputs: "Requestors" with priority levels
- Outputs: "Grant" signal for each requestor
- Example 4-bit priority circuit

A_{3}	A_{2}	A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

A_{3}	A_{2}	A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	X	X	0	1	0	0
1	X	X	X	1	0	0	0

Figure 2.29 Priority circuit truth table with don't cares (X's)

X (Don't Care) means I don't care what the value of this input is

Logic Simplification:

 Karnaugh Maps (K-Maps)
Karnaugh Maps are Fun...

- A pictorial way of minimizing circuits by visualizing opportunities for simplification
- They are for you to study on your own...
- We may cover them later if time permits
- See backup slides
- Read H\&H Section 2.7
- Watch videos of Lectures 5 and 6 from 2019 DDCA course:
- https://youtu.be/OksOPeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF QFHRO3GrXxA9\&t=4570
- https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN FQFHRO3GrXxA9\&t=220

We Are Done with Combinational Logic

- Building blocks of modern computers
- Transistors
- Logic gates
- Combinational circuits
- Boolean algebra
- Using Boolean algebra to represent combinational circuits
- Basic combinational logic blocks
- Simplifying combinational logic circuits

Agenda for Today and Next Week

- Today
- Start (and finish) Sequential Logic
- Next week
- Hardware Description Languages and Verilog
- Combinational Logic
- Sequential Logic
- Timing and Verification

Assignment: Readings

- Combinational Logic
- P\&P Chapter 3 until $3.3+\quad$ H\&H Chapter 2
- Sequential Logic
- P\&P Chapter 3.4 until end $+\quad$ H\&H Chapter 3 in full
- Hardware Description Languages and Verilog
- H\&H Chapter 4 in full
- Timing and Verification
- H\&H Chapters 2.9 and $3.5+$ (start Chapter 5)
- By the end of next week, make sure you are done with - P\&P Chapters 1-3 + H\&H Chapters 1-4

Readings (for Next Week)

- Hardware Description Languages and Verilog
- H\&H Chapter 4 in full
- Timing and Verification
- H\&H Chapters 2.9 and $3.5+$ (start Chapter 5)
- By tomorrow, make sure you are done with - P\&P Chapters 1-3 + H\&H Chapters 1-4

Readings (for Next Next Week)

- Von Neumann Model, LC-3, and MIPS
- P\&P, Chapters 4, 5
- H\&H, Chapter 6
- P\&P, Appendices A and C (ISA and microarchitecture of LC-3)
- H\&H, Appendix B (MIPS instructions)
- Programming
- P\&P, Chapter 6
- Recommended: Digital Building Blocks
- H\&H, Chapter 5

Sequential Logic Circuits

and Design

What We Will Learn Today

- Circuits that can store information
- Cross-coupled inverter
- R-S Latch
- Gated D Latch
- D Flip-Flop
- Register
- Finite State Machines (FSM)
- State \& Clock
- Asynchronous vs. Synchronous
- How to design FSMs

No Real Computer Can Work w/o Memory

Apple M1, 2021

A Large Fraction of Modern Systems is Memory

Apple M1 Ultra System (2022)

A Large Fraction of Modern Systems is Memory

Intel Pentium Pro, 1995

A Large Fraction of Modern Systems is Memory

A Large Fraction of Modern Systems is Memory

Core Count:
8 cores/16 threads

L1 Caches:
 32 KB per core

L2 Caches:
512 KB per core
L3 Cache: 32 MB shared

AMD Ryzen 5000, 2020

Adding Even More Memory in 3D (2021)

httos://community microcenter.com/discussion/5
134/comparing-zen-3-to-zen-2

AMD increases the L3 size of their 8-core Zen 3 processors from 32 MB to 96 MB

Additional 64 MB L3 cache die stacked on top of the processor die - Connected using Through Silicon Vias (TSVs) - Total of 96 MB L3 cache

A Large Fraction of Modern Systems is Memory

IBM POWER10, 2020
Cores:
15-16 cores, 8 threads/core
L2 Caches: 2 MB per core
L3 Cache:
120 MB shared

A Large Fraction of Modern Systems is Memory

Cores:
 128 Streaming Multiprocessors

L1 Cache or Scratchpad: 192KB per SM

 Can be used as L1 Cache and/or Scratchpad
L2 Cache: 40 MB shared

Nvidia Ampere, 2020

Cerebras's Wafer Scale Engine-2 (2021)

- The largest ML accelerator chip
- 850,000 cores
- 40 GB of on-chip memory

20 PB/s memory bandwidth

Cerebras WSE-2
2.6 Trillion transistors $46,225 \mathrm{~mm}^{2}$

Largest GPU
54.2 Billion transistors

826 mm2
NVIDIA Ampere GA100

Circuits that Can
Store Information

Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values - circuits with memory
- How can we design a circuit that stores information?

Capturing Data

Basic Element: Cross-Coupled Inverters

(a)

(b)

- Has two stable states: $\mathrm{Q}=1$ or $\mathrm{Q}=0$.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a control mechanism for setting Q

More Realistic Storage Elements

- Have a control mechanism for setting Q
- We will see the R-S latch soon
- Let's look at an SRAM (static random access memory) cell first

SRAM cell

- We will get back to SRAM (and DRAM) later

The Big Picture: Storage Elements

- Latches and Flip-Flops
- Very fast, parallel access
- Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
- Relatively fast
- Expensive (one bit costs 6+ transistors)
- Dynamic RAM (DRAM)
- Slower, reading destroys content (refresh), needs special process for manufacturing
- Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
- Much slower, access takes a long time, non-volatile
- Very cheap

Basic Storage Element:

 The R-S Latch
The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
- Data is stored at \mathbf{Q} (inverse at \mathbf{Q}^{\prime})
- \mathbf{S} and \mathbf{R} are control inputs
- In quiescent (idle) state, both \mathbf{S} and \mathbf{R} are held at 1
- \mathbf{S} (set): drive \mathbf{S} to 0 (keeping \mathbf{R} at 1) to change \mathbf{Q} to 1
- \mathbf{R} (reset): drive \mathbf{R} to 0 (keeping \mathbf{S} at 1) to change \mathbf{Q} to 0
- \mathbf{S} and \mathbf{R} should never both be 0 at the same time

Input		Output
R	S	Q
1	1	$\mathrm{Q}_{\text {prev }}$
1	0	1
0	1	0
0	0	Forbidden

Why not $\mathrm{R}=\mathrm{S}=0$?

Input		Output
R	S	Q
1	1	$\mathrm{Q}_{\text {prev }}$
1	0	1
0	1	0
0	0	Forbidden

1. If $\mathbf{R}=\mathbf{S}=\mathbf{0}, \mathbf{Q}$ and \mathbf{Q}^{\prime} will both settle to 1 , which breaks our invariant that $\mathbf{Q}=!\mathbf{Q}^{\prime}$
2. If \mathbf{S} and \mathbf{R} transition back to 1 at the same time, \mathbf{Q} and \mathbf{Q}^{\prime} begin to oscillate between 1 and 0 because their final values depend on each other (metastability)

- This eventually settles depending on variation in the circuits (more on this in the Timing Lecture)

The Gated D Latch

The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?

The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?
- Add two more NAND gates!

- \mathbf{Q} takes the value of \mathbf{D}, when write enable (WE) is set to 1
- \mathbf{S} and \mathbf{R} can never be 0 at the same time!

The Gated D Latch

The Register

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This register holds 4 bits, and its data is referenced as Q [3:0]

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This register holds 4 bits, and its data is referenced as Q [3:0]

Memory

Memory

- Memory is comprised of locations that can be written to or read from. An example memory array with 4 locations:

Addr(00):	0100	1001	Addr(01):	0100	1011
$\boldsymbol{A d d r}(10):$	0010	0010	Addr(11):	1100	1001

- Every unique location in memory is indexed with a unique address. 4 locations require 2 address bits (log[\#locations]).
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits.
- The entire set of unique locations in memory is referred to as the address space.
- Typical memory is MUCH larger (e.g., billions of locations)

Addressing Memory

Let's implement a simple memory array with:

- 3-bit addressability \& address space size of 2 (total of 6 bits) 1 Bit

6-Bit Memory Array

Addr(0)	Bit_{2}	Bit_{1}	Bit_{0}
$\boldsymbol{A d d r}(\mathbf{1})$	Bit_{2}	Bit_{1}	Bit_{0}

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Addr[0]

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Addr[0]

Reading from Memory

How can we select an address to read?

- Because there are 2 addresses, address size is $\log (2)=1$ bit

Addr[0]

Recall: Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output - based on the value of a $\log _{2} N$-bit control input called select
- Example: 2-to-1 MUX

Writing to Memory
How can we select an address and write to it?

Writing to Memory

How can we select an address and write to it?

- Input is indicated with D_{i}

Putting it all Together

Let's enable reading from and writing to a memory array

A Bigger Memory Array (4 locations X 3 bits)

A Bigger Memory Array (4 locations X 3 bits)

Addr[1:0]

Example: Reading Location 3

Figure 3.21 Reading location 3 in our $\mathbf{2}^{2}$-by-3-bit memory.

Recall: Decoder (II)

- The decoder is useful in determining how to interpret a bit pattern
- It could be the address of a location in memory, that the processor intends to read from
- It could be an instruction in the program and the processor needs to decide what action to take (based on
 instruction opcode)

Recall: A 4-to-1 Multiplexer

Aside: Implementing Logic Functions Using Memory

Recall: A Bigger Memory Array (4 locations X 3 bits) Addr[1:0]

Memory-Based Lookup Table Example

- Memory arrays can also perform Boolean Logic functions
- $2^{\text {N}}$-location M-bit memory can perform any N -input, M-output function
- Lookup Table (LUT): Memory array used to perform logic functions
- Each address: row in truth table; each data bit: corresponding output value

Lookup Tables (LUTs)

- LUTs are commonly used in FPGAs
- To enable programmable/reconfigurable logic functions
- To enable easy integration of combinational and sequential logic

Figure 5.59 LE configuration for two functions of up to four inputs each

Recall: A Multiplexer-Based LUT

- Let's implement a function that outputs ' 1 ' when there are at least two ' 1 's in a 3-bit input

In Hardware (e.g., FPGA):

```
In C:
int count = 0;
for(int i = 0; i < 3; i++) {
    count += input & 1;
    input = input >> 1;
}
if(count > 1) return 1;
return 0;
switch(input){
    case 0:
    case 1:
    case 2:
    case 4:
        return 0;
    default:
        return 1;}
```


Sequential Logic Circuits

Sequential Logic Circuits

- We have examined designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

Combinational
Only depends on current inputs

Sequential
Opens depending on past inputs

State

- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
A. The lock is not open (locked), and no relevant operations have been performed
B. Locked but user has completed R13
C. Locked but user has completed R13-L22
D. Unlocked: user has completed R13-L22-R3
- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
- To open the lock, states A-D must be completed in order
- If anything else happens (e.g., L5), lock returns to state A

State Diagram of Our Sequential Lock

- Completely describes the operation of the sequential lock

- We will understand "state diagrams" fully later today

Asynchronous vs. Synchronous State Changes

- Sequential lock we saw is an asynchronous "machine"
- State transitions occur when they occur
- There is nothing that synchronizes when each state transition must occur
- Most modern computers are synchronous "machines"
- State transitions take place after fixed units of time
- Controlled in part by a clock, as we will see soon
- These are two different design paradigms, with tradeoffs

Another Simple Example of State

- A standard Swiss traffic light has 4 states
A. Green
B. Yellow
C. Red
D. Red and Yellow

- The sequence of these states are always as follows

Changing State: The Notion of Clock (I)

- When should the light change from one state to another?
- We need a clock to dictate when to change state
- Clock signal alternates between 0 \& 1

CLK: ${ }_{0}^{1} \sqcap \square \longleftarrow \square \square \square \square \square \square \square \square \square$

Figure 3.28 A clock signal.

Changing State: The Notion of Clock (I)

- When should the light change from one state to another?
- We need a clock to dictate when to change state
- Clock signal alternates between $0 \& 1$

CLK: ${ }_{0}^{1} \sqcap \square \square$

- At the start of a clock cycle ($\square \square$), system state changes
- During a clock cycle, the state stays constant
- In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

Changing State: The Notion of Clock (II)

- Clock is a general mechanism that triggers transition from one state to another in a (synchronous) sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay
- More on this later, when we discuss timing

What is a clock?

- A clock signal is a square wave signal the fluctuates between 2 voltage levels at fixed intervals.

$$
\text { Frequency }=\frac{1}{\text { Periodic time }} \text { or } f=\frac{1}{\mathrm{~T}} \mathrm{~Hz}
$$

$$
\text { Periodic time }=\frac{1}{\text { Frequency }} \text { or } \mathrm{T}=\frac{1}{f} \mathrm{sec}
$$

$$
\text { Frequency }=\frac{1}{\text { "ON" time }+ \text { "OFF" time }}
$$

Asynchronous vs. Synchronous State Changes

- Sequential lock we saw is an asynchronous "machine"
- State transitions occur when they occur
- There is nothing that synchronizes when each state transition must occur
- Most modern computers are synchronous "machines"
- State transitions take place after fixed units of time
- Controlled in part by a clock, as we will see soon
- These are two different design paradigms, with tradeoffs
- Synchronous control can be easier to get correct when the system consists of many components and many states
- Asynchronous control can be more efficient (no clock overheads)
- A Square Wave electrical waveform has a pulse width of 10 ms ; calculate its frequency (f).
- A Square Wave electrical waveform has a pulse width of 10 ms ; calculate its frequency (f).
- For a square wave shaped waveform, the duty cycle is given as 50%, therefore the period of the waveform must be equal to: $10 \mathrm{~ms}+10 \mathrm{~ms}$ or 20 ms

$$
\text { Frequency }=\frac{1}{\text { Period }}=\frac{1}{10 \mathrm{mS}+10 \mathrm{mS}}=50 \mathrm{~Hz}
$$

Finite State Machines

Finite State Machines

- What is a Finite State Machine (FSM)?
- A discrete-time model of a stateful system
- Each state represents a snapshot of the system at a given time
- An FSM pictorially shows

1. the set of all possible states that a system can be in
2. how the system transitions from one state to another

- An FSM can model
- A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams

Finite State Machines (FSMs) Consist of:

- Five elements:

1. A finite number of states

- State: snapshot of all relevant elements of the system at the time of the snapshot

2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions - How to get from one state to another
5. An explicit specification of what determines each external output value

Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
- next state logic
- state register
- output logic

At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:

- Sequential Circuits
- State register(s)
- Store the current state and
- Load the next state at the clock edge
- Combinational Circuits
- Next state logic
- Determines what the next state will be

- Output logic
- Generates the outputs

Finite State Machines (FSMs) Consist of:

- Sequential Circuits
- State register(s)
- Store the current state and
- Provide the next state at the clock edge

- Combinational Circuits
- Next state logic
- Determines what the next state will be

- Output logic
- Generates the outputs

State Register Implementation

- How can we implement a state register? Two properties: 1. We need to store data at the beginning of every clock cycle

2. The data must be available during the entire clock cycle CLK: $\begin{aligned} & 1 \\ & 0\end{aligned} \mathrm{Z}$

The Problem with Latches

Recall the
Gated D Latch

- Currently, we cannot simply wire a clock to WE of a latch - Whenever the clock is high, the latch propagates \mathbf{D} to \mathbf{Q}
- The latch is transparent

CLK: ${ }_{0}^{1}$

Register
 Output:

The Problem with Latches

Recall the
Gated D Latch

- Currently, we cannot simply wire a clock to WE of a latch - Whenever the clock is high, the latch propagates \mathbf{D} to \mathbf{Q}
- The latch is transparent

CLK: ${ }_{0}^{1}$

The Problem with Latches
Recall the
Gated D Latch

How can we change the latch, so that

1) \mathbf{D} (input) is observable at \mathbf{Q} (output) only at the beginning of next clock cycle?
2) \mathbf{Q} is available for the full clock cycle

The Need for a New Storage Element

- To design viable FSMs
- We need storage elements that allow us to:
- read the current state throughout the entire current clock cycle

AND

- not write the next state values into the storage elements until the beginning of the next clock cycle

The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- When the clock is low, $1^{\text {st }}$ latch propagates \mathbf{D} to the input of the $2^{\text {nd }}$ (Q unchanged)
- Only when the clock is high, $2^{\text {nd }}$ latch latches D (Q stores \mathbf{D})
- At the rising edge of clock (clock going from $0->1$), Q gets assigned D

How many transistors do we need to

 implement a D Flip Flop?

The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from 0->1), \mathbf{Q} gets assigned \mathbf{D}
- At all other times, Q is unchanged

The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

We can use D Flip-Flops to implement the state register

- At the rising edge of clock (clock going from 0->1), \mathbf{Q} gets assigned \mathbf{D}
- At all other times, Q is unchanged

Rising-Clock-Edge Triggered Flip-Flop

- Two inputs: CLK, D
- Function
- The flip-flop "samples" \mathbf{D} on the rising edge of CLK (positive edge)
- When CLK rises from 0 to 1, D passes through to \mathbf{Q}

- Otherwise, \mathbf{Q} holds its previous value
- \mathbf{Q} changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered state element because it captures data on the clock edge
- A latch is a level-triggered state element

D Flip-Flop Based Register

- Multiple parallel D flip-flops, each of which storing 1 bit

A 4-Bit D-Flip-Flop-Based Register (Internally)

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state
- Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Mealy FSM

Finite State Machine Example

- "Smart" traffic light controller
- 2 inputs:
- Traffic sensors: $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}$ (TRUE when there's traffic)
- 2 outputs:
- Lights: L_{A}, L_{B} (Red, Yellow, Green)
- State can change every 5 seconds
- Except if green and traffic, stay green

Finite State Machine Black Box

- Inputs: CLK, Reset, T_{A}, T_{B}
- Outputs: L_{A}, L_{B}

Reset

Finite State Machine Transition Diagram

Moore FSM: outputs labeled in each state

- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Finite State Machine:

State Transition Table

FSM State Transition Table

Current State	Inputs		Next State
S	T_{A}	T_{B}	S
S 0	0	X	
S 0	1	X	
S 1	X	X	
S 2	X	0	
S 2	X	1	
S 3	X	X	

FSM State Transition Table

Current State	Inputs	
S	T_{A}	T_{B}
S 0	0	X
S 0	S 1	
S 1	1	X
S State		
S 2	X	X
S 2	X	0
S 3	X	1
X 3		
	X	S 0

FSM State Transition Table

Current State S	Inputs		Next State
	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0
		tate	Encoding
		0	00
		S1	01
		S2	10
		S3	11

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	S_{0}	T_{A}	T_{B}	S_{1}	S_{0}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0
			te	Enco	
			0		
			1		
			2		
			3		

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM State Transition Table

$$
\mathrm{S}_{1}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \mathrm{~S}_{0}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{B}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~T}_{\mathrm{B}}\right)
$$

$$
S_{0}^{\prime}=?
$$

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Finite State Machine:
Output Table

FSM Output Table

Current State		Outputs		
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A}}$	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

FSM Output Table

Current State		Outputs		
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A}}$	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\frac{\mathrm{S}_{1}}{} \cdot \mathrm{~S}_{0} \\
& \mathrm{~L}_{\mathrm{B} 1}=\overline{\mathrm{S}_{1}}
\end{aligned}
$$

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0} \\
& \mathrm{~L}_{\mathrm{B} 1}=\overline{\mathrm{S}_{1}} \\
& \mathrm{~L}_{\mathrm{B} 0}=\mathrm{S}_{1} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

Finite State Machine:

Schematic

FSM Schematic: State Register

FSM Schematic: State Register

state register

FSM Schematic: Next State Logic

inputs
next state logic

state register

$$
\begin{aligned}
& \mathrm{S}_{1}^{\prime}=\mathrm{S}_{1} \text { xor } \mathrm{S}_{0} \\
& \mathrm{~S}_{0}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{A}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{B}}\right)
\end{aligned}
$$

FSM Schematic: Output Logic

output logic outputs

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0} \\
& \mathrm{~L}_{\mathrm{B} 1}=\overline{\mathrm{S}_{1}} \\
& \mathrm{~L}_{\mathrm{B} 0}=\mathrm{S}_{1} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

FSM Timing Diagram

$$
\begin{gathered}
\text { CLK_ } \\
\text { Reset_ } \\
\mathrm{T}_{\mathrm{A}-} \\
\mathrm{T}_{\mathrm{B}}- \\
\mathrm{S}_{1: 0}^{\prime}- \\
\mathrm{S}_{1: 0}^{-} \\
\mathrm{S}_{1: 0}^{-} \\
\mathrm{L}_{\mathrm{A} 1: 0}- \\
\mathrm{L}_{\mathrm{B} 1: 0}-
\end{gathered}
$$

FSM Timing Diagram

FSM Timing Diagram

FSM Timing Diagram

FSM Timing Diagram

FSM Timing Diagram

FSM Timing Diagram

FSM Timing Diagram

This is from H\&H Section 3.4.1

FSM Timing Diagram

FSM Timing Diagram

See H\&H Chapter 3.4

Finite State Machine:
State Encoding

FSM State Encoding

- How do we encode the state bits?
- Three common state binary encodings with different tradeoffs 1. Fully Encoded

2. 1-Hot Encoded
3. Output Encoded

- Let's see an example Swiss traffic light with 4 states
- Green, Yellow, Red, Yellow+Red

FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum possible number of bits
- Use $\log _{2}$ (num_states) bits to represent the states
- Example state encodings: $00,01,10,11$
- Minimizes \# flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
- Uses num_states bits to represent the states
- Exactly 1 bit is "hot" for a given state
- Example state encodings: 0001, 0010, 0100, 1000
- Simplest design process - very automatable
- Maximizes \# flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
- Bit $_{0}$ encodes green light output,
- Bit $_{1}$ encodes yellow light output
- Bit $_{2}$ encodes red light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Minimizes output logic
- Only works for Moore Machines (output function of state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of FSMs differ in the output logic:
- Moore FSM: outputs depend only on the current state
- Mealy FSM: outputs depend on the current state and the inputs

Moore FSM
CLK

Mealy FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams

What are the tradeoffs?
Mealy FSM

FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
- Generally this is done from a textual description
- You need to 1) determine the inputs and outputs for each state and 2) figure out how to get from one state to another
- Approach
- Start by defining the reset state and what happens from it - this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is like programming (but it is not programming!)
- An FSM has a sequential "control-flow" like a program with conditionals and goto's
- The if-then-else construct is controlled by one or more inputs
- The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath

Backup Slides:

Different Types of Flip Flops

Enabled Flip-Flops

- Inputs: CLK, D, EN
- The enable input (EN) controls when new data (D) is stored Function:
- EN = 1: D passes through to Q on the clock edge
- $\mathbf{E N}=\mathbf{0}$: the flip-flop retains its previous state

Internal

Circuit

Resettable Flip-Flop

- Inputs: CLK, D, Reset
- The Reset is used to set the output to 0 . Function:
- Reset $=1: \mathrm{Q}$ is forced to 0
- Reset $=0$: the flip-flop behaves like an ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?

Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
- Set = 1: Q is set to 1
- Set $=\mathbf{0}$: the flip-flop behaves like an ordinary D flip-flop

Symbols

Backup Slides on

Karnaugh Maps (K-Maps)

Complex Cases

- One example

$$
\text { Cout }=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

- Problem
- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables
- Question
- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?
- Answer
- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \leftrightarrow Logical adjacency

2-variable K-map

3-variable K-map

4-variable K-map

$C D$		00	01	11
$A B$	00	10		
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

```
Numbering Scheme: 00, 01, 11, }10\mathrm{ is called a
"Gray Code" - only a single bit (variable) changes
    from one code word and the next code word
```


Karnaugh Map Methods

Adjacent

	00	01	11	10
0	000	001	011	010
1	100	101	111	110

K-map adjacencies go "around the edges"
 Wrap around from first to last column
 Wrap around from top row to bottom row

K-map Cover - 4 Input Variables

Logic Minimization Using K-Maps

- Very simple guideline:
- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
- Each circle should be as large as possible
- Read off the implicants that were circled
- More formally:
- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

K-map Rules

- What can be legally combined (circled) in the K-map?
- Rectangular groups of size 2^{k} for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
- Wrap-around edge is okay
- How does a group become a term in an expression?
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
- constant $1 \rightarrow$ use \mathbf{X}, constant $0 \rightarrow$ use \bar{X}
- What is a good solution?
- Biggest groupings \rightarrow eliminate more variables (literals) in each term
- Fewest groupings \rightarrow fewer terms (gates) all together
- OR together all AND terms you create from individual groups

\section*{ K-map for $\mathbf{F 1}$

 F1 =
 | A | B | C | D | $F 1$ | $F 2$ | $F 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 |}

K-map Example: Two-bit Comparator (3)

 F2 $=$ F3 $=$? (Exercise for you)
 | A | B | C | D | F | $F 2$ | $F 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 |

K-nnaps |ivith "Don't Care"

 You have an engineerin ${ }_{0}$. choice to use DON'T CARE patterns intelligently as i or o

Example: ${ }_{6} \mathrm{BCD}_{\mathrm{x}} \mathrm{B}_{\mathrm{c}}$ Increment
 Huß 0 1 When incremanted, the decimal sequence is $0,1, \ldots, 8,9,0,1$

	0	0	1		0	0	0	
1	0	1	0	x	x	x	x	
1	0	1	1		x	x	x	
1	1	0	0	x	x	x	x	1
1	1	0	1	x	X	X	x	9
1	1	1	0	x	x	x	x	6
1	1	1	1		X	x	x	

These input patterns should never be encountered in practice (hey -- it's a BCD number!) So, associated output values are
"Don't Cares"

K-map Summary

Karnaugh maps as a formal systematic approach for logic simplification

1
9
2-, 3-, 4-variable K-maps

