# Introduction to Computer Architecture

#### Lecture 4: Sequential Logic Design

Pooyan Jamshidi

Week 4-5: January 30, February 1,6,8



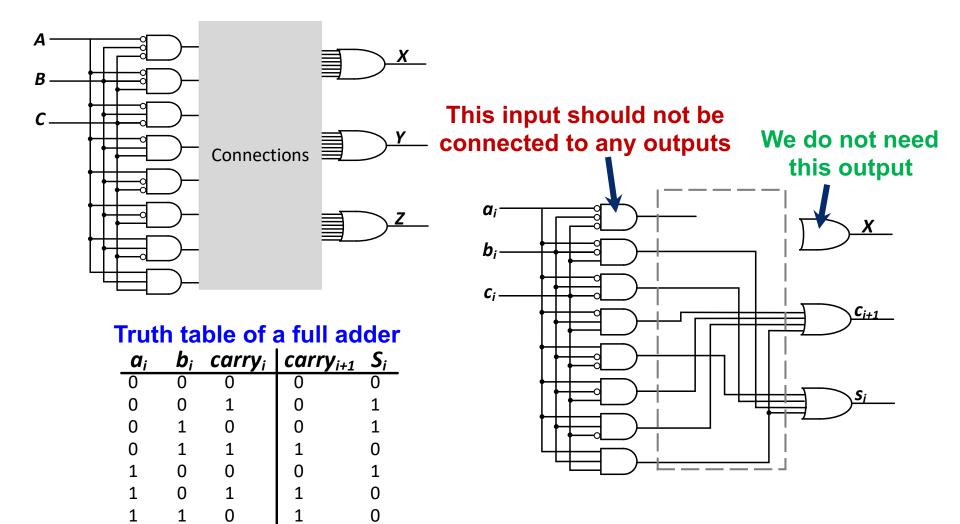
CSCE 212: Introduction to Computer Architecture | Spring 2024 | <u>https://pooyanjamshidi.github.io/csce212/</u> [Slides are primarily based on those of Onur Mutlu for the Computer Architecture Course at CMU]

# First, We Will Complete Combinational Logic

### We Covered Combinational Logic Blocks

- Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
- Decoder
- Multiplexer
- Full Adder
- Programmable Logic Array (PLA)
- Comparator
- Arithmetic Logic Unit (ALU)
- Tri-State Buffer
- Standard form representations: SOP & POS
- Logical completeness
- Logic simplification via Boolean Algebra

### Recall: Implementing a Full Adder Using a PLA



# Logical Completeness

### Logical (Functional) Completeness

- Any logic function we wish to implement could be accomplished with a PLA
  - □ PLA consists of only AND gates, OR gates, and inverters
  - We just have to program connections based on SOP of the intended logic function
- The set of gates {AND, OR, NOT} is logically complete because we can build a circuit to carry out the specification of any truth table we wish, without using any other kind of gate
- NAND is also logically complete. So is NOR.
   Your task: Prove this.

## More Combinational Blocks

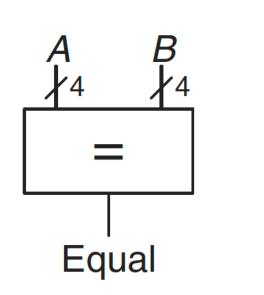
### More Combinational Building Blocks

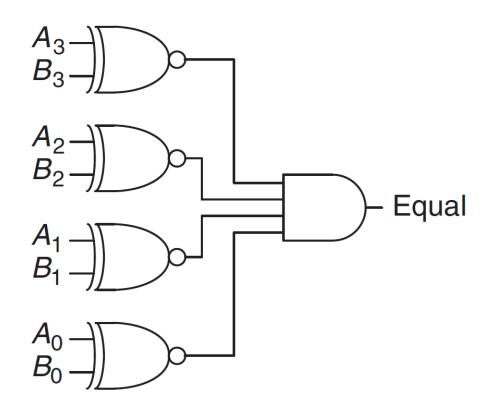
- H&H Chapter 2 in full
  - Required Reading
  - □ E.g., see Tri-state Buffer and Z values in Section 2.6
- H&H Chapter 5
  - Will be required reading soon.
- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
  - Sections 5.1 and 5.2
  - E.g., Adder, Subtractor, Comparator, Shifter/Rotator, Multiplier, Divider

## Comparator

### Equality Checker (Compare if Equal)

- Checks if two N-input values are exactly the same
- Example: 4-bit Comparator





# ALU (Arithmetic Logic Unit)

### ALU (Arithmetic Logic Unit)

- Combines a variety of arithmetic and logical operations into a single unit (that performs only one function at a time)
- Usually denoted with this symbol:

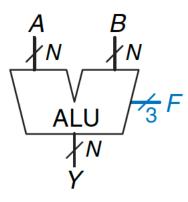


Figure 5.14 ALU symbol

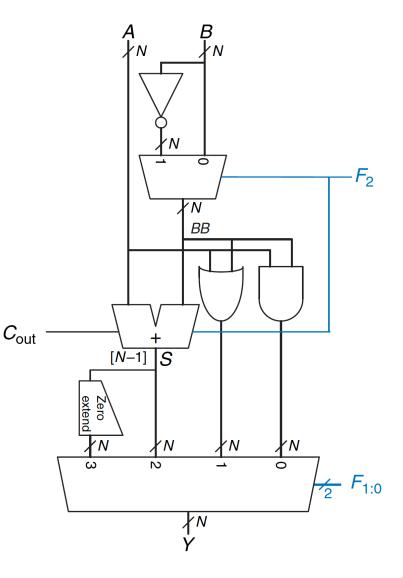
| $F_{2:0}$ | Function             |  |  |
|-----------|----------------------|--|--|
| 000       | A AND B              |  |  |
| 001       | A OR B               |  |  |
| 010       | A + B                |  |  |
| 011       | not used             |  |  |
| 100       | A AND $\overline{B}$ |  |  |
| 101       | A OR B               |  |  |
| 110       | A – B                |  |  |
| 111       | SLT                  |  |  |

Table 5.1 ALU operations

### Example ALU (Arithmetic Logic Unit)

#### Table 5.1 ALU operations

| F <sub>2:0</sub> | Function             |  |  |
|------------------|----------------------|--|--|
| 000              | A AND B              |  |  |
| 001              | A OR B               |  |  |
| 010              | A + B                |  |  |
| 011              | not used             |  |  |
| 100              | A AND $\overline{B}$ |  |  |
| 101              | A OR B               |  |  |
| 110              | A – B                |  |  |
| 111              | SLT                  |  |  |



### More Combinational Building Blocks

- See H&H Chapter 5.2 for
  - Subtractor (using 2's Complement Representation)
  - Shifter and Rotator
  - Multiplier
  - Divider
  - ...

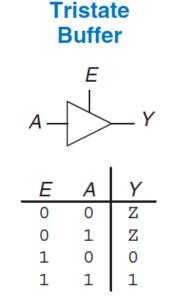
### More Combinational Building Blocks

- H&H Chapter 2 in full
  - Required Reading
  - □ E.g., see Tri-state Buffer and Z values in Section 2.6
- H&H Chapter 5
  - Will be required reading soon.
- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
  - Sections 5.1 and 5.2
  - E.g., Adder, Subtractor, Comparator, Shifter/Rotator, Multiplier, Divider

## Tri-State Buffer

### Tri-State Buffer

 A tri-state buffer enables gating of different signals onto a wire



#### A tri-state buffer acts like a switch

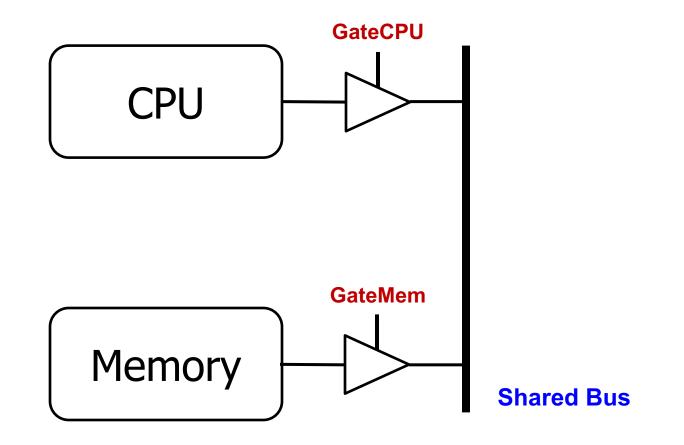
Figure 2.40 Tristate buffer

Floating signal (Z): Signal that is not driven by any circuit
 Open circuit, floating wire

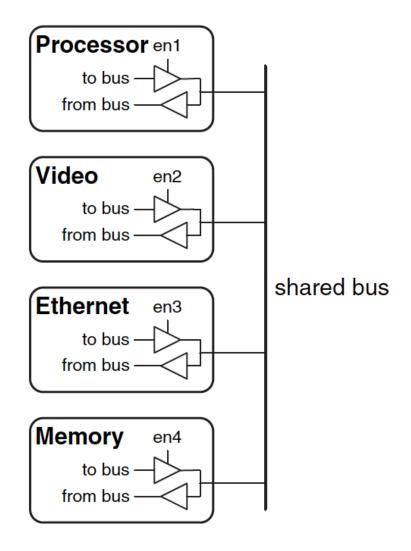
### Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
  - At any time only the CPU or the memory can place a value on the wire, both not both
  - You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

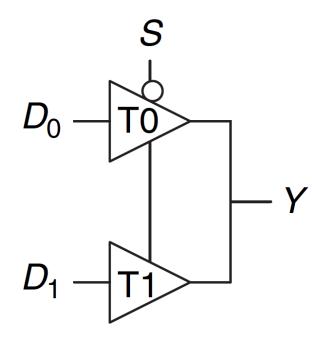
### Example Design with Tri-State Buffers



### Another Example



### Multiplexer Using Tri-State Buffers

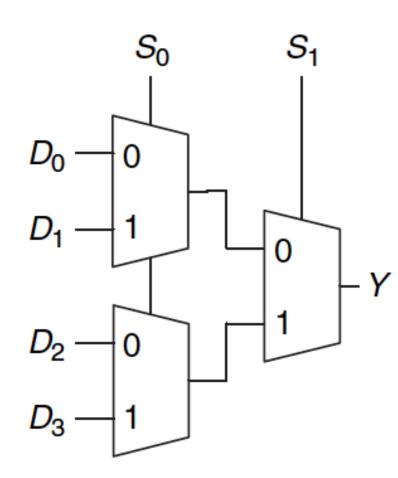


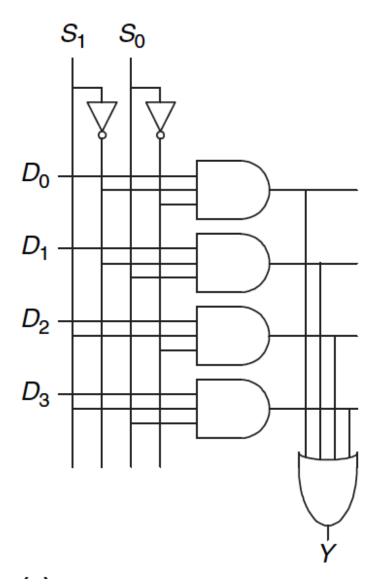
$$Y = D_0 \overline{S} + D_1 S$$

# **Figure 2.56** Multiplexer using tristate buffers



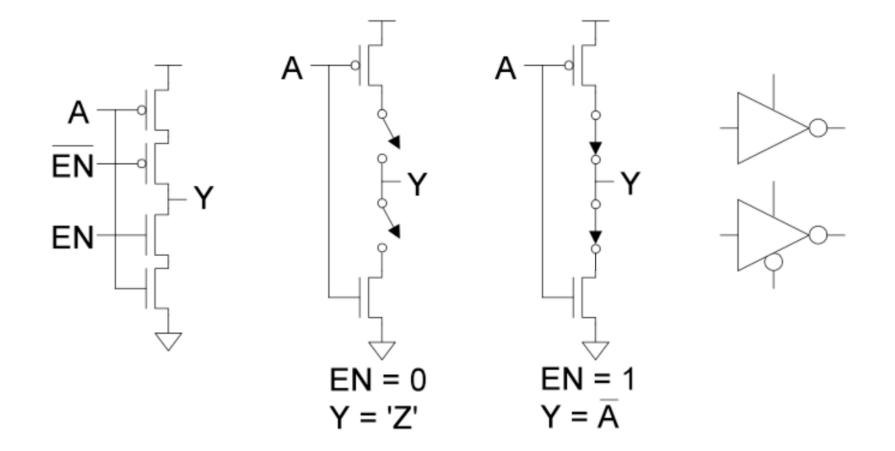
### Recall: A 4-to-1 Multiplexer





## Digging Deeper: Tri-State Buffer in CMOS

How do you implement Tri-State Buffers using transistors?

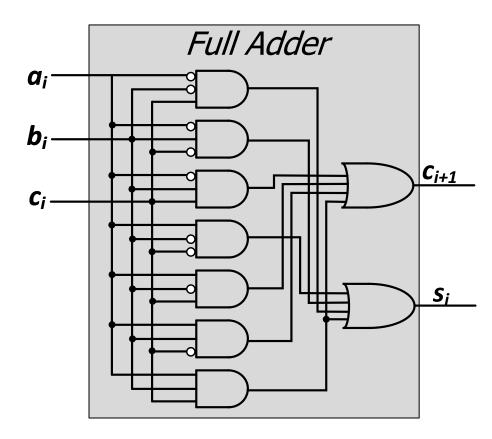


### We Covered Combinational Logic Blocks

- Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
- Decoder
- Multiplexer
- Full Adder
- Programmable Logic Array (PLA)
- Comparator
- Arithmetic Logic Unit (ALU)
- Tri-State Buffer
- Standard form representations: SOP & POS
- Logical completeness
- Logic simplification via Boolean Algebra

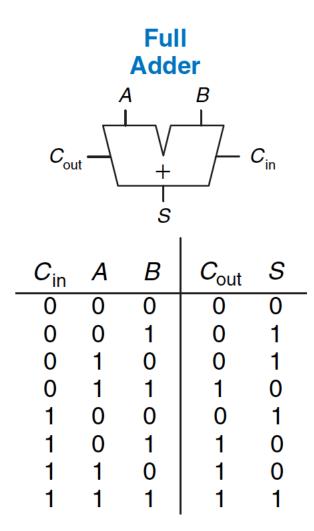
# Logic Simplification using Boolean Algebra Rules

### Recall: Full Adder in SOP Form Logic



|   | $a_i b_i$ | carry | v <sub>i</sub>   carr | $\mathbf{y}_{i+1} \mathbf{S}_i$ |
|---|-----------|-------|-----------------------|---------------------------------|
| 0 | 0         | 0     | 0                     | 0                               |
| 0 | 0         | 1     | 0                     | 1                               |
| 0 | 1         | 0     | 0                     | 1                               |
| 0 | 1         | 1     | 1                     | 0                               |
| 1 | 0         | 0     | 0                     | 1                               |
| 1 | 0         | 1     | 1                     | 0                               |
| 1 | 1         | 0     | 1                     | 0                               |
| 1 | 1         | 1     | 1                     | 1                               |

### Goal: Simplified Full Adder



 $S = A \oplus B \oplus C_{in}$  3-input XOR  $C_{out} = AB + AC_{in} + BC_{in}$  3-input majority

How do we simplify Boolean logic? How do we automate simplification?

### Quick Recap on Logic Simplification

 The original Boolean expression (i.e., logic circuit) may not be optimal

$$F = \sim A(A + B) + (B + AA)(A + \sim B)$$

Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$F = A + B$$

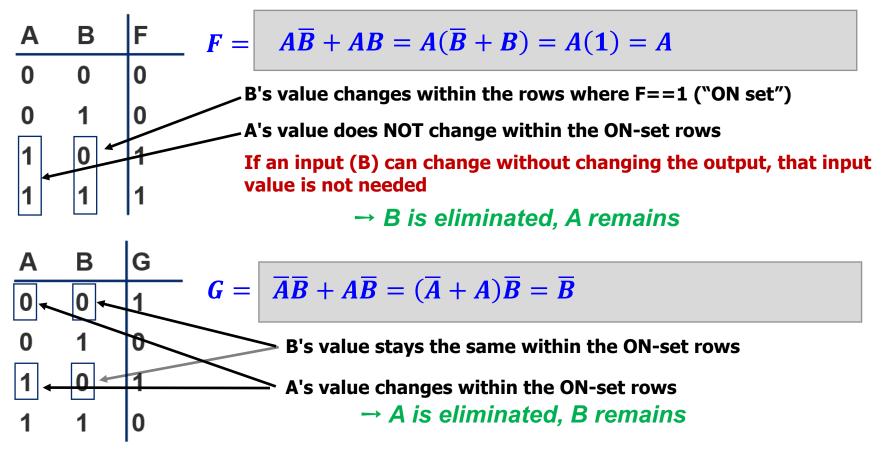
- The goal of logic simplification:
  - Reduce the number of gates/inputs
  - Reduce implementation cost (and potentially latency & power)

#### A basis for what the automated design tools are doing today

## Logic Simplification

- Systematic techniques for simplifications
  - amenable to automation

Key Tool: The Uniting Theorem —  $F = A\overline{B} + AB$ 



## Logic Simplification

- Systematic techniques for simplifications
  - amenable to automation

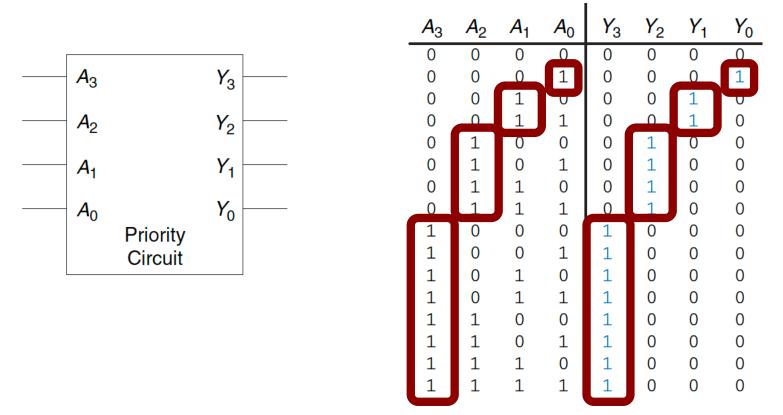
Key Tool: The Uniting Theorem —  $F = A\overline{B} + AB$ 

ABFF
$$A\overline{B} + AB = A(\overline{B} + B) = A(1) = A$$
0001Essence of Simplification:  
Find two-element subsets of the ON-set where only one variable  
changes its value. This single varying variable can be eliminated!11111 $A$  remainsABG00100 $A$  remainsABG0001000100010001000000000000000000000000000000000000000000000000000000000000000000000000000000000000

### Logic Simplification Example: Priority Circuit

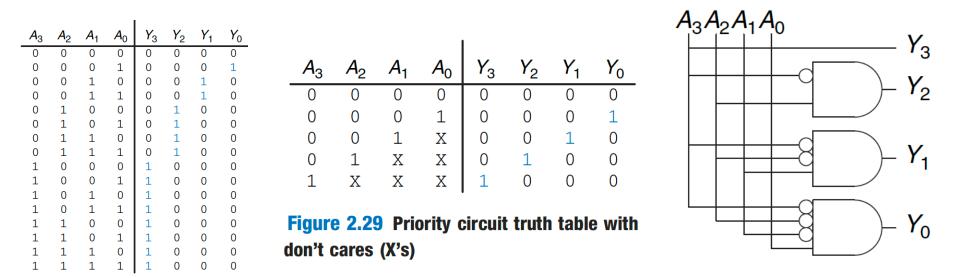
#### Priority Circuit

- Inputs: "Requestors" with priority levels
- Outputs: "Grant" signal for each requestor
- Example 4-bit priority circuit
- Real life example: Imagine a bus requested by 4 processors



## Simplified Priority Circuit

- Priority Circuit
  - Inputs: "Requestors" with priority levels
  - Outputs: "Grant" signal for each requestor
  - Example 4-bit priority circuit



X (Don't Care) means I don't care what the value of this input is

# Logic Simplification: Karnaugh Maps (K-Maps)

### Karnaugh Maps are Fun...

- A pictorial way of minimizing circuits by visualizing opportunities for simplification
- They are for you to study on your own...
  - We may cover them later if time permits
- See backup slides
- Read H&H Section 2.7
- Watch videos of Lectures 5 and 6 from 2019 DDCA course:
  - <u>https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF</u> <u>QFHRO3GrXxA9&t=4570</u>
  - https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN FQFHRO3GrXxA9&t=220

### We Are Done with Combinational Logic

- Building blocks of modern computers
  - Transistors
  - Logic gates
- Combinational circuits
- Boolean algebra
- Using Boolean algebra to represent combinational circuits
- Basic combinational logic blocks
- Simplifying combinational logic circuits

### Agenda for Today and Next Week

#### Today

Start (and finish) Sequential Logic

#### Next week

- Hardware Description Languages and Verilog
  - Combinational Logic
  - Sequential Logic
- Timing and Verification

## Assignment: Readings

- Combinational Logic
  - P&P Chapter 3 until 3.3 + H&H Chapter 2
- Sequential Logic
  - P&P Chapter 3.4 until end + H&H Chapter 3 in full
- Hardware Description Languages and Verilog
  - H&H Chapter 4 in full
- Timing and Verification
  - □ H&H Chapters 2.9 and 3.5 + (start Chapter 5)

By the end of next week, make sure you are done with
 P&P Chapters 1-3 + H&H Chapters 1-4

### Readings (for Next Week)

- Hardware Description Languages and Verilog
   H&H Chapter 4 in full
- Timing and Verification
  - □ H&H Chapters 2.9 and 3.5 + (start Chapter 5)

By tomorrow, make sure you are done with
 P&P Chapters 1-3 + H&H Chapters 1-4

## Readings (for Next Next Week)

- Von Neumann Model, LC-3, and MIPS
  - □ P&P, Chapters 4, 5
  - H&H, Chapter 6
  - P&P, Appendices A and C (ISA and microarchitecture of LC-3)
  - H&H, Appendix B (MIPS instructions)
- Programming
  - P&P, Chapter 6

• **Recommended:** Digital Building Blocks

H&H, Chapter 5

## Sequential Logic Circuits and Design

#### What We Will Learn Today

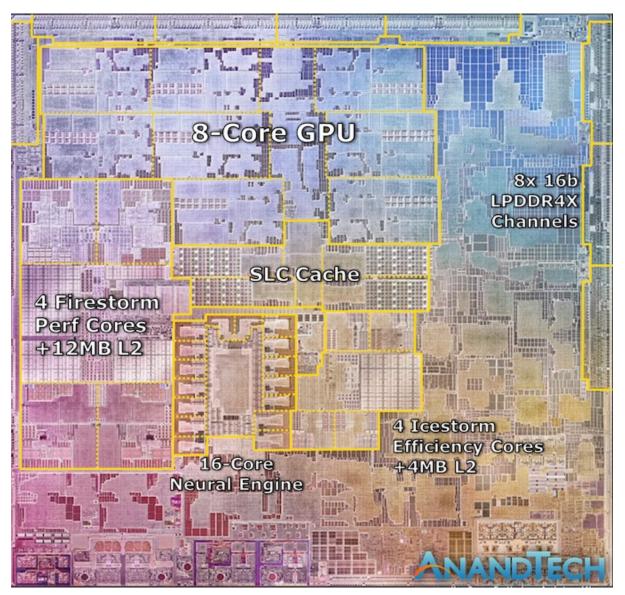
#### Circuits that can store information

- Cross-coupled inverter
- R-S Latch
- Gated D Latch
- D Flip-Flop
- Register

#### Finite State Machines (FSM)

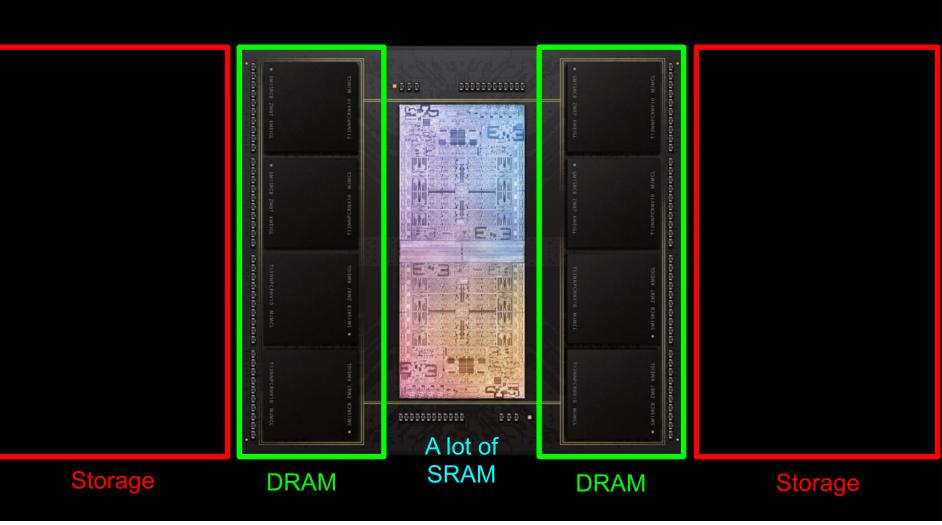
- State & Clock
- Asynchronous vs. Synchronous
- How to design FSMs

### No Real Computer Can Work w/o Memory

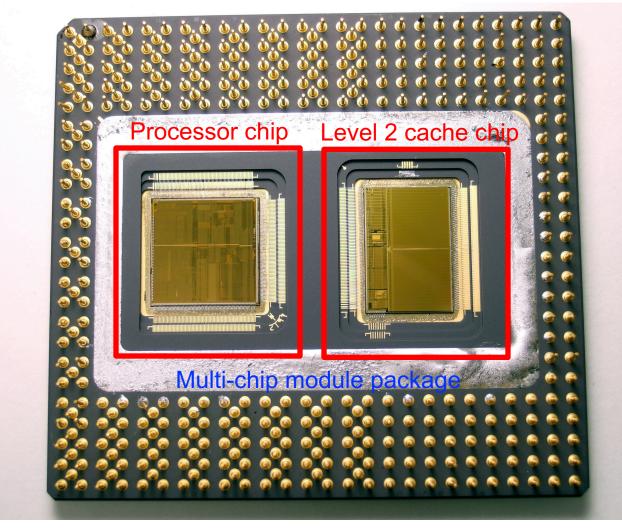


Apple M1, 2021

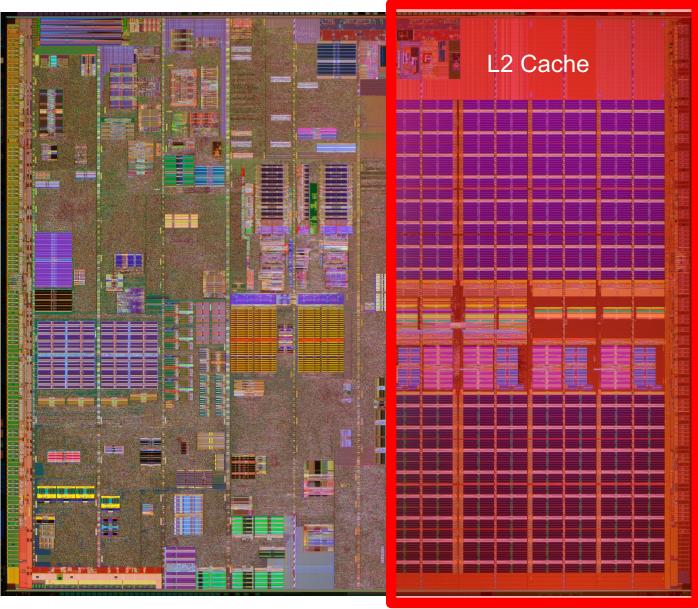
Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested



#### Apple M1 Ultra System (2022)



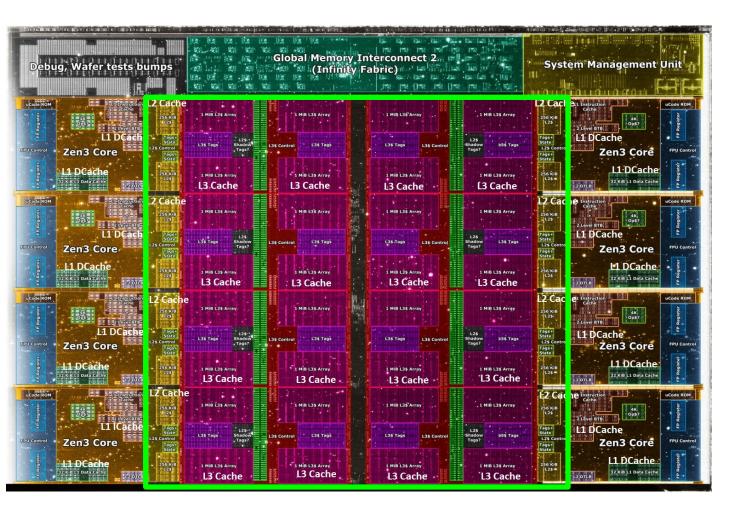
#### Intel Pentium Pro, 1995



https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium 4 6xx-die.jpg

Intel Pentium 4, 2000

51



Core Count: 8 cores/16 threads

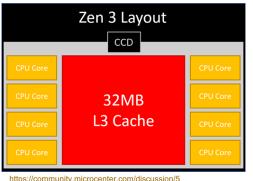
L1 Caches: 32 KB per core

L2 Caches: 512 KB per core

L3 Cache: 32 MB shared

#### AMD Ryzen 5000, 2020

## Adding Even More Memory in 3D (2021)

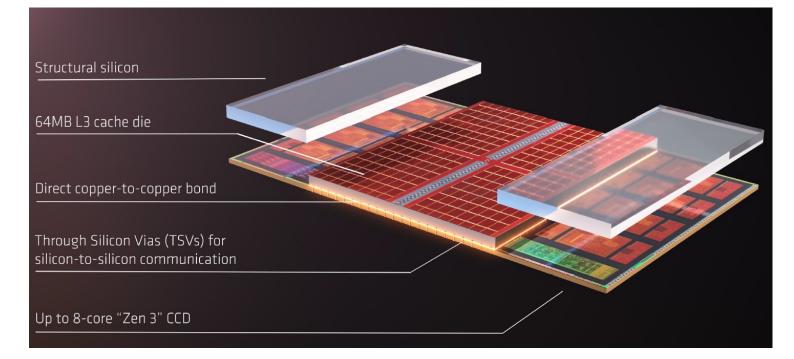


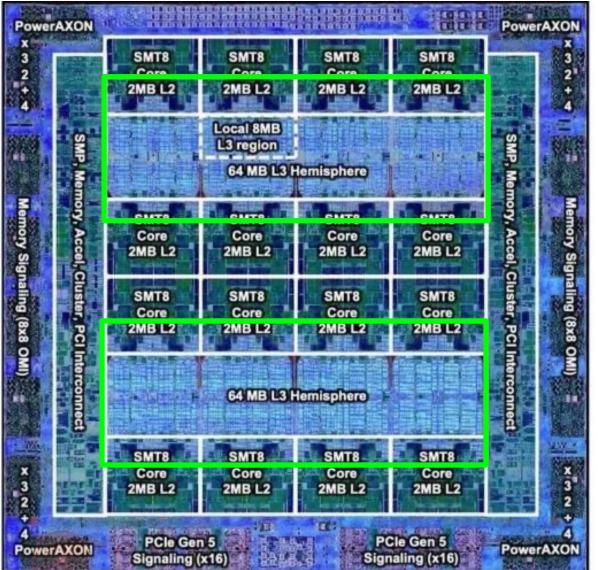
134/comparing-zen-3-to-zen-2

AMD increases the L3 size of their 8-core Zen 3 processors from 32 MB to 96 MB

Additional 64 MB L3 cache die stacked on top of the processor die

- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache





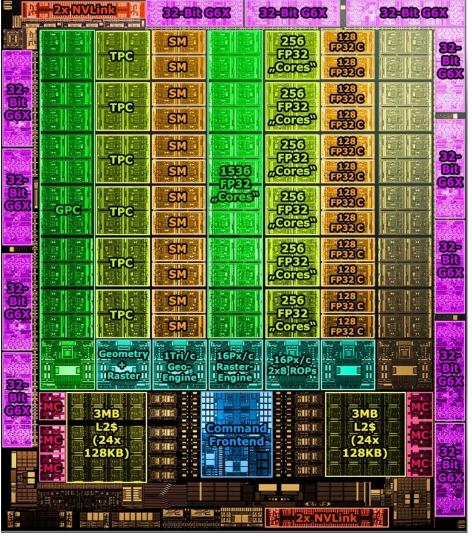
IBM POWER10, 2020

Cores: 15-16 cores, 8 threads/core

L2 Caches: 2 MB per core

L3 Cache: 120 MB shared

https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/



#### Cores:

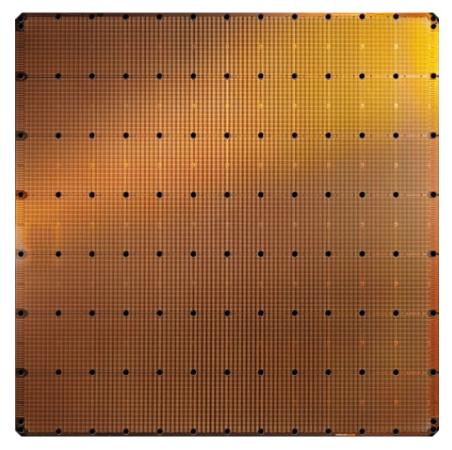
128 Streaming Multiprocessors

L1 Cache or Scratchpad: 192KB per SM Can be used as L1 Cache and/or Scratchpad

L2 Cache: 40 MB shared

#### Nvidia Ampere, 2020

### Cerebras's Wafer Scale Engine-2 (2021)



- The largest ML accelerator chip
- 850,000 cores
- 40 GB of on-chip memory
- 20 PB/s memory bandwidth



Largest GPU 54.2 Billion transistors 826 mm<sup>2</sup> NVIDIA Ampere GA100

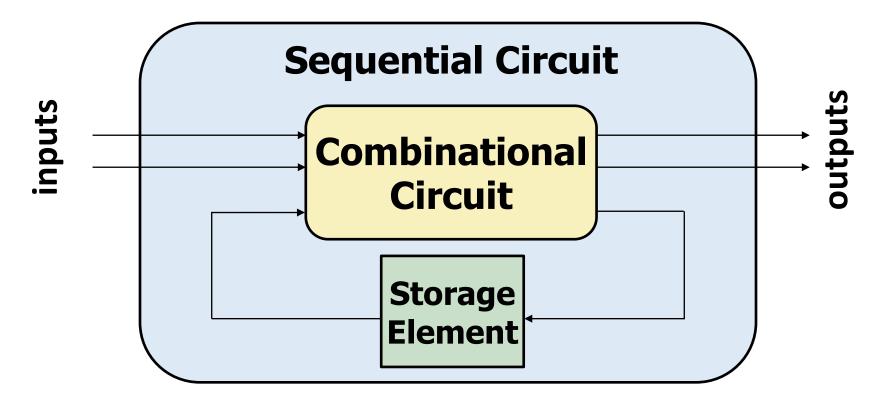
Cerebras WSE-2 2.6 Trillion transistors 46,225 mm<sup>2</sup>

https://cerebras.net/product/#overview

## Circuits that Can Store Information

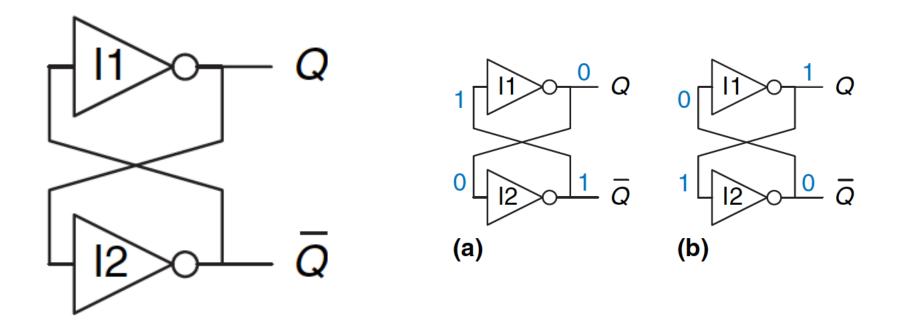
#### Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values – circuits with memory
- How can we design a circuit that stores information?



# Capturing Data

#### Basic Element: Cross-Coupled Inverters

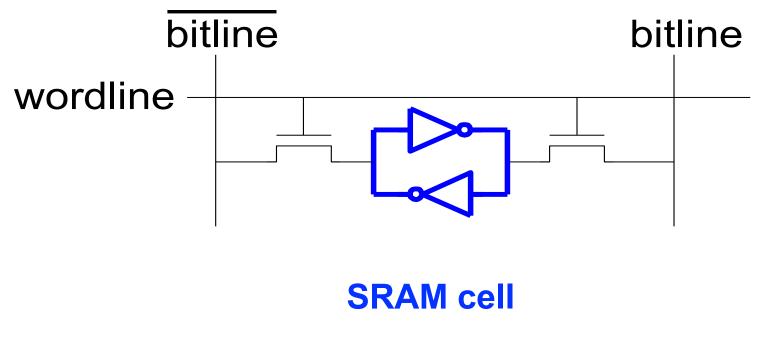


- Has two stable states: Q=1 or Q=0.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a *control mechanism* for setting Q

#### More Realistic Storage Elements

#### Have a control mechanism for setting Q

- We will see the R-S latch soon
- Let's look at an SRAM (static random access memory) cell first



We will get back to SRAM (and DRAM) later

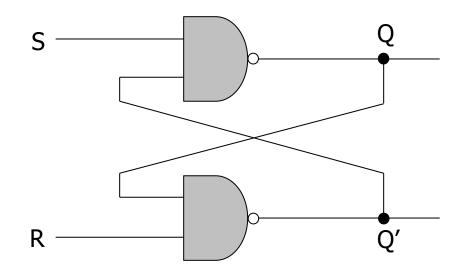
#### The Big Picture: Storage Elements

- Latches and Flip-Flops
  - Very fast, parallel access
  - Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
  - Relatively fast
  - Expensive (one bit costs 6+ transistors)
- Dynamic RAM (DRAM)
  - Slower, reading destroys content (refresh), needs special process for manufacturing
  - Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
  - Much slower, access takes a long time, non-volatile
  - □ Very cheap

## Basic Storage Element: The R-S Latch

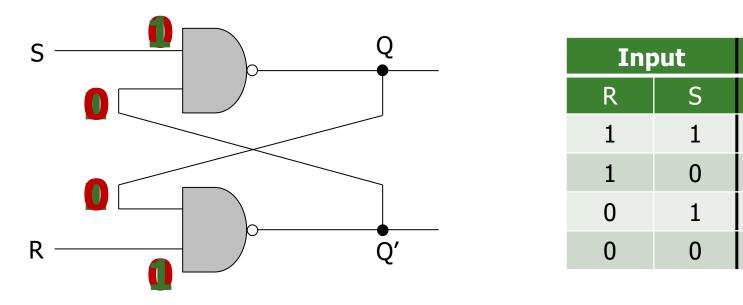
#### The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
  - Data is stored at Q (inverse at Q')
  - □ **S** and **R** are control inputs
    - In quiescent (idle) state, both S and R are held at 1
    - **S (set):** drive **S** to 0 (keeping **R** at 1) to change **Q** to 1
    - **R (reset):** drive **R** to 0 (keeping **S** at 1) to change **Q** to 0
- **S** and **R** should never **both** be 0 at the same time



| Input |   | Output            |  |
|-------|---|-------------------|--|
| R     | S | Q                 |  |
| 1     | 1 | $Q_{\text{prev}}$ |  |
| 1     | 0 | 1                 |  |
| 0     | 1 | 0                 |  |
| 0     | 0 | Forbidden         |  |

Why not R=S=0?



- If R=S=0, Q and Q' will both settle to 1, which breaks our invariant that Q = !Q'
- If S and R transition back to 1 at the same time, Q and Q' begin to oscillate between 1 and 0 because their final values depend on each other (metastability)
  - This eventually settles depending on variation in the circuits (more on this in the Timing Lecture)

Output

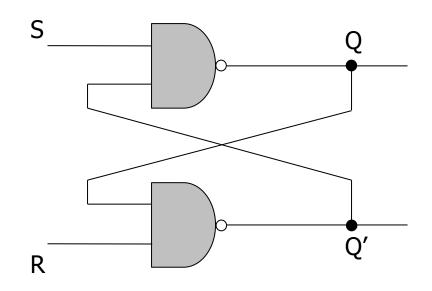
 $\bigcirc$ 

Q<sub>prev</sub>

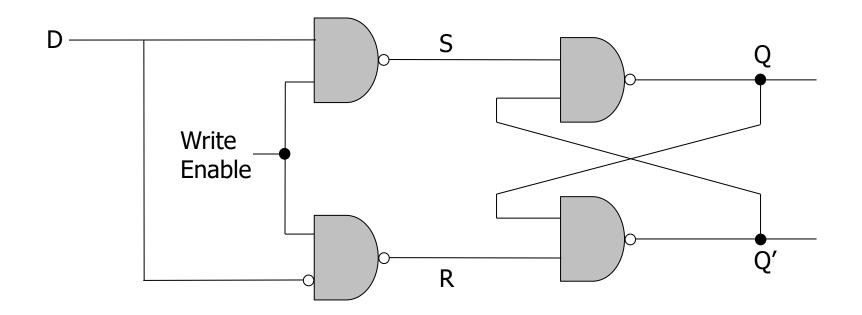
Ω

Forbidden

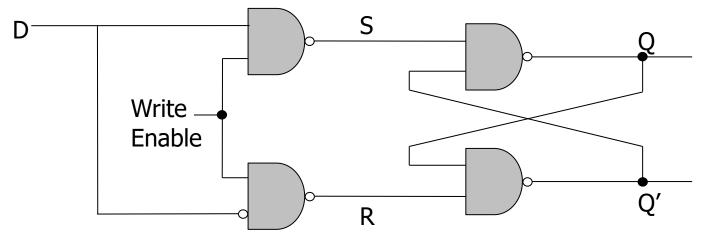
How do we guarantee correct operation of an R-S Latch?



How do we guarantee correct operation of an R-S Latch?
 Add two more NAND gates!



- **Q** takes the value of **D**, when write enable (WE) is set to 1
- □ **S** and **R** can never be 0 at the same time!



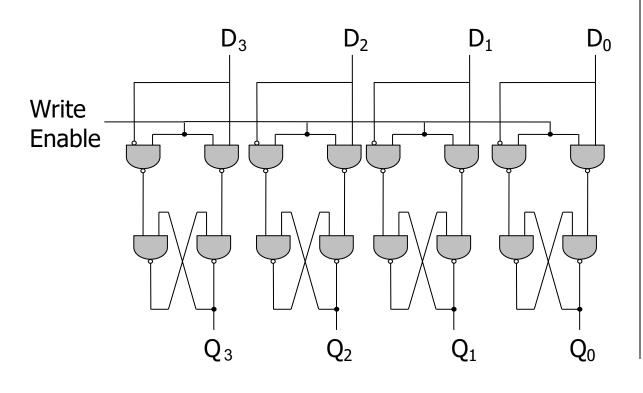
| Input |   | Output            |  |
|-------|---|-------------------|--|
| WE    | D | Q                 |  |
| 0     | 0 | $Q_{\text{prev}}$ |  |
| 0     | 1 | Q <sub>prev</sub> |  |
| 1     | 0 | 0                 |  |
| 1     | 1 | 1                 |  |

## The Register

## The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes



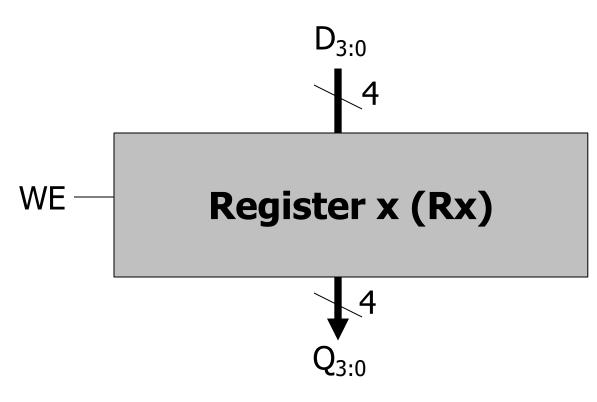
Here we have a **register,** or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

## The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes



Here we have a **register,** or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

## Memory



Memory is comprised of locations that can be written to or read from. An example memory array with 4 locations:

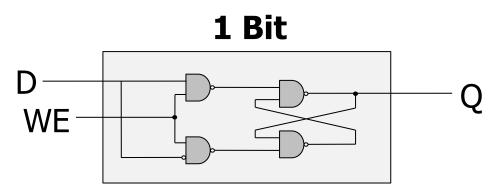
| <b>Addr</b> (00): | 0100 1001 | <b>Addr</b> (01): | 0100 1011 |
|-------------------|-----------|-------------------|-----------|
| <b>Addr</b> (10): | 0010 0010 | <b>Addr</b> (11): | 1100 1001 |

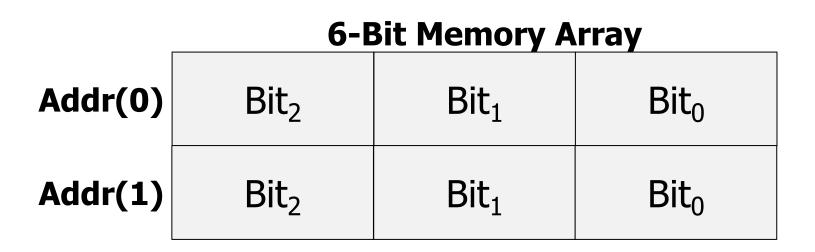
- Every unique location in memory is indexed with a unique address. 4 locations require 2 address bits (log[#locations]).
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits.
- The entire set of unique locations in memory is referred to as the address space.
- Typical memory is **MUCH** larger (e.g., billions of locations)

## Addressing Memory

#### Let's implement a simple memory array with:

• 3-bit addressability & address space size of 2 (total of 6 bits)

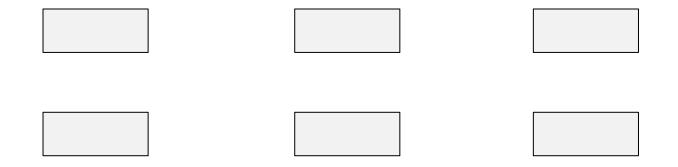




## Reading from Memory

#### How can we select an address to read?

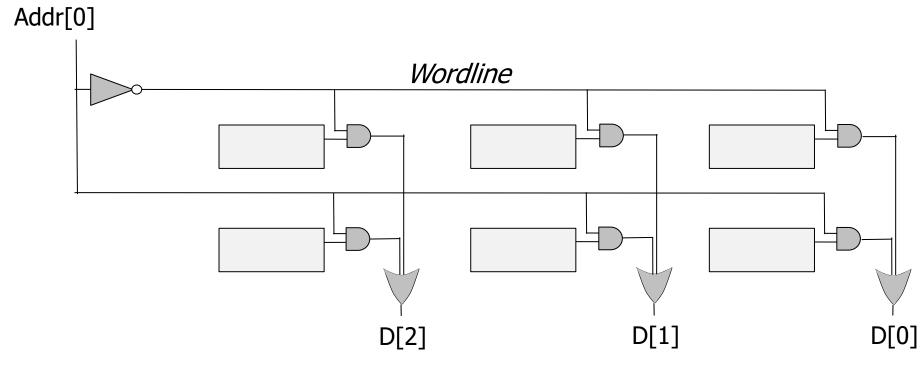
• Because there are 2 addresses, address size is log(2)=1 bit



## Reading from Memory

#### How can we select an address to read?

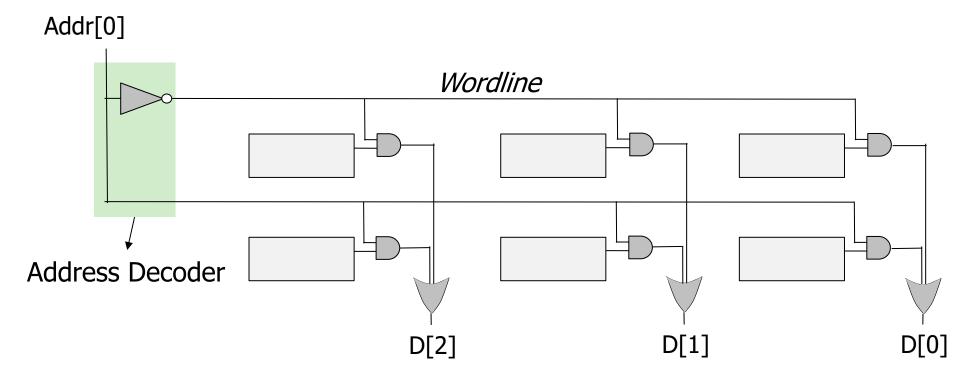
• Because there are 2 addresses, address size is log(2)=1 bit



## Reading from Memory

#### How can we select an address to read?

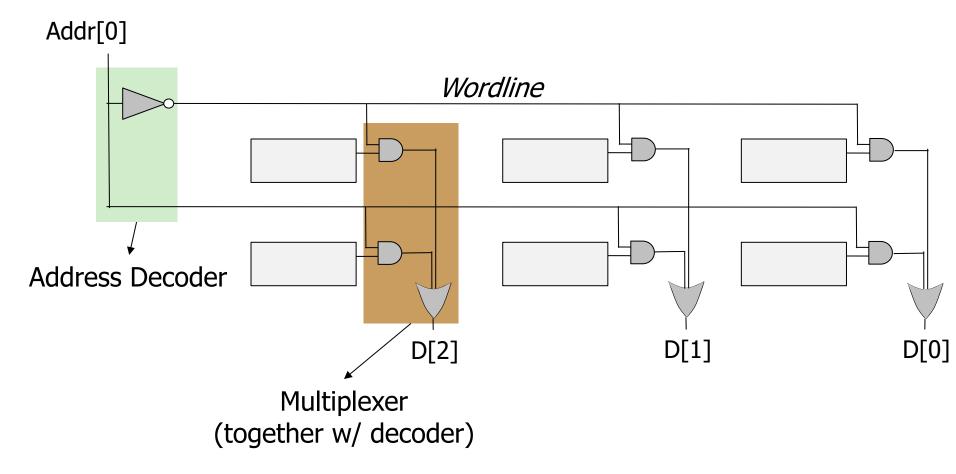
• Because there are 2 addresses, address size is log(2)=1 bit



# Reading from Memory

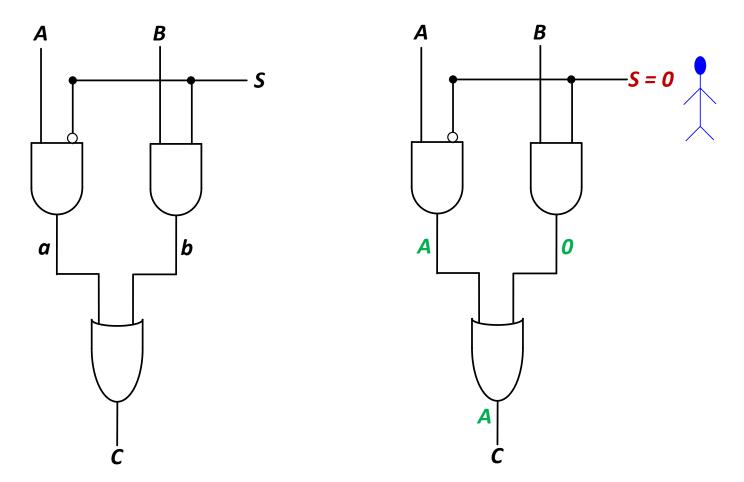
#### How can we select an address to read?

• Because there are 2 addresses, address size is log(2)=1 bit



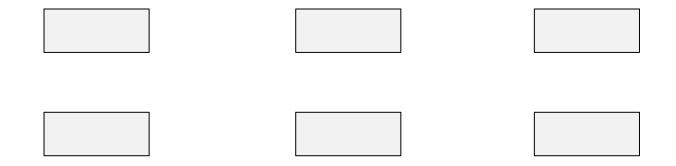
### Recall: Multiplexer (MUX), or Selector

Selects one of the *N* inputs to connect it to the output
 based on the value of a log<sub>2</sub>*N*-bit control input called select
 Example: 2-to-1 MUX





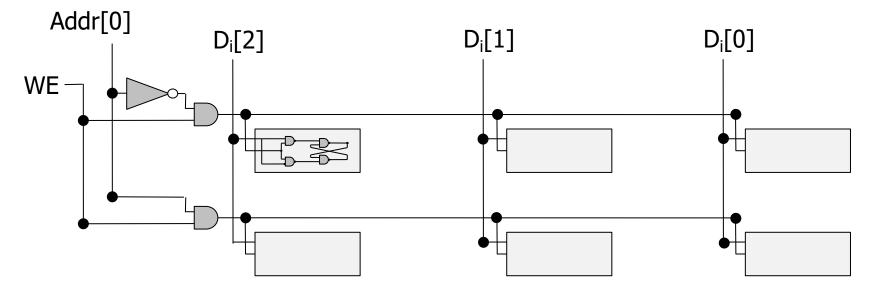
#### How can we select an address and write to it?



# Writing to Memory

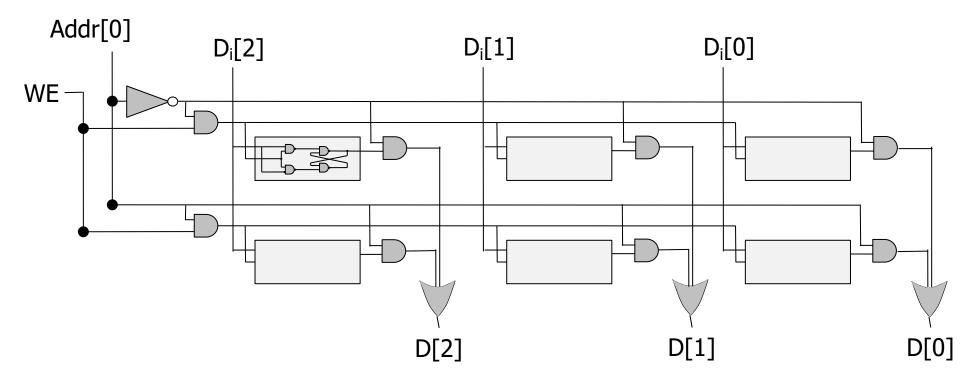
#### How can we select an address and write to it?

• Input is indicated with D<sub>i</sub>

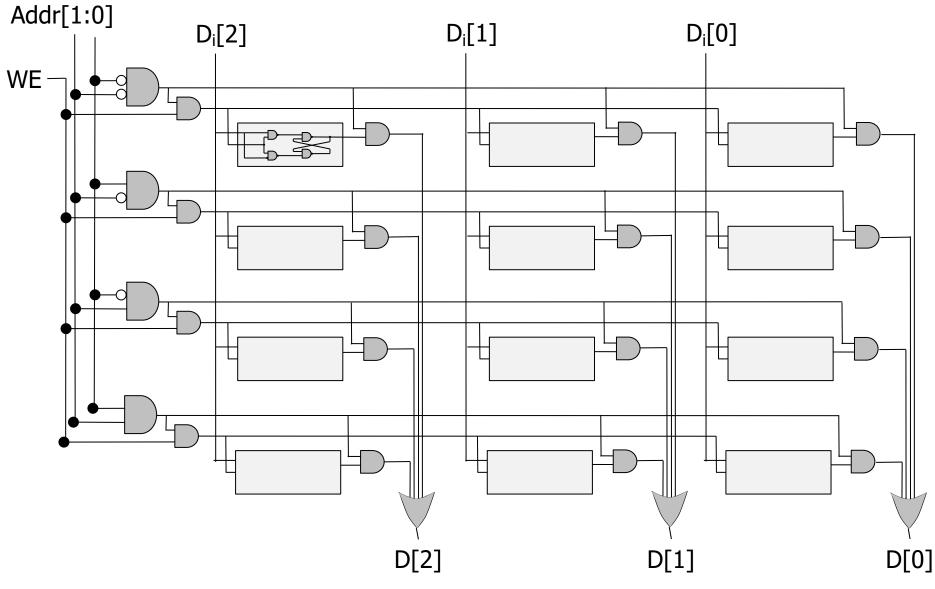


# Putting it all Together

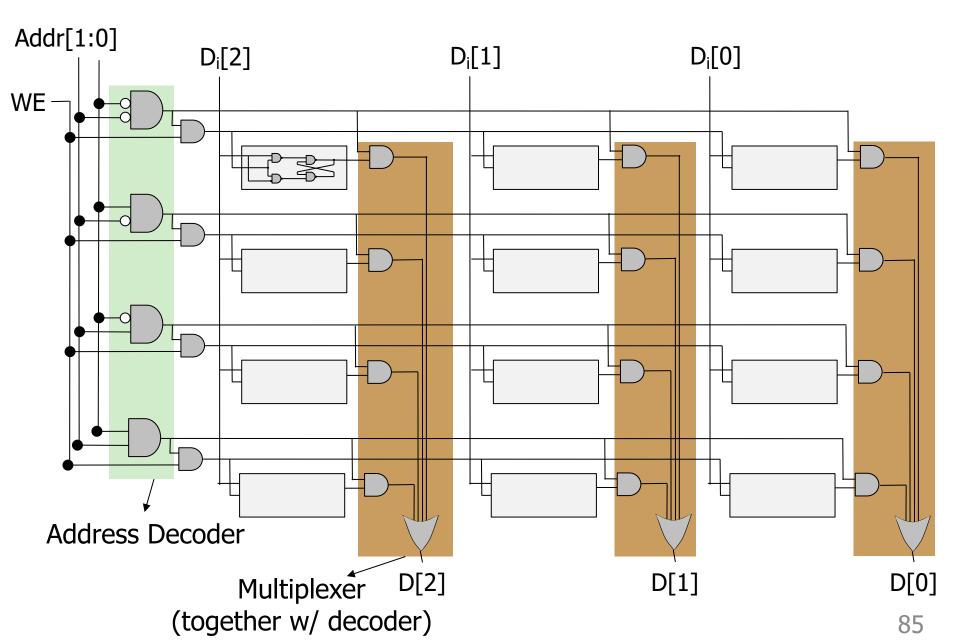
#### Let's enable reading from and writing to a memory array



## A Bigger Memory Array (4 locations X 3 bits)



#### A Bigger Memory Array (4 locations X 3 bits)



### Example: Reading Location 3

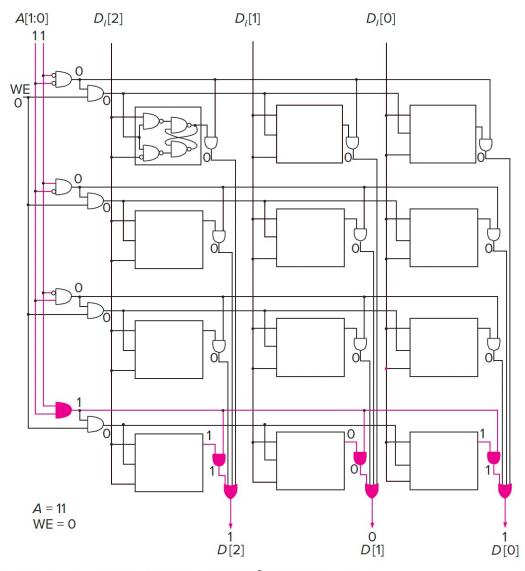
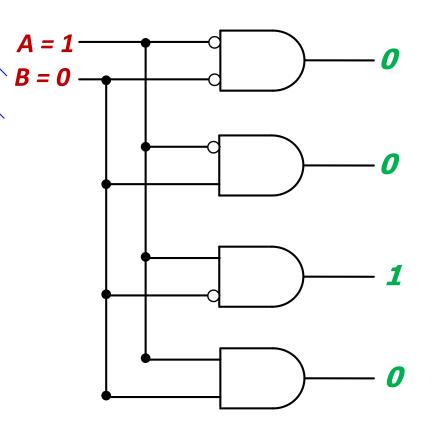


Figure 3.21 Reading location 3 in our 2<sup>2</sup>-by-3-bit memory.

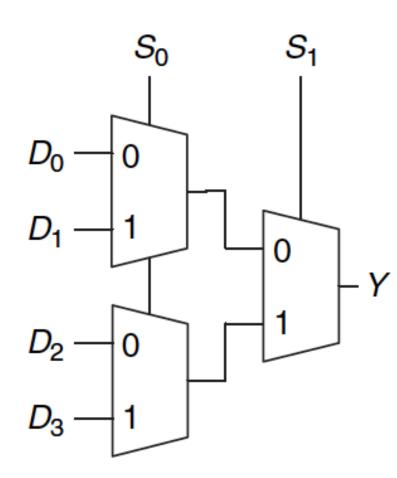
Image source: Patt and Patel, "Introduction to Computing Systems", 3<sup>rd</sup> ed., page 78.

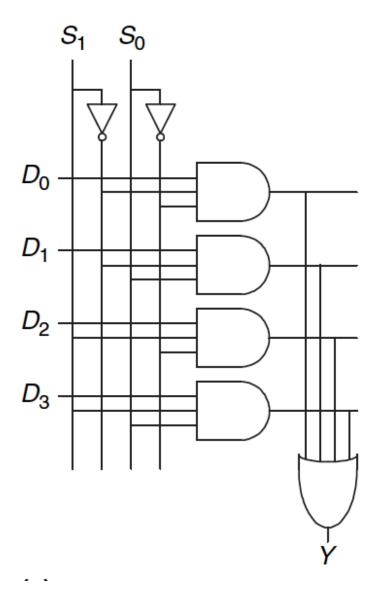
# Recall: Decoder (II)

- The decoder is useful in determining how to interpret a bit pattern
  - It could be the address of a location in memory, that the processor intends to read from
  - It could be an instruction in the program and the processor needs to decide what action to take (based on *instruction opcode*)



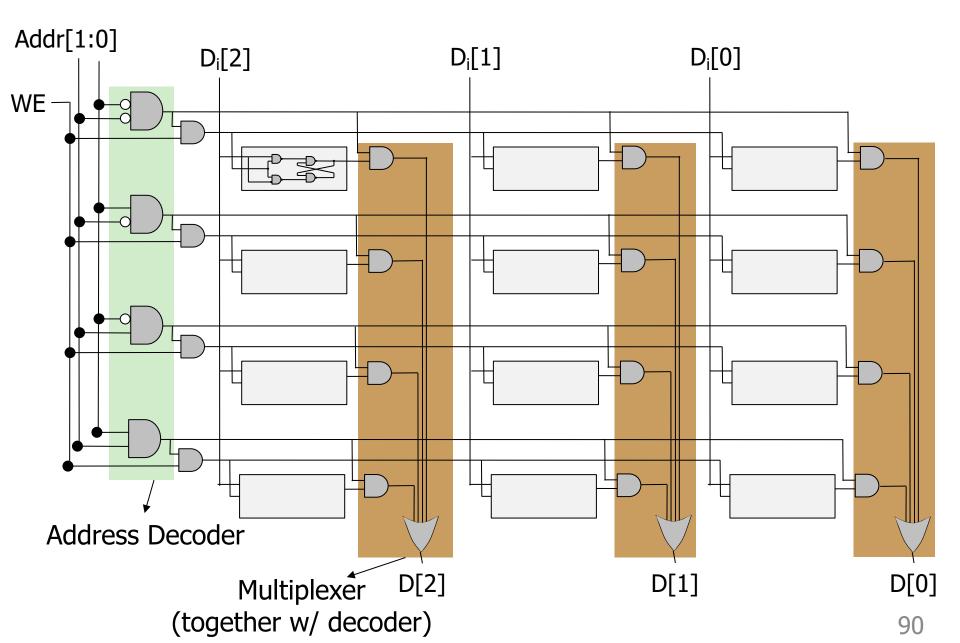
#### Recall: A 4-to-1 Multiplexer





# Aside: Implementing Logic Functions Using Memory

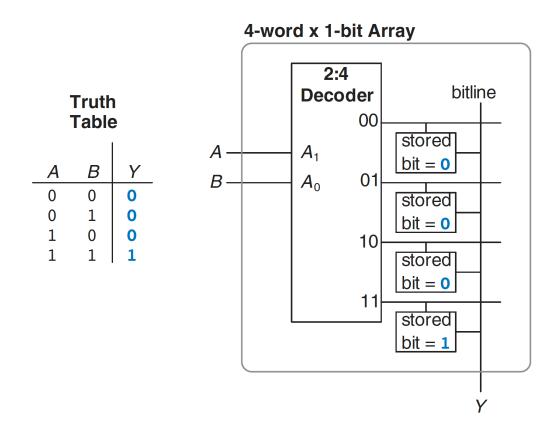
Recall: A Bigger Memory Array (4 locations X 3 bits)



### Memory-Based Lookup Table Example

Memory arrays can also perform Boolean Logic functions

- 2<sup>N</sup>-location M-bit memory can perform any N-input, M-output function
- Lookup Table (LUT): Memory array used to perform logic functions
- Each address: row in truth table; each data bit: corresponding output value



# Lookup Tables (LUTs)

- LUTs are commonly used in FPGAs
  - To enable programmable/reconfigurable logic functions
  - To enable easy integration of combinational and sequential logic

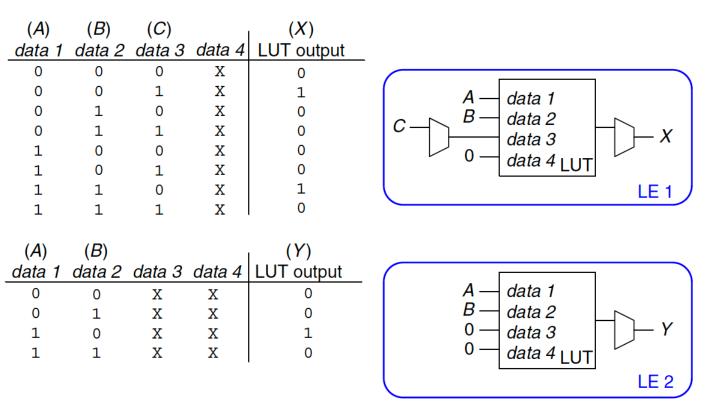
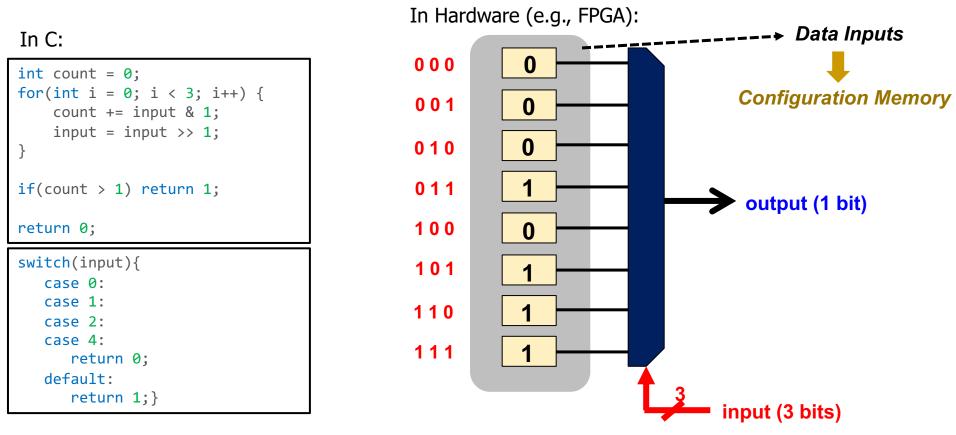


Figure 5.59 LE configuration for two functions of up to four inputs each

#### Read H&H Chapter 5.6.2

### Recall: A Multiplexer-Based LUT

 Let's implement a function that outputs `1' when there are at least two `1's in a 3-bit input



# Sequential Logic Circuits

## Sequential Logic Circuits

- We have examined designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs





#### **Combinational** Only depends on current inputs

#### **Sequential** Opens depending on past inputs

#### State

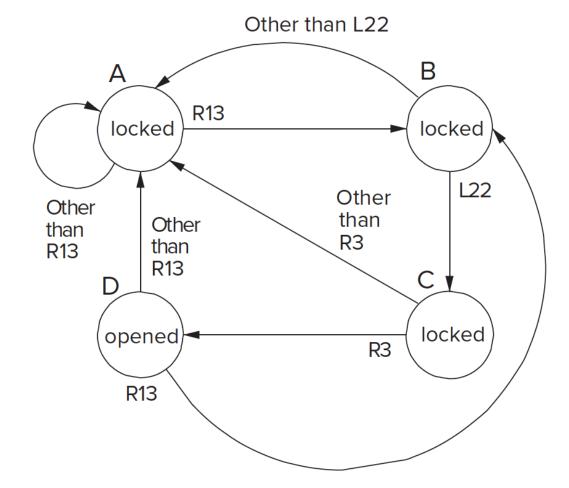
- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
  - A. The lock is not open (locked), and no relevant operations have been performed
  - B. Locked but user has completed R13
  - C. Locked but user has completed R13-L22
  - D. Unlocked: user has completed R13-L22-R3



- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
  - □ To open the lock, states A-D must be completed in order
  - □ If anything else happens (e.g., L5), lock **returns** to state A

### State Diagram of Our Sequential Lock

Completely describes the operation of the sequential lock



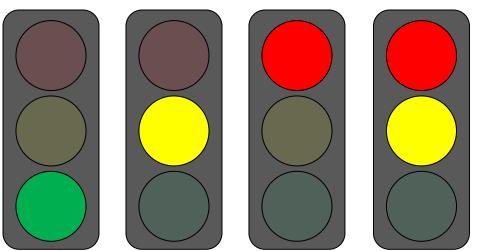
#### We will understand "state diagrams" fully later today

#### Asynchronous vs. Synchronous State Changes

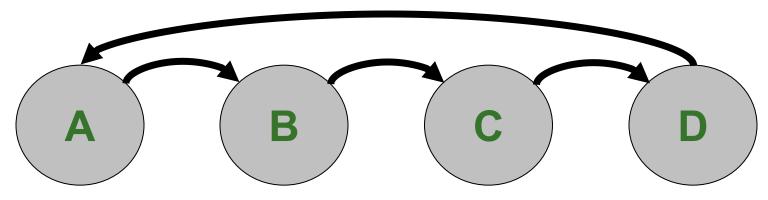
- Sequential lock we saw is an asynchronous "machine"
  - State transitions occur when they occur
  - There is nothing that synchronizes when each state transition must occur
- Most modern computers are synchronous "machines"
   State transitions take place after fixed units of time
   Controlled in part by a clock, as we will see soon
- These are two different design paradigms, with tradeoffs

## Another Simple Example of State

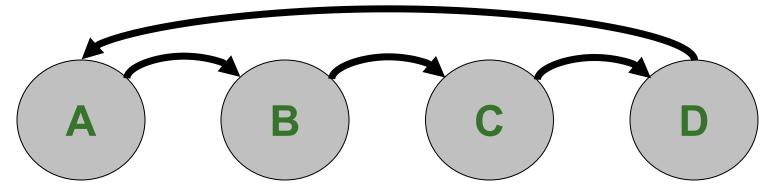
- A standard Swiss traffic light has 4 states
  - A. Green
  - B. Yellow
  - C. Red
  - D. Red and Yellow



The sequence of these states are always as follows



# Changing State: The Notion of Clock (I)



- When should the light change from one state to another?
- We need a clock to dictate when to change state
  - Clock signal alternates between 0 & 1

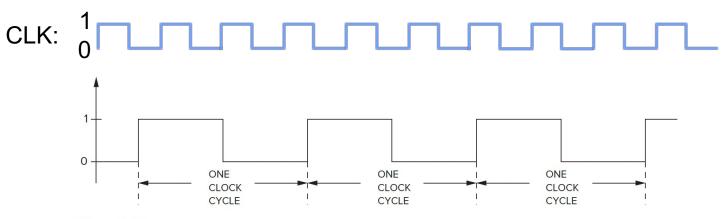
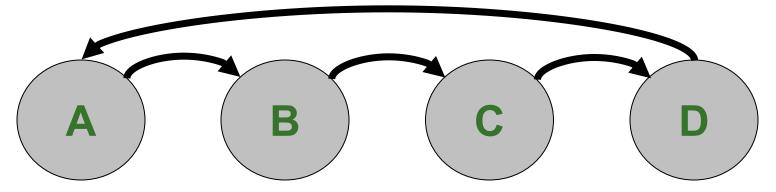


Figure 3.28 A clock signal.

# Changing State: The Notion of Clock (I)



- When should the light change from one state to another?
- We need a clock to dictate when to change state
  - Clock signal alternates between 0 & 1

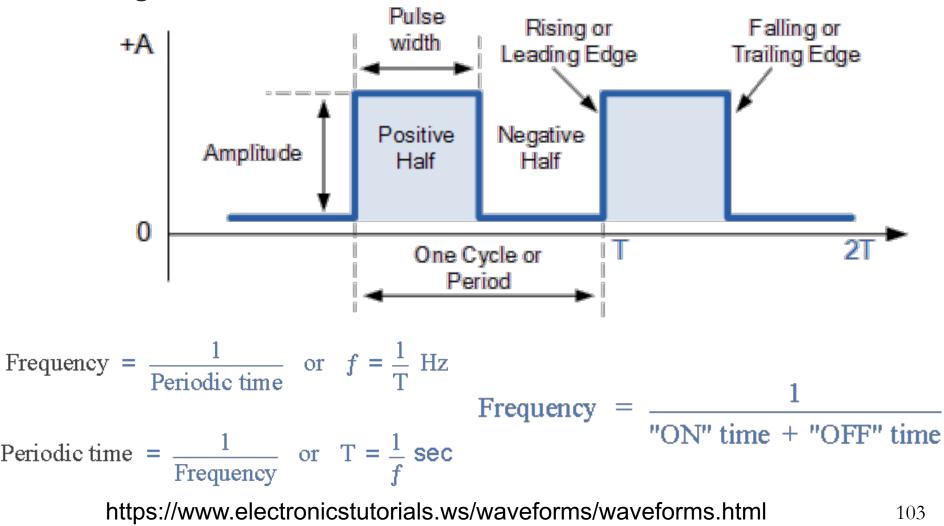
- At the start of a clock cycle ( ), system state changes
  - During a clock cycle, the state stays constant
  - In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

# Changing State: The Notion of Clock (II)

- Clock is a general mechanism that triggers transition from one state to another in a (synchronous) sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay
  - More on this later, when we discuss timing

### What is a clock?

 A clock signal is a square wave signal the fluctuates between 2 voltage levels at fixed intervals.



#### Asynchronous vs. Synchronous State Changes

- Sequential lock we saw is an asynchronous "machine"
  - State transitions occur when they occur
  - There is nothing that synchronizes when each state transition must occur
- Most modern computers are synchronous "machines"
   State transitions take place after fixed units of time
   Controlled in part by a clock, as we will see soon

#### These are two different design paradigms, with tradeoffs

- Synchronous control can be easier to get correct when the system consists of many components and many states
- Asynchronous control can be more efficient (no clock overheads)

#### We will assume synchronous systems in most of this course



 A Square Wave electrical waveform has a pulse width of 10ms; calculate its frequency ( f ).

## Quiz time!

- A Square Wave electrical waveform has a pulse width of 10ms; calculate its frequency ( f ).
- For a square wave shaped waveform, the duty cycle is given as 50%, therefore the period of the waveform must be equal to: 10ms + 10ms or 20ms

Frequency = 
$$\frac{1}{\text{Period}} = \frac{1}{10\text{mS} + 10\text{mS}} = 50\text{Hz}$$

# Finite State Machines

### Finite State Machines

- What is a **Finite State Machine** (FSM)?
  - A discrete-time model of a stateful system
  - □ Each state represents a snapshot of the system at a given time
- An FSM pictorially shows
  - 1. the set of all possible **states** that a system can be in
  - 2. how the system transitions from one state to another
- An FSM can model
  - □ A traffic light, an elevator, fan speed, a microprocessor, etc.

# An FSM enables us to pictorially think of a stateful system using simple diagrams

## Finite State Machines (FSMs) Consist of:

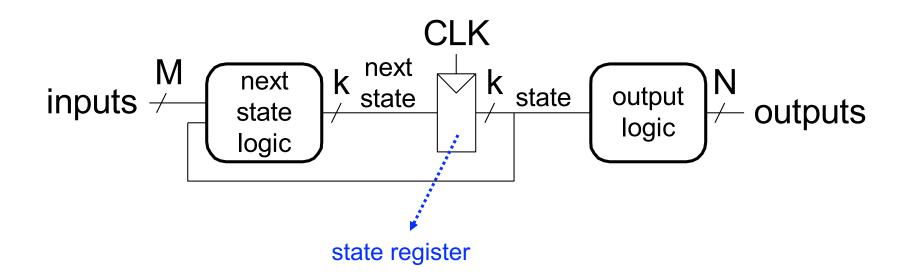
### Five elements:

#### 1. A finite number of states

- State: snapshot of all relevant elements of the system at the time of the snapshot
- 2. A finite number of external inputs
- 3. A finite number of external outputs
- An explicit specification of all state transitions
  How to get from one state to another
- 5. An explicit specification of what determines each external output value

### Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
  - next state logic
  - state register
  - output logic



At the beginning of the clock cycle, next state is latched into the state register

### 111

# Finite State Machines (FSMs) Consist of:

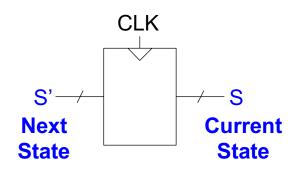
#### Sequential Circuits

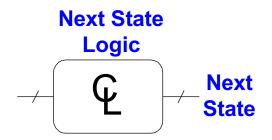
- State register(s)
  - Store the current state and
  - Load the next state at the clock edge

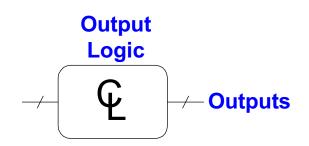
#### Combinational Circuits

- Next state logic
  - Determines what the next state will be

- Output logic
  - Generates the outputs







### Finite State Machines (FSMs) Consist of:

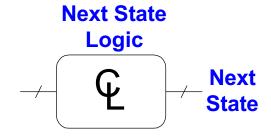
#### Sequential Circuits

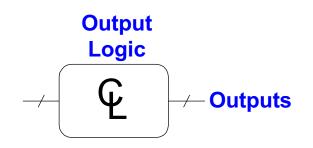
- State register(s)
  - Store the current state and
  - Provide the next state at the clock edge

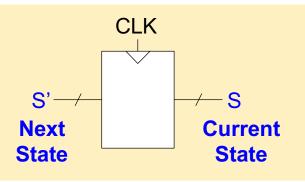
#### Combinational Circuits

- Next state logic
  - Determines what the next state will be

- Output logic
  - Generates the outputs

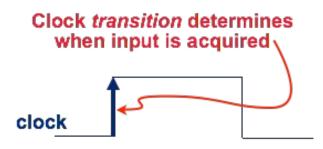




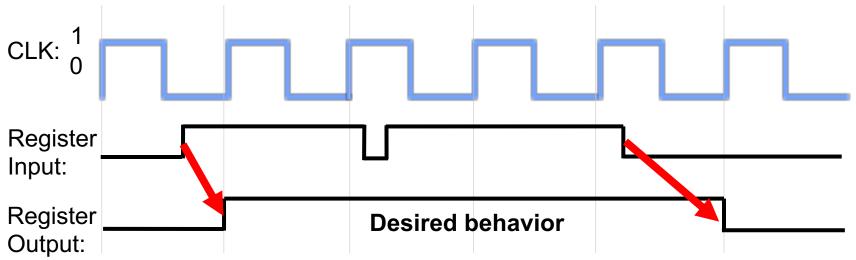


## State Register Implementation

How can we implement a state register? Two properties:
 1. We need to store data at the beginning of every clock cycle



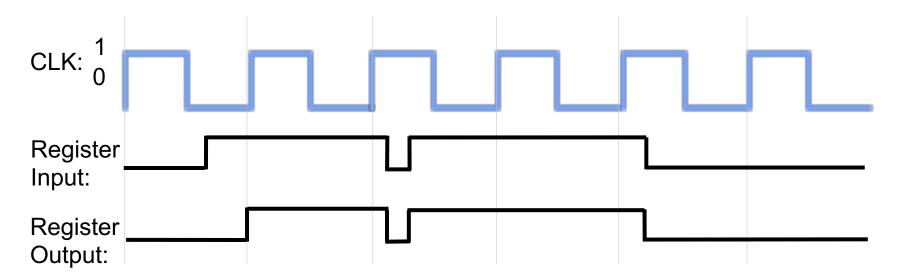
2. The data must be **available** during the **entire clock cycle** 



### The Problem with Latches

Recall the Gated D Latch CLK = WE

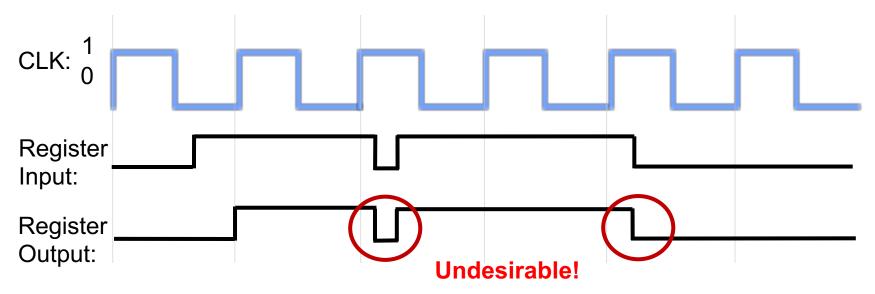
Currently, we cannot simply wire a clock to WE of a latch
 Whenever the clock is high, the latch propagates D to Q
 The latch is transparent



#### The Problem with Latches

Recall the Gated D Latch CLK = WE

Currently, we cannot simply wire a clock to WE of a latch
 Whenever the clock is high, the latch propagates D to Q
 The latch is transparent



#### The Problem with Latches

Recall the D-Gated D Latch CLK = WE

## How can we change the latch, so that **1) D** (input) is **observable** at **Q** (output) only at the beginning of next clock cycle? 2) Q is available for the full clock cycle

#### The Need for a New Storage Element

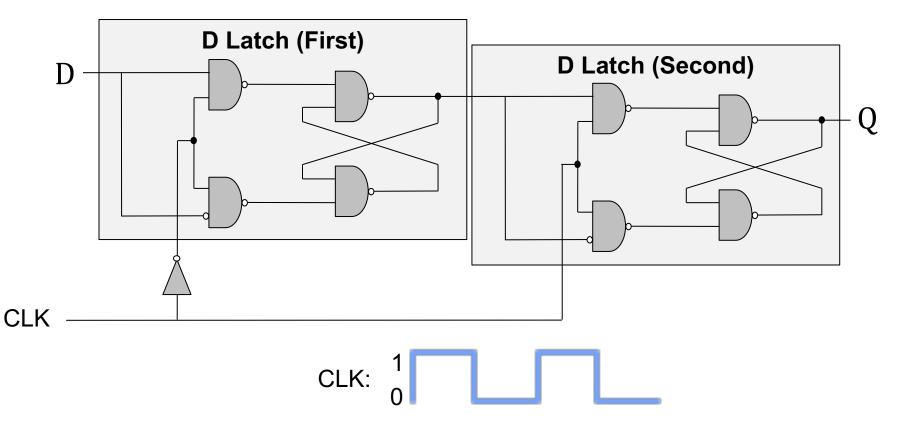
- To design viable FSMs
- We need storage elements that allow us to:
  - read the current state throughout the entire current clock cycle

AND

 not write the **next state** values into the storage elements until the beginning of the **next clock cycle**

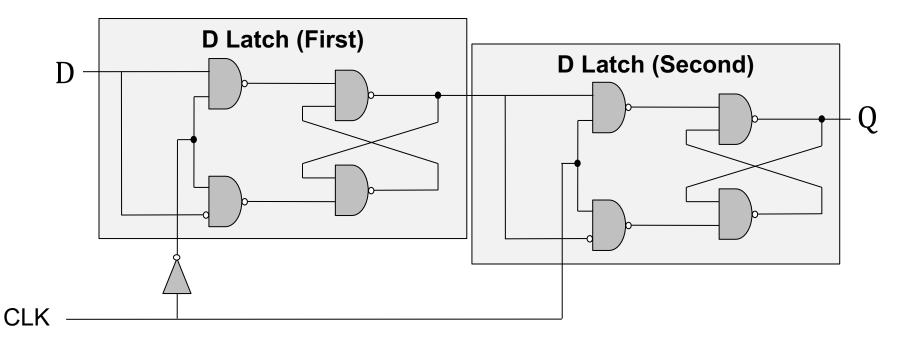
#### The D Flip-Flop

• 1) state change on clock edge, 2) data available for full cycle



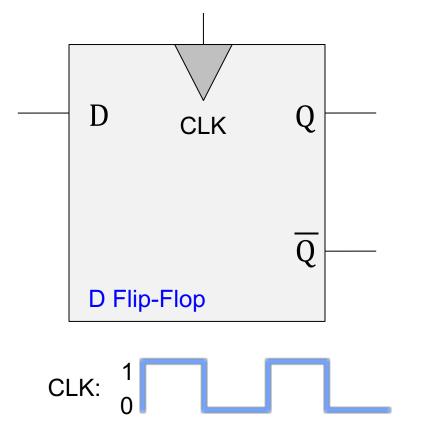
- When the clock is low, 1<sup>st</sup> latch propagates **D** to the input of the 2<sup>nd</sup> (Q unchanged)
- Only when the clock is high, 2<sup>nd</sup> latch latches **D** (**Q** stores **D**)
  - At the rising edge of clock (clock going from 0->1), Q gets assigned D

# How many transistors do we need to implement a D Flip Flop?



#### The D Flip-Flop

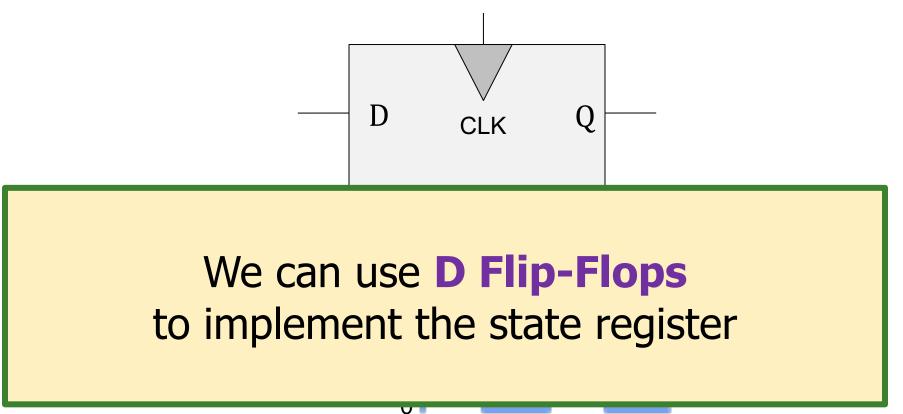
1) state change on clock edge, 2) data available for full cycle



- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

#### The D Flip-Flop

• 1) state change on clock edge, 2) data available for full cycle



- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

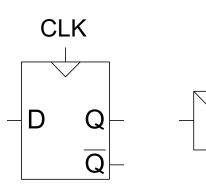
#### Rising-Clock-Edge Triggered Flip-Flop

Two inputs: CLK, D

#### Function

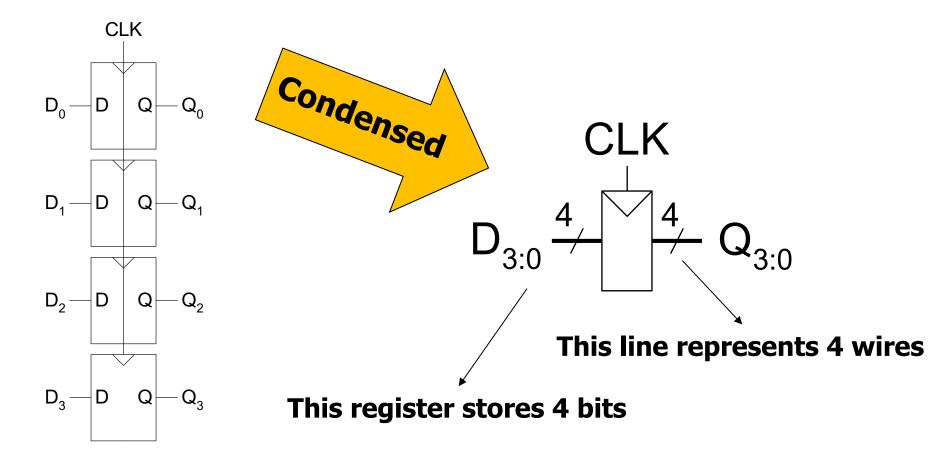
 The flip-flop "samples" D on the rising edge of CLK (positive edge)

- When CLK rises from 0 to 1, **D** passes through to **Q**
- Otherwise, **Q** holds its previous value
- Q changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered state element because it captures data on the clock edge
  - A latch is a level-triggered state element

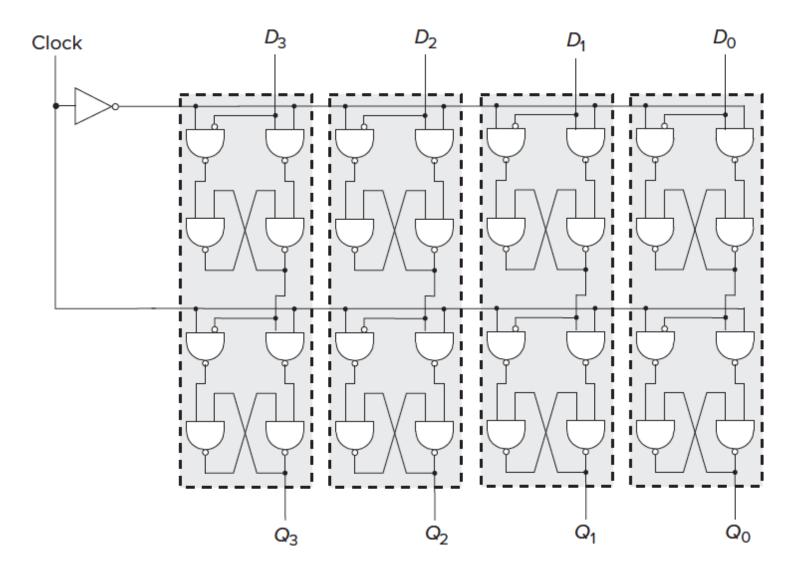


#### D Flip-Flop Based Register

Multiple parallel D flip-flops, each of which storing 1 bit

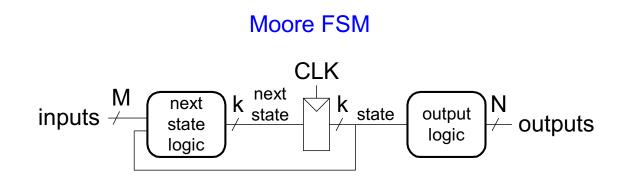


#### A 4-Bit D-Flip-Flop-Based Register (Internally)



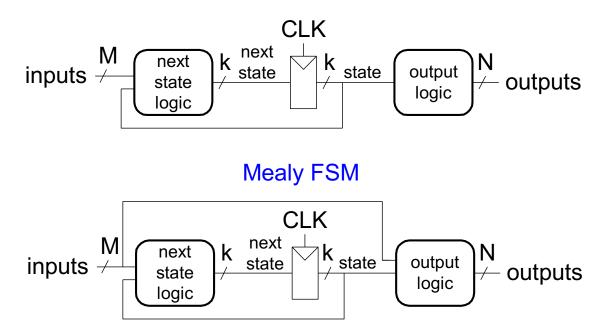
#### Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
  - **Moore FSM**: outputs depend only on the current state



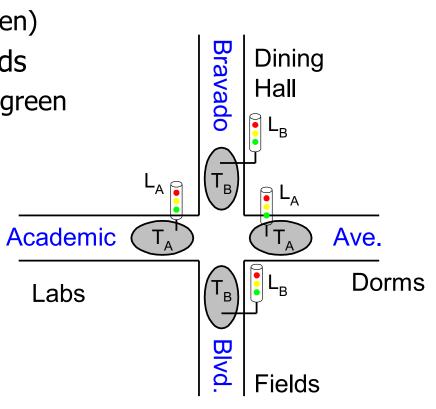
#### Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
  - □ **Moore FSM**: outputs depend only on the current state
  - Mealy FSM: outputs depend on the current state and the inputs
     Moore FSM



#### Finite State Machine Example

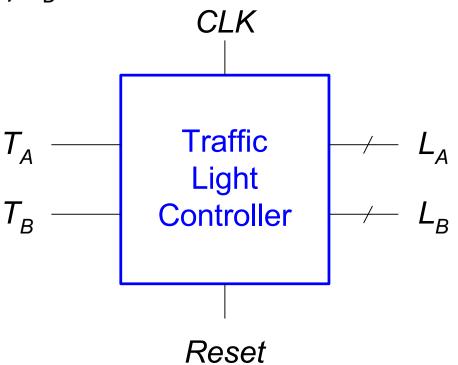
- "Smart" traffic light controller
  - **2 inputs**:
    - Traffic sensors: T<sub>A</sub>, T<sub>B</sub> (TRUE when there's traffic)
  - **2 outputs**:
    - Lights: L<sub>A</sub> , L<sub>B</sub> (Red, Yellow, Green)
  - State can change every 5 seconds
    - Except if green and traffic, stay green



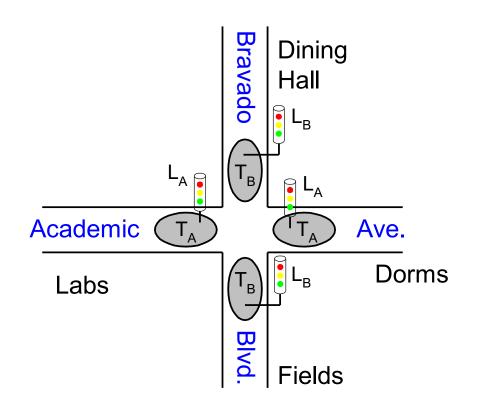
From H&H Section 3.4.1

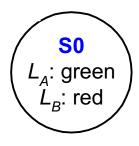
#### Finite State Machine Black Box

- Inputs: CLK, Reset, T<sub>A</sub>, T<sub>B</sub>
- Outputs: L<sub>A</sub>, L<sub>B</sub>

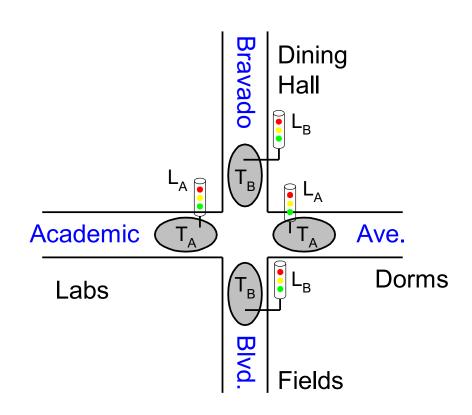


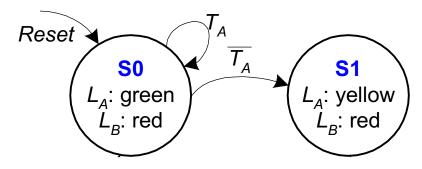
- **Moore FSM:** outputs labeled in each state
  - **States:** Circles
  - Transitions: Arcs



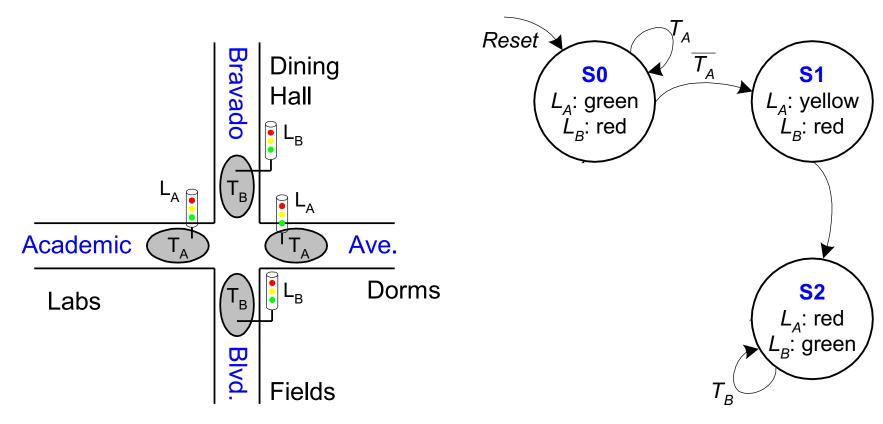


- Moore FSM: outputs labeled in each state
  - **States:** Circles
  - Transitions: Arcs

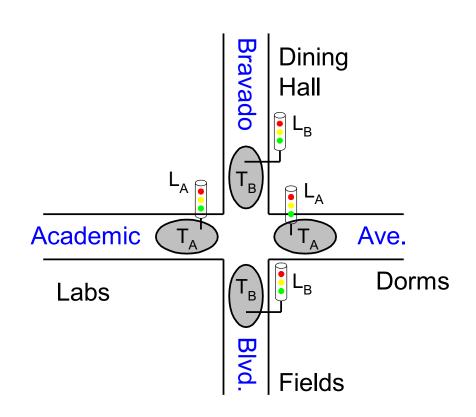


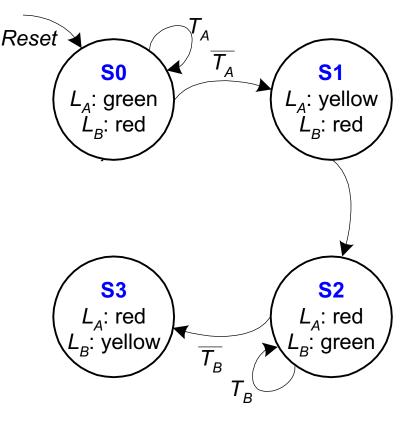


- Moore FSM: outputs labeled in each state
  - **States:** Circles
  - Transitions: Arcs

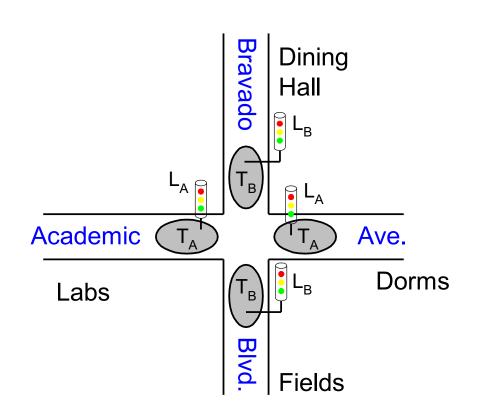


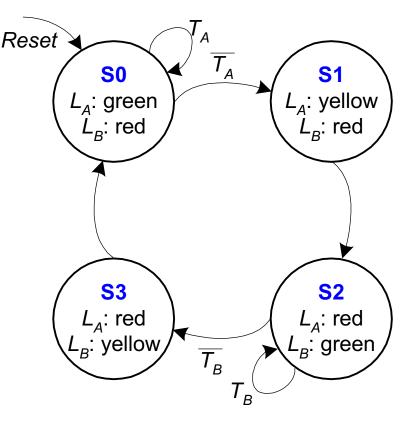
- Moore FSM: outputs labeled in each state
  - **States:** Circles
  - Transitions: Arcs



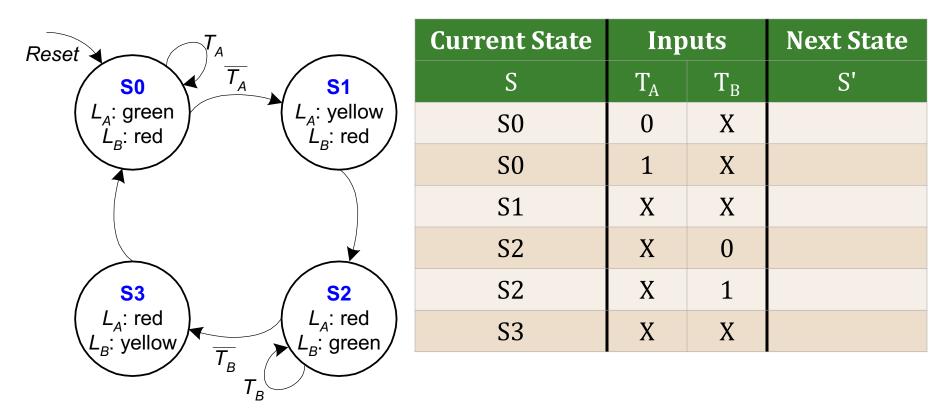


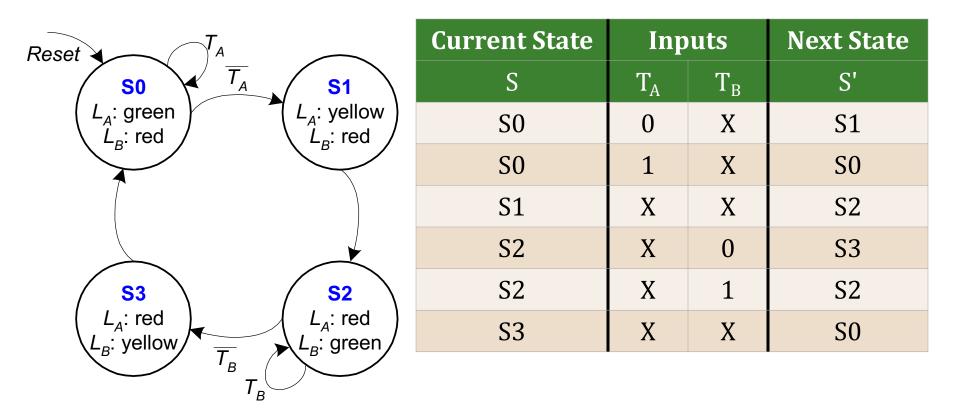
- Moore FSM: outputs labeled in each state
  - **States:** Circles
  - Transitions: Arcs

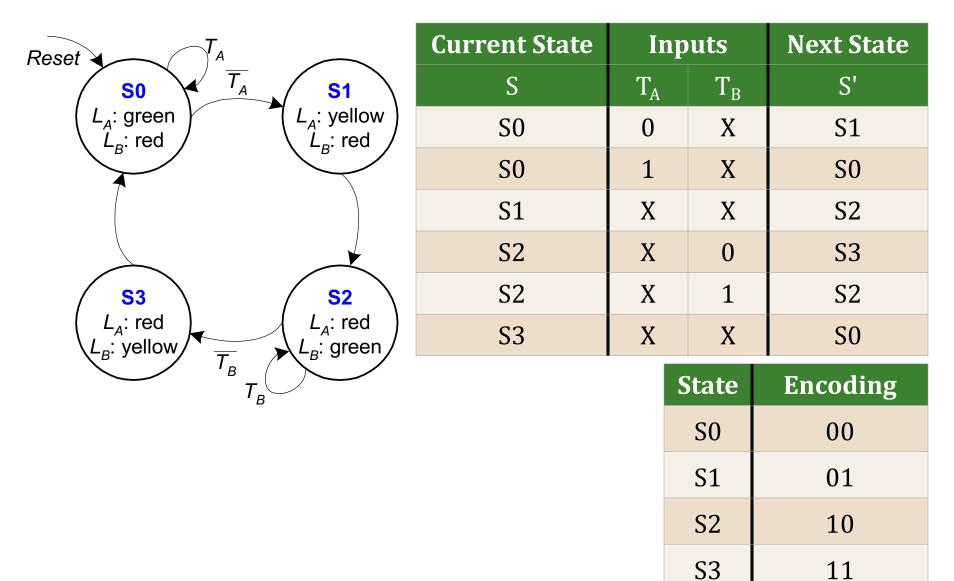




### Finite State Machine: State Transition Table







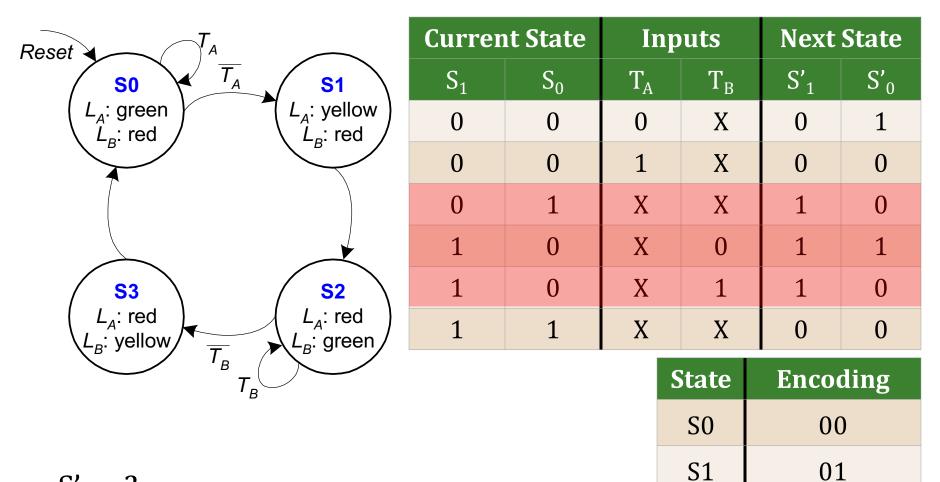
| Reset T <sub>A</sub>                                                                                                                           | Curren         | it State       | In             | puts           | Next            | State           |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------------|-----------------|
| $S0$ $\overline{T_A}$ $S1$                                                                                                                     | S <sub>1</sub> | S <sub>0</sub> | T <sub>A</sub> | T <sub>B</sub> | S' <sub>1</sub> | S' <sub>0</sub> |
| $\begin{pmatrix} L_A: \text{ green} \\ L_B: \text{ red} \end{pmatrix}$ $\begin{pmatrix} L_A: \text{ yellow} \\ L_B: \text{ red} \end{pmatrix}$ | 0              | 0              | 0              | X              | 0               | 1               |
| Б                                                                                                                                              | 0              | 0              | 1              | X              | 0               | 0               |
|                                                                                                                                                | 0              | 1              | Х              | X              | 1               | 0               |
|                                                                                                                                                | 1              | 0              | Х              | 0              | 1               | 1               |
| <b>S</b> 3 <b>S</b> 2                                                                                                                          | 1              | 0              | Х              | 1              | 1               | 0               |
| $L_A$ : red<br>$L_B$ : yellow $\overline{T}$ $L_B$ : green                                                                                     | 1              | 1              | Х              | X              | 0               | 0               |
| $T_B$ . yellow $T_B$ $T_B$ $T_B$                                                                                                               |                |                |                | State          | Enco            | ding            |
|                                                                                                                                                |                |                |                | S0             | 00              | )               |
|                                                                                                                                                |                |                |                | S1             | 0               | 1               |

S2

S3

10

11



S2

S3

10

11

S'<sub>1</sub> = ?

| Reset T <sub>A</sub>                                                                                                                               | Curren         | it State          | Inp            | puts           | Next            | State           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------|----------------|-----------------|-----------------|
| $\overline{T_A}$ $\overline{S1}$                                                                                                                   | S <sub>1</sub> | S <sub>0</sub>    | T <sub>A</sub> | T <sub>B</sub> | S' <sub>1</sub> | S' <sub>0</sub> |
| $\begin{pmatrix} L_A : \text{ green} \\ L_B : \text{ red} \end{pmatrix}$ $\begin{pmatrix} L_A : \text{ yellow} \\ L_B : \text{ red} \end{pmatrix}$ | 0              | 0                 | 0              | X              | 0               | 1               |
|                                                                                                                                                    | 0              | 0                 | 1              | X              | 0               | 0               |
|                                                                                                                                                    | 0              | 1                 | Х              | Х              | 1               | 0               |
|                                                                                                                                                    | 1              | 0                 | Х              | 0              | 1               | 1               |
| S3 S2                                                                                                                                              | 1              | 0                 | Х              | 1              | 1               | 0               |
| $L_A$ : red<br>$L_B$ : yellow $\overline{T}$ $L_B$ : green                                                                                         | 1              | 1                 | Х              | X              | 0               | 0               |
| $T_B$ . yellow $T_B$ $T_B$ $T_B$                                                                                                                   |                |                   |                | State          | Enco            | ding            |
|                                                                                                                                                    |                |                   |                | S0             | 00              | )               |
| $S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$                       |                |                   |                | S1             | 01              | L               |
|                                                                                                                                                    |                | C <sup>0</sup> B) |                | S2             | 10              | )               |

S3

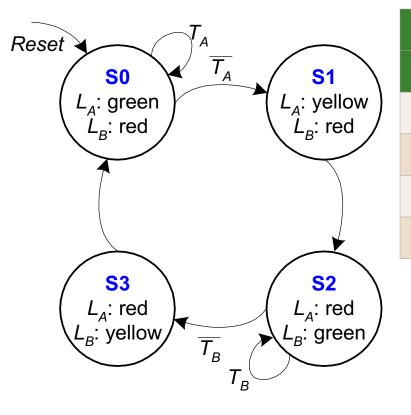
11

| Reset T <sub>A</sub>                                                                                                                                        | Current State In |                | puts           | Next           | State           |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|----------------|-----------------|-----------------|
| $S0 \xrightarrow{\overline{T_A}} S1$                                                                                                                        | S <sub>1</sub>   | S <sub>0</sub> | T <sub>A</sub> | T <sub>B</sub> | S' <sub>1</sub> | S' <sub>0</sub> |
| $\begin{pmatrix} L_A : \text{ green} \\ L_B : \text{ red} \end{pmatrix}$ $\begin{pmatrix} L_A : \text{ yellow} \\ L_B : \text{ red} \end{pmatrix}$          | 0                | 0              | 0              | Х              | 0               | 1               |
|                                                                                                                                                             | 0                | 0              | 1              | Х              | 0               | 0               |
|                                                                                                                                                             | 0                | 1              | Х              | Х              | 1               | 0               |
|                                                                                                                                                             | 1                | 0              | Х              | 0              | 1               | 1               |
| S3 S2                                                                                                                                                       | 1                | 0              | Х              | 1              | 1               | 0               |
| $\begin{pmatrix} L_A: \text{ red} \\ L_B: \text{ yellow} \\ \hline T \\ \end{pmatrix} \begin{pmatrix} L_A: \text{ red} \\ L_B: \text{ green} \end{pmatrix}$ | 1                | 1              | Х              | Х              | 0               | 0               |
| $T_B$ $T_B$ $T_B$                                                                                                                                           |                  |                |                | State          | Enco            | ding            |
|                                                                                                                                                             |                  |                |                |                | 00              | )               |
| $S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$                                |                  |                |                | S1             | 01              | 1               |
|                                                                                                                                                             |                  |                |                | S2             | 1(              | )               |
| S' <sub>0</sub> = ?                                                                                                                                         |                  |                |                | S3             | 11              | L               |

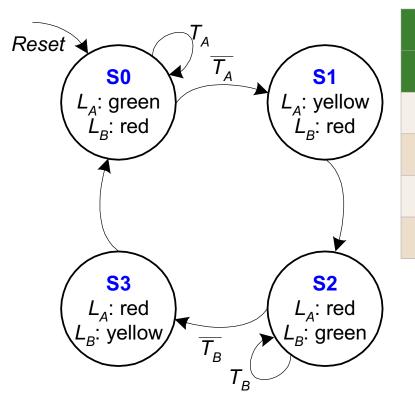
| Reset T <sub>A</sub>                                                                                                                                        | Current State II |                | In             | puts           | Next            | State           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|----------------|-----------------|-----------------|
| $\overline{T_A}$ $\overline{S1}$                                                                                                                            | S <sub>1</sub>   | S <sub>0</sub> | T <sub>A</sub> | T <sub>B</sub> | S' <sub>1</sub> | S' <sub>0</sub> |
| $\begin{pmatrix} L_A: \text{ green} \\ L_B: \text{ red} \end{pmatrix}$ $\begin{pmatrix} L_A: \text{ yellow} \\ L_B: \text{ red} \end{pmatrix}$              | 0                | 0              | 0              | Х              | 0               | 1               |
|                                                                                                                                                             | 0                | 0              | 1              | Х              | 0               | 0               |
|                                                                                                                                                             | 0                | 1              | Х              | X              | 1               | 0               |
|                                                                                                                                                             | 1                | 0              | Х              | 0              | 1               | 1               |
| <b>S</b> 3 <b>S</b> 2                                                                                                                                       | 1                | 0              | Х              | 1              | 1               | 0               |
| $\begin{pmatrix} L_A: \text{ red} \\ L_B: \text{ yellow} \\ \hline T \\ \end{pmatrix} \begin{pmatrix} L_A: \text{ red} \\ L_B: \text{ green} \end{pmatrix}$ | 1                | 1              | Х              | Х              | 0               | 0               |
|                                                                                                                                                             |                  |                |                |                | Enco            | ding            |
|                                                                                                                                                             |                  |                |                |                | 00              | )               |
| $S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$                                |                  |                |                | S1             | 01              | L               |
|                                                                                                                                                             |                  |                |                |                | 1(              | )               |
| $S'_{0} = (\overline{S}_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{A}) + (S_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{B})$ S3 11                   |                  |                |                | L              |                 |                 |

| Reset T <sub>A</sub>                                                                                                                           | Curren         | it State       | Inj            | puts           | Next            | State           |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------------|-----------------|
| $\overline{T_A}$ $\overline{S1}$                                                                                                               | S <sub>1</sub> | S <sub>0</sub> | T <sub>A</sub> | T <sub>B</sub> | S' <sub>1</sub> | S' <sub>0</sub> |
| $\begin{pmatrix} L_A: \text{ green} \\ L_B: \text{ red} \end{pmatrix}$ $\begin{pmatrix} L_A: \text{ yellow} \\ L_B: \text{ red} \end{pmatrix}$ | 0              | 0              | 0              | Х              | 0               | 1               |
|                                                                                                                                                | 0              | 0              | 1              | Х              | 0               | 0               |
|                                                                                                                                                | 0              | 1              | Х              | Х              | 1               | 0               |
|                                                                                                                                                | 1              | 0              | Х              | 0              | 1               | 1               |
| <b>S</b> 3 <b>S</b> 2                                                                                                                          | 1              | 0              | Х              | 1              | 1               | 0               |
| $L_A$ : red<br>$L_B$ : yellow $\overline{T}$ $L_B$ : green                                                                                     | 1              | 1              | Х              | X              | 0               | 0               |
| $\overline{T_B}$ $T_B$ $T_B$                                                                                                                   |                |                |                | State          | Enco            | ding            |
|                                                                                                                                                |                |                |                | S0             | 00              | )               |
| $S'_1 = S_1 \operatorname{xor} S_0$ (Simplified)                                                                                               |                |                |                | S1             | 01              | L               |
|                                                                                                                                                |                |                |                | S2             | 10              | )               |
| $S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$                          |                |                |                | S3             | 11              |                 |

## Finite State Machine: Output Table

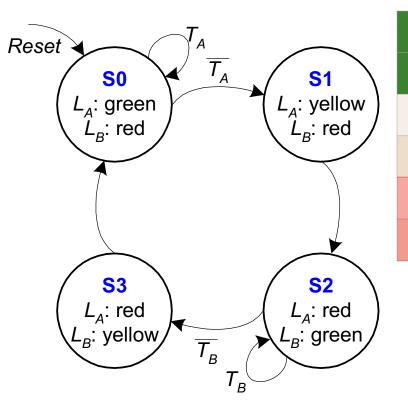


| Current State  |                | Outputs        |                |  |
|----------------|----------------|----------------|----------------|--|
| S <sub>1</sub> | S <sub>0</sub> | L <sub>A</sub> | L <sub>B</sub> |  |
| 0              | 0              | green          | red            |  |
| 0              | 1              | yellow         | red            |  |
| 1              | 0              | red            | green          |  |
| 1              | 1              | red            | yellow         |  |



| Current State  |                | Outputs        |         |  |
|----------------|----------------|----------------|---------|--|
| S <sub>1</sub> | S <sub>0</sub> | L <sub>A</sub> | $L_{B}$ |  |
| 0              | 0              | green          | red     |  |
| 0              | 1              | yellow         | red     |  |
| 1              | 0              | red            | green   |  |
| 1              | 1              | red            | yellow  |  |

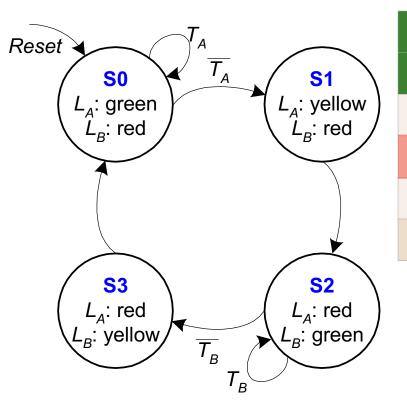
| Output | Encoding |
|--------|----------|
| green  | 00       |
| yellow | 01       |
| red    | 10       |



| Curren         | it State       |                 | Out             | puts            |                 |
|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| S <sub>1</sub> | S <sub>0</sub> | L <sub>A1</sub> | L <sub>A0</sub> | L <sub>B1</sub> | L <sub>B0</sub> |
| 0              | 0              | 0               | 0               | 1               | 0               |
| 0              | 1              | 0               | 1               | 1               | 0               |
| 1              | 0              | 1               | 0               | 0               | 0               |
| 1              | 1              | 1               | 0               | 0               | 1               |

| Output | Encoding |
|--------|----------|
| green  | 00       |
| yellow | 01       |
| red    | 10       |

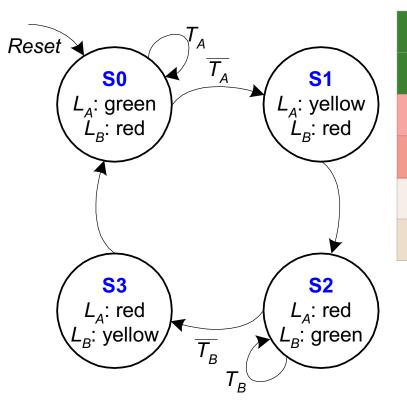
 $L_{A1} = S_1$ 



| Current State  |                |                 | Out             | puts            |                 |
|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| S <sub>1</sub> | S <sub>0</sub> | L <sub>A1</sub> | L <sub>A0</sub> | L <sub>B1</sub> | L <sub>B0</sub> |
| 0              | 0              | 0               | 0               | 1               | 0               |
| 0              | 1              | 0               | 1               | 1               | 0               |
| 1              | 0              | 1               | 0               | 0               | 0               |
| 1              | 1              | 1               | 0               | 0               | 1               |

| Output | Encoding |
|--------|----------|
| green  | 00       |
| yellow | 01       |
| red    | 10       |

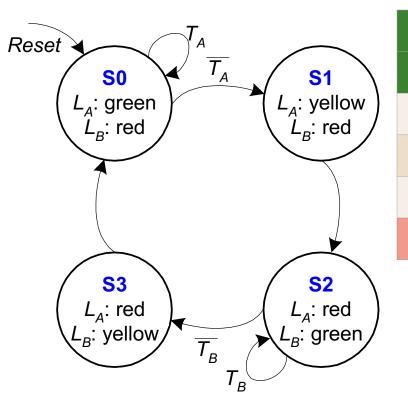
$$L_{A1} = \frac{S_1}{L_{A0}} = \frac{S_1}{S_1} \cdot S_0$$



| Current State  |                | Outputs         |                 |                 |                 |
|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| S <sub>1</sub> | S <sub>0</sub> | L <sub>A1</sub> | L <sub>A0</sub> | L <sub>B1</sub> | L <sub>B0</sub> |
| 0              | 0              | 0               | 0               | 1               | 0               |
| 0              | 1              | 0               | 1               | 1               | 0               |
| 1              | 0              | 1               | 0               | 0               | 0               |
| 1              | 1              | 1               | 0               | 0               | 1               |

| Output | Encoding |  |  |
|--------|----------|--|--|
| green  | 00       |  |  |
| yellow | 01       |  |  |
| red    | 10       |  |  |

 $L_{A1} = \frac{S_1}{S_1}$  $L_{A0} = \frac{S_1}{S_1} \cdot S_0$  $L_{B1} = \frac{S_1}{S_1}$ 



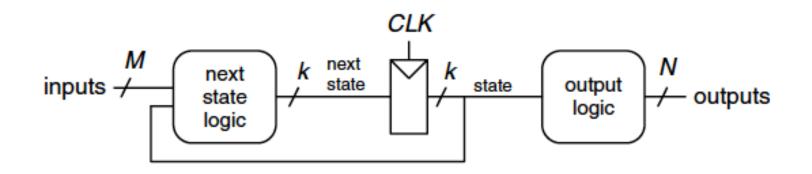
| Current State  |                | Outputs         |                 |                 |                 |
|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| S <sub>1</sub> | S <sub>0</sub> | L <sub>A1</sub> | L <sub>A0</sub> | L <sub>B1</sub> | L <sub>B0</sub> |
| 0              | 0              | 0               | 0               | 1               | 0               |
| 0              | 1              | 0               | 1               | 1               | 0               |
| 1              | 0              | 1               | 0               | 0               | 0               |
| 1              | 1              | 1               | 0               | 0               | 1               |

| Output | Encoding |  |  |
|--------|----------|--|--|
| green  | 00       |  |  |
| yellow | 01       |  |  |
| red    | 10       |  |  |

$$L_{A1} = \frac{S_1}{S_1}$$
$$L_{A0} = \frac{S_1}{S_1} \cdot S_0$$
$$L_{B1} = \frac{S_1}{S_1}$$
$$L_{B0} = S_1 \cdot S_0$$

# Finite State Machine: Schematic

### FSM Schematic: State Register

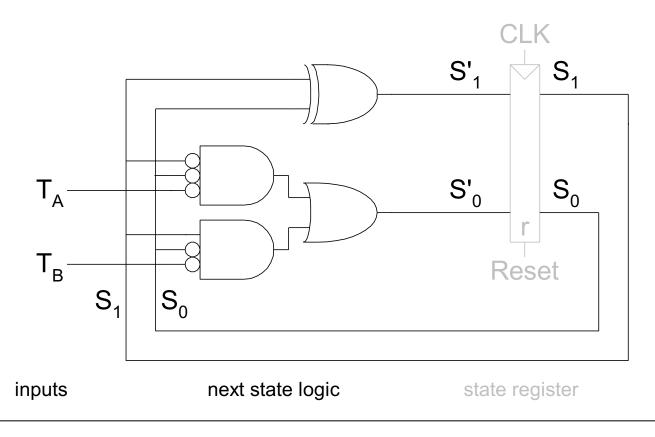


### FSM Schematic: State Register



state register

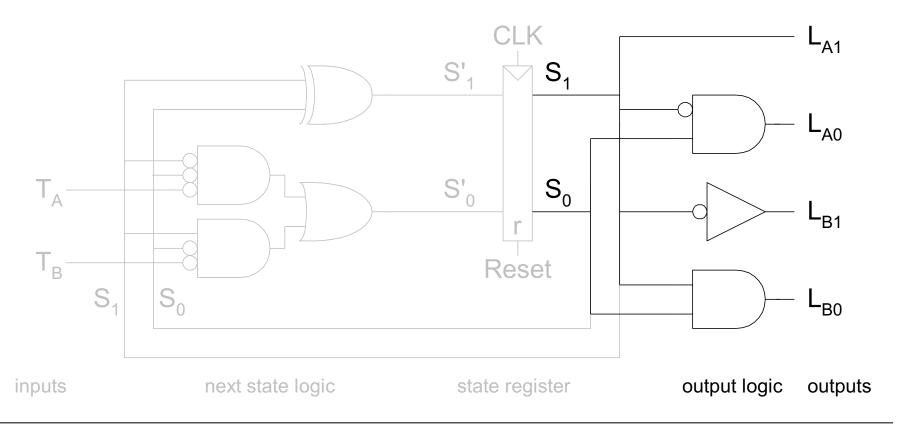
### FSM Schematic: Next State Logic



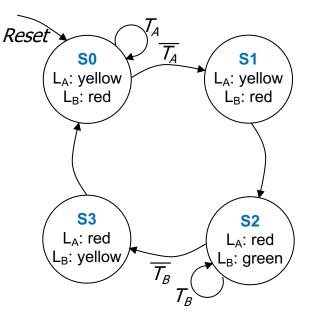
 $S'_{1} = S_{1} \text{ xor } S_{0}$ 

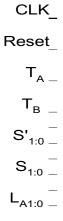
$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

### FSM Schematic: Output Logic

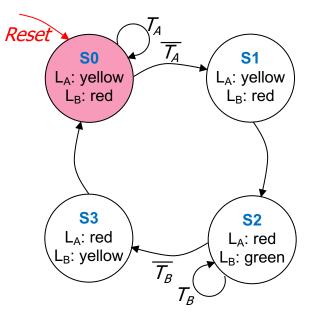


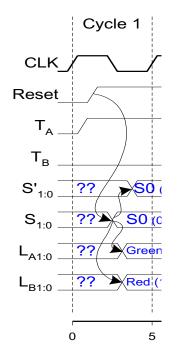
$$L_{A1} = \frac{S_1}{S_1}$$
$$L_{A0} = \frac{S_1}{S_1} \cdot S_0$$
$$L_{B1} = \frac{S_1}{S_1}$$
$$L_{B0} = S_1 \cdot S_0$$

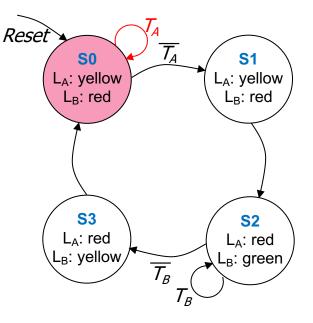


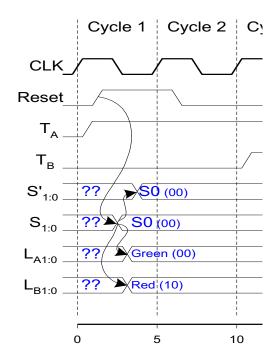


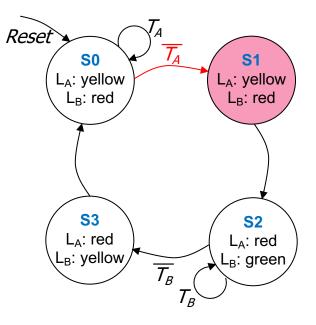
L<sub>B1:0</sub> \_

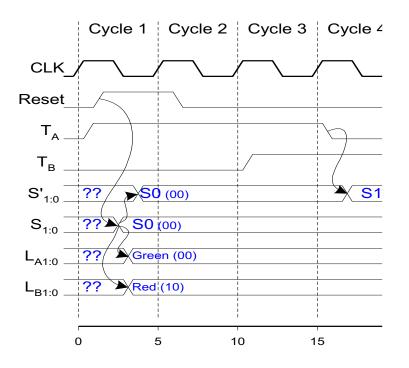


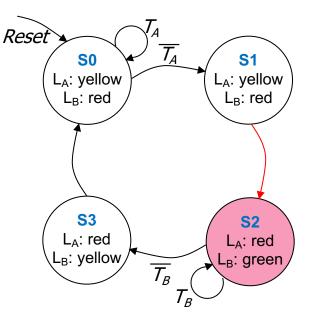


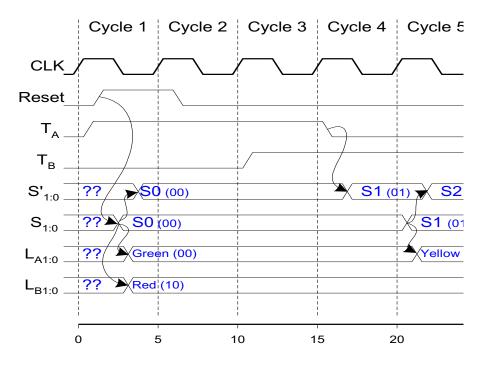


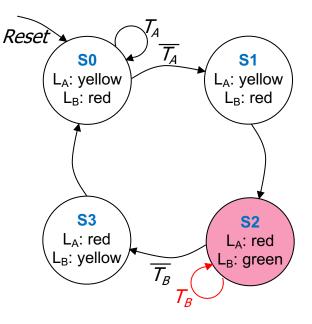


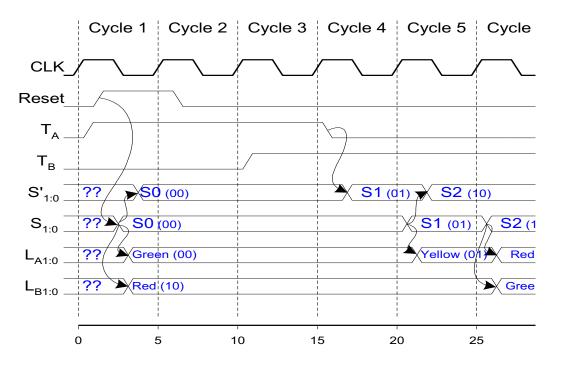


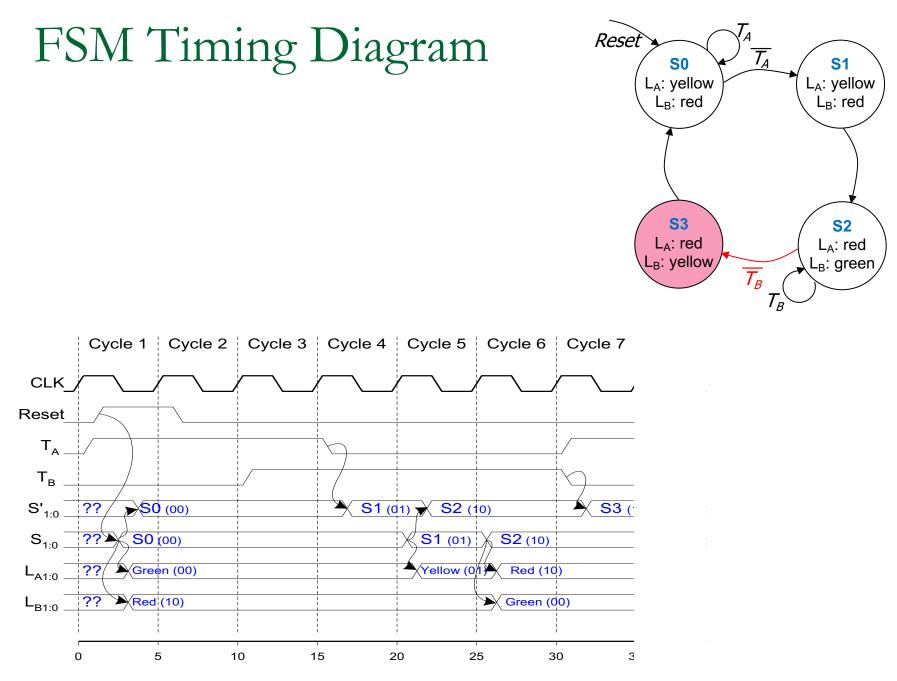


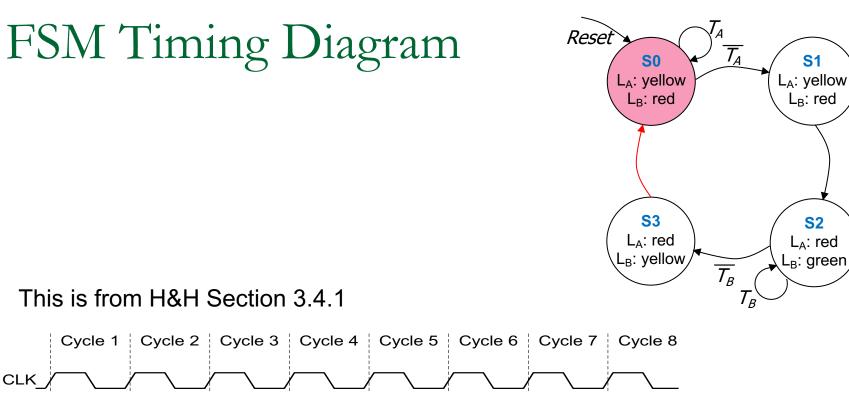


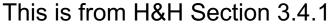


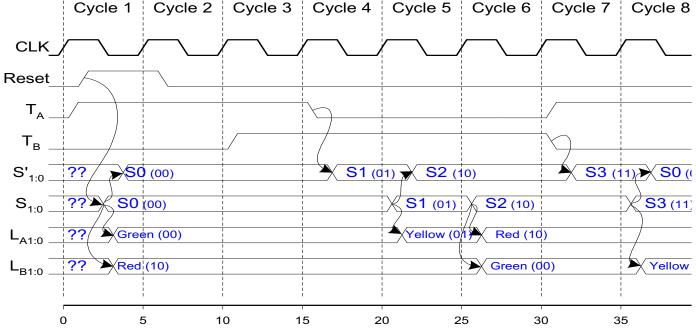


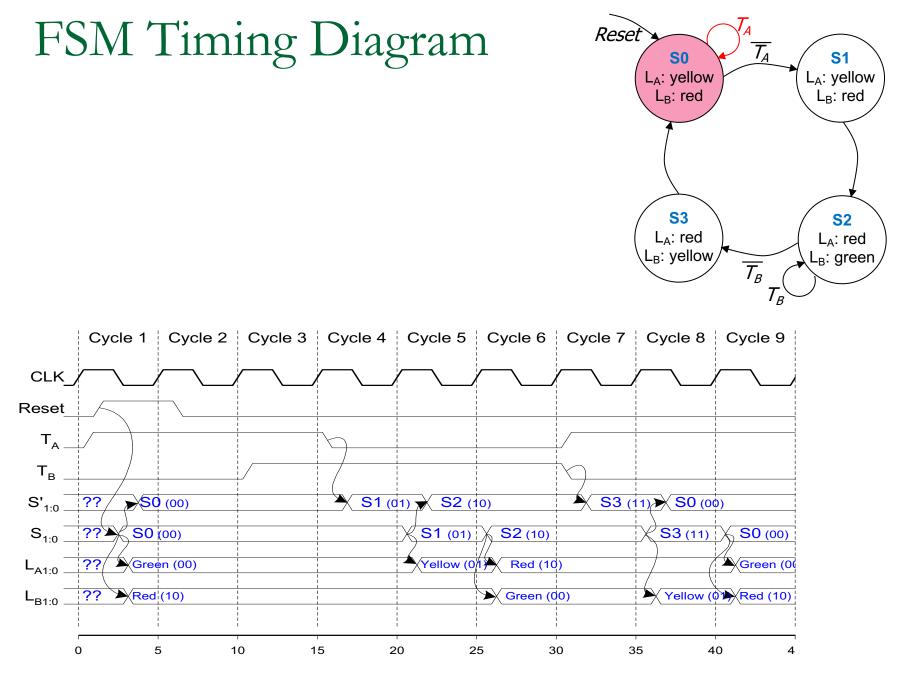


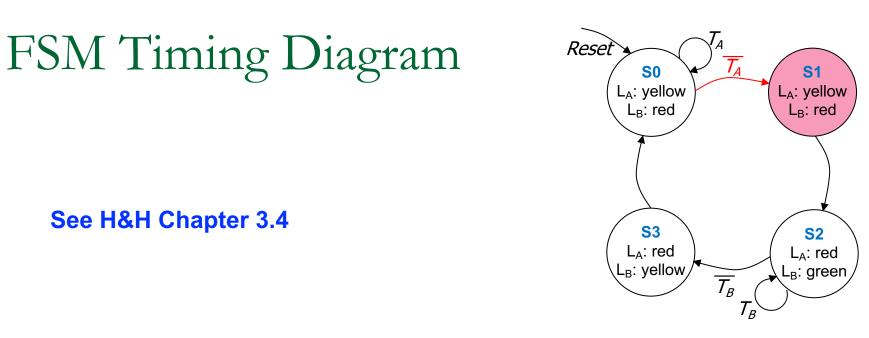


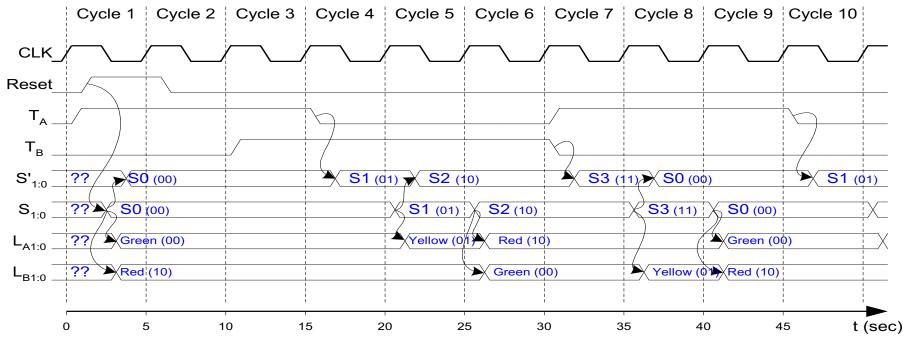








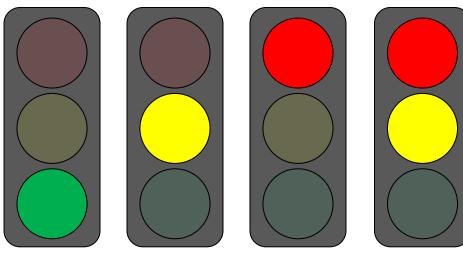




# Finite State Machine: State Encoding

## FSM State Encoding

- How do we encode the state bits?
  - □ Three common state binary encodings with different tradeoffs
    - **1. Fully Encoded**
    - 2. 1-Hot Encoded
    - **3. Output Encoded**
- Let's see an example Swiss traffic light with 4 states
  - □ Green, Yellow, Red, Yellow+Red



# FSM State Encoding (II)

### **1.** Binary Encoding (Full Encoding):

- Use the minimum possible number of bits
  - Use log<sub>2</sub>(num\_states) bits to represent the states
- □ *Example state encodings:* 00, 01, 10, 11
- Minimizes # flip-flops, but not necessarily output logic or next state logic

### 2. One-Hot Encoding:

- Each bit encodes a different state
  - Uses num\_states bits to represent the states
  - Exactly 1 bit is "hot" for a given state
- □ *Example state encodings:* 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

# FSM State Encoding (III)

### **3. Output Encoding:**

Outputs are **directly accessible** in the state encoding

- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- □ *Example states:* 001, 010, 100, 110
  - Bit<sub>0</sub> encodes **green** light output,
  - Bit<sub>1</sub> encodes **yellow** light output
  - Bit<sub>2</sub> encodes **red** light output

### Minimizes output logic

Only works for Moore Machines (output function of state)

# FSM State Encoding (III)

### **3. Output Encoding:**

Outputs are directly accessible in the state encoding

### The **designer** must **carefully** choose an encoding scheme to **optimize** the design under given constraints

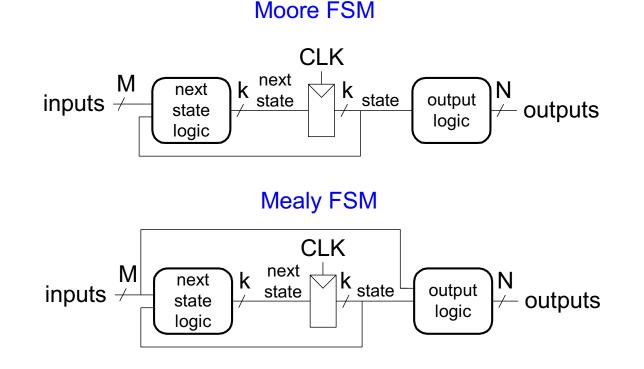
### Minimizes output logic

Only works for Moore Machines (output function of state)

# Moore vs. Mealy Machines

### Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of FSMs differ in the **output logic**:
  - Moore FSM: outputs depend only on the current state
  - Mealy FSM: outputs depend on the current state and the inputs

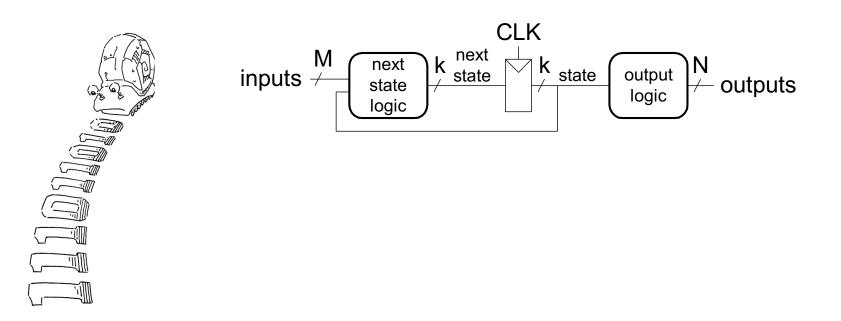


## Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.

Moore FSM

Design Moore and Mealy FSMs of the snail's brain.

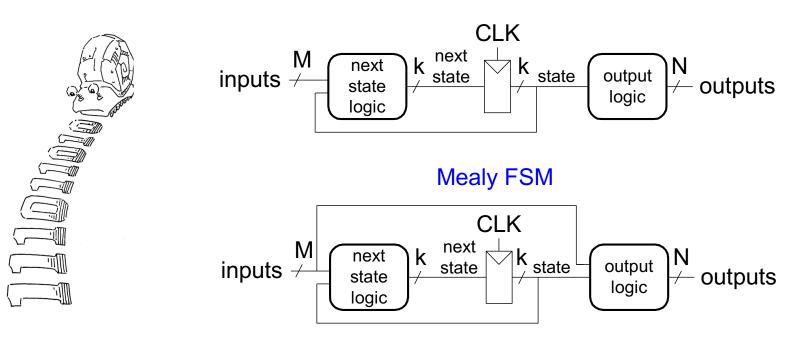


## Moore vs. Mealy FSM Examples

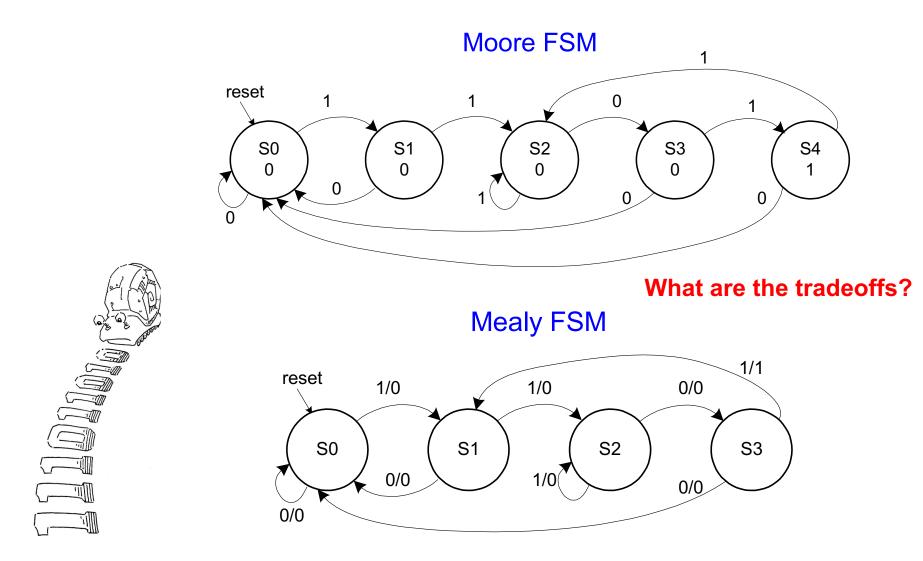
- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.

Moore FSM

Design Moore and Mealy FSMs of the snail's brain.



## State Transition Diagrams



# FSM Design Procedure

• **Determine** all possible states of your machine

#### Develop a state transition diagram

- Generally this is done from a textual description
- You need to 1) determine the inputs and outputs for each state and
   2) figure out how to get from one state to another

#### Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking **good state names** is very important
- Building an FSM is **like** programming (but it *is not* programming!)
  - An FSM has a sequential "control-flow" like a program with conditionals and goto's
  - The if-then-else construct is controlled by one or more inputs
  - The outputs are controlled by the state or the inputs
- □ In hardware, we typically have many concurrent FSMs

### What is to Come: LC-3 Processor

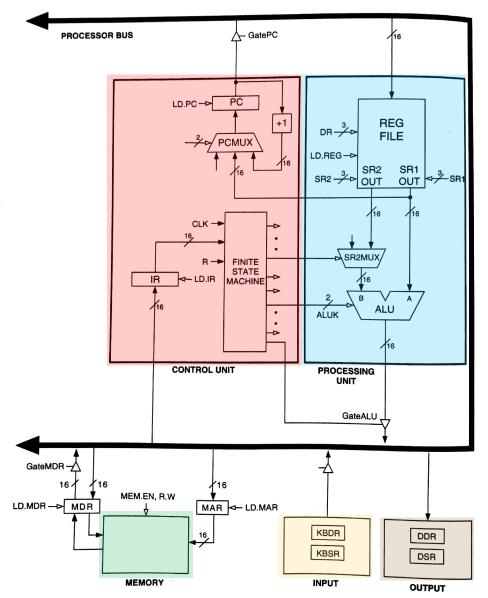
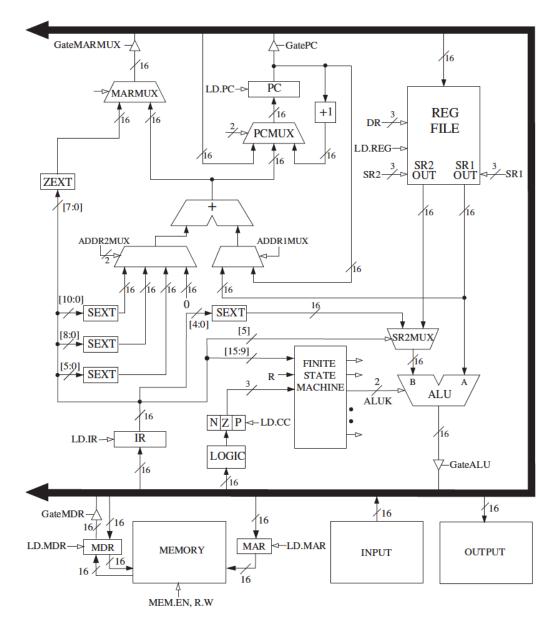


Figure 4.3 The LC-3 as an example of the von Neumann model

## What is to Come: LC-3 Datapath



# Backup Slides: Different Types of Flip Flops

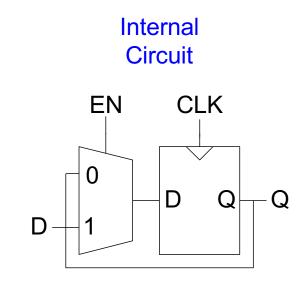
# Enabled Flip-Flops

### Inputs: CLK, D, EN

□ The enable input (EN) controls when new data (D) is stored

### Function:

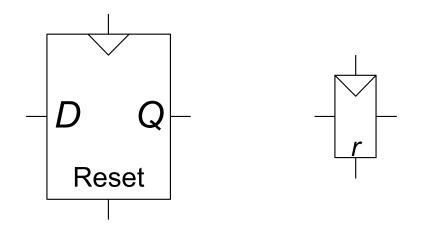
- **EN** = 1: D passes through to Q on the clock edge
- **EN** = **O**: the flip-flop retains its previous state



# Resettable Flip-Flop

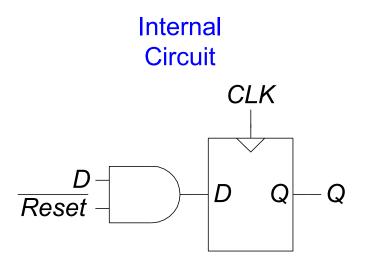
- Inputs: CLK, D, Reset
  - □ The Reset is used to set the output to 0.
- Function:
  - Reset = 1: Q is forced to 0
  - Reset = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols



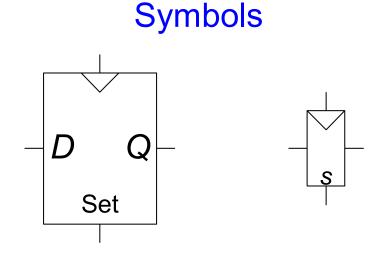
# Resettable Flip-Flops

- Two types:
  - **Synchronous**: resets at the clock edge only
  - **Asynchronous**: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?



# Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
  - **Set = 1**: Q is set to 1
  - □ **Set = 0**: the flip-flop behaves like an ordinary D flip-flop



# Backup Slides on Karnaugh Maps (K-Maps)

# Complex Cases

One example

### $Cout = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

### Problem

- □ Easy to see how to apply Uniting Theorem...
- □ Hard to know if you applied it in all the right places...
- …especially in a function of many more variables

### Question

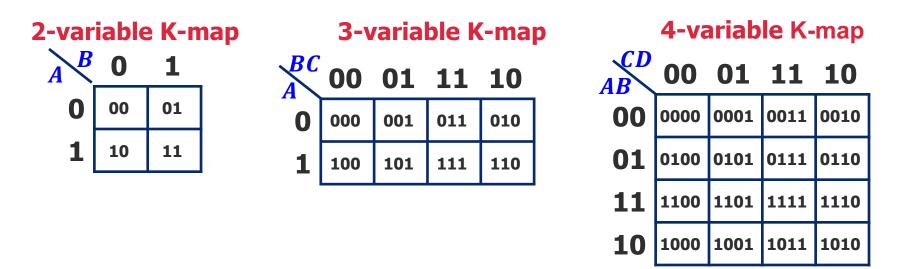
- □ Is there an easier way to find potential simplifications?
- □ i.e., potential applications of Uniting Theorem...?

### Answer

- Need an intrinsically geometric representation for Boolean f()
- □ Something we can draw, see...

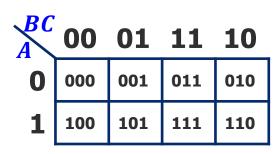
# Karnaugh Map

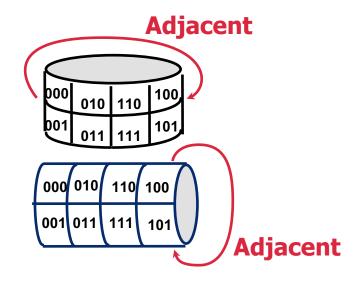
- Karnaugh Map (K-map) method
  - K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
  - □ Physical adjacency ↔ Logical adjacency



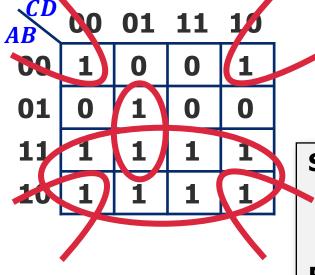
Numbering Scheme: 00, 01, 11, 10 is called a "Gray Code" — only a single bit (variable) changes from one code word and the next code word

### Karnaugh Map Methods





K-map adjacencies go "around the edges" Wrap around from first to last column Wrap around from top row to bottom row K-map Cover - 4 Input Variables



$$F(A, B, C, D) = \sum m(0, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15)$$
$$F = A + \overline{B}\overline{D} + B\overline{C}D$$

**Strategy for "circling" rectangles on Kmap:** 

**Biggest** "oops!" that people forget:

## Logic Minimization Using K-Maps

- Very simple guideline:
  - Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
    - Each circle should be as large as possible
  - Read off the implicants that were circled

### More formally:

- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- □ The largest possible circles are prime implicants

# K-map Rules

### What can be legally combined (circled) in the K-map?

- Rectangular groups of size 2<sup>k</sup> for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
  - Wrap-around edge is okay

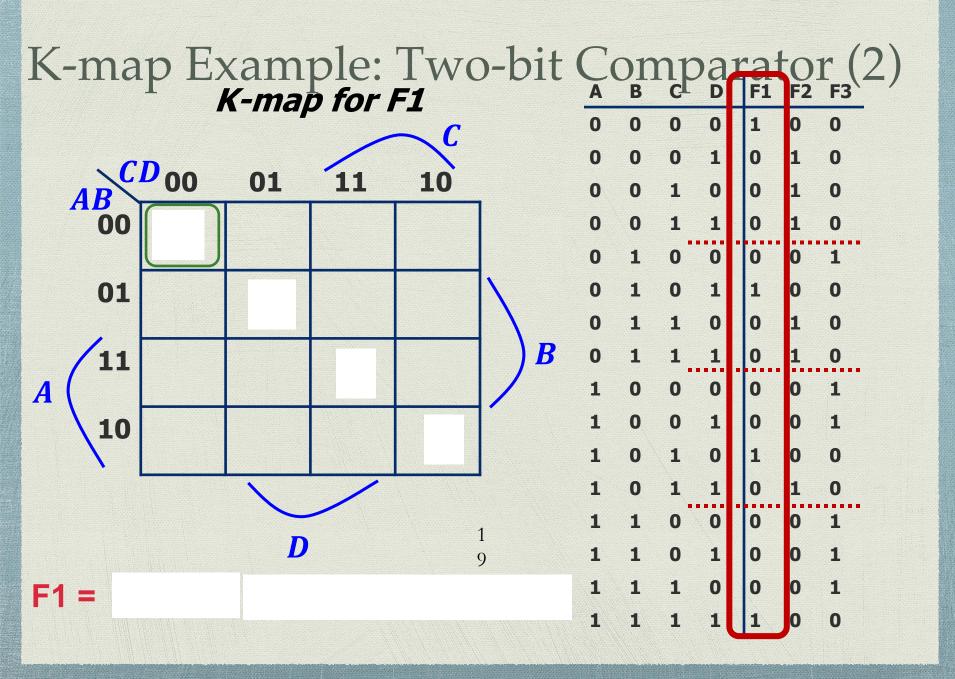
### How does a group become a term in an expression?

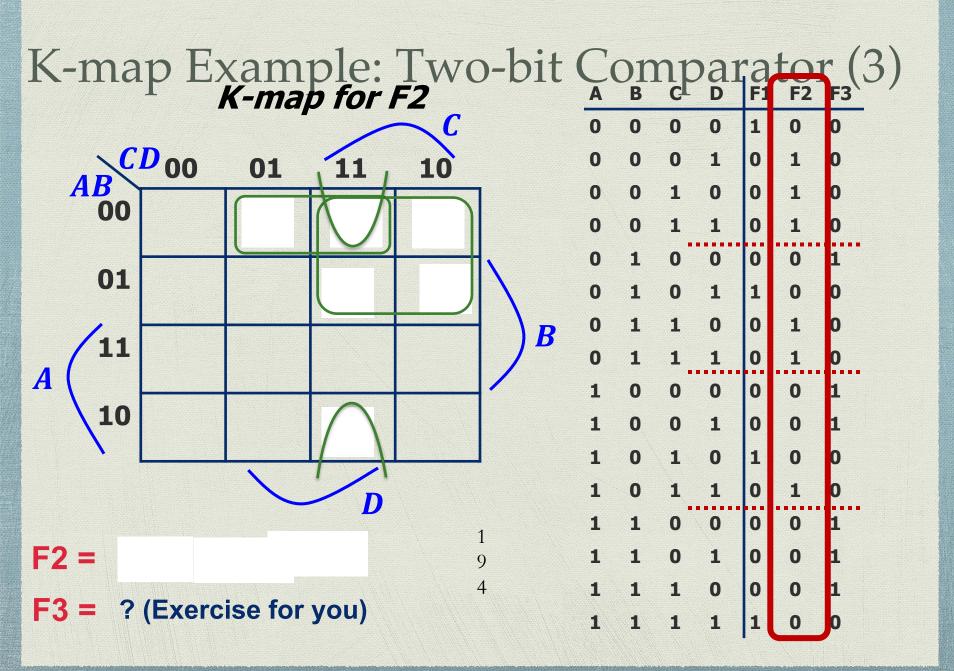
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
  - constant 1  $\rightarrow$  use X, constant 0  $\rightarrow$  use  $\overline{X}$

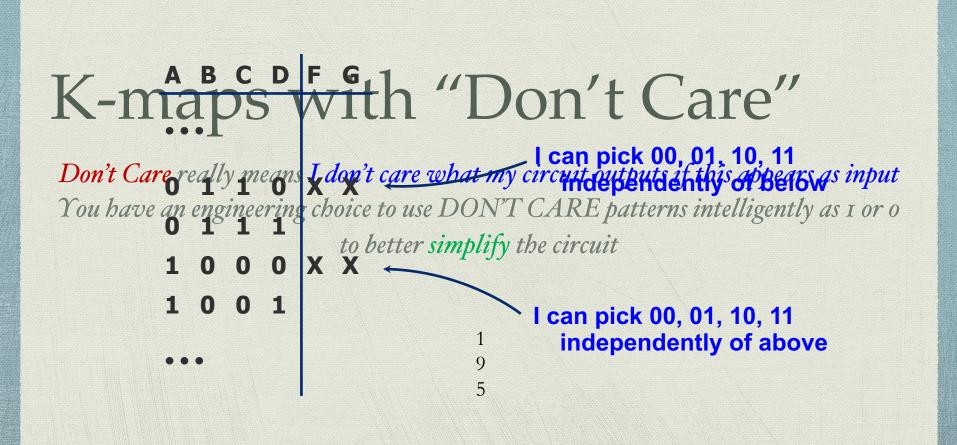
### What is a good solution?

- □ Biggest groupings → eliminate more variables (literals) in each term
- □ Fewest groupings → fewer terms (gates) all together
- OR together all AND terms you create from individual groups

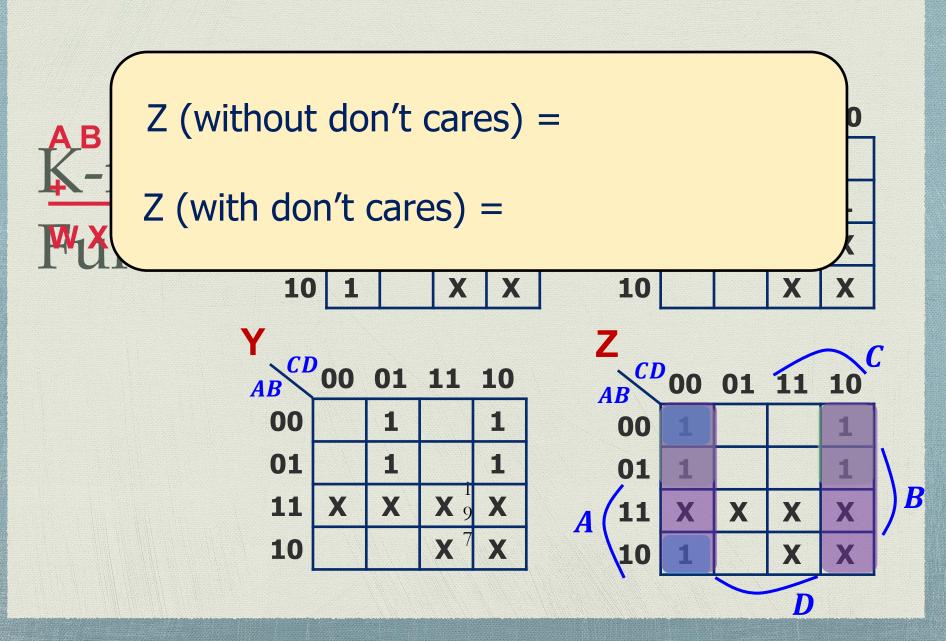
|                                                                   |         | A   | В             | С  | D | F1    | F2 | F3       |
|-------------------------------------------------------------------|---------|-----|---------------|----|---|-------|----|----------|
|                                                                   |         | 0   | 0             | 0  | 0 | 1     | 0  | 0        |
| A = F1 = CD                                                       |         | 0   | 0             | 0  | 1 | 0     | 1  | 0        |
|                                                                   |         | 0   | 0             | 1  | 0 | 0     | 1  | 0        |
|                                                                   |         | 0   | 0             | 1  | 1 | 0     | 1  | 0        |
| <b>B F2 AB &lt; CD</b>                                            |         | 0   | 1             | 0  | 0 | 0     | 0  | 1        |
|                                                                   | two his | + % | ~1            | -0 | 1 | 1     |    | 0        |
| K-m <del>ap</del> Example: 1<br>– D                               | wo-bi   | 10  | $-\mathbf{D}$ | 4  |   | lol ( | 41 | <b>H</b> |
|                                                                   |         | 0   | 1             | 1  | 1 | 0     | 1  | 0        |
|                                                                   |         | 1   | 0             | 0  | 0 | 0     | 0  | 1        |
|                                                                   |         | 1   | 0             | 0  | 1 | 0     | 0  | 1        |
|                                                                   |         | 1   | 0             | 1  | 0 | 1     | 0  | 0        |
| Design Approach:<br>Write a 4-Variable K-map<br>for each of the 3 |         | 1   | 0             | 1  | 1 | 0     | 1  | 0        |
|                                                                   | 1       | 1   | 1             | 0  | 0 | 0     | 0  | 1        |
|                                                                   | 9       | 1   | 1             | 0  | 1 | 0     | 0  | 1        |
|                                                                   | 2       | 1   | 1             | 1  | 0 | 0     | 0  | 1        |
| output functions                                                  |         | 1   | 1             | 1  | 1 | 1     | 0  | 0        |
|                                                                   |         |     |               |    |   |       |    |          |







#### **ÇD** Increment Exam 0 0 <sup>**0**</sup><sub>1</sub>B(<sup>**0**</sup><sub>**D**</sub>) (Binary Coded Decimal) digits Encode<sup>1</sup>decimal digits<sup>1</sup>0 - <sup>1</sup>/<sub>2</sub> with bit patterns 0000<sub>2</sub> - 1001<sub>2</sub> 1When oncremanted, the decimal sequence is 0, 1, ..., 8, 9, 0, 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 These input patterns should never be encountered in practice (hey -- it's a BCD number!) So, associated output values are "Don't Cares"



# K-map Summary

Karnaugh maps as a formal systematic approach for logic simplification

1 9 2-, 3-, 4-variable K-maps