
Lecture 4: Sequential Logic Design

CSCE 212: Introduction to Computer Architecture | Spring 2024 | https://pooyanjamshidi.github.io/csce212/
[Slides are primarily based on those of Onur Mutlu for the Computer Architecture Course at CMU]

Week 4-5: January 30, February 1,6,8

https://pooyanjamshidi.github.io/csce212/

First, We Will Complete
Combinational Logic

2

We Covered Combinational Logic Blocks
n Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
n Decoder
n Multiplexer
n Full Adder
n Programmable Logic Array (PLA)
n Comparator
n Arithmetic Logic Unit (ALU)
n Tri-State Buffer

n Standard form representations: SOP & POS
n Logical completeness
n Logic simplification via Boolean Algebra

3

Recall: Implementing a Full Adder Using a PLA

ai

bi

ci
ci+1

si

X

4

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be
connected to any outputs We do not need

this output

Logical Completeness

Logical (Functional) Completeness
n Any logic function we wish to implement could be

accomplished with a PLA
q PLA consists of only AND gates, OR gates, and inverters
q We just have to program connections based on SOP of the

intended logic function

n The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit to carry out the specification
of any truth table we wish, without using any other kind of
gate

n NAND is also logically complete. So is NOR.
q Your task: Prove this.

6

More Combinational Blocks

7

More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.
q Sections 5.1 and 5.2
q E.g., Adder, Subtractor, Comparator, Shifter/Rotator,

Multiplier, Divider

8

Comparator

9

Equality Checker (Compare if Equal)
n Checks if two N-input values are exactly the same
n Example: 4-bit Comparator

ALU (Arithmetic Logic Unit)

11

ALU (Arithmetic Logic Unit)
n Combines a variety of arithmetic and logical operations into

a single unit (that performs only one function at a time)
n Usually denoted with this symbol:

Example ALU (Arithmetic Logic Unit)

13

More Combinational Building Blocks
n See H&H Chapter 5.2 for

q Subtractor (using 2’s Complement Representation)
q Shifter and Rotator
q Multiplier
q Divider
q …

14

More Combinational Building Blocks
n H&H Chapter 2 in full

q Required Reading
q E.g., see Tri-state Buffer and Z values in Section 2.6

n H&H Chapter 5
q Will be required reading soon.

n You will benefit greatly by reading the “combinational”
parts of Chapter 5 soon.
q Sections 5.1 and 5.2
q E.g., Adder, Subtractor, Comparator, Shifter/Rotator,

Multiplier, Divider

15

Tri-State Buffer

16

Tri-State Buffer
n A tri-state buffer enables gating of different signals onto a

wire

n Floating signal (Z): Signal that is not driven by any circuit
q Open circuit, floating wire

17

A tri-state buffer
acts like a switch

Example: Use of Tri-State Buffers
n Imagine a wire connecting the CPU and memory

q At any time only the CPU or the memory can place a value on
the wire, both not both

q You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

18

Example Design with Tri-State Buffers

19

CPU

Memory

GateMem

GateCPU

Shared Bus

Another Example

20

Multiplexer Using Tri-State Buffers

21

Recall: A 4-to-1 Multiplexer

22

Digging Deeper: Tri-State Buffer in CMOS
n How do you implement Tri-State Buffers using transistors?

23http://people.ee.duke.edu/~krish/teaching/Lectures/CMOScircuits_2011.pdf

http://people.ee.duke.edu/~krish/teaching/Lectures/CMOScircuits_2011.pdf

We Covered Combinational Logic Blocks
n Basic logic gates (AND, OR, NOT, NAND, NOR, XOR)
n Decoder
n Multiplexer
n Full Adder
n Programmable Logic Array (PLA)
n Comparator
n Arithmetic Logic Unit (ALU)
n Tri-State Buffer

n Standard form representations: SOP & POS
n Logical completeness
n Logic simplification via Boolean Algebra

24

Logic Simplification using
Boolean Algebra Rules

25

Recall: Full Adder in SOP Form Logic

26

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci
ci+1

si

Goal: Simplified Full Adder

27

How do we simplify Boolean logic?

How do we automate simplification?

3-input majority

3-input XOR

Quick Recap on Logic Simplification
n The original Boolean expression (i.e., logic circuit) may not

be optimal

n Can we reduce a given Boolean expression to an equivalent
expression with fewer terms?

n The goal of logic simplification:
q Reduce the number of gates/inputs
q Reduce implementation cost (and potentially latency & power)

28

F = ~A(A + B) + (B + AA)(A + ~B)

F = A + B

A basis for what the automated design tools are doing today

Logic Simplification
n Systematic techniques for simplifications

q amenable to automation

29

Key Tool: The Uniting Theorem —

𝑭 =	

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 	𝑨%𝑩 + 𝑨𝑩

𝑨%𝑩 + 𝑨𝑩 = 𝑨 %𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 =	 %𝑨%𝑩 + 𝑨%𝑩 = %𝑨 + 𝑨 %𝑩 = %𝑩

Logic Simplification
n Systematic techniques for simplifications

q amenable to automation

30

Key Tool: The Uniting Theorem —

𝑭 =	

A's value does NOT change within the ON-set rows

B's value changes within the rows where F==1 (“ON set”)

B's value stays the same within the ON-set rows

A's value changes within the ON-set rows

➙ B is eliminated, A remains

➙ A is eliminated, B remains

If an input (B) can change without changing the output, that input
value is not needed

𝑭 = 	𝑨%𝑩 + 𝑨𝑩

𝑨%𝑩 + 𝑨𝑩 = 𝑨 %𝑩 + 𝑩 = 𝑨 𝟏 = 𝑨

𝑮 =	 %𝑨%𝑩 + 𝑨%𝑩 = %𝑨 + 𝑨 %𝑩 = %𝑩

Essence of Simplification:
Find two-element subsets of the ON-set where only one variable
changes its value. This single varying variable can be eliminated!

Logic Simplification Example: Priority Circuit
n Priority Circuit

q Inputs: “Requestors” with priority levels
q Outputs: “Grant” signal for each requestor
q Example 4-bit priority circuit
q Real life example: Imagine a bus requested by 4 processors

31

Simplified Priority Circuit
n Priority Circuit

q Inputs: “Requestors” with priority levels
q Outputs: “Grant” signal for each requestor
q Example 4-bit priority circuit

32

X (Don’t Care) means I don’t care what the value of this input is

Logic Simplification:
Karnaugh Maps (K-Maps)

33

Karnaugh Maps are Fun…
n A pictorial way of minimizing circuits by visualizing

opportunities for simplification
n They are for you to study on your own…

q We may cover them later if time permits

n See backup slides
n Read H&H Section 2.7
n Watch videos of Lectures 5 and 6 from 2019 DDCA course:

q https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF
QFHRO3GrXxA9&t=4570

q https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN
FQFHRO3GrXxA9&t=220

34

https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/0ks0PeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=4570
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220
https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBNFQFHRO3GrXxA9&t=220

We Are Done with Combinational Logic
n Building blocks of modern computers

q Transistors
q Logic gates

n Combinational circuits

n Boolean algebra

n Using Boolean algebra to represent combinational circuits

n Basic combinational logic blocks

n Simplifying combinational logic circuits
35

Agenda for Today and Next Week
n Today

q Start (and finish) Sequential Logic

n Next week

q Hardware Description Languages and Verilog
n Combinational Logic
n Sequential Logic

q Timing and Verification

36

Assignment: Readings
n Combinational Logic

q P&P Chapter 3 until 3.3 + H&H Chapter 2
n Sequential Logic

q P&P Chapter 3.4 until end + H&H Chapter 3 in full
n Hardware Description Languages and Verilog

q H&H Chapter 4 in full
n Timing and Verification

q H&H Chapters 2.9 and 3.5 + (start Chapter 5)

n By the end of next week, make sure you are done with
q P&P Chapters 1-3 + H&H Chapters 1-4

43

Readings (for Next Week)
n Hardware Description Languages and Verilog

q H&H Chapter 4 in full

n Timing and Verification
q H&H Chapters 2.9 and 3.5 + (start Chapter 5)

n By tomorrow, make sure you are done with
q P&P Chapters 1-3 + H&H Chapters 1-4

44

Readings (for Next Next Week)
n Von Neumann Model, LC-3, and MIPS

q P&P, Chapters 4, 5
q H&H, Chapter 6
q P&P, Appendices A and C (ISA and microarchitecture of LC-3)
q H&H, Appendix B (MIPS instructions)

n Programming
q P&P, Chapter 6

n Recommended: Digital Building Blocks
q H&H, Chapter 5

45

Sequential Logic Circuits
and Design

46

What We Will Learn Today
n Circuits that can store information

q Cross-coupled inverter
q R-S Latch
q Gated D Latch
q D Flip-Flop
q Register

n Finite State Machines (FSM)
q State & Clock
q Asynchronous vs. Synchronous
q How to design FSMs

47

No Real Computer Can Work w/o Memory

48Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

A Large Fraction of Modern Systems is Memory

49https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php

Apple M1 Ultra System (2022)

DRAM DRAM
A lot of
SRAMStorage Storage

A Large Fraction of Modern Systems is Memory

50
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package

Intel Pentium Pro, 1995

A Large Fraction of Modern Systems is Memory

51https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg

L2 Cache

Intel Pentium 4, 2000

https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg

A Large Fraction of Modern Systems is Memory

52https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

Adding Even More Memory in 3D (2021)

53https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/

https://community.microcenter.com/discussion/5
134/comparing-zen-3-to-zen-2

Additional 64 MB L3 cache die
stacked on top of the processor die
- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache

AMD increases the L3 size of their 8-core Zen 3
processors from 32 MB to 96 MB

https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2

A Large Fraction of Modern Systems is Memory

54https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

A Large Fraction of Modern Systems is Memory

55https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or
Scratchpad:
192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Cerebras’s Wafer Scale Engine-2 (2021)

56

Cerebras WSE-2
2.6 Trillion transistors

46,225 mm2

Largest GPU
54.2 Billion transistors

826 mm2
NVIDIA Ampere GA100

https://cerebras.net/product/#overview

n The largest ML accelerator chip

n 850,000 cores

n 40 GB of on-chip memory

n 20 PB/s memory bandwidth

Circuits that Can
Store Information

57

Introduction
n Combinational circuit output depends only on current input
n We want circuits that produce output depending on

current and past input values – circuits with memory
n How can we design a circuit that stores information?

58

Sequential Circuit

Combinational
Circuitin

pu
ts

ou
tp
ut
s

Storage
Element

Capturing Data

59

Basic Element: Cross-Coupled Inverters

n Has two stable states: Q=1 or Q=0.
n Has a third possible “metastable” state with both outputs

oscillating between 0 and 1 (we will see this later)
n Not useful without a control mechanism for setting Q

60Image source: Harris and Harris, Digital Design and Computer Architecture, 2nd Ed., p.110.

More Realistic Storage Elements
n Have a control mechanism for setting Q

q We will see the R-S latch soon
q Let’s look at an SRAM (static random access memory) cell first

n We will get back to SRAM (and DRAM) later

61

wordline
bitline bitline

SRAM cell

The Big Picture: Storage Elements
n Latches and Flip-Flops

q Very fast, parallel access
q Very expensive (one bit costs tens of transistors)

n Static RAM (SRAM)
q Relatively fast
q Expensive (one bit costs 6+ transistors)

n Dynamic RAM (DRAM)
q Slower, reading destroys content (refresh), needs special process

for manufacturing
q Cheap (one bit costs only one transistor plus one capacitor)

n Other storage technology (flash memory, hard disk, tape)
q Much slower, access takes a long time, non-volatile
q Very cheap

Basic Storage Element:
The R-S Latch

63

The R-S (Reset-Set) Latch
n Cross-coupled NAND gates

q Data is stored at Q (inverse at Q’)
q S and R are control inputs

n In quiescent (idle) state, both S and R are held at 1
n S (set): drive S to 0 (keeping R at 1) to change Q to 1
n R (reset): drive R to 0 (keeping S at 1) to change Q to 0

n S and R should never both be 0 at the same time

64

S

R Q’

Q Input Output
R S Q
1 1 Qprev
1 0 1
0 1 0
0 0 Forbidden

10

Why not R=S=0?

1. If R=S=0, Q and Q’ will both settle to 1, which breaks
our invariant that Q = !Q’

2. If S and R transition back to 1 at the same time, Q and Q’
begin to oscillate between 1 and 0 because their final
values depend on each other (metastability)

q This eventually settles depending on variation in the
circuits (more on this in the Timing Lecture)

65

S

R Q’

Q Input Output
R S Q
1 1 Qprev
1 0 1
0 1 0
0 0 Forbidden

10

0

01

1

The Gated D Latch

66

The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

67

S

R
Q’

Q

The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

q Add two more NAND gates!

q Q takes the value of D, when write enable (WE) is set to 1
q S and R can never be 0 at the same time!

68

S

R
Q’

Q

Write
Enable

D

The Gated D Latch

69

S

R Q’

Q

Write
Enable

D

Input Output
WE D Q
0 0 Qprev
0 1 Qprev
1 0 0
1 1 1

The Register

70

The Register

71

D

Q

How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

D2

Q2

D1

Q1

D0

Q0

3

3

Write
Enable

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data
is referenced as
Q[3:0]

The Register

72

How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data
is referenced as
Q[3:0]

Memory

73

Memory
n Memory is comprised of locations that can be written to or

read from. An example memory array with 4 locations:

n Every unique location in memory is indexed with a unique
address. 4 locations require 2 address bits
(log[#locations]).

n Addressability: the number of bits of information stored
in each location. This example: addressability is 8 bits.

n The entire set of unique locations in memory is referred
to as the address space.

n Typical memory is MUCH larger (e.g., billions of locations)
74

Addr(00):

Addr(10):

Addr(01):

Addr(11):

0100 1001

0010 0010

0100 1011

1100 1001

Addressing Memory

75

Let’s implement a simple memory array with:
• 3-bit addressability & address space size of 2 (total of 6 bits)

D Q
WE

1 Bit

Bit2 Bit1 Bit0

Bit2 Bit1 Bit0

Addr(0)

Addr(1)

6-Bit Memory Array

Reading from Memory

76

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

Reading from Memory

77

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline

Address Decoder

Reading from Memory

78

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline

Address Decoder

Reading from Memory

79

How can we select an address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Multiplexer
(together w/ decoder)

Wordline

Recall: Multiplexer (MUX), or Selector
n Selects one of the N inputs to connect it to the output

q based on the value of a log2N-bit control input called select
n Example: 2-to-1 MUX

A B

S

C

ba

A B

S = 0

C

0A

A

Writing to Memory

81

How can we select an address and write to it?

Writing to Memory

82

How can we select an address and write to it?
• Input is indicated with Di

Di[2] Di[1] Di[0]
Addr[0]

WE

Putting it all Together

83

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[0]

WE

Let’s enable reading from and writing to a memory array

A Bigger Memory Array (4 locations X 3 bits)

84

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

A Bigger Memory Array (4 locations X 3 bits)

85

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer
(together w/ decoder)

Example: Reading Location 3

86Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., page 78.

Recall: Decoder (II)
n The decoder is useful in determining how to interpret a bit

pattern

87

A = 1 0B = 0

0

1

0

q It could be the
address of a location
in memory, that the
processor intends to
read from

q It could be an
instruction in the
program and the
processor needs to
decide what action to
take (based on
instruction opcode)

Recall: A 4-to-1 Multiplexer

88

Aside: Implementing Logic Functions
Using Memory

89

Recall: A Bigger Memory Array (4 locations X 3 bits)

90

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer
(together w/ decoder)

Memory-Based Lookup Table Example
n Memory arrays can also perform Boolean Logic functions

q 2N-location M-bit memory can perform any N-input, M-output function
q Lookup Table (LUT): Memory array used to perform logic functions
q Each address: row in truth table; each data bit: corresponding output value

91

Lookup Tables (LUTs)
n LUTs are commonly used in FPGAs

q To enable programmable/reconfigurable logic functions
q To enable easy integration of combinational and sequential

logic

92Read H&H Chapter 5.6.2

n Let’s implement a function that outputs ‘1’ when there are
at least two ‘1’s in a 3-bit input

Recall: A Multiplexer-Based LUT

93

input (3 bits)

output (1 bit)

Data Inputs

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory
0
0
0
1

0
1
1
1

int count = 0;
for(int i = 0; i < 3; i++) {

count += input & 1;
 input = input >> 1;
}

if(count > 1) return 1;

return 0;

In C:
In Hardware (e.g., FPGA):

switch(input){
case 0:
case 1:
case 2:
case 4:

return 0;
default:

return 1;}

Sequential Logic Circuits

94

Sequential Logic Circuits
n We have examined designs of circuit elements that can

store information
n Now, we will use these elements to build circuits that

remember past inputs

95https://www.easykeys.com/228_ESP_Combination_Lock.aspx
https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo

Sequential
Opens depending on past inputs

Combinational
Only depends on current inputs

State
n In order for this lock to work, it has to keep track

(remember) of the past events!
n If passcode is R13-L22-R3, sequence of states to unlock:

A. The lock is not open (locked), and no relevant operations have
been performed

B. Locked but user has completed R13
C. Locked but user has completed R13-L22
D. Unlocked: user has completed R13-L22-R3

n The state of a system is a snapshot of all relevant
elements of the system at the moment of the snapshot

q To open the lock, states A-D must be completed in order
q If anything else happens (e.g., L5), lock returns to state A

96

State Diagram of Our Sequential Lock
n Completely describes the operation of the sequential lock

n We will understand “state diagrams” fully later today
97Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 76.

Asynchronous vs. Synchronous State Changes
n Sequential lock we saw is an asynchronous “machine”

q State transitions occur when they occur
q There is nothing that synchronizes when each state transition

must occur

n Most modern computers are synchronous “machines”
q State transitions take place after fixed units of time
q Controlled in part by a clock, as we will see soon

n These are two different design paradigms, with tradeoffs

98

Another Simple Example of State
n A standard Swiss traffic light has 4 states

A. Green
B. Yellow
C. Red
D. Red and Yellow

n The sequence of these states are always as follows

99

A B C D

Changing State: The Notion of Clock (I)

n When should the light change from one state to another?
n We need a clock to dictate when to change state

q Clock signal alternates between 0 & 1

100

A B C D

CLK: 0
1

Changing State: The Notion of Clock (I)

n When should the light change from one state to another?
n We need a clock to dictate when to change state

q Clock signal alternates between 0 & 1

n At the start of a clock cycle (), system state changes
q During a clock cycle, the state stays constant
q In this traffic light example, we are assuming the traffic light stays in

each state an equal amount of time
101

A B C D

CLK: 0
1

Changing State: The Notion of Clock (II)
n Clock is a general mechanism that triggers transition from

one state to another in a (synchronous) sequential circuit

n Clock synchronizes state changes across many sequential
circuit elements

n Combinational logic evaluates for the length of the clock
cycle

n Clock cycle should be chosen to accommodate maximum
combinational circuit delay
q More on this later, when we discuss timing

102

What is a clock?
n A clock signal is a square wave signal the fluctuates between 2

voltage levels at fixed intervals.

103https://www.electronicstutorials.ws/waveforms/waveforms.html

Asynchronous vs. Synchronous State Changes
n Sequential lock we saw is an asynchronous “machine”

q State transitions occur when they occur
q There is nothing that synchronizes when each state transition

must occur

n Most modern computers are synchronous “machines”
q State transitions take place after fixed units of time
q Controlled in part by a clock, as we will see soon

n These are two different design paradigms, with tradeoffs
q Synchronous control can be easier to get correct when the

system consists of many components and many states
q Asynchronous control can be more efficient (no clock overheads)

104We will assume synchronous systems in most of this course

Quiz time!
n A Square Wave electrical waveform has a pulse width of

10ms; calculate its frequency (ƒ).

105

Quiz time!
n A Square Wave electrical waveform has a pulse width of

10ms; calculate its frequency (ƒ).
n For a square wave shaped waveform, the duty cycle is given

as 50%, therefore the period of the waveform must be equal
to: 10ms + 10ms or 20ms

106

Finite State Machines

107

Finite State Machines
n What is a Finite State Machine (FSM)?

q A discrete-time model of a stateful system
q Each state represents a snapshot of the system at a given time

n An FSM pictorially shows
1. the set of all possible states that a system can be in
2. how the system transitions from one state to another

n An FSM can model
q A traffic light, an elevator, fan speed, a microprocessor, etc.

n An FSM enables us to pictorially think of a stateful
system using simple diagrams

108

Finite State Machines (FSMs) Consist of:
n Five elements:
1. A finite number of states

n State: snapshot of all relevant elements of the
system at the time of the snapshot

2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions

n How to get from one state to another
5. An explicit specification of what determines

each external output value

109

Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic

110

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

state register

At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:
n Sequential Circuits

q State register(s)
n Store the current state and
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

111

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs

Finite State Machines (FSMs) Consist of:
n Sequential Circuits

q State register(s)
n Store the current state and
n Provide the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

112

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs

State Register Implementation
n How can we implement a state register? Two properties:

1. We need to store data at the beginning of every clock cycle

2. The data must be available during the entire clock cycle

113

CLK: 0
1

Register
Input:

Register
Output:

Desired behavior

The Problem with Latches

n Currently, we cannot simply wire a clock to WE of a latch
q Whenever the clock is high, the latch propagates D to Q
q The latch is transparent

114

D Q
CLK = WE

CLK: 0
1

Register
Input:

Register
Output:

Recall the
Gated D Latch

n Currently, we cannot simply wire a clock to WE of a latch
q Whenever the clock is high, the latch propagates D to Q
q The latch is transparent

The Problem with Latches

115

D Q
CLK = WE

CLK: 0
1

Register
Input:

Register
Output:

Recall the
Gated D Latch

Undesirable!

n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high Q will not take on D’s value AND
q When the clock is low the latch will propagate D to Q

The Problem with Latches

116

D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the
Gated D Latch

How can we change the latch, so that

1) D (input) is observable at Q (output)
only at the beginning of next clock cycle?

2) Q is available for the full clock cycle

The Need for a New Storage Element
n To design viable FSMs

n We need storage elements that allow us to:

q read the current state throughout the entire current clock
cycle

AND

q not write the next state values into the storage elements
until the beginning of the next clock cycle

117

n 1) state change on clock edge, 2) data available for full cycle

D Latch (Second)
D Latch (First)

The D Flip-Flop

118

D
Q

CLK

n When the clock is low, 1st latch propagates D to the input of the 2nd (Q unchanged)
n Only when the clock is high, 2nd latch latches D (Q stores D)

q At the rising edge of clock (clock going from 0->1), Q gets assigned D

CLK:
0
1

How many transistors do we need to
implement a D Flip Flop?

119

D Latch (Second)
D Latch (First)

D
Q

CLK

The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle

120

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop

The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle

121

n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop
We can use D Flip-Flops

to implement the state register

Rising-Clock-Edge Triggered Flip-Flop
n Two inputs: CLK, D

n Function
q The flip-flop “samples” D on the rising edge
of CLK (positive edge)

q When CLK rises from 0 to 1, D passes
through to Q
q Otherwise, Q holds its previous value
q Q changes only on the rising edge of CLK

n A flip-flop is called an edge-triggered state element
because it captures data on the clock edge
q A latch is a level-triggered state element

122

D Flip-Flop
Symbols

D Q
Q

CLK

D Flip-Flop Based Register
n Multiple parallel D flip-flops, each of which storing 1 bit

123

CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed

A 4-Bit D-Flip-Flop-Based Register (Internally)

124Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., tentative page 95.

Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output

logic:
q Moore FSM: outputs depend only on the current state

125

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the

inputs

126

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Finite State Machine Example
n “Smart” traffic light controller

q 2 inputs:
n Traffic sensors: TA , TB (TRUE when there’s traffic)

q 2 outputs:
n Lights: LA , LB (Red, Yellow, Green)

q State can change every 5 seconds
n Except if green and traffic, stay green

127

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

From H&H Section 3.4.1

Finite State Machine Black Box
n Inputs: CLK, Reset, TA , TB
n Outputs: LA , LB

128

TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

129

S0
LA: green
LB: red

Reset

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

130

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

131

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

132

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs

133

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine:
State Transition Table

134

FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X
S0 1 X
S1 X X
S2 X 0
S2 X 1
S3 X X

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

135

FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	?

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	(S1	∙	S0)	+	(S1	∙	S0	∙	TB)	+	(S1	∙	S0	∙	TB)

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	(S1	∙	S0)	+	(S1	∙	S0	∙	TB)	+	(S1	∙	S0	∙	TB)

S’0	=	?

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	(S1	∙	S0)	+	(S1	∙	S0	∙	TB)	+	(S1	∙	S0	∙	TB)

S’0	=	(S1	∙	S0	∙	TA)	+	(S1	∙	S0	∙		TB)

FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	S1	xor	S0									(Simplified)

S’0	=	(S1	∙	S0	∙	TA)	+	(S1	∙	S0	∙		TB)

Finite State Machine:
Output Table

144

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00

yellow 01

red 10

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1
LA0	=	S1	∙	S0

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1
LA0	=	S1	∙	S0
LB1	=	S1

FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1
LA0	=	S1	∙	S0
LB1	=	S1
LB0	=	S1	∙	S0

Finite State Machine:
Schematic

FSM Schematic: State Register

152

153

FSM Schematic: State Register

S1

S0

S'1

S'0

CLK

state register

Reset
r

154

FSM Schematic: Next State Logic

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs

S1 S0

r

S’1	=	S1	xor	S0

S’0	=	(S1	∙	S0	∙	TA)	+	(S1	∙	S0	∙		TB)

155

FSM Schematic: Output Logic

S1

S0

S'1

S'0

CLK

next state logic output logicstate register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs

S1 S0

r

LA1	=	S1
LA0	=	S1	∙	S0
LB1	=	S1
LB0	=	S1	∙	S0

156

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

157

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

158

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

159

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

160

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

161

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

162

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

163

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TBThis is from H&H Section 3.4.1

164

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

165

FSM Timing Diagram

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

See H&H Chapter 3.4

Finite State Machine:
State Encoding

166

FSM State Encoding
n How do we encode the state bits?

q Three common state binary encodings with different tradeoffs
1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

n Let’s see an example Swiss traffic light with 4 states
q Green, Yellow, Red, Yellow+Red

167

FSM State Encoding (II)
1. Binary Encoding (Full Encoding):

q Use the minimum possible number of bits
n Use log2(num_states) bits to represent the states

q Example state encodings: 00, 01, 10, 11
q Minimizes # flip-flops, but not necessarily output logic or

next state logic

2. One-Hot Encoding:
q Each bit encodes a different state

n Uses num_states bits to represent the states
n Exactly 1 bit is “hot” for a given state

q Example state encodings: 0001, 0010, 0100, 1000
q Simplest design process – very automatable
q Maximizes # flip-flops, minimizes next state logic

168

FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color),
encode state with 3 bits, where each bit represents a
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output,
n Bit1 encodes yellow light output
n Bit2 encodes red light output

q Minimizes output logic
q Only works for Moore Machines (output function of state)

169

FSM State Encoding (III)
3. Output Encoding:

q Outputs are directly accessible in the state encoding

q For example, since we have 3 outputs (light color),
encode state with 3 bits, where each bit represents a
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output,
n Bit1 encodes yellow light output
n Bit2 encodes red light output

q Minimizes output logic
q Only works for Moore Machines (output function of state)

170

The designer must carefully choose
an encoding scheme to optimize the design

under given constraints

Moore vs. Mealy Machines

171

Recall: Moore vs. Mealy FSMs
n Next state is determined by the current state and the inputs
n Two types of FSMs differ in the output logic:

q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the

inputs

172

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with

1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over

are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

173

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy FSM Examples
n Alyssa P. Hacker has a snail that crawls down a paper tape with

1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over

are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

174

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

State Transition Diagrams

175

reset

Moore FSM

S0
0

S1
0

S2
0

S3
0

S4
1

0

1 1 0 1

1

01 0
0

reset

S0 S1 S2 S3
0/0

1/0 1/0 0/0
1/1

0/01/0

0/0

Mealy FSM
What are the tradeoffs?

FSM Design Procedure
n Determine all possible states of your machine

n Develop a state transition diagram
q Generally this is done from a textual description
q You need to 1) determine the inputs and outputs for each state and

2) figure out how to get from one state to another

n Approach
q Start by defining the reset state and what happens from it – this is

typically an easy point to start from
q Then continue to add transitions and states
q Picking good state names is very important
q Building an FSM is like programming (but it is not programming!)

n An FSM has a sequential “control-flow” like a program with conditionals and goto’s
n The if-then-else construct is controlled by one or more inputs
n The outputs are controlled by the state or the inputs

q In hardware, we typically have many concurrent FSMs
176

What is to Come: LC-3 Processor

177

Scanned by CamScanner

What is to Come: LC-3 Datapath

178

Backup Slides:
Different Types of Flip Flops

179

Enabled Flip-Flops
n Inputs: CLK, D, EN

q The enable input (EN) controls when new data (D) is stored
n Function:

q EN = 1: D passes through to Q on the clock edge
q EN = 0: the flip-flop retains its previous state

180

Internal
Circuit

D Q

CLKEN

D
Q

0

1
D Q
EN

Symbol

Resettable Flip-Flop
n Inputs: CLK, D, Reset

q The Reset is used to set the output to 0.
n Function:

q Reset = 1: Q is forced to 0
q Reset = 0: the flip-flop behaves like an ordinary D flip-flop

181

Symbols

D Q
Reset

r

Resettable Flip-Flops
n Two types:

q Synchronous: resets at the clock edge only
q Asynchronous: resets immediately when Reset = 1

n Asynchronously resettable flip-flop requires changing the
internal circuitry of the flip-flop (see Exercise 3.10)

n Synchronously resettable flip-flop?

182

Internal
Circuit

D Q

CLK

D QReset

Settable Flip-Flop
n Inputs: CLK, D, Set
n Function:

q Set = 1: Q is set to 1
q Set = 0: the flip-flop behaves like an ordinary D flip-flop

183

Symbols

D Q
Set

s

Backup Slides on
Karnaugh Maps (K-Maps)

184

Complex Cases
n One example

n Problem
q Easy to see how to apply Uniting Theorem…
q Hard to know if you applied it in all the right places…
q …especially in a function of many more variables

n Question
q Is there an easier way to find potential simplifications?
q i.e., potential applications of Uniting Theorem…?

n Answer
q Need an intrinsically geometric representation for Boolean f()
q Something we can draw, see…

185

𝑪𝒐𝒖𝒕 = &𝑨𝑩𝑪 + 𝑨&𝑩𝑪 + 𝑨𝑩&𝑪 + 𝑨𝑩𝑪

Karnaugh Map
n Karnaugh Map (K-map) method

q K-map is an alternative method of representing the truth table
that helps visualize adjacencies in up to 6 dimensions

q Physical adjacency ↔ Logical adjacency

186

2-variable K-map
0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes
 from one code word and the next code word

00 01 11 10
00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨 𝑩 𝑪𝑫
𝑨
𝑩𝑪

Karnaugh Map Methods

187

Adjacent

000

001

010

011

110

111

100

101

000

001
010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”
Wrap around from first to last column
Wrap around from top row to bottom row

00 01 11 10
0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

K-map Cover - 4 Input Variables

188

00 01 11 10
00 1 0 0 1
01 0 1 0 0
11 1 1 1 1
10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =.𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + 9𝑩9𝑫 + 𝐁9𝑪𝑫𝐀 + 9𝑩9𝑫𝐀

Logic Minimization Using K-Maps
n Very simple guideline:

q Circle all the rectangular blocks of 1’s in the map, using the
fewest possible number of circles
n Each circle should be as large as possible

q Read off the implicants that were circled

n More formally:
q A Boolean equation is minimized when it is written as a sum of

the fewest number of prime implicants
q Each circle on the K-map represents an implicant
q The largest possible circles are prime implicants

190

K-map Rules
n What can be legally combined (circled) in the K-map?

q Rectangular groups of size 2k for any integer k
q Each cell has the same value (1, for now)
q All values must be adjacent

n Wrap-around edge is okay

n How does a group become a term in an expression?
q Determine which literals are constant, and which vary across group
q Eliminate varying literals, then AND the constant literals

n constant 1 ➙ use 𝐗, constant 0 ➙ use 9𝑿

n What is a good solution?
q Biggest groupings ➙ eliminate more variables (literals) in each term
q Fewest groupings ➙ fewer terms (gates) all together
q OR together all AND terms you create from individual groups

191

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions

1
9
2

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D

K-map Example: Two-bit Comparator (2)

1
9
3

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1
01 1
11 1
10 1

K-map for F1

𝑨𝑩
𝑪𝑫

F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪

K-map Example: Two-bit Comparator (3)

1
9
4

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

00 01 11 10
00 1 1 1
01 1 1
11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨
𝑩

𝑫

𝑪

K-maps with “Don’t Care”
Don’t Care really means I don’t care what my circuit outputs if this appears as input
You have an engineering choice to use DON’T CARE patterns intelligently as 1 or 0

to better simplify the circuit

1
9
5

I can pick 00, 01, 10, 11
independently of below

I can pick 00, 01, 10, 11
independently of above

A B C D F G

• • •

0 1 1 0 X X
0 1 1 1
1 0 0 0 X X
1 0 0 1

• • •

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Example: BCD Increment
Function

BCD (Binary Coded Decimal) digits
Encode decimal digits 0 - 9 with bit patterns 00002— 10012
When incremented, the decimal sequence is 0, 1, …, 8, 9, 0, 1

1
9
6

These input patterns should
never be encountered in practice

(hey -- it’s a BCD number!)
So, associated output values are

“Don’t Cares”

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 1 X X

K-map for BCD Increment
Function

A B C D
+ 1
W X Y Z

1
9
7

00 01 11 10
00
01 1
11 X X X X
10 1 X X

00 01 11 10
00 1
01 1 1 1
11 X X X X
10 X X

00 01 11 10
00 1 1
01 1 1
11 X X X X
10 X X

W
𝑨𝑩

𝑪𝑫
X
𝑨𝑩

𝑪𝑫

𝑨𝑩
𝑪𝑫

𝑨𝑩
𝑪𝑫 ZY

Z (without don’t cares) = A'D' + B'C'D’

 Z (with don’t cares) = D'

𝑨
𝑩

𝑫

𝑪

K-map Summary
Karnaugh maps as a formal systematic approach for logic

simplification

2-, 3-, 4-variable K-maps

1
9
8

