uction to
Architecture

Pooyah Jamshidi

Week 6: February 13, 15

A Engmeerlng

A and Computing
o UNIVERSITY OF SOUTH CAROLINA

CSCE 212 Introductlon to Computer Archltecture I Srlng 2024 I mps //ggovamamshldl lthub |o/csce212/

https://pooyanjamshidi.github.io/csce212/

Agenda for Today

Hardware Description Languages
Implementing Combinational Logic (in Verilog)

Implementing Sequential Logic (in Verilog)

What We Will Cover Soon: 1.C-3 Processor

PROCESSOR BUS

3 REG
DR—-> FILE

LD.REG —>|

SR2 SR1
SH2734> OUT OuUT <7sLSH1

18 16
CLK —»

R —>| FINITE \

STATE
IR LD.IR (MACHINE[™ 16
[—> 4
>

&
(2]
e B
N
=
(=
x

/16

CONTROL UNIT PROCESSING
UNIT

GateALU J

MEM.EN, R.W

LD.MDR LD.MAR
MEMORY INPUT

OUTPUT
Figure 4.3 The LC-3 as an example of the von Neumann model| 3

What We Will Cover Soon: LC-3 Datapath

GateMARMUX —/\ GatePC
6 _ 16
=/MARMUX LD.PC Pf
4 A
6 Als , 16 DR— 25 REG
PCMUX FILE
) LD.REG—
o 16 ' SR2 SRI
3 3
SR2 SR1
@@ N —4=OUT OUT[~
[
[7:0] 16 16
ADDR2MUX ADDRIMUX
2
\ \ /A 16
16 116 16 Al6 16
[10:0] 0 -
' SEXT
[4:0] Y
[8:0] 5] ;%RZMU?
74’@ [15:9] N
5:0 "| FINITE [= 16
Lo rsExT—— R—>| STATE [+ —V L
3 MACHINE A ALU
ALUK
i
0 [N[z[P]e-LD.cC .
LDIR—{ IR — 16
LOGI
(o \/-GateALU
16
16
GmeMDR16 6 6 16

LD.MDR—&{ MDR | MEMORY | MAR |<—LD.MAR

INPUT OUTPUT

16

MEM.EN, R.W

Readings (This Week)

Hardware Description Languages and Verilog
o H&H Chapter 4 in full

Timing and Verification
o H&H Chapters 2.9 and 3.5 + (start Chapter 5)

By tomorrow, make sure you are done with
o P&P Chapters 1-3 + H&H Chapters 1-4

Readings (Next Week)

Von Neumann Model, LC-3, and MIPS

o P&P, Chapter 4, 5

o H&H, Chapter 6

o P&P, Appendices A and C (ISA and microarchitecture of LC-3)
o H&H, Appendix B (MIPS instructions)

Programming
o P&P, Chapter 6

Recommended: Digital Building Blocks
o H&H, Chapter 5

Hardware Description Languages
& Verilog

2017: Intel Kaby Lake

https://en.wikichip.org/wiki/intel/microarchitectures/kaby lake

® 64-bit processor

® 4 cores, 8 threads

® 14-19 stage pipeline
® 3.9 GHz clock freq.

® 1./5B transistors

® In ~47 years, about

1,000,000-fold
growth in transistor

count and
performance!

https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake

2021: Apple M1

W ",tm‘rnymmawu o iets Sl I ..,vﬁu-v‘»sw-””w
e .

,;v‘. T
r.' IORATEL M

: I;SX 116 b

S 'PDDR4X
3 -4

CGhannels

EfflClenc
”MB L2

4 High-Perf GP Cores
4 Efficient GP Cores
8-Core GPU

16-Core Neural
Engine

Lots of Cache
Many Caches
8x Memory Channels

16B transistors

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 9

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

® 16 High-Perf GP Cores
® 4 Efficient GP Cores

® 64-Core GPU

® 32-Core Neural Engine
® | ots of Cache

® Many Caches

® 32x Memory Channels
¢ 128 GB DRAM

® 114B transistors

10

https://www.theverge.com/2022/3/9/22968611/apple-m1-ultra-gpu-nvidia-rtx-3090-comparison

2019: Cerebras Water Scale Engine

@j

= The largest ML
accelerator chip (2019

L RN

G

[RERRERT,

9

= 400,000 cores

J TS
T TAIWAN 1723A1

PFBY82.M00 ‘&i
8%5-A1

F e F e

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm? 815 mm?
NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning!

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

2021: Cerebras Water Scale Engine 2

= The largest ML

= 850,000 cores

Cerebras WSE-2 Largest GPU
2.6 Trillion transistors 54.2 Billion transistors
46,225 mm? 826 mm?
NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

accelerator chip (2021)

12

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Transistor Counts Are Growing

Number of MOSFETs
Year Component Name N
(in billions)
2022 | Flash memory | Micron's V-NAND chip | 5,333 (stacked package of sixteen 232-layer 3D NAND dies)
2020 | any processor | Wafer Scale Engine 2 | 2,600 (wafer-scale design consisting of 84 exposed fields (dies))

microprocessor

2022 _ M1 Ultra 114 (dual-die SoC; entire M1 Ultra is a multi-chip module)
(commercial)

2022 GPU Nvidia H100 80

2020 DLP Colossus Mk2 GC200 59.4

In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of
2016 is the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the
processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the
transistors."®! To compare, the smallest computer, as of 2018 dwarfed by a grain of rice, has on the order of 100,000 transistors.

Memory chips have orders of magnitude more transistors than computation chips

13

Source: https://en.wikipedia.org/wiki/Transistor count

https://en.wikipedia.org/wiki/Transistor_count

How to Deal with This Complexity?

Hardware Description Languages

What we need for hardware design:
o Ability to describe (specify) complex designs
o ... and to simulate their behavior (functional & timing)

o ... and to synthesize (automatically design) portions of it
have an error-free path to implementation

Hardware Description Languages enable all of the above
o Languages designed to describe hardware

o There are similarly-featured HDLs (e.g., Verilog, VHDL, ...)
if you learn one, it is not hard to learn another

mapping between languages is typically mechanical, especially for
the commonly used subset

14

Hardware Description Languages

Two well-known hardware description languages

Verilog

o Developed in 1984 by Gateway Design Automation
o Became an IEEE standard (1364) in 1995
o More popular in US

VHDL (VHSIC Hardware Description Language)
o Developed in 1981 by the US Department of Defense

o Became an IEEE standard (1076) in 1987

o More popular in Europe

We will use Verilog in this course

15

Why Specialized Languages for Hardware?

HDLs enable easy description of hardware structures
o Wires, gates, registers, flip-flops, clock, rising/falling edge, ...
o Combinational and sequential logic elements

HDLs enable seamless expression of parallelism inherent in
hardware

o All hardware logic operates concurrently

Both of the above ease specification, simulation &
synthesis

16

Hardware Design Using HDL

17

Key Design Principle: Hierarchical Design

https://techreport.com/review/21987/intel
-core-i7-3960x-processor

= Design a hierarchy of modules
o Predefined “primitive” gates (AND, OR, ...) £

o Simple modules are built by instantiating .
these gates (e.g., components like MUXes) B s

o Complex modules are built by instantiating
simple modules, ... o

= Hierarchy controls complexity

o Analogous to the use of function/method
abstraction in programming

Sl

% Memory Controller .

= Complexity is a BIG deal

o In real world, how big is the size of a
module (that is described in HDL and then 4 '
synthesized to gates)? -)O

18

https://techreport.com/review/21987/intel-core-i7-3960x-processor
https://techreport.com/review/21987/intel-core-i7-3960x-processor

Top-Down Design Methodology

= We define the top-level module and identify the
sub-modules necessary to build the top-level module

= Subdivide the sub-modules until we come to leaf cells

o Leaf cell: circuit components that cannot further be divided

(e.q., logic gates, primitive cell library elements)

Top-level

Sub-module

/L Mocll

.../ \ .nn

Sub-module

Leaf-cell

Leaf-cell

Sub-module

~

\---

Leaf-cell

Leaf-cell

19

Bottom-Up Design Methodology

= We first identify the building
= Build bigger modules, using t
= These modules are then usec

we build the top-level module in the design

_-

Sub-module

Top-level
Module

Sub-module

Sub-module

L

Leaf-cell

Leaf-cell

Leaf-cell

Leaf-cell

olocks that are available to us
nese building blocks
for higher-level modules until

20

Defining a Module in Verilog

A module is the main building block in Verilog

We first need to define:

o Name of the module

o Directions of its ports (e.q., input, output)
o Names of its ports

Then:

o Describe the functionality of the module

inputs output

21

Implementing a Module in Verilog

b — example — Y

name of Port list
module (inputs and outputs)

dul 1 » b, ¢, ’
module eéimzte a(.a D ports have a
p 5 declared type

input b;
j_nput C; V

output y; a module
definition

// here comes the circuit description

endmodule

A Question of Style (and Consistency)

The following two codes are functionally identical

module test (a, b, y); module test (input a,
input a; input b,
input b; output y);
output y;

endmodule
endmodule

port name and direction declaration
can be combined

23

What If We Have Multi-bit Input/Output?

You can also define multi-bit Input/Output (Bus)
o [range_end : range_start]

o Number of bits: range_end — range_start + 1
Example:

input [31:0] a; // a[31], a[30] .. a[o]
output [15:8] bl; // bi[15], bi[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b2[@]
input C; // single signal

a represents a 32-bit value, so we prefer to define it as:
[31:0] a

It is preferred over [0:31] a Which resembles array definition
It is good practice to be consistent with the representation
of multi-bit signals, i.e., always [31:0] or always [0:31]

24

Manipulating Bits

Bit Slicing
Concatenation
Duplication

25

Basic Syntax

Verilog is case sensitive
o SomeName and somename are not the same!

Names cannot start with numbers:
o 2good is not a valid name

Whitespaces are ignored

// Single line comments start with a //

/* Multiline comments
are defined like this */

26

Two Main Styles of HDIL Implementation

Structural (Gate-Level)
o The module body contains gate-level description of the circuit
o Describe how modules are interconnected
o Each module contains other modules (instances)
o ... and interconnections between those modules
o Describes a hierarchy of modules defined as gates
Behavioral
o The module body contains functional description of the circuit
o Contains logical and mathematical operators
o Level of abstraction is higher than gate-level
Many possible gate-level realizations of a behavioral description

Many practical designs use a combination of both

27

Structural (Gate-Level) HDILL

Structural HDL.: Instantiating a Module

i first

|_second
A
A ni
Y A
SEL B Y
small B
small
C

top

Schematic of module “top” that is built from

two instances of module “small”

29

Structural HDI. Example

Module Definitions in Verilog

)

output V;
wire nl;

endmodule

i first

i_second

input AS
input B;
output VY;
// description of small

endmodule

30

Structural HDI. Example

Defining wires (module interconnections)

module top (A, SEL, C, Y); e |
input A, SEL, C; A i_second
output VY; [- ﬂ R

@ SEL B Y
B

small

small

top

module small (A, B, Y);
input A;
input B;
output VY;

endmodule // description of small

endmodule

31

Structural HDI. Example

The first instantiation of the “"small” module

module top (A, SEL, C, Y);
input A, SEL, C;

output Y;

wire nl;

/ instantiate small once
small i first (.A(A),
.B(SEL),
.Y(nl)

endmodule

i first

i_second

ni

top

module small (A, B, Y);
input A;
input B;
Qutput Y;

// description of small

endmodule

32

Structural HDI. Example

The second instantiation of the “smal

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire nl;

// instantiate small once
small i first (.A(A),
.B(SEL),

.Y(nl));

instantiate small second tT
small i _second (.A(nl),
.B(C),

YY))

endmodule

III

module

i first

top

module small (A, B, Y);
input A;
input B;
output VY;

// description of small

endmodule

33

Structural HDI. Example

Short form of module instantiation

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire nl;

// alternative short form
small i first (A, SEL, nl);

/* In the short form above,
pin order very important */

// safer choice; any pin order
small i second (.B(C),

Y(Y),

A(n1));

endmodule

SEL

i first

i_second
[
Y n A
B Y
small B
small

top

module small (A, B, Y);
input A;
input B;
output VY;

// description of small

endmodule

Short form is not good practice
as it reduces code maintainability

34

Structural HDIL Example (1I)

Verilog supports basic logic gates as predefined primitives

o These primitives are instantiated like modules except that they
are predefined in Verilog and do not need a module definition

module mux2(input do, di, do d1
input s,
output y); =
wire ns, y1, y2;
not gl (ns, s); y1 kTiz

and g2 (yl, do, ns);
and g3 (y2, di, s);
or g4 (y, y1, y2);

endmodule

35

Behavioral HDI.

Recall: Two Main Styles of HDIL. Implementation

Structural (Gate-Level)

o The module body contains gate-level description of the circuit
o Describe how modules are interconnected

o Each module contains other modules (instances)

o ... and interconnections between those modules

o Describes a hierarchy of modules defined as gates

Behavioral
o The module body contains functional description of the circuit
o Contains logical and mathematical operators

o Level of abstraction is higher than gate-level
Many possible gate-level realizations of a behavioral description

Many practical designs use a combination of both

37

Behavioral HDI.: Detining Functionality

module example (a, b, c, y);
input a;
input b;
input c;
output vy;

// here comes the circuit description
assign y = ~a & ~b & ~c |

a & ~b & ~c |

a & ~b & c;

endmodule

38

Behavioral HDI.: Schematic View

A behavioral implementation still models a

hardware circuit!

gt

B

AND

39

Bitwise Operators in Behavioral Verilog

module gates(input [3:0] a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic
gates acting on 4 bit buses */

assign yl = a & b;

assign y2 = a | b;

assign y3 = a ”~ b;

assign y4 = ~(a & b);

assign y5 = ~(a | b);
endmodule

40

Bitwise Operators: Schematic View

[3:0))
53)] > B

0] e e I (5 3:0] [3:0 3:0] [3:0
__{a[%O] [2:0] | |13:0] D—J—] [L0 |]@
b[3:0] == ' I>

[3201‘ yi[3:0] >
EE)]_D_JS_:O] [3:0) > 3:0] [2:0]
[3:0] —o—"-“—- y5[3:0] ==
[3:0]

Reduction Operators in Behavioral Verilog

module and8(input [7:0] a,
output y);

assign y = &a;

// & 1s much easier to write than

// assign y = a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[l] & a[9];

endmodule

42

Reduction Operators: Schematic View

[O]

AND

8-input AND gate

43

Conditional Assignment in Behavioral Verilog

module mux2(input [3:0] do, di,
input S,
output [3:0] y);

assign y = s ? dl1 : do;
// if (s) then y=dl else y=do;

endmodule

? . is also called a ternary operator as it operates on three
inputs:

o S

o dl

a do

Conditional Assignment: Schematic View

dO[3:0;

di[3:0

45

More Complex Conditional Assignments

module mux4(input [3:0] do, di, d2, d3
input [1:0] s,
output [3:0] y);

assign y = s[1] ? (s[@] ? d3 : d2)
: (s[@0] ? d1 : do);
// if (s1) then

// if (s@) then y=d3 else y=d2
// else
// if (s@) then y=dl else y=do

endmodule

Even More Complex Conditional Assignments

module mux4(input [3:0] do, di, d2, d3
input [1:0] s,
output [3:0] y);

assign y = (s == 2°b11) ? d3 :
(s == 2°b10) ? d2 :
(s == 2°b01) ? dil :

do;
// if (s = “11”) then y= d3
// else if (s = “10”) then y= d2
// else if (s = “01”) then y= dl
// else y= do

endmodule

47

Precedence of Operations in Verilog

Highest

Lowest

~y

*I/I%
+ -

’

<<, >>

<<, >>>

<, <=, > >=

&, V&

N ~A
’

|~
]

?:

NOT

mult, div, mod
add,sub

shift

arithmetic shift
comparison
equal, not equal
AND, NAND
XOR, XNOR

OR, NOR

ternary operator

48

How to Express Numbers?

N’ BxXx
8’ b0ovO 0001

(N) Number of bits
o Expresses how many bits will be used to store the value

(B) Base
a Can be b (binary), h (hexadecimal), d (decimal), o (octal)

(xx) Number

o The value expressed in base

o Can also have X (invalid) and Z (floating), as values
o Underscore _ can be used to improve readability

49

Number Representation in Verilog

Verilog Stored Number | Verilog Stored Number
4'b1001 1001 4'd5 0101
8'b1001 0000 1001 12'hFA3 1111 1010 0011
8'b0000_1001 0000 1001 8012 00 001 010
8'bxX0X1zZ1 XX0X 1Z71 4'h7 0111
‘b01 0000 .. 0001 12'h0 0000 0000 0000
\ J
|
32 bits

(default)

50

Reminder: Floating Signals (/)

Floating signal: Signal that is not driven by any circuit
o Open circuit, floating wire
Also known as: high impedance, hi-Z, tri-stated signals

module tristate buffer(input [3:0] a,
input en,
output [3:0] y);

assign y = en ? a : 4'bz;

endmodule

51

Recall: Tri-State Buffer

A tri-state buffer enables gating of different signals onto a
wire

Tristate
Buffer

E

A*, > Y
A tri-state buffer

acts like a switch

H R o olm
Hor olx
F o N N|<

Figure 2.40 Tristate buffer

Floating signal (Z): Signal that is not driven by any circuit
o Open circuit, floating wire

52

Recall: Example: Use of Tri-State Butters

Imagine a wire connecting the CPU and memory

o At any time only the CPU or the memory can place a value on
the wire, both not both

o You can have two tri-state buffers: one driven by CPU, the
other memory; and ensure at most one is enabled at any time

53

Recall: Example Design with Tri-State Butfers

GateCPU

[CPU

GateMem

[Memory

Shared Bus

54

Recall: Another Example

-
Processor ent

to bus

from bus
_

ay

e
Video en2

to bus

J

from bus
_

XY

J

[Ethernet en3

to bus

N\

from bus

Ay

.

p
Memory en4

to bus

from bus

.

AYE

shared bus

55

Truth Table for AND Gate with Z and X

A
AND
0 1 Z X
o| o 0 0 0
1| o 1 X X
B
z | o X X X
X | o X X X

56

Recall: Simplified Priority Circuit

= Priority Circuit
o Inputs: "Requestors” with priority levels
o Outputs: “Grant” signal for each requestor
o Example 4-bit priority circuit

0 0 0 0 0 0 0 0 A Y

0 0 0 1 0 0 0 1 ‘
o o 1 oloe o 1 W 3 A A Al Ys Yo Y, 0 O
o o 1 1]l0 o 1 o 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

o 1 o 1lo 1 o o 0 0 0 1 0 0 0 1

o1 1 oo 1 o o 0 0 1 X 0 0 1 0 q
0 1 1 1 0 1 0 0

1 o o ol1 o o o 0 1 X X 0 1 0 0 @
1 0 0 1|1 0o 0 O 1 X X X 1 0 0 0

1 0 1 0 1 0 0 0 —~
1 0 1 1 1 0 0 0 H
i i 8 g 1 8 8 8 Figure 2.29 Priority circuit truth table with L4)_
1 1 1 o1 o 0o o don’t cares (X’s) |
1 1 1 1 1 0 0 0

X (Don’t Care) means | don'’t care what the value of this input is

57

What Happens with HDIL. Code?

Synthesis (i.e., Hardware Synthesis)

o Modern tools are able to map synthesizable HDL code into
low-level cell libraries 2 netlist describing gates and wires

o They can perform many optimizations

o ... however they can not guarantee that a solution is optimal

Mainly due to computationally expensive placement and routing
algorithms

Need to describe your circuit in HDL in a nice-to-synthesize way
o Most common way of Digital Design these days

Simulation

o Allows the behavior of the circuit to be verified without actually
manufacturing the circuit

o Simulators can work on structural or behavioral HDL
o Simulation is essential for functional and timing verification

58

Recall This “example”

module example (a, b, c, y);
input a;
input b;
input c;
output vy;

// here comes the circuit description
assign y = ~a & ~b & ~c |

a & ~b & ~c |

a & ~b & c;

endmodule

59

Synthesizing the “example”

AND

60

Simulating the “example”™

=T D
>TL

D —
@

AND

Now:
Ons 160 320ns 480 640ns 800
800 ns vl el
&l a 1
(7]
© &b 1
o M c 1
My 0

Waveform Diagram time

A Note on Hardware Synthesis

One of the most common mistakes for beginners is to think of HDL
as a computer program rather than as a shorthand for describing digital
hardware. If you don’t know approximately what hardware your HDL
should synthesize into, you probably won’t like what you get. You might
create far more hardware than is necessary, or you might write code that
simulates correctly but cannot be implemented in hardware. Instead,
think of your system in terms of blocks of combinational logic, registers,
and finite state machines. Sketch these blocks on paper and show how
they are connected before you start writing code.

Read H&H Chapter 4.1 62

What We Have Seen So Far

Describing structural hierarchy with Verilog
o Instantiate modules in an other module

Describing functionality using behavioral modeling
Writing simple logic equations

o We can write AND, OR, XOR, ...

Multiplexer functionality

a If ... then ... else

We can describe constants

But there is more...

63

More Verilog Examples

We can write Verilog code in many different ways

Let’s see how we can express the same functionality by
developing Verilog code

a At a low-level of abstraction
Poor readability
Easier automated optimization (especially for low-level tools)

o At a high-level of abstraction
Better readability
More difficult automated optimization (large search space)

64

Comparing Two Numbers

Defining your own gates as hew modules

We will use our gates to show different ways of
implementing a 4-bit comparator (equality checker)

A 2-input XNOR gate

A 2-input AND gate

module MyXnor (input A, B,
output 2);

assign Z = ~(A ~ B); //not XOR

endmodule

module MyAnd (input A, B,
output 2);

assign Z = A & B; // AND

endmodule

65

Recall: Equality Checker (Compare 1f Equal)

= Checks if two N-input values are exactly the same
= Example: 4-bit Comparator

Az
A B 537

A,
— By —

+ Equal

| Ar -
Equal 51
Ap)

Bo —

slvjvlv

Gate-Level Implementation

module compare (input a@, al, a2, a3, bo, bl, b2, b3,
output eq);
wire cO, cl1, c2, c3, c0l, c23;

MyXnor i@ (.A(a®), .B(b0), .Z(c@)); // XNOR
MyXnor il (.A(al), .B(b1), .Z(cl)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
MyAnd haha (.A(c@), .B(cl), .Z(ce1)); // AND
MyAnd hoho (.A(c2), .B(c3), .Z(c23)); // AND
MyAnd bubu (.A(c@1l), .B(c23), .Z(eq)); // AND

endmodule

Using Logical Operators

module compare (input a@, al, a2, a3, bo, bl, b2, b3,
output eq);
wire cO, cl1, c2, c3, c0l, c23;

MyXnor i@ (.A(a®), .B(b0), .Z(c@)); // XNOR
MyXnor il (.A(al), .B(b1), .Z(cl)); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2)); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3)); // XNOR
assign cOl = cO & cl;

assign c23 = c2 & c3;

assign eq = c01 & c23;

endmodule

Eliminating Intermediate Signals

MyXnor
MyXnor
MyXnor
MyXnor

assign

output eq);
wire cO, cl, c2, c3;

io (.A(a®), .B(bo),
i1 (.A(al), .B(bl),
i2 (.A(a2), .B(b2),
i3 (.A(a3), .B(b3),

// assign c@1l = co & cl;
// assign c23 = c2 & c3;
// assign eq = cOl & c23;

.2(c0));
.Z(cl));
.2(c2));
.2(c3));

eq =¢c0 & cl1 & c2 & c3;

endmodule

module compare (input a@, al, a2, a3, bo, bl, b2, b3,

// XNOR
// XNOR
// XNOR
// XNOR

69

Multi-Bit Signals (Bus)

module

MyXnor
MyXnor
MyXnor
MyXnor

assign

compare (input [3:0] a, input [3:0]
output eq);
wire [3:0] c; // bus definition

10 (.A(a[e]), .B(b[e]), .Z(c[@]));
11 (.A(a[1]), .B(b[1]), .Z(c[1]));
12 (.A(a[2]), .B(b[2]), .Z(c[2]));
13 (.A(a[3]), .B(b[3]), .Z(c[3]));
eq = &c; // short format

endmodule

; // XNOR
; // XNOR
; // XNOR
; // XNOR

70

Bitwise Operations

module compare (input [3:0] a, input [3:0] b,
output eq);
wire [3:0] c; // bus definition

// MyXnor 1@ (.A(a[@]), .B(b[@]), .Z(c[@]));
// MyXnor 11 (.A(a[1]), .B(b[1]), .Z(c[1]));
// MyXnor 12 (.A(a[2]), .B(b[2]), .Z(c[2]));
// MyXnor 13 (.A(a[3]), .B(b[3]), .Z(c[3]));
assign ¢ = ~(a ~ b); // XNOR

assign eq = &c; // short format

endmodule

71

Highest Abstraction Level: Comparing Two Numbers

module compare (input [3:0] a, input [3:0] b,
output eq);

// assign ¢ = ~(a ~ b); // XNOR

// assign eq = &c; // short format

assign eq = (a ==b) 21 : 0; // really short

endmodule

72

Writing More Reusable Verilog Code

We have a module that can compare two 4-bit numbers

What if in the overall design we need to compare:
a 5-bit numbers?
6-bit numbers?

N-bit numbers?

a
a
a
o Writing code for each case looks tedious

What could be a better way?

73

Parameterized Modules

In Verilog, we can define module parameters

module mux2
#(parameter width = 8) // name and default value
(input [width-1:0] do, di,
input S,
output [width-1:0] y);

assign y = s ? dl : do;
endmodule

We can set the parameters to different values
when instantiating the module

74

Instantiating Parameterized Modules

module mux2
#(parameter width = 8) // name and default value
(input [width-1:0] dO, d1,
input S,
output [width-1:0] y);

assigny =s ?dl : dO;
endmodule

75

What About Timing?

It is possible to define &iming relations in Verilog. BUT:

o These are ONLY for simulation
o They CAN NOT be synthesized
o They are used for modeling delays in a circuit

‘timescale 1ns/1ps
module simple (input a, output zl1, z2);

assign #5 z1 = ~a; // inverted output after 5ns
assign #9 z2 = a; // output after 9ns

endmodule

More on this soon

77

Good Practices

Develop/use a consistent naming style

Use MSB to LSB ordering for buses
a0 Use “a[31:0]7, not “a[0:31]"

Define one module per file
o Makes managing your design hierarchy easier

Use a file name that matches module name
o e.g., module TryThis is defined in a file called TryThis.v

Always keep in mind that Verilog describes hardware

78

Summary (HDL for Combinational Logic)

We have seen an overview of Verilog
Discussed structural and behavioral modeling

Studied combinational logic constructs

79

We Covered
Until This Point

in Lecture

Slides for Future Lectures

81

Implementing Sequential Logic
Using Verilog

82

Sequential = Combinational + Memory

/ Sequential Circuit \

2 Combinational -
= Circuit o
\ J
Storage
Element|

Sequential LLogic 1n Verilog

Define blocks that have memory
o Flip-Flops, Latches, Finite State Machines

Sequential Logic state transition is triggered by a "CLOCK"
signal

o Latches are sensitive to level of the signal

o Flip-flops are sensitive to the transitioning of signal

Combinational HDL constructs are not sufficient to express
sequential logic
o We need new constructs:

always

posedge/negedge

84

The “always” Block

always @ (sensitivity list)
statement;

Whenever the event in the sensitivity list occurs,
the statement is executed

85

Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

D Latch (First)
D Latch (Second)

D } "

CLK

CLK: 1

0

When the clock is low, 1st latch propagates D to the input of the 2" (Q unchanged)
Only when the clock is high, 2" latch latches D (Q stores D)
o At the rising edge of clock (clock going from 0->1), Q gets assigned D

86

Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

D Flip-Flop

CLK: 1

At the rising edge of clock (clock going from 0->1), Q gets assigned D
At all other times, Q is unchanged

87

Recall: The D Flip-Flop

= 1) state change on clock edge, 2) data available for full cycle

We can use D Flip-Flops

to implement the state register

= At the rising edge of clock (clock going from 0->1), Q gets assigned D
= At all other times, Q is unchanged

88

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

C always @ (posedge clk)
> // pronounced “q gets d”

endmodule

posedge defines a rising edge (transition from 0 to 1).
Statement executed when the clk signal rises (posedge of clk)

Once the clk signal rises: the value of d is copied to g

89

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

rEysS—E—tpasedge clk)
‘& // pronounced “q gets d”

endmodule

assign statement is not used within an always block
<= describes a non-blocking assignment

o We will see the difference between blocking assignment and
non-blocking assignment soon

Example: D Flip-Flop

module flop(input clk,

D4 [3:0] d,
output reg [3:9] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

Assigned variables need to be declared as reg

The name reg does not necessarily mean that the value is a
register (It could be, but it does not have to be)

We will see examples later

Asynchronous and Synchronous Reset

Reset signals are used to initialize the hardware to a known
state

o Usually activated at system start (on power up)

Asynchronous Reset
o The reset signal is sampled independent of the clock
o Reset gets the highest priority

o Sensitive to glitches, may have metastability issues
Will be discussed in the Timing & Verification Lecture

Synchronous Reset
o The reset signal is sampled with respect to the clock

a The reset should be active long enough to get sampled at the
clock edge

o Results in completely synchronous circuit
92

Recall: Asynchronous vs. Synchronous State Changes

Sequential lock we saw is an asynchronous “machine”
o State transitions occur when they occur

o There is nothing that synchronizes when each state transition
must occur

Most modern computers are synchronous “machines”
o State transitions take place after fixed units of time
o Controlled in part by a clock, as we will see soon

These are two different design paradigms, with tradeoffs

o Synchronous control can be easier to get correct when the
system consists of many components and many states

o Asynchronous control can be more efficient (no clock overheads)

We will assume synchronous systems in most of this course 93

D Flip-Flop with Asynchronous Reset

module flop ar (input clk,
input reset,
input [3:0] d,

output reg [3:0] q);

alway@ (posedge clk, negedge reset
begin

if (reset == 0) q <= 0; // when reset

else q d; // when clk
end

endmodule

In this example: two events can trigger the process:
o A rising edge on clk
o A falling edge on reset

D Flip-Flop with Asynchronous Reset

module flop ar (input clk,
input reset,
input [3:0] d,

output reg [3:0] q);

always @ (posedge clk, negedge reset)
(reset == 0) q <= 9; // when reset
q <= d; // when clk

endmodule

For longer statements, a begin-end pair can be used
o To improve readability
o In this example, it was not necessary, but it is a good idea

D Flip-Flop with Asynchronous Reset

module flop ar (input clk,
input reset,
input [3:0] d,

output reg [3:0] q);

always @ (posedge clk, negedge reset)

begin
if (reset == 0) g <= 0; // when reset
else q <= d; // when clk
end
endmodule

First reset is checked: if reset is 0, g is set to 0.

o This is an asynchronous reset as the reset can happen
independently of the clock (on the negative edge of reset signal)

If there is no reset, then regular assignment takes effect

96

D Flip-Flop with Synchronous Reset

module flop sr (input clk,
input reset,
input [3:0] d,

output reg [3:0] q);

always (@ (posedge clk
begin

if (reset == ‘©’) q <= 0; // when reset
else q <= d; // when clk
end
endmodule

The process is sensitive to only clock

o Reset happens only when the clock rises. This is a
synchronous reset

97

D Flip-Flop with Enable and Reset

module flop en_ar (input clk,
input reset,
input en,
input [3:0] d,

output reg [3:0] q);

always @ (posedge clk, negedge reset)

begin
i @sals= 0°) q <= 0; // when reset
w q <= d; // when en AND clk
end
endmodule

A flip-flop with enable and reset
o Note that the en signal is not in the sensitivity list
g gets d only when clk is rising and en is 1

Example: D Latch

module latch (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (clk, d)
if (clk) g <= d; // latch is transparent when
// clock is 1
endmodule

99

Summary: Sequential Statements So Far

Sequential statements are within an always block

The sequential block is triggered with a change in the
sensitivity list

Signals assigned within an always must be declared as reg

We use <= for (non-blocking) assignments and do not use
assign within the always block.

100

Basics of always Blocks

module example (input clk,
input [3:0] d,
output reg [3:0] q);
wire [3:0] normal; // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d; // first FF array

assign normal = ~special; // simple assignment

always @ (posedge clk)

g <= normal; // second FF array
endmodule

You can have as many always blocks as needed
Assignment to the same signal in different always blocks is not allowed!

101

Why Does an always Block Remember?

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin
g <= d; // when clk rises copy d to g
end
endmodule

This statement describes what happens to signal g
... but what happens when the clock is not rising?
The value of q is preserved (remembered)

102

An always Block Does NOT Always Remember

module comb (input inv,
input [3:0] data,
output reg [3:0] result);
always @ (inv, data) // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data
endmodule

This statement describes what happens to signal result
o When inv is 1, result is ~data

o When inv is not 1, result is data

The circuit is combinational (no memory)

o result is assigned a value whenever an input value changes & in all
cases of the if .. else block

103

always Blocks for Combinational Circuits

An always block defines combinational logic if:
o All outputs are always (continuously) updated

1. All right-hand side signals are in the sensitivity list
You can use always @* for short

2. All left-hand side signals get assigned in every possible condition
of if .. else and case blocks

It is easy to make mistakes and unintentionally describe
memorizing elements (latches)

o Vivado will most likely warn you. Make sure you check the
warning messages

Always blocks allow powerful combinational logic statements
o if .. else

o case
104

Sequential or Combinational?

wire enable, data;
reg out_a, out_b;

always @ (*) begin
out_a = 1°bo;
if(enable) begin
out a = data;

data;

No assignment for ~enable

end
end

wire enable, data;
reg out _a, out_b;

always @ (data) begin
out_a = 1°bo;
out b = 1°bo;

end
end Notin the sensitivity list

Sequential

Sequential

105

The always Block is NOT Always Practical/Nice

reg [31:0] result;
wire [31:0] a, b, comb;
wire sel,

always @ (a, b, sel) // trigger with a, b, sel

if (sel) result <= a; // result is a
else result <= b; // result is b

assign comb = sel ? a : b;

Both statements describe the same multiplexer

In this case, the always block is more work

106

always Block for Case Statements (Handy!)

module sevensegment (input [3:0] data,
output reg [6:0] segments);
always @ (*) // * is short for all signals
case (data) // case statement
4'do: segments = 7'b111 1110; // when data is ©
4'dl: segments = 7'b@11 0000; // when data is 1
4'd2: segments = 7'bl10_1101;
4'd3: segments = 7'bl11 1001;
4'd4: segments = 7'b011l 0011;
4'd5: segments = 7'blOo1 1011;
// etc etc
default: segments = 7'b00O 0000; // required
endcase
endmodule

107

Summary: always Block

if .. else can only be used in always blocks

The always block is combinational only if all regs within the
block are always assigned to a signal

o Use the default case to make sure you do not forget an
unimplemented case, which may otherwise result in a latch

Use casex statement to be able to check for don’t cares

108

Non-Blocking and Blocking Assignments

Non-blocking (<=) Blocking (=)
always @ (a) always @ (a)
begin begin
a <= 2’bo1l; a = 2°bo1l;
b <= a; // a 1is 2°bol
// all assignments are made here b = a;

// b is not (yet) 2’bol
end

// b 1s now 2°b01 as well
end

All assignments are made
at the end of the block

All assignments are made
in parallel, process flow is
not-blocked

Each assignment is made
immediately

Process waits until the first
assignment is complete, it
blocks progress

Similar to sequential programs

109

Why Use (Non)-Blocking Statements

Non-blocking statements allow operating on “old” values
o Enable easy sequential logic descriptions

Blocking statements allow a sequence of operations
o Allow operating on immediately updated values
o More like a “'software” programming language

If the sensitivity list is correct, a block with non-blocking
statements will eventually evaluate to the same result as
the same block with blocking statements

o This may require some additional iterations

Example: Blocking Assignment

Assume all inputs are initially ‘0’

always @ (*)
begin
p =a”"b; // p =0 1
g =aé&b; /] g =0 0
S =p " cin ; // s =0 1
cout = g | (p & cin) ; // cout =0 0
end

If a changes to ‘1’
o All values are updated in order

111

The Same Example: Non-Blocking Assignment

Assume all inputs are initially ‘0’

always @ (*)
begin
p <= a b ; // p =0 1
g <=a&b; /] g =0 0
S <= p ™ cin ; // s =0 0
cout <= g | (p & cin) ; // cout =0 0
end

If a changes to ‘1’

o All assignments are concurrent
a When s is being assigned, p is still @

112

The Same Example: Non-Blocking Assignment

After the first iteration, p has changed to ‘1’ as well

always @ (*)
begin
p <= a b ; // p =1 1
g <= a & b ; // g =0 0
S <= p " cin ; // s =0 1
cout <= g | (p & cin) ; // cout =0 0
end

Since there is a change in p, the process triggers again
This time s is calculated with p=1

113

Rules for Signal Assignment

Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

always @ (posedge clk)
g <= d; // non-blocking

Use continuous assignments (assign) to model simple
combinational logic

assign y = a & b;

114

Rules for Signal Assignment (Cont.)

Use always @ (*) and blocking assignments (=) to model
more complicated combinational logic

You cannot make assignments to the same signal in more
than one always block or in a continuous assignment

115

Recall: Finite State Machines (FSMs)

Each FSM consists of three separate parts:
o next state logic

o state register
o output logic

CLK
t
K nex K N
, state . state | output

state register

At the beginning of the clock cycle, next state is latched into the state register

116

Recall: Finite State Machines (FSMs) Consist of:

Sequential Circuits CLK
o State register(s)

Store the current state and S’ ——8
Next Current
Load the next state at the clock edge State State
Combinational Circuits Next State
o Next state logic Logic X
Determines what the next state will be St‘;’,:;
o Output logic ?_‘;Lﬁ‘;t

Generates the outputs
(E Outputs

117

FSM Example 1: Divide the Clock Frequency by 3

CLK
Y / \ /N

The output Y is HIGH for one clock cycle out of every 3. In other
words, the output divides the frequency of the clock by 3.

Reset

118

Implementing FSM Example 1: Definitions

module divideby3FSM (input clk,
input reset,
output q);

reg [1:0] state, nextstate;

parameter SO = 2'b00;
parameter S1 = 2'bol;

parameter S2 = 2'b10;

We define state and nextstate as 2-bit reg

The parameter descriptions are optional, it makes reading
easier

119

Implementing FSM -

CLK
|
S —+ —+—S
Next Current
State State

Hxample 1: State Register

Reset

VRORS

// state register

always @ (posedge clk, posedge reset)
if (reset) state <= SO;
else state <= nextstate;

This part defines the state register (memorizing process)
Sensitive to only clk, reset
In this example, reset is active when it is ‘1’ (active-high)

120

Implementing FSM |

CLK
M next k next |
inpUtS state state
logic

Reset

ERORORO

“xample 1: Next State Logic

always @ (*)
case (state)
SO:
S1:
S2:
default:
endcase

// next state logic

nextstate
nextstate
nextstate
nextstate

S1;
S2;
SO;
SO;

121

Implementing FSM Example 1: Output Logic

CLK
K next _| K N
,_state . state | output
J/ / L logic outputs

// output logic
assign q = (state == S0);

In this example, output depends only on state
o Moore type FSM

122

Implementation ot FSM Example 1

module divideby3FSM (input clk, input reset, output q);
reg [1:0] state, nextstate;

parameter SO = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'bl0;

always @ (posedge clk, posedge reset) // state register
if (reset) state <= SO;

else state <= nextstate;
always @ (*) // next state logic
case (state)
SO: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = SO;
default: nextstate = SO;
endcase
assign q = (state == S0); // output logic

endmodule

FSM Example 2: Recall the Smiling Snail

Alyssa P. Hacker has a snail that crawls down a paper tape
with 1’s and 0’s on it

The snail smiles whenever the last four digits it has crawled
over are 1101

Design Moore and Mealy FSMs of the snail’s brain

124

Implementing FSM Example 2: Detfinitions

module SmilingSnail (input clk,
input reset,
input number,
output smile);

reg [1:0] state, nextstate;

parameter SO = 2'b00;
parameter S1 = 2'b0ol;
parameter S2 = 2'b10;
parameter S3 = 2°bll;

digit/smile

125

Implementing FSM Example 2: State Register

// state register
always @ (posedge clk, posedge reset)
if (reset) state <= SO;
else state <= nextstate;

This part defines the state register (memorizing process)
Sensitive to only clk, reset

In this example reset is active when ‘1’ (active-high)

126

Implementing FSM Example 2: Next State Logic

// next state logic
always @ (*)
case (state)

SO: if (number) nextstate = S1;
else nhextstate = SO;
S1: if (number) nextstate = S2;

else nhextstate = SO;
S2: if (number) nextstate = S2;
else nextstate = S3;
S3: if (number) nextstate = S1;
else nhextstate = SO;
default: nextstate = SO;
endcase

127

Implementing FSM Example 2: Output Logic

// output logic
assign smile = (number & state == S3);

In this example, output depends on state and input
o Mealy type FSM

We used a simple combinational assignment

128

Implementation of FSM Example 2

module SmilingSnail (input clk, always @ (*) // next state logic
input reset, case (state)
input number, So: if (number)
output smile); nextstate = S1;
else nextstate = SO;
reg [1:0] state, nextstate; S1: if (number)
nextstate = S2;
parameter SO = 2'b00; else nextstate = SO;
parameter S1 = 2'b01; S2: if (number)
parameter S2 = 2'b10; nextstate = S2;
parameter S3 = 2°bl1l; else nextstate = S3;
S3: if (number)
// state register nextstate = S1;
always @ (posedge clk, posedge else nextstate = SO;
reset) default: nextstate = SO;
if (reset) state <= SO; endcase
else state <= nextstate; // output logic

assign smile = (number & state==S3);

endmodule

What Did We Learn?

Basics of describing sequential circuits in Verilog

The always statement
o Needed for describing memorizing elements (flip-flops, latches)
o Can also be used to describe combinational circuits

Blocking vs Non-blocking statements
o = assigns the value immediately
o <= assigns the value at the end of the block

Describing FSMs in Verilog
o Next state logic
o State assignment
o Output logic
130

Next Lecture:
Timing and Verification

131

