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What Have We Learned So Far?
n We are mostly done with “Digital Design” part of this course
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Agenda for Today & Next Few Lectures

n The von Neumann model
n LC-3: An example of von Neumann machine

n LC-3 and MIPS Instruction Set Architectures

n LC-3 and MIPS assembly and programming

n Introduction to microarchitecture and                         
single-cycle microarchitecture

n Multi-cycle microarchitecture
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What Will We Learn Today?
n Basic elements of a computer & the von Neumann model

q LC-3: An example von Neumann machine

n Instruction Set Architectures: LC-3 and MIPS
q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats

n Addressing modes
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Readings
n This week

q Von Neumann Model, ISA, LC-3, and MIPS
n P&P, Chapters 4, 5
n H&H, Chapter 6 (until 6.5)
n P&P, Appendices A and C (ISA and microarchitecture of LC-3)
n H&H, Appendix B (MIPS instructions)

q Programming
n P&P, Chapter 6

q Recommended: H&H Chapter 6, especially 6.1, 6.2, 6.4, 6.5

n Next lecture
q Introduction to microarchitecture and single-cycle microarchitecture

n H&H, Chapter 7.1-7.3
n P&P, Appendices A and C

q Multi-cycle microarchitecture
n H&H, Chapter 7.4
n P&P, Appendices A and C 
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Building a Computing System
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The Von Neumann Model
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Recall: What is A Computer?
n We will cover all three components
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Building Up to A Basic Computer Model
n In past lectures, we learned how to design

q Combinational logic structures
q Sequential logic structures

n With logic structures, we can build
q Execution units
q Decision units
q Memory/storage units
q Communication units

n All are basic elements of a computer
q We will raise our abstraction level today
q Use logic structures to construct a basic computer model
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Basic Components of a Computer
n To get a task done by a (general-purpose) computer, we need

q A computer program
n That specifies what the computer must do

q The computer itself
n To carry out the specified task

n Program: A set of instructions
q Each instruction specifies a well-defined piece of work for the 

computer to carry out
q Instruction: the smallest piece of specified work in a program

n Instruction set: All possible instructions that a computer is 
designed to be able to carry out
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The von Neumann Model
n In order to build a computer, we need an execution model for 

processing computer programs

n John von Neumann proposed a fundamental model in 1946

n The von Neumann Model consists of 5 components
q Memory (stores the program and data)
q Processing unit
q Input
q Output
q Control unit (controls the order in which instructions are carried out)

n Throughout this lecture, we will examine two examples of the 
von Neumann model
q LC-3
q MIPS

12

Burks, Goldstein, von Neumann, 
“Preliminary discussion of the logical design 
of an electronic computing instrument,” 1946.

All general-purpose computers today use the von Neumann model



The von Neumann Model
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The von Neumann Model
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Recall: A Memory Array (4 locations X 3 bits)
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Memory
n Memory stores 

q Programs
q Data

n Memory contains bits
q Bits are logically grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

n Address space: Total number of uniquely identifiable locations in memory
q In LC-3, the address space is 216

n 16-bit addresses
q In MIPS, the address space is 232

n 32-bit addresses
q In x86-64, the address space is (up to) 248

n 48-bit addresses

n Addressability: How many bits are stored in each location (address)
q E.g., 8-bit addressable (or byte-addressable)
q E.g., word-addressable
q A given instruction can operate on a byte or a word
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A Simple Example
n A representation of memory with 8 locations
n Each location contains 8 bits (one byte)

q Byte addressable memory; address space of 8
q Value 6 is stored in address 4 & value 4 is stored in address 6
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Address Data Value

Question:
How can we make 
same-size memory 
bit addressable?

Answer: 
64 locations
Each location stores 1 bit



Word-Addressable Memory
n Each data word has a unique address

q In MIPS, a unique address for each 32-bit data word
q In LC-3, a unique address for each 16-bit data word
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00000000

00000001

00000002

00000003

.  
.  

.
Word Address

8 9 A B C D E F 
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0

.  
.  

.

.  
.  

.

Data MIPS memory



n Each byte has a unique address
q MIPS is actually byte-addressable
q LC-3b (updated version of LC-3) is also byte-addressable

Word 3

Word 2

Word 1

Word 0

.  
.  

.

.  
.  

.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

MIPS memory

Byte-Addressable Memory
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00000000

00000004

00000008

0000000C

.  
.  

.
Byte Address 
of the Word

How are these four bytes 
ordered?

Which of the four bytes is most vs. least significant?



Big Endian vs. Little Endian
n Jonathan Swift’s Gulliver’s Travels

q Big Endians broke their eggs on the big end of the egg
q Little Endians broke their eggs on the little end of the egg

20



Big Endian vs. Little Endian

21

0

4

8

C

.  
.  

.

Word 
Address

.  
.  

.

Byte 
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.  
.  

.
Byte 

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSBMSB
(Most Significant Byte)

LSB
(Least Significant Byte)

LSB in higher byte address LSB in lower byte address



Big Endian vs. Little Endian
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0

4

8

C

.  
.  

.

Word 
Address

.  
.  

.

Byte 
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.  
.  

.
Byte 

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-
endian system and one little-endian system 
have to share or exchange data
MSB

(Most Significant Byte)
LSB

(Least Significant Byte)
LSB in higher byte address LSB in lower byte address



Accessing Memory: MAR and MDR
n There are two ways of accessing memory

q Reading or loading data from a memory location
q Writing or storing data to a memory location

n Two registers are usually used to access memory
q Memory Address Register (MAR)
q Memory Data Register (MDR)

n To read
q Step 1: Load the MAR with the address we wish to read from
q Step 2: Data in the corresponding location gets placed in MDR

n To write
q Step 1: Load the MAR with the address and the MDR with the data 

we wish to write
q Step 2: Activate Write Enable signal à value in MDR is written to 

address specified by MAR
23



The von Neumann Model
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Processing Unit
n Performs the actual computation(s) 

n The processing unit can consist of many functional units

n We start with a simple Arithmetic and Logic Unit (ALU), 
which executes computation and logic operations 
q LC-3: ADD, AND, NOT (XOR in LC-3b)
q MIPS: add, sub, mult, and, nor, sll, slr, slt…

n The ALU processes quantities that are referred to as words
q Word length in LC-3 is 16 bits
q Word length in MIPS is 32 bits
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Recall: ALU (Arithmetic Logic Unit)
n Combines a variety of arithmetic and logical operations into 

a single unit (that performs only one function at a time)
n Usually denoted with this symbol:



Recall: Example ALU (Arithmetic Logic Unit)
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Processing Unit: Fast Temporary Storage
n It is almost always the case that a computer provides a 

small amount of storage very close to ALU
q Purpose: to store temporary values and quickly access them later

n E.g., to calculate ((A+B)*C)/D, the intermediate result of 
A+B can be stored in temporary storage
q Why? It is too slow to store each ALU result in memory & then 

retrieve it again for future use
n A memory access is much slower than an addition, multiplication 

or division
q Ditto for the intermediate result of ((A+B)*C)

n This temporary storage is usually a set of registers 
q Called Register File
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Registers: Fast Temporary Storage
n Memory is large but slow

n Registers in the Processing Unit
q Ensure fast access to values to be processed in the ALU
q Typically one register contains one word (same as word length)

n Register Set or Register File
q Set of registers that can be manipulated by instructions
q LC-3 has 8 general purpose registers (GPRs)

n R0 to R7: 3-bit register number
n Register size = Word length = 16 bits

q MIPS has 32 general purpose registers
n R0 to R31: 5-bit register number (or Register ID)
n Register size = Word length = 32 bits
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Recall: The Register
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Recall: The Register
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How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]



Recall: D Flip-Flop Based Register
n Multiple parallel D flip-flops, each of which storing 1 bit
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CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed



Recall: A 4-Bit D-Flip-Flop-Based Register (Internally)

33Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., tentative page 95.



MIPS Register File (Conventions)
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Name Register Number Usage
$0 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 function return value
$a0-$a3 4-7 function arguments
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 temporary variables
$k0-$k1 26-27 OS temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 function return address



The Von Neumann Model
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Input and Output
n Enable information to get into and out of a computer

n Many devices can be used for input and output

n They are called peripherals
q Input

n Keyboard
n Mouse
n Scanner
n Disks
n Etc.

q Output
n Monitor
n Printer
n Disks
n Etc.

q In LC-3, we consider keyboard and monitor
36



The Von Neumann Model
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Control Unit
n The control unit is like the conductor of an orchestra

n It conducts the step-by-step process of executing (every 
instruction in) a program (in sequence)

n It keeps track of which instruction being processed, via
q Instruction Register (IR), which contains the instruction

n It also keeps track of which instruction to process next, via
q Program Counter (PC) or Instruction Pointer (IP), another 

register that contains the address of the (next) instruction to 
process
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Programmer Visible (Architectural) State
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M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current (or next) instruction

Registers
-  given special names in the ISA
     (as opposed to addresses)
-  general vs. special purpose

Instructions (and programs) specify how to transform
             the values of programmer visible state



The von Neumann Model
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von Neumann Model: Two Key Properties
n Von Neumann model is also called stored program computer 

(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing
q One instruction processed (fetched, executed, completed) at a time
q Program counter (instruction pointer) identifies the current instruction
q Program counter is advanced sequentially except for control transfer 

instructions
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LC-3: A von Neumann Machine
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Another von Neumann Machine

43Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Another von Neumann Machine

44Source: https://twitter.com/Locuza_/status/1454152714930331652 

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652


Another von Neumann Machine

45https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



Another von Neumann Machine

46https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared



LC-3: A von Neumann Machine
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Stored Program & Sequential Execution
n Instructions and data are stored in memory

q Typically the instruction length is the word length

n The processor fetches instructions from memory sequentially
q Fetches one instruction
q Decodes and executes the instruction
q Continues with the next instruction

n The address of the current instruction is stored in the program 
counter (PC)

q If word-addressable memory, the processor increments the PC by 1 
(in LC-3)

q If byte-addressable memory, the processor increments the PC by the 
instruction length in bytes (4 in MIPS)
n In MIPS the OS typically sets the PC to 0x00400000 (start of a 

program)

48



n A sample MIPS program
q 4 instructions stored in consecutive words in memory

n No need to understand the program now. We will get back to it

A Sample Program Stored in Memory

49

.  
.  

.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2 

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte Address

.  
.  

.

lw $t2, 32($0)
add $s0, $s1, $s2

addi $t0, $s3, -12

sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020
0x02328020

0x2268FFF4

0x016D4022

Machine code (encoded instructions)

← PC



The Instruction
n An instruction is the most basic unit of computer processing

q Instructions are words in the language of a computer
q Instruction Set Architecture (ISA) is the vocabulary

n The language of the computer can be written as

q Machine language: Computer-readable representation (that is, 
0’s and 1’s)

q Assembly language: Human-readable representation

n We will study LC-3 instructions and MIPS instructions 
q Principles are similar in all ISAs (x86, ARM, RISC-V, …)
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The Instruction: Opcode & Operands
n An instruction is made up of two parts

n Opcode and Operands

n Opcode specifies what the instruction does
n Operands specify who the instruction is to do it to

n Both are specified in instruction format (or instr. encoding)
n An LC-3 instruction consists of 16 bits (bits [15:0])
n Bits [15:12] specify the opcode à 16 distinct opcodes in LC-3
n Bits [11:0] are used to figure out where the operands are
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Instruction Types
n There are three main types of instructions

n Operate instructions
q Execute operations in the ALU

n Data movement instructions
q Read from or write to memory

n Control flow instructions
q Change the sequence of execution

n Let us start with some example instructions
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An Example Operate Instruction
n Addition

q add: mnemonic to indicate the operation to perform

q b, c: source operands

q a: destination operand

q a ← b + c

53

a = b + c; add a, b, c

High-level code Assembly



Registers
n We map variables to registers
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add a, b, c b = R1
c = R2

a = R0

Assembly LC-3 registers

b = $s1
c = $s2

a = $s0

MIPS registers



n Addition

From Assembly to Machine Code in LC-3
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ADD  R0, R1, R2

LC-3 assembly

Field Values

Machine Code (Instruction Encoding)

0x1042
Machine Code, in short (hexadecimal)

1 0 1 0 00 2

OP DR SR1 SR2

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

OP DR SR1 SR2

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3



Instruction Format (or Encoding)
n LC-3 Operate Instruction Format

q OP = opcode (what the instruction does)
n E.g., ADD = 0001

q Semantics: DR ← SR1 + SR2
n E.g., AND = 0101

q Semantics: DR ← SR1 AND SR2

q SR1, SR2 = source registers

q DR = destination register
56

OP DR SR1 0 00 SR2
4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3



n Addition

From Assembly to Machine Code in MIPS
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0 17 18 16 0 32

op rs rt rd shamt funct

add $s0, $s1, $s2

MIPS assembly

Field Values

0x02328020

000000 10001 10010 10000 00000 100000

op rs rt rd shamt funct
Machine Code (Instruction Encoding)

15 11 10 6 05162021252631

rd ← rs + rt



Instruction Format: R-Type in MIPS
n MIPS R-type Instruction Format

q 3 register operands

q 0 = opcode

q rs, rt = source registers

q rd = destination register

q shamt = shift amount (only shift operations)

q funct = operation in R-type instructions

58

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits



Reading Operands from Memory
n With operate instructions, such as addition, we tell the 

computer to execute arithmetic (or logic) computations in 
the ALU

n We also need instructions to access the operands from 
memory
q Load them from memory to registers
q Store them from registers to memory

n Next, we see how to read (or load) from memory

n Writing (or storing) is performed in a similar way, but we 
will talk about that later
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Reading Word-Addressable Memory
n Load word

q load: mnemonic to indicate the load word operation

q A: base address

q i: offset
n E.g., immediate or literal (a constant)

q a: destination operand

q Semantics: a ← Memory[A + i]

60

a = A[i]; load a, A, i

High-level code Assembly



Load Word in LC-3 and MIPS
n LC-3 assembly

n MIPS assembly (assuming word-addressable)
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a = A[2]; LDR  R3, R0, #2

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]

a = A[2]; lw $s3, 2($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 2]

These instructions use a particular addressing mode 
(i.e., the way the address is calculated), called base+offset



Load Word in Byte-Addressable MIPS
n MIPS assembly

n Byte address is calculated as: word_address * bytes/word

q 4 bytes/word in MIPS

q If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word
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a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]



n LC-3

n MIPS

Instruction Format With Immediate

63

6 3 0 2

OP DR BaseR offset6

LDR  R3, R0, #2

LC-3 assembly

Field Values

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

I-Type
15 0162021252631

5 0689111215



Instruction (Processing) Cycle

64



How Are These Instructions Executed?
n By using instructions, we can speak the language of the 

computer

n Thus, we now know how to tell the computer to

q Execute computations in the ALU by using, for instance, an 
addition

q Access operands from memory by using the load word 
instruction

n But, how are these instructions executed on the computer?

q The process of executing an instruction is called is the 
instruction cycle (or, instruction processing cycle)
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The Instruction Cycle
n The instruction cycle is a sequence of steps or phases, that an 

instruction goes through to be executed
q FETCH
q DECODE
q EVALUATE ADDRESS
q FETCH OPERANDS
q EXECUTE
q STORE RESULT

n Not all instructions require the six phases
q LDR does not require EXECUTE

q ADD does not require EVALUATE ADDRESS

q Intel x86 instruction ADD [eax], edx is an example of instruction 
with six phases

66



After STORE RESULT, a New FETCH

q FETCH
q DECODE

q EVALUATE ADDRESS

q FETCH OPERANDS

q EXECUTE
q STORE RESULT

67



FETCH
n The FETCH phase obtains the instruction from memory and 

loads it into the Instruction Register (IR) 

n This phase is common to every instruction type

n Complete description
q Step 1: Load the MAR with the contents of the PC, and 

simultaneously increment the PC

q Step 2: Interrogate memory. This results in the instruction 
being placed in the MDR by memory

q Step 3: Load the IR with the contents of the MDR

68



FETCH in LC-3

69
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with the content 
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DECODE
n The DECODE phase identifies the instruction

q Also generates the set of control signals to process the 
identified instruction in later phases of the instruction cycle

n Recall the decoder (from Lecture 5)

q A 4-to-16 decoder identifies which of the 16 opcodes is going 
to be processed

n The input is the four bits IR[15:12]

n The remaining 12 bits identify what else is needed to 
process the instruction

70



DECODE in LC-3

71

Scanned by CamScanner

DECODE 
identifies the 
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Recall: Decoder
n “Input pattern detector”
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The output that is logically 1 is the output corresponding to 

the input pattern that the logic circuit is expected to detect
n Example: 2-to-4 decoder

72



Recall: Decoder (II)
n The decoder is useful in determining how to interpret a bit 

pattern

73

A = 1 0B = 0

0

1

0

q It could be the 
address of a location 
in memory, that the 
processor intends to 
read from

q It could be an 
instruction in the 
program and the 
processor needs to 
decide what action to 
take (based on 
instruction opcode)



To Come: Full State Machine for LC-3b

74https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=pp-appendixc.pdf 

Decode State

https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=pp-appendixc.pdf


EVALUATE ADDRESS
n The EVALUATE ADDRESS phase computes the address of 

the memory location that is needed to process the 
instruction

n This phase is necessary in LDR

q It computes the address of the data word that is to be read 
from memory

q By adding an offset to the content of a register

n But not necessary in ADD

75



EVALUATE ADDRESS in LC-3

76
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FETCH OPERANDS
n The FETCH OPERANDS phase obtains the source operands 

needed to process the instruction

n In LDR
q Step 1: Load MAR with the address calculated in EVALUATE 

ADDRESS

q Step 2: Read memory, placing source operand in MDR

n In ADD
q Obtain the source operands from the register file

q In some microprocessors, operand fetch from register file can 
be done at the same time the instruction is being decoded
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FETCH OPERANDS in LC-3
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Scanned by CamScanner

LDR loads MAR 
(step 1), and 

places the 
results in MDR 

(step 2)



EXECUTE

n The EXECUTE phase executes the instruction

q In ADD, it performs addition in the ALU

q In XOR, it performs bitwise XOR in the ALU

q …
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EXECUTE in LC-3
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Scanned by CamScanner

ADD adds SR1 
and SR2



STORE RESULT
n The STORE RESULT phase writes the result to the 

designated destination

n Once STORE RESULT is completed, a new instruction cycle 
starts (with the FETCH phase)

81



Scanned by CamScanner

STORE RESULT in LC-3
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ADD loads ALU 
Result into DR



STORE RESULT in LC-3
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Scanned by CamScanner

LDR loads 
MDR into DR



The Instruction Cycle

q FETCH
q DECODE

q EVALUATE ADDRESS

q FETCH OPERANDS

q EXECUTE
q STORE RESULT
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Changing the Sequence of Execution
n A computer program executes in sequence (i.e., in program 

order)
q First instruction, second instruction, third instruction and so on

n Unless we change the sequence of execution

n Control instructions allow a program to execute out of 
sequence
q They can change the PC by loading it during the EXECUTE 

phase
q That wipes out the incremented PC (loaded during the FETCH 

phase)
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Jump in LC-3
n Unconditional branch or jump

n LC-3

q BaseR = Base register
q PC ← R2 (Register identified by BaseR)

q Variations
n RET: special case of JMP where BaseR = R7
n JSR, JSRR: jump to subroutine
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JMP  R2

1100 000 000000
4 bits

BaseR

3 bits

This is register 
addressing mode



Jump in MIPS
n Unconditional branch or jump

n MIPS

q 2 = opcode
q target = target address

q PC ← PC✝[31:28] | sign-extend(target) * 4

q Variations
n jal: jump and link (function calls)

n jr: jump register
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2 target
6 bits 26 bits

j target

J-Type

jr $s0

j uses pseudo-
direct addressing 

mode

✝This is the incremented PC

jr uses register 
addressing mode



Scanned by CamScanner

PC UPDATE in LC-3
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JMP loads 
SR1 into PC



Control of the Instruction Cycle
n State 1

q The FSM asserts GatePC and 
LD.MAR

q It selects input (+1) in PCMUX and 
asserts LD.PC

n State 2
q MDR is loaded with the instruction

n State 3
q The FSM asserts GateMDR and 

LD.IR

n State 4
q The FSM goes to next state 

depending on opcode

n State 63
q JMP loads register into PC

n Full state diagram in Patt&Pattel, 
Appendix C

89

4.3 Instruction Processing 109

PC <– Register

State 1

State 2

State 3

State 4

MAR <– PC�
PC <– PC + 1

MDR <– M[MAR]

IR <– MDR

JMP
LDR

ADD

[opcode]

Last state�
to carry out�

ADD instruction

Last state�
to carry out�

LDR instruction

To state 1 To state 1 To state 1

State 63

FETCH

First state after�
DECODE for�

ADD instruction

First state after�
DECODE for�

LDR instruction

First state after�
DECODE for�

JMP instruction

DECODE

Figure 4.4 An abbreviated state diagram of the LC-3

the IR to be latched at the end of the clock cycle, concluding the FETCH phase
of the instruction.

The DECODE phase takes one cycle. In state 4, using the external input
IR, and in particular the opcode bits of the instruction, the finite state machine
can go to the appropriate next state for processing instructions depending on
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the
instruction completes execution, and the next state logic returns the finite state
machine to state 1.

As we mentioned earlier in this section, it is sometimes necessary not to
execute the next sequential instruction but rather to jump to another location to
find the next instruction to execute. As we have said, instructions that change the
flow of instruction processing in this way are called control instructions. This can
be done very easily by loading the PC during the EXECUTE phase of the control
instruction, as in state 63 of Figure 4.4, for example.

This is an FSM Controlling the LC-3 Processor



The Instruction Cycle

q FETCH
q DECODE

q EVALUATE ADDRESS

q FETCH OPERANDS

q EXECUTE
q STORE RESULT
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LC-3 and MIPS 
Instruction Set Architectures
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Agenda for Today & Next Few Lectures

n The von Neumann model
n LC-3: An example of von Neumann machine

n LC-3 and MIPS Instruction Set Architectures

n LC-3 and MIPS assembly and programming

n Introduction to microarchitecture and                         
single-cycle microarchitecture

n Multi-cycle microarchitecture
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Electrons



The Instruction Set
n It defines opcodes, data types, and addressing modes
n ADD and LDR have been our first examples
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ADD

1 0 1 0 00 2

OP DR SR1 SR2

6 3 0 4

OP DR BaseR offset6
LDR

Register mode

Base+offset mode



The Instruction Set Architecture
n The ISA is the interface between what the software commands 

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 8 bits)

n Word- or Byte-addressable

q The register set
n 8 registers (R0 to R7) in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes
n Length and format of instructions

94

Microarchitecture
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Instructions (Opcodes)
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Opcodes
n A large or small set of opcodes could be defined

q E.g, HP Precision Architecture: an instruction for A*B+C
q E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX
q E.g, VAX ISA: opcode to save all information of one program 

prior to switching to another program 

n Tradeoffs are involved. Examples:
q Hardware complexity vs. software complexity
q Latency of simple vs. complex instructions

n In LC-3 and in MIPS there are three types of opcodes
q Operate
q Data movement
q Control
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Opcodes in LC-3
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5.1 The ISA: Overview 119

BaseR� 000000�

DR�

DR� SR� 111111�

000000000000�

SR�

BaseR� offset6�

0000� trapvect8�

0 0 �0� BaseR� 000000�

1� PCoffset11�

PCoffset9�

PCoffset9�

PCoffset9�

PCoffset9�STI�

STR�

TRAP�

reserved�

0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15�

z�n p �

DR� SR1� 1� imm5�0101�

0000�

000�

DR� SR1� 0 0 �0� SR2�0101�

0001� DR� SR1� 1� imm5�

0001� DR� SR1� 0 0 �0� SR2�

DR�

DR�

1100�

1010�

0110�

1110�

1001�

1100�

1000�

0011�

BaseR� offset6�

000� 111� 000000�

SR�1011�

0111�

1111�

1101�

SR�

0100�

DR�0010�

0100�

PCoffset9�

PCoffset9�

BR�

AND+�

ADD+�

ADD+�

AND+�

JMP�

LD+�

LDI+�

LDR+�

LEA+�

NOT+�

RET�

RTI�

ST�

JSRR�

JSR�

Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: + indicates instructions
that modify condition codes



Opcodes in LC-3b
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MIPS Instruction Types
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opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type



Funct in MIPS R-Type Instructions (I)
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Table B.1 Instructions, sorted by opcode—Cont’d

Opcode Name Description Operation

101000 (40) sb rt, imm(rs) store byte [Address]7:0 = [rt]7:0

101001 (41) sh rt, imm(rs) store halfword [Address]15:0 = [rt]15:0

101011 (43) sw rt, imm(rs) store word [Address] = [rt]

110001 (49) lwc1 ft, imm(rs) load word to FP coprocessor 1 [ft] = [Address]

111001 (56) swc1 ft, imm(rs) store word to FP coprocessor 1 [Address] = [ft]

Table B.2 R-type instructions, sorted by funct field

Funct Name Description Operation

000000 (0) sll rd, rt, shamt shift left logical [rd] = [rt] << shamt

000010 (2) srl rd, rt, shamt shift right logical [rd] = [rt] >> shamt

000011 (3) sra rd, rt, shamt shift right arithmetic [rd] = [rt] >>> shamt

000100 (4) sllv rd, rt, rs shift left logical variable [rd] = [rt] << [rs]4:0

000110 (6) srlv rd, rt, rs shift right logical variable [rd] = [rt] >> [rs]4:0

000111 (7) srav rd, rt, rs shift right arithmetic variable [rd] = [rt] >>> [rs]4:0

001000 (8) jr rs jump register PC = [rs]

001001 (9) jalr rs jump and link register $ra = PC + 4, PC = [rs]

001100 (12) syscall system call system call exception

001101 (13) break break break exception

010000 (16) mfhi rd move from hi [rd] = [hi]

010001 (17) mthi rs move to hi [hi] = [rs]

010010 (18) mflo rd move from lo [rd] = [lo]

010011 (19) mtlo rs move to lo [lo] = [rs]

011000 (24) mult rs, rt multiply {[hi], [lo]} = [rs] × [rt]

011001 (25) multu rs, rt multiply unsigned {[hi], [lo]} = [rs] × [rt]

011010 (26) div rs, rt divide [lo] = [rs]/[rt],
[hi] = [rs]%[rt]

011011 (27) divu rs, rt divide unsigned [lo] = [rs]/[rt],
[hi] = [rs]%[rt]

(continued)

APPENDIX B 621

Harris and Harris, Appendix B: MIPS Instructions

Opcode is 0 
in MIPS       
R-Type 

instructions.

Funct defines 
the operation



Funct in MIPS R-Type Instructions (II)

101Harris and Harris, Appendix B: MIPS Instructions

Table B.2 R-type instructions, sorted by funct field—Cont’d

Funct Name Description Operation

100000 (32) add rd, rs, rt add [rd] = [rs] + [rt]

100001 (33) addu rd, rs, rt add unsigned [rd] = [rs] + [rt]

100010 (34) sub rd, rs, rt subtract [rd] = [rs] – [rt]

100011 (35) subu rd, rs, rt subtract unsigned [rd] = [rs] – [rt]

100100 (36) and rd, rs, rt and [rd] = [rs] & [rt]

100101 (37) or rd, rs, rt or [rd] = [rs] | [rt]

100110 (38) xor rd, rs, rt xor [rd] = [rs] ^ [rt]

100111 (39) nor rd, rs, rt nor [rd] = ~([rs] | [rt])

101010 (42) slt rd, rs, rt set less than [rs] < [rt] ? [rd] = 1 : [rd] = 0

101011 (43) sltu rd, rs, rt set less than unsigned [rs] < [rt] ? [rd] = 1 : [rd] = 0

Table B.3 F-type instructions (fop = 16/17)

Funct Name Description Operation

000000 (0) add.s fd, fs, ft /
add.d fd, fs, ft

FP add [fd] = [fs] + [ft]

000001 (1) sub.s fd, fs, ft /
sub.d fd, fs, ft

FP subtract [fd] = [fs] – [ft]

000010 (2) mul.s fd, fs, ft /
mul.d fd, fs, ft

FP multiply [fd] = [fs] × [ft]

000011 (3) div.s fd, fs, ft /
div.d fd, fs, ft

FP divide [fd] = [fs]/[ft]

000101 (5) abs.s fd, fs /
abs.d fd, fs

FP absolute value [fd] = ([fs] < 0) ? [–fs]
: [fs]

000111 (7) neg.s fd, fs /
neg.d fd, fs

FP negation [fd] = [–fs]

111010 (58) c.seq.s fs, ft /
c.seq.d fs, ft

FP equality comparison fpcond = ([fs] == [ft])

111100 (60) c.lt.s fs, ft /
c.lt.d fs, ft

FP less than comparison fpcond = ([fs] < [ft])

111110 (62) c.le.s fs, ft /
c.le.d fs, ft

FP less than or equal comparison fpcond = ([fs] ≤ [ft])

622 APPENDIX B MIPS Instructions

n More complete list of instructions are in H&H Appendix B



Data Types
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Data Types
n An ISA supports one or several data types

n LC-3 only supports 2’s complement integers
q Negative of a 2’s complement binary value X = NOT(X) + 1

n MIPS supports
q 2’s complement integers
q Unsigned integers
q Floating point

n Tradeoffs are involved. Examples:
q Hardware complexity vs. software complexity
q Latency of operations on supported vs. unsupported data types 
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Why Have Different Data Types in ISA?
n An example of programmer vs. microarchitect tradeoff

n Advantage of more data types:
q Enables better mapping of high-level programming constructs to 

hardware
n Hardware can directly operate on data types present in programming 

languages à small number of instructions and code size
q Matrix operations vs. individual multiply/add/load/store instructions
q Graph operations vs. individual load/store/add/… instructions

n Disadvantage:
q More work for the microarchitect 

n who needs to implement the data types and instructions that operate 
on data types
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Data Types and Instruction Complexity
n Data types are coupled tightly to the semantic level, or 

complexity of instructions

n Concept of semantic gap
q how close instructions & data types are to high-level language

n Complex instructions + data types à small semantic gap
q E.g., insert into a doubly linked list, multiply two matrices
q VAX ISA: doubly-linked list, multi-dimensional arrays

n Simple instructions + data types à large semantic gap
q E.g., primitive operations: load, store, multiply, add, nor
q Early RISC machines: Only integer data type, simple operations
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Semantic Gap
n How close instructions & data types are to high-level 

language (HLL)
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Complex vs. Simple Instructions+Data Types
n Complex instruction: An instruction does a lot of work, e.g. 

many operations
q Insert in a doubly linked list
q Compute FFT
q String copy
q Matrix multiply
q … 

n Simple instruction: An instruction does little work -- it is a 
primitive using which complex operations can be built
q Add
q XOR
q Multiply
q …
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Complex vs. Simple Instructions+Data Types
n Advantages of Complex Instructions + Data Types

+ Denser encoding à smaller code size à better memory 
utilization, saves off-chip bandwidth, better cache hit rate 
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as 
much 

n Disadvantages of Complex Instructions + Data Types
- Larger chunks of work à compiler has less opportunity to 

optimize (limited in fine-grained optimizations it can do)
- More complex hardware à translation from a high level to 

control signals and optimization needs to be done by hardware
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Aside: An Example: BinaryCodedDecimal
n Each decimal digit is encoded with a fixed number of bits
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"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English 
Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

"Digital-BCD-clock" by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg



Aside: An Example: BinaryCodedDecimal
n Each decimal digit is encoded with a fixed number of bits
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"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English 
Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons - 
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Addressing Modes
n An addressing mode is a mechanism for specifying where 

an operand is located

n There are five addressing modes in LC-3
q Immediate or literal (constant)

n The operand is in some bits of the instruction
q Register

n The operand is in one of R0 to R7 registers
q Three memory addressing modes

n PC-relative
n Indirect
n Base+offset

n MIPS has pseudo-direct addressing (for j and jal), 
additionally, but does not have indirect addressing
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Why Have Different Addressing Modes?
n Another example of programmer vs. microarchitect tradeoff

n Advantage of more addressing modes:
q Enables better mapping of high-level programming constructs to 

hardware
n some accesses are better expressed with a different mode à 

reduced number of instructions and code size
q Array indexing 
q Pointer-based accesses (indirection)
q Sparse matrix accesses

n Disadvantages:
q More work for the microarchitect
q More options for the compiler to decide what to use
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Semantic Gap Applies to Addressing Modes
n How close instructions & data types & addressing modes 

are to high-level language (HLL)
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Many Tradeoffs in ISA Design... 
n Execution model – sequencing model and processing style
n Instruction length
n Instruction format
n Instruction types 
n Instruction complexity vs. simplicity
n Data types
n Number of registers
n Addressing mode types
n Memory organization (address space, addressability, endianness, …)
n Memory access restrictions and permissions
n Support for multiple instructions to execute in parallel?
n …
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Operate Instructions
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Operate Instructions
n In LC-3, there are three operate instructions

q NOT is a unary operation (one source operand)
n It executes bitwise NOT

q ADD and AND are binary operations (two source operands)
n ADD is 2’s complement addition
n AND is bitwise SR1 & SR2

n In MIPS, there are many more
q Most of R-type instructions (they are binary operations)

n E.g., add, and, nor, xor…
q I-type versions (i.e., with one immediate operand) of the R-

type operate instructions
q F-type operations, i.e., floating-point operations

117



n NOT assembly and machine code

NOT in LC-3

118

NOT  R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

5.2 Operate Instructions 121

1616

R0

R1

R2

R3

R4

R5

R6

R7

A

ALU
NOT

B

0101000011110000

1010111100001111

Figure 5.4 Data path relevant to the execution of NOT R3, R5

Figure 5.4 shows the key parts of the data path that are used to perform the
NOT instruction shown here. Since NOT is a unary operation, only the A input
of the ALU is relevant. It is sourced from R5. The control signal to the ALU
directs the ALU to perform the bit-wise complement operation. The output of the
ALU (the result of the operation) is stored into R3.

The ADD (opcode = 0001) and AND (opcode = 0101) instructions both
perform binary operations; they require two 16-bit source operands. The ADD
instruction performs a 2’s complement addition of its two source operands. The
AND instruction performs a bit-wise AND of each pair of bits in its two 16-bit
operands. Like the NOT, the ADD and AND use the register addressing mode for
one of the source operands and for the destination operand. Bits [8:6] specify the
source register and bits [11:9] specify the destination register (where the result
will be written).

The second source operand for both ADD and AND instructions can be
specified by either register mode or as an immediate operand. Bit [5] determines
which is used. If bit [5] is 0, then the second source operand uses a register, and
bits [2:0] specify which register. In that case, bits [4:3] are set to 0 to complete
the specification of the instruction.

Register file

SR

DR

From 
FSM

There is no NOT in MIPS. How is it implemented?



Operate Instructions
n We are already familiar with LC-3’s ADD and AND with 

register mode (R-type in MIPS)

n Now let us see the versions with one literal (i.e., immediate) 
operand

n We will use Subtraction as an example
q How is it implemented in LC-3 and MIPS?
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Recall: LC-3 Operate Instruction Format
n LC-3 Operate Instruction Format (Register OP Register)

q OP = opcode (what the instruction does)
n E.g., ADD = 0001

q Semantics: DR ← SR1 + SR2
n E.g., AND = 0101

q Semantics: DR ← SR1 AND SR2

q SR1, SR2 = source registers

q DR = destination register
120

OP DR SR1 0 00 SR2
4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3



Operate Instr. with one Literal in LC-3
n ADD and AND

q OP = operation
n E.g., ADD = 0001 (same OP as the register-mode ADD)

q DR ← SR1 + sign-extend(imm5)

n E.g., AND = 0101 (same OP as the register-mode AND)
q DR ← SR1 AND sign-extend(imm5)

q SR1 = source register

q DR = destination register

q imm5 = Literal or immediate (sign-extend to 16 bits)

121

OP DR SR1 1 imm5
4 bits 3 bits 3 bits 5 bits



n ADD assembly and machine code 

ADD with one Literal in LC-3

122

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

122 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value−18, then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

R1 will contain the value −12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD R1, R4, #−2.

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2’s complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

16

1 0

0001 001 100 1  11110

ADD R1 R4  –2

16

5

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2

Register file

SR

DR

From 
FSM

Instruction register

Sign-
extend
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MDR

MEMORY

MAR

INPUT OUTPUT

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

1616

16

SR2MUX

16
LD.IR

16

16

PC

+

IR

ZEXT

SR2
OUT

SR1
OUT

FILE

[7:0]

2

PCMUX

GatePC

LD.PCMARMUX

ALUK

16 16

16
3

3 3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

ALU

AB

N Z P

LOGIC

LD.CC

R
STATE

LD.MDR

16

MEM.EN, R.W

FINITE

REG

LD.MAR

16
16 16

MACHINE

GateALU

CONTROL

GateMDR

Figure 5.18 The data path of the LC-3

ADD with one Literal in LC-3 Data Path
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Instructions with one Literal in MIPS
n I-type MIPS Instructions

q 2 register operands and immediate
n Some operate and data movement instructions

q opcode = operation

q rs = source register

q rt = 
n destination register in some instructions (e.g., addi, lw)
n source register in others (e.g., sw)

q imm = Literal or immediate
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opcode rs rt imm
6 bits 5 bits 5 bits 16 bits



n Add immediate

ADD with one Literal in MIPS
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8 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm
Machine Code

0x22300005

rt ← rs + sign-extend(imm)



Subtraction in MIPS vs. LC-3
n MIPS assembly

n LC-3 assembly

n Tradeoff in LC-3
q More instructions
q But, simpler control logic

126

a = b + c - d; add $t0, $s0, $s1
sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD  R2, R0, R1
NOT  R4, R3

ADD  R5, R4, #1

ADD  R6, R2, R5

High-level code LC-3 assembly

2’s 
complement 
of R3



Subtract Immediate
n MIPS assembly

n LC-3

127

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly



Data Movement Instructions 
and Addressing Modes
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Data Movement Instructions
n In LC-3, there are seven data movement instructions

q LD, LDR, LDI, LEA, ST, STR, STI

n Format of load and store instructions
q Opcode (bits [15:12])
q DR or SR (bits [11:9])
q Address generation bits (bits [8:0])
q Four ways to interpret bits, called addressing modes

n PC-Relative Mode
n Indirect Mode
n Base+Offset Mode
n Immediate Mode

n In MIPS, there are only Base+offset and Immediate modes 
for load and store instructions
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PC-Relative Addressing Mode
n LD (Load) and ST (Store)

q OP = opcode
n E.g., LD = 0010
n E.g., ST = 0011

q DR = destination register in LD
q SR = source register in ST

q LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

q ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR
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OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC



n LD assembly and machine code 

LD in LC-3

131

LD R2, 0x1AF

LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 

OP DR PCoffset9

15 12 11 9 8 0
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16

16

1616

1

R0

R1

R2

R3

R4

R5

R6

R7

0010 010 110101111

15 0

IR[8:0]

PC

IR

0100  0000  0001  1001 SEXT

MAR MDR
MEMORY

0000000000000101

ADD

LD R2 x1AF

1111111110101111

3

2

Figure 5.6 Data path relevant to execution of LD R2, x1AF

incremented PC (x4019) is added to the sign-extended value contained in IR[8:0]
(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is
read and the contents of x3FC8 are loaded into theMDR. Suppose the value stored
in x3FC8 is 5. In step 3, the value 5 is loaded into R2, completing the instruction
cycle.

Note that the address of the memory operand is limited to a small range of the
total memory. That is, the address can only be within +256 or−255 locations of
the LD or ST instruction since the PC is incremented before the offset is added.
This is the range provided by the sign-extended value contained in bits [8:0] of
the instruction.

5.3.2 Indirect Mode

LDI (opcode = 1010) and STI (opcode = 1011) specify the indirect address-
ing mode. An address is first formed exactly the same way as with LD and ST.
However, instead of this address being the address of the operand to be loaded or
stored, it contains the address of the operand to be loaded or stored. Hence the
name indirect. Note that the address of the operand can be anywhere in the com-
puter’s memory, not just within the range provided by bits [8:0] of the instruction
as is the case for LD and ST. The destination register for the LDI and the source

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address 
calculation

2. Memory 
read

3. DR is 
loaded

The memory address is only +255 to -256 
locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode 
cannot address far away from the 

instruction



Indirect Addressing Mode
n LDI (Load Indirect) and STI (Store Indirect)

q OP = opcode
n E.g., LDI = 1010
n E.g., STI = 1011

q DR = destination register in LDI
q SR = source register in STI

q LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

q STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR
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OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC



n LDI assembly and machine code 

LDI in LC-3
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LDI R3, 0x1CC

LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory
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register for STI, like all the other loads and stores, are specified in bits [11:9] of
the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

LDI R3 x1CC

is in x4A1B, and the contents of x49E8 is x2110, execution of this instruction
results in the contents of x2110 being loaded into R3.

Figure 5.7 shows the relevant parts of the data path required to execute this
instruction. As is the case with the LD and ST instructions, the first step consists
of adding the incremented PC (x4A1C) to the sign-extended value contained in
IR[8:0] (xFFCC), and the result (x49E8) loaded into theMAR. In step 2, memory
is read and the contents of x49E8 (x2110) is loaded into theMDR. In step 3, since
x2110 is not the operand, but the address of the operand, it is loaded into theMAR.
In step 4, memory is again read, and the MDR again loaded. This time the MDR
is loaded with the contents of x2110. Suppose the value −1 is stored in memory
location x2110. In step 5, the contents of the MDR (i.e.,−1) are loaded into R3,
completing the instruction cycle.

16

16

1616
1

2
3 x2110

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

SEXT

MAR MDR
MEMORY

ADD

1111111111111111

1010 011 111001100 

x1CCR3

xFFCC

0100  1010  0001  1100

LDI

4

5

Figure 5.7 Data path relevant to the execution of LDI R3, x1CC
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Base+Offset Addressing Mode
n LDR (Load Register) and STR (Store Register)

q OP = opcode
n E.g., LDR = 0110
n E.g., STR = 0111

q DR = destination register in LDR
q SR = source register in STR

q LDR: DR ← Memory[BaseR + sign-extend(offset6)]

q STR: Memory[BaseR + sign-extend(offset6)] ← SR
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OP DR/SR offset6
4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR
3 bits



n LDR assembly and machine code 

LDR in LC-3

135

LDR R1, R2, 0x1D

LC-3 assembly

Again, the address of the operand can be anywhere in the memory

1. Address 
calculation

2. Memory 
read

3. DR is 
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5
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5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2’s complement integer
between −32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D
loads R1 with the contents of x2362.

Figure 5.8 shows the relevant parts of the data path required to execute this
instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (x001D), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,
the contents of the MDR (in this case, x0F0F) are loaded into R1.

1616

1

16

2

R0

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 1010 011 011

x1D

011101 

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.8 Data path relevant to the execution of LDR R1, R2, x1D
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extend
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Address Calculation in LC-3 Data Path
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Base+Offset Addressing Mode in MIPS
n In MIPS, lw and sw use base+offset mode (or base 

addressing mode)

n imm is the 16-bit offset, which is sign-extended to 32 bits

137

A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm
Field Values



An Example Program in MIPS and LC-3
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a    = A[0];
c    = a + b - 5;

B[0] = c; 

A = $s0
b = $s2

B = $s1

High-level code MIPS registers

LDR  R5, R0, #0
ADD  R6, R5, R2

ADD  R7, R6, #-5

STR  R7, R1, #0

LC-3 assembly
lw   $t0, 0($s0)
add  $t1, $t0, $s2

addi $t2, $t1, -5

sw   $t2, 0($s1)

MIPS assembly

A = R0
b = R2

B = R1

LC-3 registers



Immediate Addressing Mode (in LC-3)
n LEA (Load Effective Address)

q OP = 1110

q DR = destination register 

q LEA: DR ← PC✝ + sign-extend(PCoffset9)
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OP DR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode load from memory, 
but LEA does not à Hence the name Load Effective Address



n LEA assembly and machine code 

LEA in LC-3

140

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 

OP DR PCoffset9

15 12 11 9 8 0
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Note that the Base+offset addressing mode also allows the address of the
operand to be anywhere in the computer’s memory.

5.3.4 Immediate Mode

The fourth and last addressing mode used by the data movement instructions is
the immediate (or, literal) addressing mode. It is used only with the load effective
address (LEA) instruction. LEA (opcode = 1110) loads the register specified by
bits [11:9] of the instruction with the value formed by adding the incremented
program counter to the sign-extended bits [8:0] of the instruction. The immediate
addressing mode is so named because the operand to be loaded into the desti-
nation register is obtained immediately, that is, without requiring any access of
memory.

The LEA instruction is useful to initialize a register with an address that
is very close to the address of the instruction doing the initializing. If memory
location x4018 contains the instruction LEAR5, #−3, and the PC contains x4018,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

LEA R5 −3

R5 will contain x4016 after the instruction at x4018 is executed.
Figure 5.9 shows the relevant parts of the data path required to execute the

LEA instruction. Note that no access to memory is required to obtain the value
to be loaded.
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Figure 5.9 Data path relevant to the execution of LEA R5, #−3
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Address Calculation in LC-3 Data Path
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Immediate Addressing Mode in MIPS
n In MIPS, lui (load upper immediate) loads a 16-bit 

immediate into the upper half of a register and sets the 
lower half to 0

n It is used to assign 32-bit constants to a register

142

a = 0x6d5e4f3c; # $s0 = a
lui $s0, 0x6d5e

ori $s0, 0x4f3c

High-level code MIPS assembly



Addressing Example in LC-3
n What is the final value of R3?

143
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Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

P&P, Chapter 5.3.5



n What is the final value of R3?

n The final value of R3 is 5

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

Addressing Example in LC-3
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LEA
ADD
ST
AND
ADD
STR
LDI

-3
14

-5

5
14

-9

0

R3 = M[M[PC – 9]] = M[M[0x30FD – 9]] =

R1 = PC – 3 = 0x30F7 – 3 = 0x30F4
R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC - 5] = M[0x030F4] = 0x3102
R2 = 0
R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

P&P, Chapter 5.3.5



Control Flow Instructions
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Control Flow Instructions
n Allow a program to execute out of sequence

n Conditional branches and unconditional jumps

q Conditional branches are used to make decisions
n E.g., if-else statement

q In LC-3, three condition codes are used

q Jumps are used to implement
n Loops
n Function calls

q JMP in LC-3 and j in MIPS
n We have already seen these

146



Conditional Control Flow
(Conditional Branching)

147



Condition Codes in LC-3
n Each time one GPR (R0-R7) is written, three single-bit registers 

are updated

n Each of these condition codes are either set (set to 1) or cleared 
(set to 0)

q If the written value is negative
n N is set, Z and P are cleared

q If the written value is zero
n Z is set, N and P are cleared

q If the written value is positive
n P is set, N and Z are cleared

n x86 and SPARC are examples of ISAs that use condition codes
148



Conditional Branches in LC-3
n BRz (Branch if Zero)

q n, z, p = which condition code is tested (N, Z, and/or P)
n n, z, p: instruction bits to identify the condition codes to be tested
n N, Z, P: values of the corresponding condition codes

q PCoffset9 = immediate or constant value

q if ((n AND N) OR (p AND P) OR (z AND Z))
n then PC ← PC✝ + sign-extend(PCoffset9)

q Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp
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BRz PCoffset9

0000 n PCoffset9
4 bits 9 bits

z p

✝This is the incremented PC



Conditional Branches in LC-3
n BRz

150

BRz 0x0D9

What if n = z = p = 1?*
(i.e., BRnzp)

And what if n = z = p = 0?

132 chapter 5 The LC-3

16

SEXT

16 16

PCMUX

ADD

0000000011011001

IR 010

N Z P PCoffset9BR

0000 011011001 

9

Yes!

PZN

0 1 0

PC 0100  0000  0010  1000

0100  0001  0000  0001

Figure 5.11 Data path relevant to the execution of BRz x0D9

the instruction flow is changed unconditionally, that is, independent of the data
that is being processed.

For example, if the following instruction,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1

BR n z p x185

located at x507B, is executed, the PC is loaded with x5001.
What happens if all three bits [11:9] in the BR instruction are 0?

5.4.2 An Example

We are ready to show by means of a simple example the value of having control
instructions in the instruction set.

Suppose we know that the 12 locations x3100 to x310B contain integers, and
we wish to compute the sum of these 12 integers.

Instruction 
register

Program 
Counter

Condition 
registers

n  z  p 

*n, z, p are the instruction bits to identify the condition codes to be tested



Conditional Branches in MIPS
n beq (Branch if Equal)

q 4 = opcode

q rs, rt = source registers

q offset = immediate or constant value

q if rs == rt
n then PC ← PC✝ + sign-extend(offset) * 4

q Variations: beq, bne, blez, bgtz

151

4 rs rt offset
6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC



n This is an example of tradeoff in the instruction set

q The same functionality requires more instructions in LC-3

q But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3

152

LC-3 assemblyMIPS assembly
NOT  R2, R1
ADD  R3, R2, #1

ADD  R4, R3, R0

BRz offset

Subtract 
(R0 - R1)



What We Learned
n Basic elements of a computer & the von Neumann model

q LC-3: An example von Neumann machine

n Instruction Set Architectures: LC-3 and MIPS
q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats

n Addressing modes
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



There Is A Lot More to Cover on ISAs 

154https://www.youtube.com/onurmutlulectures 
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Many Different ISAs Over Decades
n x86
n PDP-x: Programmed Data Processor (PDP-11)
n VAX
n IBM 360
n CDC 6600
n SIMD ISAs: CRAY-1, Connection Machine
n VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
n PowerPC, POWER
n RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, …

n What are the fundamental differences?
q E.g., how instructions are specified and what they do 
q E.g., how complex are instructions, data types, addr. modes
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Complex vs. Simple Instructions+Data Types
n Complex instruction: An instruction does a lot of work, e.g. 

many operations
q Insert in a doubly linked list
q Compute FFT
q String copy
q Matrix multiply
q … 

n Simple instruction: An instruction does little work -- it is a 
primitive using which complex operations can be built
q Add
q XOR
q Multiply
q …
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Complex vs. Simple Instructions+Data Types
n Advantages of Complex Instructions + Data Types

+ Denser encoding à smaller code size à better memory 
utilization, saves off-chip bandwidth, better cache hit rate 
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as 
much 

n Disadvantages of Complex Instructions + Data Types
- Larger chunks of work à compiler has less opportunity to 

optimize (limited in fine-grained optimizations it can do)
- More complex hardware à translation from a high level to 

control signals and optimization needs to be done by hardware
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Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

Semantic Gap
n How close instructions & data types & addressing modes 

are to high-level language (HLL)

HLL

HW
Control 
Signals

HLL

HW
Control 
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW



How to Change the Semantic Gap Tradeoffs
n Translate from one ISA into a different “implementation” ISA
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HLL

HW
Control 
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

ARM v8.4



An Example: Rosetta 2 Binary Translator

160https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2 

https://en.wikipedia.org/wiki/Rosetta_(software)


An Example: Rosetta 2 Binary Translator

161Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Another Example: Intel and AMD Processors
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HLL

HW
Control 
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

Secret
Micro-operations



Another Example: Intel and AMD Processors

163Source: https://twitter.com/Locuza_/status/1454152714930331652 

Intel Alder Lake,
2021

https://twitter.com/Locuza_/status/1454152714930331652


Another Example: Intel and AMD Processors

164https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



Another Example: NVIDIA Denver

165https://www.anandtech.com/show/8701/the-google-nexus-9-review/4
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1



Transmeta: x86 to VLIW Translation

166
Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon



ISA-level Tradeoffs: Number of Registers
n Affects:

q Number of bits used for encoding register address
q Number of values kept in fast storage (register file)
q (uarch) Size, access time, power consumption of register file

n Large number of registers:
+ Enables better register allocation (and optimizations) by 

compiler à fewer saves/restores
-- Larger instruction size
-- Larger register file size
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There Is A Lot More to Cover on ISAs 

168https://www.youtube.com/onurmutlulectures 

https://www.youtube.com/onurmutlulectures


There Is A Lot More to Cover on ISAs

169https://www.youtube.com/onurmutlulectures 

https://www.youtube.com/onurmutlulectures


Detailed Lectures on ISAs & ISA Tradeoffs
n Computer Architecture, Spring 2015, Lecture 3

q ISA Tradeoffs (CMU, Spring 2015)
q https://www.youtube.com/watch?v=QKdiZSfwg-

g&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=3

n Computer Architecture, Spring 2015, Lecture 4
q ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)
q https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=4

n Computer Architecture, Spring 2015, Lecture 2
q Fundamental Concepts and ISA (CMU, Spring 2015)
q https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHm2jkkXmi5CxxI7b3J

CL1TWybTDtKq&index=2 

170https://www.youtube.com/onurmutlulectures 

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures


ISA Design and Tradeoffs:
More Critical Thinking



The Von Neumann Model/Architecture

Stored program

Sequential instruction processing
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The von Neumann Model/Architecture

n Von Neumann model is also called stored program computer 
(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing
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When is a value interpreted as an instruction?



Recall: The Instruction Cycle

q FETCH
q DECODE

q EVALUATE ADDRESS

q FETCH OPERANDS

q EXECUTE
q STORE RESULT
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Whether a value fetched from memory is interpreted as an instruction depends on 
when that value is fetched in the instruction processing cycle.

Interpret memory value as Instruction

Interpret memory value as Data



The von Neumann Model/Architecture
n Von Neumann model is also called stored program computer 

(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing
q One instruction processed (fetched, executed, completed) at a time
q Program counter (instruction pointer) identifies the current instruction
q Program counter is advanced sequentially except for control transfer 

instructions
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When is a value interpreted as an instruction?



The von Neumann Model/Architecture
n Recommended reading

q Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946.

n Important reading
q Patt and Patel book, Chapter 4, “The von Neumann Model”

n Stored program

n Sequential instruction processing
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The Von Neumann Model (of a Computer)

177

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…



n Q: Is this the only way that a computer can process 
computer programs?

n A: No.
n Qualified Answer: No. But, it has been the dominant way 

q i.e., the dominant paradigm for computing
q for N decades

The Von Neumann Model (of a Computer)

178Let’s examine a completely different model for processing computer programs



The Dataflow Execution Model
of a Computer



The Dataflow Model (of a Computer)
n Von Neumann model: An instruction is fetched and 

executed in control flow order 
q As specified by the program counter (instruction pointer)
q Sequential unless explicit control flow instruction

n Dataflow model: An instruction is fetched and executed in 
data flow order
q i.e., when its operands are ready
q i.e., there is no program counter (instruction pointer)
q Instruction ordering specified by data flow dependence

n Each instruction specifies “who” should receive the result
n An instruction can “fire” whenever all operands are received

q Potentially many instructions can execute at the same time
n Inherently more parallel
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Von Neumann vs. Dataflow
n Consider a Von Neumann program 

q What is the significance of the program order?
q What is the significance of the storage locations?

181

v = a + b;   
w = b * 2;
x = v - w
y = v + w
z = x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

Which model is more natural to you as a programmer?

a, b are the only inputs
z is the only output



More on Dataflow
n In a dataflow machine, a program consists of dataflow 

nodes
q A dataflow node fires (fetched and executed) when all it 

inputs are ready
n i.e. when all inputs have tokens

n Dataflow node and its ISA representation
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Example Dataflow Nodes
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A Simple Example Dataflow Program
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OUT

N is a 
non-negative
integer

N1

What is the
value of OUT?



ISA-level Tradeoff: Program Counter

n Do we want a Program Counter (PC or IP) in the ISA?
q Yes: Control-driven, sequential execution

n An instruction is executed when the PC points to it
n PC automatically changes sequentially (except for control flow 

instructions) à sequential
q No: Data-driven, parallel execution

n An instruction is executed when all its operand values are 
available à dataflow

n Tradeoffs: MANY high-level ones
q Ease of programming (for average programmers)?
q Ease of compilation?
q Performance: Extraction of parallelism?
q Hardware complexity?
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ISA vs. Microarchitecture Level Tradeoff
n A similar tradeoff (control vs. data-driven execution) can be 

made at the microarchitecture level

n ISA: Specifies how the programmer sees the instructions to 
be executed
q Programmer sees a sequential, control-flow execution order vs.
q Programmer sees a dataflow execution order

n Microarchitecture: How the underlying implementation 
actually executes instructions 
q Microarchitecture can execute instructions in any order as long 

as it obeys the semantics specified by the ISA when making the 
instruction results visible to software
n Programmer should see the order specified by the ISA
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Let’s Get Back to the von Neumann Model

n But, if you want to learn more about dataflow…

n Dennis and Misunas, “A preliminary architecture for a basic 
data-flow processor,” ISCA 1974.

n Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

n A later lecture

n If you are really impatient:
q http://www.youtube.com/watch?v=D2uue7izU2c
q http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi

a=onur-740-fall13-module5.2.1-dataflow-part1.ppt 
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http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt


Lecture Video on Dataflow Architectures

188http://www.youtube.com/watch?v=D2uue7izU2c

http://www.youtube.com/watch?v=D2uue7izU2c


The von Neumann Model
n All major instruction set architectures today use this model

q x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, …

n Underneath (at the microarchitecture level), the execution 
model of almost all implementations (or, microarchitectures) 
is very different
q Pipelined instruction execution: Intel 80486 uarch
q Multiple instructions at a time: Intel Pentium uarch
q Out-of-order execution: Intel Pentium Pro uarch
q Separate instruction and data caches

n But, what happens underneath that is not consistent with 
the von Neumann model is not exposed to software
q Difference between ISA and microarchitecture
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What is Computer Architecture?
n ISA+implementation definition: The science and art of 

designing, selecting, and interconnecting hardware 
components and designing the hardware/software interface 
to create a computing system that meets functional, 
performance, energy consumption, cost, and other specific 
goals. 

n Traditional (ISA-only) definition: “The term 
architecture is used here to describe the attributes of a 
system as seen by the programmer, i.e., the conceptual 
structure and functional behavior as distinct from the 
organization of the dataflow and controls, the logic design, 
and the physical implementation.” 
 Gene Amdahl, IBM Journal of R&D, April 1964
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ISA vs. Microarchitecture
n ISA

q Agreed upon interface between software 
and hardware
n SW/compiler assumes, HW promises

q What the software writer needs to know 
to write and debug system/user programs 

n Microarchitecture
q Specific implementation of an ISA
q Not visible to the software

n Microprocessor
q ISA, uarch, circuits
q “Architecture” = ISA + microarchitecture
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Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons



Microarchitecture
n A specific implementation of the ISA

n How do we implement the ISA?
q We will discuss this for many lectures 

n There can be many implementations of the same ISA
q MIPS R2000, R3000, R4000, R6000, R8000, R10000, …
q x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, 

Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire Rapids, 
…, AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, …

q POWER 4, 5, 6, 7, 8, 9, 10 (IBM), …, PowerPC 604, 605, 620, …
q ARM Cortex-M*,  ARM Cortex-A*, NVIDIA Denver, Apple A*, M1, …
q Alpha 21064, 21164, 21264, 21364, …
q RISC-V …
q … 
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ISA vs. Microarchitecture
n What is part of ISA vs. Uarch?

q Gas pedal: interface for “acceleration”
q Internals of the engine: implement “acceleration”

n Implementation (uarch) can be various as long as it 
satisfies the specification (ISA)
q Add instruction vs. Adder implementation

n Bit serial, ripple carry, carry lookahead adders are all part of 
microarchitecture (see H&H Chapter 5.2.1)

q x86 ISA has many implementations: 
n Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, Coffee Lake, Comet Lake, Ice 

Lake, Golden Cover, Sapphire Rapids, …, AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, …

n Microarchitecture usually changes faster than ISA
q Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs
q Why?

193https://www.vox.com/2015/7/1/8877583/two-foot-driving-pedal-error



ISA: What Does It Specify?
n Instructions

q Opcodes, Addressing Modes, Data Types
q Instruction Types and Formats
q Registers, Condition Codes

n Memory
q Address space, Addressability, Alignment
q Virtual memory management

n Call, Interrupt/Exception Handling
n Access Control, Priority/Privilege 
n I/O: memory-mapped vs. instructions
n Task/thread Management
n Power & Thermal Management
n Multithreading & Multiprocessor support
n …
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ISA Manuals: Some Good Bedtime Reading

195https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html 

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html


ISA Manuals: Some Good Bedtime Reading

196https://riscv.org/technical/specifications/ 

https://riscv.org/technical/specifications/

