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What Have We Learned So Far?

= We are mostly done with “Digital Design” part of this course

Date
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02/27

- 02/29

Lecture

Lecture #1 :
L1: Introduction and Basics
[ slides ]

Lecture #2 :
L2: Tradeoffs, Metrics, Mindset
[ slides ]

Lecture #3 :
L3: Combinational Logic Design
[ slides ]

Lecture #4 :
L4: Sequential Logic Design
[ slides ]

Lecture #5 :

L5: Hardware Description
Languages and Verilog

[ slides ]

Lecture #6 :
L6: Timing and Verification
[ slides ]

Readings

e D. Harris and S. Harris, Digital Design and
Computer Architecture. Chapters 1 -5

e D. Harris and S. Harris, Digital Design and
Computer Architecture. Chapters 1 -5

e D. Harris and S. Harris, Digital Design and
Computer Architecture. Chapters 1 -5

e D. Harris and S. Harris, Digital Design and
Computer Architecture. Chapters 1 - 5

e D. Harris and S. Harris, Digital Design and
Computer Architecture. Chapters 1 -5

e D. Harris and S. Harris, Digital Design and
Computer Architecture. Chapters 1 -5

Problem

Algorithm

Program/Language

System Software

SW/HW Interface




Agenda for Today & Next Few Lectures

= The von Neumann model

LC-3: An example of von Neumann machine
LC-3 and MIPS Instruction Set Architectures
LC-3 and MIPS assembly and programming

Introduction to microarchitecture and
single-cycle microarchitecture

Multi-cycle microarchitecture

System Sotha re

l SW/HW Interface l




What Will We Learn Today?

= Basic elements of a computer & the von Neumann model
o LC-3: An example von Neumann machine

= Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

: . Problem
o Data movement instructions robl
: : Algorithm
o Control instructions
Program/Language

System Software

SW/HW Interface

= Instruction formats

= Addressing modes




Readings

This week

o Von Neumann Model, ISA, LC-3, and MIPS
P&P, Chapters 4, 5
H&H, Chapter 6 (until 6.5)

P&P, Appendices A and C (ISA and microarchitecture of LC-3)
H&H, Appendix B (MIPS instructions)

o Programming
P&P, Chapter 6
o Recommended: H&H Chapter 6, especially 6.1, 6.2, 6.4, 6.5

Next lecture
o Introduction to microarchitecture and single-cycle microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C



Building a Computing System




The Von Neumann Model




Recall: What 1s A Computer?

We will cover all three components

Processing

control
(sequencing)

datapath

Memory
dorogram /O
and data)




Building Up to A Basic Computer Model

= In past lectures, we learned how to design
a Combinational logic structures
a Sequential logic structures

Problem

Algorithm

Program/Language
System Software

SW/HW Interface

= With logic structures, we can build
Execution units

Decision units

Memory/storage units
Communication units

Q
Q
Q
Q

= All are basic elements of a computer
o We will raise our abstraction level today
o Use logic structures to construct a basic computer model
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Basic Components of a Computer

To get a task done by a (general-purpose) computer, we need
o A computer program

That specifies what the computer must do
a The computer itself

To carry out the specified task

Program: A set of instructions

o Each instruction specifies a well-defined piece of work for the
computer to carry out

o Instruction: the smallest piece of specified work in a program

Instruction set: All possible instructions that a computer is
designed to be able to carry out

11



The von Neumann Model

= In order to build a computer, we need an execution model for
processing computer programs

= John von Neumann proposed a fundamental model in 1946

= The von Neumann Model consists of 5 components
Memory (stores the program and data)

Processing unit

Input

Output

Control unit (controls the order in which instructions are carried out)

U 0O O O

= Throughout this lecture, we will examine two examples of the
von Neumann model

o LC-3 Burks, Goldstein, von Neumann,
“Preliminary discussion of the logical design
a MIPS of an electronic computing instrument,” 1946.

All general-purpose computers today use the von Neumann model 12



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

MEMORY

Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

ALU

TEMP

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP

Inst Register
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The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

PROCESSING UNIT

ALU TEMP

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP | | Inst Register
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Recall: A Memory Array (4 locations X 3 bits)

Addr[1:0]

Di[2] Di[1] Di[0]

il

5 ==

T I

T

.‘:. D
;o
Address Decoder

Multiplexer ~ DI[2] D[1] D[0]
15




Memory

Memory stores
o Programs
o Data

Memory contains bits
o Bits are logically grouped into bytes (8 bits) and words (e.qg., 8, 16, 32 bits)

Address space: Total number of uniquely identifiable locations in memory

a In LC-3, the address space is 216
16-bit addresses

a In MIPS, the address space is 232
32-bit addresses

a In x86-64, the address space is (up to) 2%
48-bit addresses

Addressability: How many bits are stored in each location (address)
o E.g., 8-bit addressable (or byte-addressable)
o E.g., word-addressable
a A given instruction can operate on a byte or a word
16



A Simple Example

= A representation of memory with 8 locations
= Each location contains 8 bits (one byte)

o Byte addressable memory; address space of 8
o Value 6 is stored in address 4 & value 4 is stored in address 6

Address
000

001
010
011
100
101
110
111

Data Value

00000110

00000100

Question:

How can we make
same-size memory
bit addressable?

Answer:
64 locations
Each location stores 1 bit

17



Word-Addressable Memory

Each data word has a unique address
o In MIPS, a unique address for each 32-bit data word
o In LC-3, a unique address for each 16-bit data word

Word Address

00000003
00000002
00000001

00000000

Data M

D1617A1C

13C81755

F2F1FOF7

S9ABCDEF

PS memory

Word 3
Word 2
Word 1
Word 0

18



Byte-Addressable Memory

Each byte has a unique address
o MIPS is actually byte-addressable
o LC-3b (updated version of LC-3) is also byte-addressable

Byte Address Data MIPS memory

of the VV_ord

0000000C
00000008
00000004

00000000

D 1

6 1

7 A

1C

Word 3

13

C8

17

55

Word 2

F 2

F 1

FO

F7

" How are these four bytes
ordered?

(=

Word 1
Word 0

Which of the four bytes is most vs. least significant?

19



Big Endian vs. Little Endian

= Jonathan Swift's Gulliver’s Travels

o Big Endians broke their eggs on the big end of the egg
o Little Endians broke their eggs on the little end of the egg

TRAVELS

nnnnnnnnnnnn

rrrrr

o . .
BIG ENDIAN - The way LITTLE ENDIAN - The
people always broke way the king then
their eggs in the ordered the people to
Lilliput land break their eggs

20



Big Endian vs. Little Endian
Little Endian

Big Endian

Byte
Address

@

C
8
4

o | © | O

=
B
I

0

E
A
6
2

3

MSB

(Most Significant Byte)

LSB

LSB in higher byte address

Word
Address

(Ceast Significant Byte)

Address

&

Byte

o | © | T

W | N |0 T

E
A
6
2

C
8
4
0

MSB

LSB

LSB in lower byte address

21



Big Endian vs. Little Endian

Big Endian Little Endian

Does this really matter?

Qualified answer: No, except when one big-
endian system and one little-endian system
have to share or exchange data

MSB LSB MSB LSB

(Most Significant Byte) (Least Significant Byte) 27

LSB in higher byte address LSB in lower byte address



Accessing Memory: MAR and MDR

= There are two ways of accessing memory
o Reading or loading data from a memory location
a  Writing or storing data to a memory location

= Two registers are usually used to access memory
o Memory Address Register (MAR)
o Memory Data Register (MDR) Mem Addr Reg

Mem Data Reg

= To read

o Step 1: Load the MAR with the address we wish to read from
a Step 2: Data in the corresponding location gets placed in MDR

= [0 write

o Step 1: Load the MAR with the address and the MDR with the data
we wish to write

o Step 2: Activate Write Enable signal - value in MDR is written to
address specified by MAR

23



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

MEMORY
Mem Addr Reg

Mem Data Reg

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP | | Inst Register
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Processing Unit

Performs the actual computation(s)
The processing unit can consist of many functional units

We start with a simple Arithmetic and Logic Unit (ALU),
which executes computation and logic operations

o LC-3: ADD, AND, NOT (XOR in LC-3b)
o MIPS: add, sub, mult, and, nor, sll, slr, slt...

The ALU processes quantities that are referred to as words
o Word length in LC-3 is 16 bits
o Word length in MIPS is 32 bits

25



Recall: ALU (Arithmetic Logic Unit)

= Combines a variety of arithmetic and logical operations into
a single unit (that performs only one function at a time)

= Usually denoted with this symbol:

Table 5.1 ALU operations

A B Fs Function
YN AN
[ v . 000 A AND B
\ ALU /7§F 001 A OR B
AN 010 A+B
Y
011 not used
Figure 5.14 ALU symbol 100 A AND B
101 A ORB
110 A-B

111 SLT




Recall: Example ALU (Arithmetic Logic Unit)

A B
YN N
Table 5.1 ALU operations
Fy. Function
000 A AND B 1
> | F
_ °
001 A ORB TN
010 A+B =
011 not used
100 A AND B
101 A OR B
110 A-B
111 SLT

27



Processing Unit: Fast Temporary Storage

It is almost always the case that a computer provides a
small amount of storage very close to ALU
o Purpose: to store temporary values and quickly access them later

E.g., to calculate ((A+B)*C)/D, the intermediate result of
A+B can be stored in temporary storage

o Why? It is too slow to store each ALU result in memory & then
retrieve it again for future use
A memory access is much slower than an addition, multiplication
or division
o Ditto for the intermediate result of ((A+B)*C)

This temporary storage is usually a set of registers
o Called Register File

28



Registers: Fast Temporary Storage

= Memory is large but slow

o | e

= Registers in the Processing Unit
o Ensure fast access to values to be processed in the ALU
o Typically one register contains one word (same as word length)

m Register Set or Register File
a Set of registers that can be manipulated by instructions
o LC-3 has 8 general purpose registers (GPRS)
= RO to R7: 3-bit register number
= Register size = Word length = 16 bits
a MIPS has 32 general purpose registers
= RO to R31: 5-bit register number (or Register ID)
= Register size = Word length = 32 bits

29



Recall: The Register

How can we use D latches to store more data?

« Use more D latches!
A single WE signal for all latches for

simultaneous writes

D, D, D, Do
Write
Enable ﬁ] ?—‘ﬁ\r#flﬁj} \rhlﬁ\r
Q3 QZ Ql QO

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data

is referenced as
Q[3:0]

30



Recall: The Register

How can we use D latches to store more data?

« Use more D latches!
A single WE signal for all latches for

simultaneous writes
D3:0

1L4

WE — Register x (Rx)

$4

Q3:O

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data

is referenced as

Q[3:0]



Recall: D Flip-Flop Based Register

Multiple parallel D flip-flops, each of which storing 1 bit

CLK

Co
"de
Nseqy CLK
|

DZiL jLQ

3:0 \ 3.0
/ This line represents 4 wires

This register stores 4 bits

32



Recall: A 4-Bit D-Flip-Flop-Based Register (Internally)

Clock

33

e: Patt and Patel, “Introduction to Computing Systems”, 3" ed., tentative page 95.

Image sourc



MIPS Register File (Conventions)

$0

sat
sv0-Svl
$al-5a3
St0-St7
$s0-Ss7
St8-5t9
Sk0-Skl
Sgp

Ssp

Sfp

Sra

0

1

2-3
4-7
8-15
16-23
24-25
26-27
28

29

30

31

the constant value 0
assembler temporary
function return value
function arguments
temporary variables
saved variables
temporary variables
OS temporaries
global pointer

stack pointer

frame pointer

function return address

34



The Von Neumann Model

MEMORY

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

ALU

TEMP

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP

Inst Register

35



Input and Output

Enable information to get into and out of a computer

Many devices can be used for input and output

They are called peripherals

o Input
Keyboard
Mouse
Scanner
Disks
Etc.

o Output
Monitor
Printer
Disks
Etc.

o In LC-3, we consider keyboard and monitor

36



The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

-
-
-
-

MEMORY
Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

ALU TEMP

OUTPUT

Monitor,
Printer,
Disk...
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Control Unit

The control unit is like the conductor of an orchestra

It conducts the step-by-step process of executing (every
instruction in) a program (in sequence)

It keeps track of which instruction being processed, via
o Instruction Register (IR), which contains the instruction

It also keeps track of which instruction to process next, via

a Program Counter (PC) or Instruction Pointer (IP), another
register that contains the address of the (next) instruction to
process

PC or IP | | Inst Register 33



Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current (or next) instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

39



The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

40



von Neumann Model: Two Key Properties

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data
The interpretation of a stored value depends on the control signals

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions

41



L.C-3: A von Neumann Machine




Another von Neumann Machine
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Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 43
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Another von Neumann

Machine

IIIIIIIIII|||1||lll||||mlllIIIIlHIIIlHIlIIIIIIIu " llﬂiiil

Fibg 4 b4t

Debug, Wafer test 5

]

FP Register

E L3$ Tags'
FpU Control  w

&
. 1MiB L3$ Array

.L3.Cache

T
FPIRegister

3

1 MiB L3$ Array

145 Togs
.

1 MiB L3$ Array

L3 Cache

1 MiB L3$ Array

138 Tags
CpU Control w1 Zen3 Core

&
. 1MiBL3$ Array

L3'Cache

H [ FpRegister.

1 miB (35 Array
% 24
§:4

L&

T
&

E ] 5 =y L3$ Tags'
el W= Zen3 Core

g

FPiRegister

. 1MiBL3$ Array

L3 Cache

e

* 1 MiB L3$ Array

L3$ Control | ° . L3$ Tags
.. ;

¥'1 MiB L33 Array.

L3 Cache . .

1 Mi8 £3% Array

L3$ Control L3% Tags

1 MiB'L3s Array.

: L3 Cache

1 MiB L3 Array

L3 Control ' ° . L3% Tags

1 mis L3s Array

L3 Cache - .

‘1 MiB L3$ Array

L3 Control | ° . L3$ Tags
.

1 MiB L33 Array.

L3 Cache ,

1 Mi8 L3§"Array

L3§ Tags L3$ Control

1 MiB L33 Array

L3 Cache

1 M8 13§ Array

L3$.Tags L3$ Contro|

1mMiBLIs Array o

L3 Cache

1 MiB L3$ Array
L3$ Tags L3$ Control

1 MIB L3$ Array
.

‘L3 Cache -

1 Mi8 L3§ Array

L3$ Tags L3$ Control

1 MiB L3$ Array

13 Cache -

", 1 MiB L3$ Array

135 Tags

1 MiB L3$ Array

3 Cache

1 MiB L3$ Array

138 Tags

1 MiB L3$ Array

‘L3 €ache

1 MiB L3$ Array

138 Tags

1 MiB L3$ Array

L3 Cache -

"1 MiB 3§ Array

135 Tags.

1 MiB L3$ Array

‘L3 Cache ;

AMD Ryzen 5000, 2020

1 Instruction At

+

\‘m & ‘
|;;;;; } LL Cache
mm.,.,.i

[To0s7

Zen3 Coré | e

1 DCache_-‘
- [32Ki8 % o caens|

|

uCode ROM

2|Level BT8

/L¥DCache’., - -- 4
Zen3 cOré FPU Control

11 DCache:;

|32kiB L1 Data Cache |

FP Register

2
g
[
&

zen3 coré FPUCOM‘T?"
. L1BCaches R

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

45



Another von Neumann Machine
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LC-3: A von Neumann Machine

Prog ram PROCESSOR BUS GatePC Aie

Counter \

Control signals ﬁ;\\ 8 General Purpose
3 REG Registers (GPR)
Data OR FILE
T T — LD.REG
- 3, \| SR2 SR1 3 -

uT__out
Finite State Machine Clock —_ R

(for Generating Control Signals) e fis

\
i JV
SR2|

<

;
>

Instruction Af>{ eme = '\_ﬁ .

Register d@m JSTATE Lo ":ﬁ ALU: 2 inputs, 1 output
-
e ——u

Ate " w \ :ALU
A, y. 1 .
s ALU operation
CONTROL UNIT PROCESSING
UNIT
(GateALU J GateALU

GateMDR

Memory Data
: 164 116 16
Register MEM.EN, R.W
Lo.MoR —] MDR g MAR [9- LD.MAR

Keyboard
KBDR (data), KBSR (status)

N | Monitor (Display)
II\?/lemotry Address 16-bit - DDR (data), DSR (status)
egister addressablg
MEMORY INPUT OUTPUT 47

Figure 4.3  The LC-3 as an example of the von Neumann model



Stored Program & Sequential Execution

= Instructions and data are stored in memory
o Typically the instruction length is the word length

= The processor fetches instructions from memory sequentially
o Fetches one instruction
o Decodes and executes the instruction
o Continues with the next instruction

= The address of the current instruction is stored in the program
counter (PC)

0 ?_‘ wLoCrdB-?ddressable memory, the processor increments the PC by 1
in LC-

o If byte-addressable memory, the processor increments the PC by the
instruction length in bytes (4 in MIPS)

= In MIPS the OS typically sets the PC to 0x00400000 (start of a
program)

48



A Sample Program Stored in Memory

A sample MIPS program

o 4 instructions stored in consecutive words in memory
No need to understand the program now. We will get back to it

MIPS assembly

1w st2, 32(sS0)

add $s0, $sl1, $s2
addi $t0, S$s3, -12
sub $t0, $t3, $tb5

Machine code (encoded instructions)

0x8C0OA0020
0x02328020
O0x2268FFF4
0x016D4022

Byte Address

0040000C
00400008
00400004
00400000

Instructions

016D4022

2268FFFA4

02328020

8CO0A0020

— PC

49



The Instruction

An instruction is the most basic unit of computer processing
o Instructions are words in the language of a computer
o Instruction Set Architecture (ISA) is the vocabulary

The language of the computer can be written as

o Machine language: Computer-readable representation (that is,
O'sand 1's)

o Assembly language: Human-readable representation

We will study LC-3 instructions and MIPS instructions
o Principles are similar in all ISAs (x86, ARM, RISC-V, ...)

50



The Instruction: Opcode & Operands

An instruction is made up of two parts
= Opcode and Operands

Opcode specifies what the instruction does
Operands specify who the instruction is to do it to

Both are specified in instruction format (or instr. encoding)
= An LC-3 instruction consists of 16 bits (bits [15:0])

= Bits [15:12] specify the opcode > 16 distinct opcodes in LC-3
= Bits [11:0] are used to figure out where the operands are

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o o0 o 141 T OO0 I 000 O1 1 O

ADD R6 R2 R6




Instruction Types

= There are three main types of instructions

= Operate instructions
o Execute operations in the ALU

= Data movement instructions
o Read from or write to memory

= Control flow instructions
o Change the sequence of execution

= Let us start with some example instructions

52



An Example Operate Instruction

= Addition
High-level code Assembly
a = b + c; add a, b, c

Q

Q

add: mnemonic to indicate the operation to perform
b, C: source operands

a: destination operand

a—b+c

53



Registers

= We map variables to registers

Assembly LC-3 registers
add a, b, c b = R1

c = R2

a = RO

MIPS registers

b = Ssl
c = Ss2
a = $s0




From Assembly to Machine Code in LLC-3

Addition
LC-3 assembly

ADD RO, R1, R2

Field Values
OP DR SR1 SR2
1 0 1 0] 00 2

Machine Code (Instruction Encoding)
OoP DR SR1 SR2

0001 | 000 | OO1 |0|00] O1O0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1042

Machine Code, in short (hexadecimal)




Instruction Format (or Encoding)

= LC-3 Operate Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

OP DR SR1 |0] 00| SR2
4 bits 3 bits 3 bits 3 bits

o OP = opcode (what the instruction does)
« E.g., ADD = 0001
a Semantics: DR «— SR1 + SR2
= E.g., AND = 0101
a Semantics: DR «— SR1 AND SR2

o SR1, SR2 = source registers

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo o o 1|1 1 ofo 1 ojoflo of1 1 o

o DR = destination register ADD RS = R6

56



From Assembly to Machine Code 1n MIPS

Addition
MIPS assembly
add $s0, $sl1, $s2
Field Values
op rs rt rd shamt funct
0 17 18 16 0 32
rd «—rs +rt
Machine Code (Instruction Encoding)
op rs rt rd shamt funct
000000 | 10001 | 10010 | 10000 | 00000 | 100000

31 26 25 21 20 16 15 11 10 6

0x02328020

5

0
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Instruction Format: R-Type 1n MIPS

MIPS R-type Instruction Format
o 3 register operands

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

o 0 = opcode

o s, rt = source registers

o rd = destination register

o shamt = shift amount (only shift operations)

o funct = operation in R-type instructions



Reading Operands from Memory

= With operate instructions, such as addition, we tell the

computer to execute arithmetic (or logic) computations in
the ALU

= We also need instructions to access the operands from
memory

a Load them from memory to registers
a Store them from registers to memory

= Next, we see how to read (or load) from memory

= Writing (or storing) is performed in a similar way, but we
will talk about that later
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Reading Word-Addressable Memory

= Load word
High-level code Assembly
a = A[1]; load a, A, 1

Q

Q

Q

Q

Q

load: mnemonic to indicate the load word operation
A: base address

i: offset
= E.g., immediate or literal (a constant)

a: destination operand

Semantics: a < Memory[A + i]
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Looad Word in LLC-3 and MIPS

= LC-3 assembly
High-level code LC-3 assembly

a = A[2]; LDR R3, RO, #2

R3 «— Memory[RO + 2]

= MIPS assembly (assuming word-addressable)

High-level code MIPS assembly

a = A[2]; 1w Ss3, 2(Ss0)

$s3 «— Memory[$s0 + 2]

These instructions use a particular addressing mode

(i.e., the way the address is calculated), called base+offset
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Load Word in Byte-Addressable MIPS

= MIPS assembly
High-level code MIPS assembly

a = A[2]; 1w $Ss3, 8($s0)

$s3 «— Memory[$s0 + 8]

= Byte address is calculated as: word_address * bytes/word
o 4 bytes/word in MIPS

a If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word
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Instruction Format With Immediate

LC-3
LC-3 assembly
LDR R3, RO, #2
Field Values
OP DR BaseR offset6
6 3 0 2
MIPS
MIPS assembly

lw $s3, 8(S$s0)

Field Values
op rs rt imm
35 16 19 8

31 26 25 21 20 16 15 0

I-Type
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Instruction (Processing) Cycle
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How Are These Instructions Executed?

= By using instructions, we can speak the language of the
computer

= Thus, we now know how to tell the computer to

o Execute computations in the ALU by using, for instance, an
addition

a Access operands from memory by using the load word
instruction

= But, how are these instructions executed on the computer?

o The process of executing an instruction is called is the
instruction cycle (or, instruction processing cycle)
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The Instruction Cycle

The instruction cycle is a sequence of steps or phases, that an
instruction goes through to be executed

o FETCH

DECODE

EVALUATE ADDRESS

FETCH OPERANDS

EXECUTE

STORE RESULT

o 0 0O 0O O

Not all instructions require the six phases
o LDR does not require EXECUTE

o ADD does not require EVALUATE ADDRESS

o Intel x86 instruction ADD [eax], edx is an example of instruction
with six phases

06



After STORE RESULT, a New FETCH

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o o O 0O 0O DO
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FETCH

The FETCH phase obtains the instruction from memory and
loads it into the Instruction Register (IR)

This phase is common to every instruction type

Complete description

o Step 1: Load the MAR with the contents of the PC, and
simultaneously increment the PC

o Step 2: Interrogate memory. This results in the instruction
being placed in the MDR by memory

o Step 3: Load the IR with the contents of the MDR
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FETCH in LC-3

Step 1: Load
MAR and -
increment PC on ol P
se—¥e 001 oUT [R5
Step 2: Access x| Lo o
memory " r_uj
o> . ésﬂv_x
’ [ Al '\_ALU_7
Step 3: Load IR = L
with the content
Of MDR GateALU
LD.MDR MDR MEM.I;N' W MAR LD.MAR
:

Figure 4.3

The LC-3 as an example of the von Neumann model

OUTPUT
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DECODE

The DECODE phase identifies the instruction

o Also generates the set of control signals to process the
identified instruction in later phases of the instruction cycle

Recall the decoder (from Lecture 5)

o A 4-to-16 decoder identifies which of the 16 opcodes is going
to be processed

The input is the four bits IR[15:12]

The remaining 12 bits identify what else is needed to
process the instruction
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DECODE 1n LLC-3

DECODE
identifies the
instruction to be
processed

Also generates
the set of
control signals
to process the

instruction

PROCESSOR BUS

3
DR—-“*  FILE

LD.REG —>|

3
SR2 %> QUT _ OUT [<72~SA1

\

REG

SR2  SR1

18
y
SR2MUX}

fie

CONTROL UNIT

MEMORY

u

PROCESSING

NIT

LD.MAR T

G.ateAliJf

|

INPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|

OUTPUT
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Recall: Decoder

“Input pattern detector”
n inputs and 2" outputs
Exactly one of the outputs is 1 and all the rest are 0s

The output that is logically 1 is the output corresponding to
the input pattern that the logic circuit is expected to detect

Example: 2-to-4 decoder

2:4
A AlYs Y Y Y, Decoder
0 o0l o0 o0 0 1 A 11— 7Y;
o 1]l0 o 1 o 1—] 10— Y
1 olo 1 o o Ao — 01— Y,
1 1011 o o o 00— Yo
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Recall: Decoder (1)

The decoder is useful in determining how to interpret a bit
pattern

o It could be the A=1 —
address of a location ﬁB d

in memory, that the

processor intends to ! -
read from | } o

o It could be an — T
instruction in the
program and the
processor needs to |
decide what action to ¢
take (based on
instruction opcode)

73



To Come: Full State Machine for L.LC-3b

IR <~ MDR

v

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

Decode State

DR<-SRNO
set C!

To 18

To 18

To 18

] .
29 25 23 24
NOTES CGADR<—M[MAR[ 15: 1]’@ @DR<—M[MARBD ( MDR<-SR ) (MDR<—SR[7:OD
B+off6 : Base + SEXT[offset6] = —_
PC+off® : PC + SEXT{offset9] R R » VR R ] 6 v -
*OP2 may be SR2 or SEXT[immS5] 31 DR<-MDR
** [15:8] or [7:0] depending on GR<_SEXT[BE[€E'DAT@ ( cc ) (M[MAR]<_MDRD @[MAR]<*MDR‘5®
MARJ0] set set — —
R R R R

To 18 To 18 To 18 To 19

Figure C.2: A state machine for the LC-3b

https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=pp-appendixc.pdf
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EVALUATE ADDRESS

= The EVALUATE ADDRESS phase computes the address of

the memory location that is needed to process the
Instruction

= This phase is necessary in LDR

o It computes the address of the data word that is to be read
from memory

o By adding an offset to the content of a register

= But not necessary in ADD
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EVALUATE ADDRESS in LC-3

PROCESSOR BUS

A

LDR calculates : onFel Fie
the adc_:lress by ADD ;C’“*
adding a —,

CLK —¥ >

register and an S

7
: : R—> FINITE '\Sf@
immediate Eéé el * |
L, 2 B A
e N ALUK ALU

CONTROL UNIT PROCESSING
UNIT

¥

KE

GateALU J

MEMORY INPUT

OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|



FETCH OPERANDS

The FETCH OPERANDS phase obtains the source operands
needed to process the instruction

In LDR

o Step 1: Load MAR with the address calculated in EVALUATE
ADDRESS

o Step 2: Read memory, placing source operand in MDR

In ADD
o Obtain the source operands from the register file

o In some microprocessors, operand fetch from register file can
be done at the same time the instruction is being decoded
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FETCH OPERANDS in LC-3

LDR loads MAR
(step 1), and
places the
results in MDR
(step 2)

Figure 4.3

GateMDR

PROCESSOR BUS

\

3 REG
DR—-“*  FILE

LD.REG —>|

s |SR2  SR1| 4
SR2—*>| QUT _ OUT [+ SR1

16 16

MEM.EN, RW

16 18
CLK —¥ >
16, .
7S > v Jr
R—> FINITE '\SRZMUX;
STATE %
IR LD.IR = Ale
I 1}:|<- MACHINE L i !
L 2 B A
Vi
* ALUK ALU
>
] /16
CONTROL UNIT PROCESSING
UNIT
GateALU J

MEMORY

feor) | [ [oom]

INPUT OUTPUT

The LC-3 as an example of the von Neumann model
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EXECUTE

= The EXECUTE phase executes the instruction
o In ADD, it performs addition in the ALU

o In XOR, it performs bitwise XOR in the ALU
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EXECUTE in LC-3

PROCESSOR BUS

REG
DR—Zo>
ADD adds SR1 e R
. A~
and SR2 YD ) T
S,
16 /18
CLK —» >
2 > TUV
R—{ FINITE '\SE@
B MAGHINE e

.

*/ — 2 %_\/ A’

e . ALUK i ¢ /
Lo

CONTROL UNIT PROCESSING
UNIT

GateAl&?

MEMORY INPUT OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|



STORE RESULT

= The STORE RESULT phase writes the result to the
designated destination

= Once STORE RESULT is completed, a new instruction cycle
starts (with the FETCH phase)
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STORE RESULT in LLC-3

PROCESSOR BUS

ADD loads ALU
Result into DR

MEMORY

Figure 4.3

UNIT

2 FILE
LD.REG—|
s, |SR2 SR1| 4
SR2—*>| QUT _ OUT [+ SR1
16 /18
CLK —¥ >
16, .
e . v Jr
R—>{ FINITE A\SRRMUY
STATE [
LD.IR > Ate
| 'AFDQ_ MACHINE i J,
} =
L, 2 B A
A16
: ALUK i
o>
] /46
CONTROL UNIT PROCESSING

INPUT

The LC-3 as an example of the von Neumann model

OUTPUT
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STORE RESULT in LLC-3

PROCESSOR BUS GatePC

¥

LDR loads W iy
MDR into DR '

3, | SR2 SR1 3
SR2 -4 OuUT OuUT <<~ SR

16 Afe
CLK —¥ >
16 .
— . v Jr
R—>{ FINITE A\SRRMUY
STATE %
| LD.IR = A1e
I ‘F:F’— MACHINE i J,
} >
L 2 B A
/16 =
* ALUK \ ALU
o>
. s
CONTROL UNIT PROCESSING
UNIT
GateALUJ

GateMDR -$

164 | 116 f16

MEM.EN, R.W
LD.MDR MDR g [MAR |<— LD.MAR

15

MEMORY INPUT OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|




The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o o O 0O 0O DO
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Changing the Sequence of Execution

A computer program executes in sequence (i.e., in program
order)

a First instruction, second instruction, third instruction and so on

Unless we change the sequence of execution

Control instructions allow a program to execute out of
sequence

o They can change the PC by loading it during the EXECUTE
phase

o That wipes out the incremented PC (loaded during the FETCH
phase)
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Jump 1n LC-3

= Unconditional branch or jump

x LC-3 JMP R2

1100

000

BaseR

000000

4 bits

o BaseR = Base register

3 bits

o PC «— R2 (Register identified by BaseR)

o Variations

= RET: special case of JMP where BaseR = R7
= JSR, JSRR: jump to subroutine

This is register

addressing mode
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Jump 1n MIPS

= Unconditional branch or jump

= MIPS |3 target

2 target J—Type

6 bits 26 bits

o 2 = opcode
o target = target address

a PC «— PC*[31:28] | sign-extend(target) * 4 j uses pseudo-
direct addressing
mode

o Variations
= jal: jump and link (function calls)

jr uses register

= Jr: jump register Jr  $s0

addressing mode

"This is the incremented PC



PC UPDATE in LC-3

PROCESSOR BUS

s | REG
DR->  FILE

LD.REG —>|

JMP loads
SR1 into PC

s | SR2 ZBRT\3
SR2 —“>| ouT \\.OUT SR1

16 /18
CLK — >
16, .
7 4 . HJ’
R—>{ FINITE A\SRRMUY
STATE "
LD.IR = e
[ R MACHINE i !
A =
L, 2 B A
A6
. ALUK i
>
] /48
CONTROL UNIT PROCESSING

UNIT

GateALU J

MEMORY INPUT

OUTPUT

Figure 4.3  The LC-3 as an example of the von Neumann model|



Control of the Instruction Cycle

State 1 - State 1
e 5 o The FSM asserts GatePC and
LD.MAR

o It selects input (+1) in PCMUX and

Y State 2

SR asserts LD.PC
FETCH MDR <— M[MAR]

R E— = State 2

v State3 o MDR is loaded with the instruction

IR <— MDR

N = State 3

v stutes o 'II_'BeIESM asserts GateMDR and
DECODE [opcode] '

= State 4

o The FSM goes to next state
depending on opcode

First state after First state after First state after
DECODE for DECODE for DECODE for
ADD instruction LDR instruction JMP instruction

= State 63
. . . o JMP loads register into PC
. . . State 63
Last state Last state . . .
ADD nstruction LR nstuction | | PO fegser = Full state diagram in Patt&Pattel,

Appendix C

To state 1 To state 1 To state 1

Fi 4.4  An abbreviated state diagram of the LC- . . .
e poreviated state dingram ot e L% This is an FSM Controlling the LC-3 Processor 8




The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o o O 0O 0O DO
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1.C-3 and MIPS
Instruction Set Architectures




Agenda for Today & Next Few Lectures

= LC-3 and MIPS Instruction Set Architectures

Problem

= LC-3 and MIPS assembly and programming  Algorithm
Program/Language
System Software

SW/HW Interface

= Introduction to microarchitecture and
single-cycle microarchitecture

= Multi-cycle microarchitecture
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The Instruction Set

= It defines opcodes, data types, and addressing modes
= ADD and LDR have been our first examples

ADD
OoP DR SR1 SR2
1 0 1 0| 00 2
Register mode
LDR
OP DR BaseR offset6
6 3 0 4

Base+offset mode
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The Instruction Set Architecture

The ISA is the interface between what the software commands
and what the hardware carries out

The ISA specifies Problem
o The memory organization :
Algorith
= Address space (LC-3: 216, MIPS: 232) =Sl
=« Addressability (LC-3: 16 bits, MIPS: 8 bits) Program
=  Word- or Byte-addressable ISA

o The register set
= 8 registers (RO to R7) in LC-3
= 32 registers in MIPS

o The instruction set
= Opcodes
= Data types
= Addressing modes
= Length and format of instructions
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Instructions (Opcodes)




Opcodes

A large or small set of opcodes could be defined
o E.g, HP Precision Architecture: an instruction for A*B+C
o E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX

o E.g, VAX ISA: opcode to save all information of one program
prior to switching to another program

Tradeoffs are involved. Examples:

o Hardware complexity vs. software complexity
o Latency of simple vs. complex instructions

In LC-3 and in MIPS there are three types of opcodes
o Operate
o Data movement

o Control
96



Opcodes 1n L.C-3

Figure 5.3

1514 1312 11 109 8 7 6 5 4 3 2

0

T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1 1
T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1
T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T T
nfz|p PCoffset9
1 1 1 1 1 1 1
T T T T T T T T
000 BaseR 000000
1 1 1 1 1 1 1 1
T T T T T T T T T
1 PCoffset11
1 1 1 1 1 1 1 1 1
T T T T T T T
0| 00 BaseR 000000
1 1 1 1 1 1 1
T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T T
DR i PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
DR BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
DR SR 111111
1 1 1 1 1 1 1 1
T T T T T T T T
000 111 000000
1 1 1 1 1 1 1 1
T T T T T T T T T T
000000000000
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T
SR BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
0000 trapvect8
1 1 1 1 1 1 1 1 1
T T T T T T T T T T
1 1 1 1 1 1 1 1 1 1

Formats of the entire LC-3 instruction set. NOTE: * indicates instructions

that modify condition codes
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Opcodes in L.C-3b

ADD'
AND’
BR
JMP
JSR(R)
LDB"
LDW*
LEA®
RTI
SHF"
STB
STW

TRAP

15 14 13 12 11 10 7 é 5 4 3 2 1

I I I | I I I I I I |
0001 DR SR1 A op.spec

| | | 1 | | 1 | | 1 1

I I T 1 I T T I I T 1
0101 DR SR1 A op.spec

1 1 1 1 1 1 1 1 1 1 1

T T T T T 1 T T T T T
0000 nl|z PCoffset?

1 1 1 1 1 1 1 1 1 1 1

I I I T | I I T | T T T
1100 000 BaseR 000000

1 1 1 1 1 1 1 1 1 1 1 1

T T T I T T 1 T T T T 1
0100 A operand.specifier

1 1 1 1 1 1 1 | 1 1 1 1

T T T T T T T T T T T T
0010 DR BaseR boffseté

1 1 1 1 1 1 1 1 1 1 1 1

I I I | I I I I I I I |
0110 DR BaseR offseté

| | | | | | 1 | | | 1 |

T T T T T T T T T T T T T
1110 DR PCoffset9

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 I 1 1 1 I I I 1 1 I
1000 000000000000

| | 1 1 | 1 1 1 | | 1 1 1

I I I I I I I I I I
1101 DR SR A (D | amouni4

1 1 1 l 1 1 1 1 1 1

T T T T T T T T T T T T
0011 SR BaseR boffseté

1 1 1 1 1 1 1 1 1 || 1

I I I | I I I I I I I |
0111 SR BaseR offseté

| | 1 1 | 1 1 | | 1 1 1

frapvect8
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MIPS Instruction Types

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit
opcode |rs rt immediate

6-bit 5-bit 5-bit 16-bit

opcode |immediate

6-bit 26-bit

R-type

I-type

J-type
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Funct in MIPS R-Type Instructions (I)

Opcode is 0
in MIPS
R-Type

instructions.

Funct defines
the operation

Table B.2 R-type instructions, sorted by funct field

Description Operation
000000 (0) s11 rd, rt, shamt shift left logical [rd]=1[rt] << shamt
000010 (2) srl rd, rt, shamt shift right logical [rd]l=10[rt]>> shamt
000011 (3) sra rd, rt, shamt  shift right arithmetic [rd]=1[rtl>>> shamt
000100 (4) s1lv rd, rt, rs shift left logical variable [rd]l=[rt] << [rsls.o
000110 (6) srlv rd, rt, rs shift right logical variable [rdl=1[rt] > [rsls.o
000111 (7) srav rd, rt, rs shift right arithmetic variable [rdl=1L[rtl>> [rsls.o
001000 (8) jrrs jump register PC=[rs]
001001 (9) jalr rs jump and link register $ra=PC+4, PC=[rs]
001100 (12) syscall system call systemcall exception
001101 (13) break break break exception
010000 (16) mfhi rd move from hi [rd]=T[hil
010001 (17) mthi rs move to hi [hil=1[rs]
010010 (18) mflo rd move from lo [rdl=1[To]
010011 (19) mtlo rs move to lo [1ol=T[rs]
011000 (24) mult rs, rt multiply {Chil, [Tol} =[rsIx[rt]

011001 (25)

multu rs, rt

multiply unsigned

{Chil, [Tol} =[rs]x[rt]

011010 (26) divrs, rt divide [1Tol=10[rsl/[rt],
[hil=1C[rs]%lrt]
011011 (27) divurs, rt divide unsigned [lTol=1[rsl/[rtl],

[hil=T[rsl%lrt]

(continued)

Harris and Harris, Appendix B: MIPS Instructions
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Funct in MIPS R-Type Instructions (1I)

Table B.2 R-type instructions, sorted by funct field—Cont’d

Description Operation

100000 (32) add rd, rs, rt add [rdl=1[rsl+[rt]

100001 (33) addu rd, rs, rt add unsigned [rd]l=[rs]+I[rt]

100010 (34) sub rd, rs, rt subtract [rdl=1[rs]-I[rt]

100011 (35) subu rd, rs, rt subtract unsigned [rdl=10[rs]-[rt]

100100 (36) and rd, rs, rt and [rd]=1[rs]&[rt]

100101 (37) or rd, rs, rt or [rdl=10[rs] | [rt]

100110 (38) xor rd, rs, rt xor [rdl="[rs]~[rt]

100111 (39) nor rd, rs, rt nor [rd]l=~([rs] | [rt])

101010 (42) slt rd, rs, rt set less than [rs]<[rt]?[rdl=1:[rdl=0
101011 (43) slturd, rs, rt set less than unsigned [rs]<[rtl?[rdl=1:[rdl=0

= More complete list of instructions are in H&H Appendix B

Harris and Harris, Appendix B: MIPS Instructions 101



Data Types




Data Types

An ISA supports one or several data types

LC-3 only supports 2's complement integers
o Negative of a 2's complement binary value X = NOT(X) + 1

MIPS supports

a 2's complement integers
o Unsigned integers

o Floating point

Tradeoffs are involved. Examples:
o Hardware complexity vs. software complexity

o Latency of operations on supported vs. unsupported data types
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Why Have Ditterent Data Types in ISA?

An example of programmer vs. microarchitect tradeoff

Advantage of more data types:

o Enables better mapping of high-level programming constructs to
hardware

Hardware can directly operate on data types present in programming
languages - small humber of instructions and code size

0 Matrix operations vs. individual multiply/add/load/store instructions
0 Graph operations vs. individual load/store/add/... instructions

Disadvantage:

o More work for the microarchitect

who needs to implement the data types and instructions that operate
on data types
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Data Types and Instruction Complexity

Data types are coupled tightly to the semantic level, or
complexity of instructions

Concept of semantic gap
o how close instructions & data types are to high-level language

Complex instructions + data types - small semantic gap
o E.g., insert into a doubly linked list, multiply two matrices
o VAX ISA: doubly-linked list, multi-dimensional arrays

Simple instructions + data types - large semantic gap

o E.g., primitive operations: load, store, multiply, add, nor
o Early RISC machines: Only integer data type, simple operations
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Semantic Gap

= How close instructions & data types are to high-level
language (HLL)

HLL HLL
| Small Semantic Gap
ISA with

Complex Inst

Large Semantic Gap
& Data Types

ISA with

Simple Inst

& Data Types
HW HW
Control Control

Signals Signals
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Complex vs. Simple Instructions+Data Types

Complex instruction: An instruction does a lot of work, e.g.
many operations

o Insert in a doubly linked list
Compute FFT

String copy
Matrix multiply

o o O o

Simple instruction: An instruction does little work -- it is a
primitive using which complex operations can be built

o Add
XOR
Multiply

o O 0O
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Complex vs. Simple Instructions+Data Types

Advantages of Complex Instructions + Data Types

+ Denser encoding - smaller code size - better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions + Data Types

- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware
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Aside: An Example: BinaryCodedDecimal

= Each decimal digit is encoded with a fixed humber of bits

HH :MM: SS

10:37:49

"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English
Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

"Digital-BCD-clock™ by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - 109
http://commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg



Aside: An Example: BinaryCodedDecimal

= Each decimal digit is encoded with a fixed humber of bits

"Binary clot
Wikipedia.
http://commons.wikimedia.org/wiki/File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

bn the English

"Digital-BCD-clock™ by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - 110
http://commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg



Addressing Modes




Addressing Modes

An addressing mode is a mechanism for specifying where
an operand is located

There are five addressing modes in LC-3

o Immediate or literal (constant)

The operand is in some bits of the instruction
o Register

The operand is in one of RO to R7 registers

o Three memory addressing modes
PC-relative
Indirect
Base+offset

MIPS has pseudo-direct addressing (for j and jal),
additionally, but does not have indirect addressing
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Why Have Different Addressing Modes?

Another example of programmer vs. microarchitect tradeoff

Advantage of more addressing modes:

o Enables better mapping of high-level programming constructs to
hardware

some accesses are better expressed with a different mode =>
reduced number of instructions and code size

0 Array indexing

0 Pointer-based accesses (indirection)

0 Sparse matrix accesses

Disadvantages:
o More work for the microarchitect
o More options for the compiler to decide what to use
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Semantic Gap Applies to Addressing Modes

= How close instructions & data types & addressing modes
are to high-level language (HLL)

HLL HLL
| Small Semantic Gap
ISA with

Complex Inst

& Data Types
& Addressing Modes

Large Semantic Gap

ISA with
Simple Inst

& Data Types
& Addressing Modes
HW HW
Control Control
Signals Signals
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Many Tradeotts in ISA Design...

Execution model — sequencing model and processing style
Instruction length
Instruction format

Instruction complexity vs. simplicity

Data types

Number of registers

Memory organization (address space, addressability, endianness, ...)

Memory access restrictions and permissions
Support for multiple instructions to execute in parallel?
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Operate Instructions
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Operate Instructions

In LC-3, there are three operate instructions
o NOT is a unary operation (one source operand)
It executes bitwise NOT
o ADD and AND are binary operations (two source operands)

ADD is 2's complement addition
AND is bitwise SR1 & SR2

In MIPS, there are many more
o Most of R-type instructions (they are binary operations)
E.g., add, and, nor, xor...

a I-type versions (i.e., with one immediate operand) of the R-
type operate instructions

o F-type operations, i.e., floating-point operations
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NOT 1n LC-3

= NOT assembly and machine code

LC-3 assembly

NOT R3, RD

Field Values
OP DR SR
9 3 ) 111111
Machine Code
OP DR SR
1001 011 001 111111
5 1z 1 s 5 6 5 0

There is no NOT in MIPS. How is it implemented?

Register file

RO

R1

R2

B A
NOT
ALU
From -/

FSM

0101000011110000

1010111100001111

TﬁG 16
y

DR

SR
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Operate Instructions

= We are already familiar with LC-3's ADD and AND with
register mode (R-type in MIPS)

= Now let us see the versions with one literal (i.e., immediate)
operand

= We will use Subtraction as an example
o How is it implemented in LC-3 and MIPS?
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Recall: LLC-3 Operate Instruction Format

= LC-3 Operate Instruction Format (Register OP Register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

OP DR SR1 |0] 00| SR2
4 bits 3 bits 3 bits 3 bits

o OP = opcode (what the instruction does)
« E.g., ADD = 0001
a Semantics: DR «— SR1 + SR2
= E.g., AND = 0101
a Semantics: DR «— SR1 AND SR2

o SR1, SR2 = source registers

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo o o 1|1 1 ofo 1 ojoflo of1 1 o

o DR = destination register ADD RS = R6
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Operate Instr. with one Literal in L.C-3

= ADD and AND

OP DR SR1 |1 imm3
4 bits 3 bits 3 bits 5 bits

o OP = operation
= E.g., ADD = 0001 (same OP as the register-mode ADD)
o DR < SR1 + sign-extend(immb5)

= E.g., AND = 0101 (same OP as the register-mode AND)
o DR < SR1 AND sign-extend(immb5)

o SR1 = source register
o DR = destination register

o immb5 = Literal or immediate (sign-extend to 16 bits)
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ADD with one Literal in 1.C-3

= ADD assembly and machine code

LC-3 assembly

ADD R1, R4, #-2

Field Values

OP DR SR imm5
1 1 4 1 -2
Machine Code
OP DR SR imm5
0001 001 100 (1] 11110
15 12 11 9 8 6 5 4 0

Register file

RO
R1

Instruction register Re
ADD R1 R4

-2 R3

0001

001

100

1{11110 R4

i Sign- e
[sexT] extend

16

.

1111111111111110
I

R6

R7

0000000000000100

0000000000000110

Bit[5]

ADD
From
FSM

DR

SR
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ADD with one Literal in 1.C-3 Data Path

GateMARMUX —/\ GatePC
16
4‘7/MARMUX LDPC— PC
i
7y i -
+1
16 16 2 DR 34 ~ REG
PCMUX FILE
i LD.REG—
o i . SR2  SRI
3 R 3
[ZEXT | SR2—“> QUT  OUT [</“SRI
i
[7:0] 16 16
ADDR2MUX ADDRIMUX
2 (
7 S /T/ i s 16
i 16 16 A6 Al6 16
Slgn ] [10:0] , 0 = 7
extension 4 SEXT |~ SEXT ]
[4:0 v
(Operand) |8:9] -SEXT ﬁgmux
15:0] | —f ™| FINITE [ 16
s SEXT | o —» STATE > ! !
MACHINE
W ALU

Select z]p]e—Lb.cc .

Immediate LDIR— IR . Processing
or Register (s L
(as the 2"d Control Unit \/ GateALU
. 16
input to
instruction) GaeMDR A\, |, .
16
LD.MDR—> MDR MAR [<—LD.MAR

A

MEMORY < INPUT OUTPUT

123
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Instructions with one Literal in MIPS

I-type MIPS Instructions
o 2 register operands and immediate

Some operate and data movement instructions

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

o opcode = operation
o s = source register

o rt=
destination register in some instructions (e.g., addi, 1w)
source register in others (e.g., sw)

o imm = Literal or immediate
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ADD with one Literal in MIPS

Add immediate

MIPS assembly
addi S$s0, Ssl, 5
Field Values
op rs rt imm
8 17 16 5

Machine Code

op

rs

rt

t <— rs + sign-extend(imm)

imm

001000

10001

10010

0000 0000 0000 0101

0x22300005
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Subtraction in MIPS vs. .LC-3

= MIPS assembly

High-level code MIPS assembly
a=Db + c - d; add S$t0, S$s0, S$sl
sub $s3, $t0, $s2

= LC-3 assembly

High-level code

LC-3 assembly

a =Db + c - d;

= Tradeoff in LC-3
o More instructions
o But, simpler control logic

R1

ADD R2, RO,
NOT R4, R3
ADD R5, R4,
ADD R6, R2,

2’s
complement
#1 ) of R3

R5
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Subtract Immediate

= MIPS assembly

High-level code MIPS assem
a =Db - 3; subi S$sl,

Is subi necessary in MIPS?

MIPS assembly
addi S$sl, S$s0, -3

= LC-3
High-level code LC-3 assembly

a =b - 3; ADD R1, RO, #-3
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Data Movement Instructions

and Addressing Modes
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Data Movement Instructions

= In LC-3, there are seven data movement instructions
o LD, LDR, LDI, LEA, ST, STR, STI

= Format of load and store instructions
o Opcode (bits [15:12])
o DR or SR (bits [11:9])
o Address generation bits (bits [8:0])
a

Four ways to interpret bits, called addressing modes
= PC-Relative Mode

= Indirect Mode

= Base+Offset Mode

= Immediate Mode

= In MIPS, there are only Base+offset and Immediate modes
for load and store instructions
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PC-Relative Addressing Mode

= LD (Load) and ST (Store)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
« E.g.,, LD = 0010
« E.g., ST = 0011

o DR = destination register in LD
o SR = source register in ST

a LD: DR «— Memory[PCT + sign-extend(PCoffset9)]

a ST: Memory[PC" + sign-extend(PCoffset9)] «— SR

t This is the incremented PC 130



LD in LLC-3

= LD assembly and machine code

: - Register file
Instruction register
LC-3 assembly 15 o RO
IR |0010{010{ 110101111 R1
LD R2, Ox1AF LD Rz xIAR R2 | 0000000000000101 |DR
Incremented PC '9[2501 Ao
. PC 0100 0000 0001 1001|  [SEXT] 9N Rd
Field Values s
OP DR PCoffset9 1111111110101111 z:
16
2 2 Ox1AF  ori
b/ loaded
. 1. Address 1 15 16 ©
Machine Code calculation | D
OP DR PCoffset9 MAR MEMORY -
0010|010 110101111 .
. Memory
15 12 11 9 8 0 read
: Limitation: The PC-relative addressing mode
The memory address is only +255 to -256 cannot address far away from the
locations away of the LD or ST instruction instruction
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Indirect Addressing Mode

= LDI (Load Indirect) and STI (Store Indirect)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
= E.g., LDI = 1010
= E.g., STI = 1011

o DR = destination register in LDI
o SR = source register in STI

a LDI: DR «— Memory[Memory[PC" + sign-extend(PCoffset9)]]

a STI: Memory[Memory[PC" + sign-extend(PCoffset9)]] — SR

t This is the incremented PC 132



LLDI in I.C-3

= LDI assembly and machine code

LC-3 assembly Instruction register ReF?Oister file
IR|1010{ 011] 111001100 | R1
LDI R3, 0x1CC LDI R3 x1CC Ro
Incremented PC IRjg:.0] R3 [1111111111111111| DR
Sign- R4
. PC|0100 1010 0001 1100| [SEXT|oyten
Field Values . EZ
OP DR PCoffset9 xFFCC R7
16
A 3 0x1CC v, 5. DR is
\ ADD / loaded
1. Address 118 16 ®©
Machine Code calculation | D
[MAR | MEMORY [ MDR ]
OP DR PCoffset9
3. LoadeCc:Is) o
dd X
1010{011| 111001100 address S
to MAR 2. Memory 4. Memory
15 2 11 9 8 0 read read

[ Now the address of the operand can be anywhere in the memory ]
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Base+Oftfset Addressing Mode

= LDR (Load Register) and STR (Store Register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR | BaseR offsetb
4 bits 3 bits 3 bits 6 bits

o OP = opcode
= E.g., LDR = 0110
= E.g., STR = 0111

o DR = destination register in LDR
o SR = source register in STR

o LDR: DR < Memory[BaseR + sign-extend(offset6)]

o STR: Memory[BaseR + sign-extend(offset6)] « SR
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LLDR in LLC-3

= LDR assembly and machine code

Instruction register Register file
LC-3 assembly 15 0 Ro
IR {0110 ]001|010| 011101 R1| 0000111100001111 | DR
LDR R1, R2, 0x1D LDR AT Rz xiD R2 | 0010001101000101 | BaseR
IR[5:0] R3
. [SExT] Sign- R4
Field Values e A
R6
OP DR  BaseR offset6 x001D R
6 1 2 0x1D N
\ ADD / loaded
. 1. Address 116 16 ®
MaCh|ne COde calculation @
OP DR BaseR offset6 MAR MEMORY MDR
0110, 001010011101 T
. Memory
15 12 11 9 8 6 5 0 @ read

[ Again, the address of the operand can be anywhere in the memory ]
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Address Calculation in 1.C-3 Data Path

GateMARMUX

MARMUX : >

16 16

Global bus

MAR
Multiplexer

GatePC

I

ADDR2MUX

ADDRIMUX

Adder

3
DR—4>|

LD.REG—>|
SR2

3
SR2—4={ QUT

REG
FILE

SRI | 3
OUT [</“SRI

Sign
extension
(Address)

GateMDR —/\
16 11

LD.MDR—> MDR
Y

™ FINITE

MEMORY

MAR [<—LD.MAR

STATE (= ! !
MACHINE% ALU
>controL| | AMUK

16 0
Processing
Unit

\/ GateALU

MEM.EN, R W

INPUT

OUTPUT
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Base+Ottset Addressing Mode in MIPS

= In MIPS, Iw and sw use base+offset mode (or base

addressing mode)

High-level code MIPS assembly
Al2] = a; SwW $s3, 8($s0)
Memory[$s0 + 8] «— $s3
Field Values
op rs rt imm
43 16 19 8

= imm is the 16-bit offset, which is sign-extended to 32 bits
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An Example Program in MIPS and 1.C-3

High-level code

MIPS registers

LC-3 registers

a = A[0]; A = $s0 A = RO
C = a + b - 5; b = $s2 b = R2
B[0] = c; B = Ssl B = R1
MIPS assembly LC-3 assembly

lw  $t0, 0($s0) LDR R5, RO, #0

add $tl, $t0, $s2 ADD R6, R5, R2
addi S$t2, $tl, -5 ADD R7, R6, #-5

sw  $t2, 0(Ssl) STR R7, R1, #0
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Immediate Addressing Mode (in 1.C-3)

= LEA (Load Effective Address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR PCoffset9
4 bits 3 bits 9 bits

o OP =1110
o DR = destination register

o LEA: DR <« PC' + sign-extend(PCoffset9)

What is the difference from PC-Relative addressing mode?

( )

Answer: Instructions with PC-Relative mode load from memory,
but LEA does not > Hence the name Load Effective Address

\. J

t This is the incremented PC 139



LEA in L.C-3

= LEA assembly and machine code

LC-3 assembly

LEA R5, #-3
Field Values

OP DR PCoffset9

E 5 Ox1FD
Machine Code

OP DR PCoffset9
17110 101 17111111101
15 12 11 9 8 0

IR

PC

0100000000010110

Instruction register Register file
15 0 RO
1110[101| 111111101 R1
LEA R5  x1FD R2

Incremented PC IRig:0] A3
0100 0000 0001 1001 @ESign- Ra

extend .
16
R6
1111101
16

ADD

16

DR

140




Address Calculation in 1.C-3 Data Path

GateMARMUX

MARMUX : >

16 16

Global bus

MAR
Multiplexer

GatePC

I

ADDR2MUX

ADDRIMUX

Adder

3
DR—4>|

LD.REG—>|
SR2

3
SR2—4={ QUT

REG
FILE

SRI | 3
OUT [</“SRI

Sign
extension
(Address)

GateMDR —/\
16 11

LD.MDR—> MDR
Y

™ FINITE

MEMORY

MAR [<—LD.MAR

STATE (= ! !
MACHINE% ALU
>controL| | AMUK

16 0
Processing
Unit

\/ GateALU

MEM.EN, R W

INPUT

OUTPUT
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Immediate Addressing Mode in MIPS

= In MIPS, lui (load upper immediate) loads a 16-bit
immediate into the upper half of a register and sets the

lower half to 0

= It is used to assign 32-bit constants to a register

High-level code

MIPS assembly

a

Oxodbedf3c;

lui

ori

$s0,
$s0,

Oxodbe
O0x4f3c
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Addressing Example in L.C-3
What is the final value of R3?

Address 15 14 13

x30F6
x30F7
x30F8
x30F9
x30FA
x30FB
x30FC

12 11 10 9 8 76 543210
I 1.1 0|0 O 1|11 11111O01
O 0 0 110 1 0j0O0T1}]1{j0 1110
o 0o 1 10 1 0O0j11111T1O0T11
O 1 0 110 1 0|01 0|1{00O0O0O
O 0 0 110 1 0j0O10(1{0OO0T1O01
o 1 1 170 1 0j001{]0OO011T1O0
I 01 0|0 1T 1|1 111 101T11

P&P, Chapter 5.3.5

R1<- PC-3

R2<- R1+14
M[x30F4]<- R2
R2<- 0

R2<- R2+5
M[R1+14]<- R2
R3<- M[M[x30F4 ]]
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Addressing Example in L.C-3
= What is the final value of R3?

P&P, Chapter 5.3.5

Address 15 14 13 12 11 10 9 8 76 5 43 2 1 0
x30F6 0 1% R1 = PC — 3 = 0x30F7 — 3 = 0x30F4
x30F7 0 01C 14 R2=R1+ 14 = 0x30F4 + 14 = 0x3102
x30F8 0 0k M[PC - 5] = M[0x030F4] = 0x3102
x30F9 0 0[0 R2 = 0
x30FA 0 010 R2=R2+5=5
x30FB 0 00 1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5
x30FC 0 1 B R3 = M[M[PC - 9]] = M[M[0x30FD - 9]] =

M[M[0x30F4]] = M[0x3102] =5

= The final value of R3 is 5
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Control Flow Instructions
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Control Flow Instructions

Allow a program to execute out of sequence

Conditional branches and unconditional jumps

o Conditional branches are used to make decisions
E.qg., if-else statement

a In LC-3, three condition codes are used

o Jumps are used to implement
Loops
Function calls

o JMP in LC-3 and j in MIPS
We have already seen these
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Conditional Control Flow
(Conditional Branching)




Condition Codes in L.C-3

Each time one GPR (R0-R7) is written, three single-bit registers
are updated

Each of these condition codes are either set (set to 1) or cleared
(set to 0)

o If the written value is negative
N is set, Z and P are cleared

o If the written value is zero
Z is set, N and P are cleared

o If the written value is positive
P is set, N and Z are cleared

x86 and SPARC are examples of ISAs that use condition codes
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Conditional Branches in 1.C-3
BRz (Branch if Zero)

Q

Q

Q

BRz PCoffset?9
0000 |niz|p PCoffset9
4 bits 9 bits
n, z, p = which condition code is tested (N, Z, and/or P)
n, z

N, Z,

: values of the corresponding condition codes

PCoffset9 = immediate or constant value

if (n AND N) OR (p AND P) OR (z AND Z))

then PC — PC' + sign-extend(PCoffset9)

Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

"This is the incremented PC

, p: instruction bits to identify the condition codes to be tested
P
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Conditional Branches in 1.C-3

= BRz

BRz 0x0D9

Program ‘

0100 0001 0000 0001

Counter |

PC | 0100 0000 0010 1000

Instruction

register BR N z P PCoffset9

IR | 0000|{0(1|0|{01101100

1

Condition
registers
N
0
( )
Whatifn=z=p = 1?* H) 4
L (i.e., BRnzp) )
( )
And whatifn=z=p = 0?
L J

[ sExT]

16

7 P 0000000011011001

16

A

v

Y4

® \wo /

16

Yes!

'n, z, p are the instruction bits to identify the condition codes to be tested
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Conditional Branches in MIPS

= beq (Branch if Equal)

Q

beq $s0, $sl, offset

4 rs rt offset
6 bits 5bits 5 bits 16 bits
4 = opcode

rs, rt = source registers
offset = immediate or constant value

if rs ==rt
= then PC «— PCT + sign-extend(offset) * 4

Variations: beq, bne, blez, bgtz

"This is the incremented PC

151



Branch If Equal in MIPS and 1.C-3

MIPS assembly

beq $s0, $sl1, offset

LC-3 assembly

NOT
ADD

R2, R1
R3, R2, #1
R4, R3, RO
offset

Subtract
(RO - R1)

= This is an example of tradeoff in the instruction set

o The same functionality requires more instructions in LC-3

a But, the control logic requires more complexity in MIPS
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What We Learned

= Basic elements of a computer & the von Neumann model
o LC-3: An example von Neumann machine

= Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

: . Problem
o Data movement instructions robl
: : Algorithm
o Control instructions
Program/Language

System Software

SW/HW Interface

= Instruction formats

= Addressing modes
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here Is A Lot More to Cover on ISAs

A Note on ISA Evolutnon
e day

ISAs have evolved to reflect/satisfy the concerns of th

= Examples:
Limited on-chip and off-chip memory size

Limite« piler optimization tec hnology

Limited memory bandwidth
Need for specialization in important applications (e.g., MMX)

« Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

> Pl o) 1:43:52/1:5110

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

44,973 views * Jan 24, 2015

N> Carnegie Mellon Computer Architecture
22.8K subscribers

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (http:/,
Date: Jan 16th, 2015

https:/ /www.youtube.com/onurmutlulectures 154
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Many Ditterent ISAs Over Decades

X86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine

VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM, RISC-V, ...

What are the fundamental differences?

a E.g., how instructions are specified and what they do

o E.g., how complex are instructions, data types, addr. modes
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Complex vs. Simple Instructions+Data Types

Complex instruction: An instruction does a lot of work, e.g.
many operations

o Insert in a doubly linked list
Compute FFT

String copy
Matrix multiply

o o O o

Simple instruction: An instruction does little work -- it is a
primitive using which complex operations can be built

o Add
XOR
Multiply

o O 0O
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Complex vs. Simple Instructions+Data Types

Advantages of Complex Instructions + Data Types

+ Denser encoding - smaller code size - better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions + Data Types

- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware
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Semantic Gap

= How close instructions & data types & addressing modes
are to high-level language (HLL)

HLL HLL
| Small Semantic Gap
ISA with

Complex Inst

& Data Types

& Addressing Modes ISA with
Simple Inst

& Data Types
& Addressing Modes

Large Semantic Gap

HW HW

Control Control

Signals Signals
Easier mapping of HLL to ISA Harder mapping of HLL to ISA
Less work for software designer More work for software designer
More work for hardware designer Less work for hardware designer

Optimization burden on HW Optimization burden on SW



How to Change the Semantic Gap Tradeotts

= Translate from one ISA into a different “implementation” ISA

HLL

Small Semantic Gap

X86-64 ISA with
Complex Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

ARM v8.4

HW
Control
Signals
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An Example: Rosetta 2 Binary Translator

Rosetta 2 [edit]

In 2020, Apple announced Rosetta 2 would be bundled with macOS Big Mac transition to

Apple silicon

Sur, to aid in the Mac transition to Apple silicon. The software permits

In addition to the just-in-time (JIT) translation support, Rosetta 2 offers
ahead-of-time compilation (AOT), with the x86-64 code fully translated,
just once, when an application without a universal binary is installed on an
Apple silicon Mac.[®!

Rosetta 2's performance has been praised greatly.['%l"] |n some
benchmarks, x86-64-only programs performed better under Rosetta 2 on
a Mac with an Apple M1 SOC than natively on a Mac with an Intel x86-64 Apple silicon - ARM architecture -
processor. One of the key reasons why Rosetta 2 provides such high level Universal 2 binary - Rosetta 2 -

Devel T ition Kit
of translation efficiency is the support of x86-64 memory ordering in Apple SRR

M1 soc.['2]

Although Rosetta 2 works for most software, some software doesn't work

at alll'3! or is reported to be "sluggish".l'#] A lot of software can be made compatible with the new Macs by the vendor
recompiling the software, often a simple task; while for some software (such as software that includes assembly
language code, or that generates machine code), the changes to make them work aren't simple and cannot be
automated.

Similar to the first version, Rosetta 2 does not normally require user intervention. When a user attempts to launch an
x86-64-only application for the first time, macOS prompts them to install Rosetta 2 if it is not already available.
Subsequent launches of x86-64 programs will execute via translation automatically. An option also exists to force a
universal binary to run as x86-64 code through Rosetta 2, even on an ARM-based machine.['5]
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https://en.wikipedia.org/wiki/Rosetta_(software)

An Example Rosetta 2 Bmary Translator

8x 16[)
LPDDR4X
Ghannels

Apple M1,
2021

R T VA s e g P F T

) 1
-

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 161
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Another Example: Intel and AMD Processors

HLL

Small Semantic Gap

X86-64 ISA with
Complex Inst
& Data Types
& Addressing Modes

Hardware Translator

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

Secret
Micro-operations |,y

Control
Signals
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Another Example: Intel and AMD P
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Another Example: NVIDIA Denver

The Secret of Denver: Binary Translation & Code Optimization

As we alluded to earlier, NVIDIA's decision to forgo a traditional out-of-order design for Denver means that
much of Denver’s potential is contained in its software rather than its hardware. The underlying chip itself,
though by no means simple, is at its core a very large in-order processor. So it falls to the software stack to
make Denver sing.

Accomplishing this task is NVIDIA's dynamic code optimizer (DCO). The purpose of the DCO is to accomplish
two tasks: to translate ARM code to Denver’s native format, and to optimize this code to make it run better ¢
Denver. With no out-of-order hardware on Denver, it is the DCO'’s task to find instruction level parallelism
within a thread to fill Denver’s many execution units, and to reorder instructions around potential stalls,
something that is no simple task.

DYNAMIC CODE OPTIMIZATION
OPTIMIZE ONCE, USE MANY TIMES

3
2

* aman

Instructions

Dynamic
Profile

Decoder

Unrolls Lo
Execution

Units Imp o Optimization Cache
Denver Hardware ce it

https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 1 65
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1



Transmeta: x86 to VLIW Translation

BIOS

Code Morphing
Software

Transmeta m

(9]
>
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4€98H

VLIW engine > I . §
X86 X86 5 .‘
Operating Code Morphing Applications S - emceon 03426 FO9 a}
System Software LS Sl RN TR , ‘-

Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

https://www.wikiwand.com/en/Transmeta_Efficeon 1 66



ISA-level Tradeotfs: Number ot Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler > fewer saves/restores

-- Larger instruction size
-- Larger register file size
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here Is A Lot More to Cover on ISAs

A Note on ISA Evolutnon
e day

ISAs have evolved to reflect/satisfy the concerns of th

= Examples:
Limited on-chip and off-chip memory size

Limite« piler optimization tec hnology

Limited memory bandwidth
Need for specialization in important applications (e.g., MMX)

« Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

> Pl o) 1:43:52/1:5110

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

44,973 views * Jan 24, 2015

N> Carnegie Mellon Computer Architecture
22.8K subscribers

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (http:/,
Date: Jan 16th, 2015

https:/ /www.youtube.com/onurmutlulectures 168
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There Is A Lot More to Cover on ISAs

< P >l o) 2529/13028 @ (= O

Lecture 4. ISA Tradeoffs & MIPS ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

28,806 views * Jan 23, 2015 SHARE

e - .
N S Carnegie Mellon Computer Architecture
’ "
22.8K subscribers

L=

Lecture 4. ISA Tradeoffs (cont.) & MIPS ISA
Lecturer: Kevin Chang (
Date: Jan 21th, 2015

https:/ /www.youtube.com/onurmutlulectures
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Detailed Lectures on ISAs & ISA Tradeoffs

= Computer Architecture, Spring 2015, Lecture 3

o ISA Tradeoffs (CMU, Spring 2015)

o https://www.youtube.com/watch?v=0KdiZSfwg-
g&list=PL5PHM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=3

= Computer Architecture, Spring 2015, Lecture 4

o ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1ITWybTDtKq&index=4

= Computer Architecture, Spring 2015, Lecture 2

o Fundamental Concepts and ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1TWybTDtKg&index=2

https:/ /www.youtube.com/onurmutlulectures 170
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https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

ISA Design and Tradeoffs:
More Critical Thinking




The Von Neumann Model/ Architecture

Stored program

Sequential instruction processing
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The von Neumann Model/Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing
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Recall: The Instruction Cycle

Interpret memory value as Instruction

a FETCH

a DECODE
o EVALUATE ADDRESS

a FETCH OPERANDS

0 EXECUTE Interpret memory value as Data

O STORE RESULT

Whether a value fetched from memory is interpreted as an instruction depends on
when that value is fetched in the instruction processing cycle.

174



The von Neumann Model/ Architecture

Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

Stored program
o Instructions stored in a linear memory array
o Memory is unified between instructions and data

The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?

Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer
instructions
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The von Neumann Model/ Architecture

Recommended reading

o Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Important reading

o Patt and Patel book, Chapter 4, “The von Neumann Model”

Stored program

Sequential instruction processing
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The Von Neumann Model (of a Computer)

INPUT OUTPUT
Keyboard, Monitor,
Mouse, Printer,
Disk... Disk...
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The Von Neumann Model (of a Computer)

Q: Is this the only way that a computer can process
computer programs?

The von Neumann Model

= In order to build a computer, we need an execution model for
processing computer programs

= John von Neumann proposed a fundamental model in 1946

= The von Neumann Model consists of 5 components
o Memory (stores the program and data)
o Processing unit
o Input
o Output

@

o Control unit (controls the order in which instructions are carried out)

Throughout this lecture, we will examine two examples of the
von Neumann model
o LC-3 Burks, Goldstein, von Neumann,

“Preliminary discussion of the logical design
o MIPS of an electronic computing instrument,” 1946.
All general-purpose computers today use the von Neumann model 14

A: No.

Qualified Answer: No. But, it has been the dominant way
o i.e., the dominant paradigm for computing
o for N decades

Let’s examine a completely different model for processing computer programs 178



The Dataflow Execution Model
ot a Computer




The Datatlow Model (of a Computer)

Von Neumann model: An instruction is fetched and
executed in control flow order

o As specified by the program counter (instruction pointer)
o Sequential unless explicit control flow instruction

Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no program counter (instruction pointer)

o Instruction ordering specified by data flow dependence

Each instruction specifies “who"” should receive the result
An instruction can “fire” whenever all operands are received

o Potentially many instructions can execute at the same time

Inherently more parallel
180



Von Neumann vs. Dataflow

Consider a Von Neumann program
o What is the significance of the program order?
o What is the significance of the storage locations?

a b

v=a-+b; I

w=D>b*2;

X=V-W

Y=V+W

ZzZ=Xx*y |

o

Sequential
a, b are the only inputs ::J Dataflow
z is the only output

YA

Which model is more natural to you as a programmer? 181



More on Dataflow

In a dataflow machine, a program consists of dataflow
nodes

o A dataflow node fires (fetched and executed) when all it
inputs are ready

i.e. when all inputs have tokens

Dataflow node and its ISA representation

/ ’ ‘ .
f | I

R, | * | R ARG1 R ARG2 |  Dest. Of Result
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Example Datatlow Nodes

X |
* Conditional E
(s = ()
7T
10\.¥ 7
X Relational
=
TRUE

*Barrier Synch t t i

R t? e
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A Simple Example Datatlow Program

)

Nis a
non-negative
integer

What is the
value of OUT?
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ISA-level Tradeotf: Program Counter

Do we want a Program Counter (PC or IP) in the ISA?
a Yes: Control-driven, sequential execution
An instruction is executed when the PC points to it

PC automatically changes sequentially (except for control flow
instructions) - sequential

a No: Data-driven, parallel execution

An instruction is executed when all its operand values are
available = dataflow

Tradeoffs: MANY high-level ones

o Ease of programming (for average programmers)?
o Ease of compilation?

o Performance: Extraction of parallelism?

o Hardware complexity?
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ISA vs. Microarchitecture Level Tradeoff

A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

ISA: Specifies how the programmer sees the instructions to
be executed

o Programmer sees a sequential, control-flow execution order vs.
o Programmer sees a dataflow execution order

Microarchitecture: How the underlying implementation
actually executes instructions

a Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

Programmer should see the order specified by the ISA
186



I.et’s Get Back to the von Neumann Model

= But, if you want to learn more about dataflow...

= Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

= Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

= A later lecture

= If you are really impatient:
o http://www.youtube.com/watch?v=D2uue’izU2c

o http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-partl.ppt
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Lecture Video on Dataflow Architectures

P> M o) 4227/1:2500 o @ & [« O 3

Carnegie Mellon - Parallel Computer Architecture 2012-Onur Mutlu - Lec 22 - Dataflow |

3,627 views * Apr 21,2013 ifp22 &lo ) SHARE =y SAVE ..

= 3 Carnegie Mellon Computer Architecture

1.79K subscribers SUBSCRIBED (1
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The von Neumann Model

All major instruction set architectures today use this model
o x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, ...

Underneath (at the microarchitecture level), the execution
model of almost all /implementations (or, microarchitectures)
is very different

o Pipelined instruction execution: Intel 80486 uarch
o Multiple instructions at a time: Inte/ Pentium uarch
o Out-of-order execution: Intel Pentium Pro uarch

o Separate instruction and data caches

But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

o Difference between ISA and microarchitecture
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What 1s Computer Architecturer

ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964
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ISA vs. Microarchitecture

s ISA

o Agreed upon interface between software
and hardware
= SW/compiler assumes, HW promises

Problem

o What the software writer needs to know PR

to write and debug system/user programs  [5 502,
ISA

= Microarchitecture
o Specific implementation of an ISA
o Not visible to the software

= Microprocessor
a ISA, uarch, circuits
o “Architecture” = ISA + microarchitecture
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Microarchitecture

A specific implementation of the ISA

How do we implement the ISA?
o We will discuss this for many lectures

There can be many implementations of the same ISA
o MIPS R2000, R3000, R4000, R6000, R8000, R10000, ...

o x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,
Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire Rapids,
..., AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, ...

POWER 4,5, 6, 7, 8,9, 10 (IBM), ..., PowerPC 604, 605, 620, ...
ARM Cortex-M*, ARM Cortex-A*, NVIDIA Denver, Apple A*, M1, ...
Alpha 21064, 21164, 21264, 21364, ...
RISC-V ...

o o O O O
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ISA vs. Microarchitecture

What is part of ISA vs. Uarch?

o Gas pedal: interface for “acceleration”
o Internals of the engine: implement “acceleration”

Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

o Add instruction vs. Adder implementation

Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture (see H&H Chapter 5.2.1)

o X86 ISA has many implementations:

Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, Coffee Lake, Comet Lake, Ice
Lake, Golden Cover, Sapphire Rapids, ..., AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, ...

Microarchitecture usually changes faster than ISA

o Few ISAs (x86, ARM, SPARC, MIPS, Alpha, RISC-V) but many uarchs
o Why?

https://www.vox.com/2015/7/1/8877583/two-foot-driving-pedal-error 1 93



ISA: What Does It Specity?

1 /4830 — 7% + E 9

= Instructions
o Opcodes, Addressing Modes, Data Types (i/ntel’)
o Instruction Types and Formats

o Registers, Condition Codes _
Intel® 64 and IA-32 Architectures

0 M emory Software Developer’s Manual
Combined Volumes:
o Address space, Addressability, Alignment 124, 26, 26 20, 3R, 36,36 30 end 4

2 Virtual memory management
= Call, Interrupt/Exception Handling [ —————
= Access Control, Priority/Privilege
= I/O: memory-mapped vs. instructions
= Task/thread Management A Ak st Se vt
= Power & Thermal Management
= Multithreading & Multiprocessor support




ISA Manuals: Some Good Bedtime Reading

Combined Volume Set of Intel® 64 and |A-32
Architectures Software Developer's Manuals

Document

Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C,
2D, 3A, 3B, 3C, 3D, and 4

Intel® 64 and IA-32 Architectures
Software Developer's Manual
Documentation Changes

Description

This document contains the following:

Volume 1: Describes the architecture and programming environment of processors supporting IA-32 and Intel®
64 architectures.

Volume 2: Includes the full instruction set reference, A-Z. Describes the format of the instruction and provides
reference pages for instructions.

Volume 3: Includes the full system programming guide, parts 1, 2, 3, and 4. Describes the operating-system
support environment of Intel® 64 and IA-32 architectures, including: memory management, protection, task
management, interrupt and exception handling, multi-processor support, thermal and power management
features, debugging, performance monitoring, system management mode, virtual machine extensions (VMX)
instructions, Intel® Virtualization Technology (Intel® VT), and Intel® Software Guard Extensions (Intel® SGX).
NOTE: Performance monitoring events can be found here: https://perfmon-events.intel.com/

Volume 4: Describes the model-specific registers of processors supporting IA-32 and Intel® 64 architectures.

Describes bug fixes made to the Intel® 64 and IA-32 architectures software developer's manual between
versions.

NOTE: This change document applies to all Intel® 64 and |A-32 architectures software developer’s manual sets
(combined volume set, 4 volume set, and 10 volume set).

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html 195



https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

ISA Manuals: Some Good Bedtime Reading

¥ @ riscv.org/technical/specifications/ ) x M
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:?j RIS‘ -W® About RISC-V v Membership v RISC-V Exchange v Technical v News&Events v Community Vv Q

Specifications

The RISC-V instruction setarchltecture(ISA) and related specifications are developed ratified and maintained by RISC-V Internatic ntributing members within the RISC-V International
Technical Working Groups. Work on the specification is performed on G ), and the GitHub i nechanism can be used to prowde |nputmto the specification.

If you would like more information on becoming a member, please see the m

ISA Specification Debug Specification Trace Specification Compatibility Test Framework
The specifications shown below represent This is the currently ratified specification: The processor trace specification was The RISC-V Architectural Compatibility Test
the current, ratified releases. Work is being approved on March 20, 2020. Framework Version 2 is now available. This
done on GitHub e External Debug Support v. 0.13.2 [PDF] framework compares arbitrary models
[GitHub] e Trace Specification v. 1.0 [PDF] against a reference signature, and currently
e Volume 1, Unprivileged Specv. [GitHub] covers RV[32]64]IMC unprivileged
20191213 [PDF] o specifications only. Tests for the not-yet-
« Volume 2, Privileged Specv. 20211203 Thisis the current stable draft: ratified Crypto Scalar extension and
[PDF] RV32EMC extensions are also available.
e Recently ratified, but not yet e External Debug Supportv. 1.0.0-
integrated, exten specificatior STABLE [PDF] Work on Version 3.0 framework (RISCOF) is

https:/riscv.org/technical/specifications/ 196
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