
“app-a” — 2003/6/30 — page 521 — #1

a p p e n d i x a

The LC-3 ISA

A.1 Overview
The Instruction Set Architecture (ISA) of the LC-3 is defined as follows:

Memory address space 16 bits, corresponding to 216 locations, each
containing one word (16 bits). Addresses are numbered from 0 (i.e, x0000)
to 65,535 (i.e., xFFFF). Addresses are used to identify memory locations
and memory-mapped I/O device registers. Certain regions of memory are
reserved for special uses, as described in Figure A.1.

Bit numbering Bits of all quantities are numbered, from right to left,
starting with bit 0. The leftmost bit of the contents of a memory location is
bit 15.

Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode
(operation to be performed), bits [11:0] provide further information that is

x0000

Interrupt Vector Table
x01FF
x0200

x2FFF
x3000

xFDFF
xFE00

xFFFF

Trap Vector Table

Device register addresses

Operating system and
Supervisor Stack

Available for
user programs

x00FF
x0100

Figure A.1 Memory map of the LC-3



“app-a” — 2003/6/30 — page 522 — #2

522 appendix a The LC-3 ISA

needed to execute the instruction. The specific operation of each LC-3
instruction is described in Section A.3.

Illegal opcode exception Bits [15:12] = 1101 has not been specified. If an
instruction contains 1101 in bits [15:12], an illegal opcode exception
occurs. Section A.4 explains what happens.

Program counter A 16-bit register containing the address of the next
instruction to be processed.

General purpose registers Eight 16-bit registers, numbered from 000 to
111.

Condition codes Three 1-bit registers: N (negative), Z (zero), and P
(positive). Load instructions (LD, LDI, LDR, and LEA) and operate
instructions (ADD, AND, and NOT) each load a result into one of the eight
general purpose registers. The condition codes are set, based on whether
that result, taken as a 16-bit 2’s complement integer, is negative
(N = 1; Z, P = 0), zero (Z = 1; N, P = 0), or positive (P = 1; N, Z = 0).
All other LC-3 instructions leave the condition codes unchanged.

Memory-mapped I/O Input and output are handled by load/store
(LDI/STI, LDR/STR) instructions using memory addresses to designate
each I/O device register. Addresses xFE00 through xFFFF have been
allocated to represent the addresses of I/O devices. See Figure A.1. Also,
Table A.3 lists each of the relevant device registers that have been identified
for the LC-3 thus far, along with their corresponding assigned addresses
from the memory address space.

Interrupt processing I/O devices have the capability of interrupting the
processor. Section A.4 describes the mechanism.

Priority level The LC-3 supports eight levels of priority. Priority level 7
(PL7) is the highest; PL0 is the lowest. The priority level of the currently
executing process is specified in bits PSR[10:8].

Processor status register (PSR) A 16-bit register, containing status
information about the currently executing process. Seven bits of the PSR
have been defined thus far. PSR[15] specifies the privilege mode of
the executing process. PSR[10:8] specifies the priority level of the currently
executing process. PSR[2:0] contains the condition codes. PSR[2] is N,
PSR[1] is Z, and PSR[0] is P.

Privilege mode The LC-3 specifies two levels of privilege, Supervisor
mode (privileged) and User mode (unprivileged). Interrupt service routines
execute in Supervisor mode. The privilege mode is specified by PSR[15].
PSR[15] = 0 indicates Supervisor mode; PSR[15] = 1 indicates User
mode.

Privilege mode exception The RTI instruction executes in Supervisor
mode. If the processor attempts to execute an RTI instruction while in User
mode, a privilege mode exception occurs. Section A.4 explains what
happens.



“app-a” — 2003/6/30 — page 523 — #3

A.3 The Instruction Set 523

Supervisor Stack A region of memory in supervisor space accessible via
the Supervisor Stack Pointer (SSP). When PSR[15] = 0, the stack pointer
(R6) is SSP.

User Stack A region of memory in user space accessible via the User Stack
Pointer (USP). When PSR[15] = 1, the stack pointer (R6) is USP.

A.2 Notation
The notation in Table A.1 will be helpful in understanding the descriptions of the
LC-3 instructions (Section A.3).

A.3 The Instruction Set
The LC-3 supports a rich, but lean, instruction set. Each 16-bit instruction consists
of an opcode (bits[15:12]) plus 12 additional bits to specify the other information
that is needed to carry out the work of that instruction. Figure A.2 summarizes
the 15 different opcodes in the LC-3 and the specification of the remaining bits of
each instruction. The 16th 4-bit opcode is not specified, but is reserved for future
use. In the following pages, the instructions will be described in greater detail.
For each instruction, we show the assembly language representation, the format
of the 16-bit instruction, the operation of the instruction, an English-language
description of its operation, and one or more examples of the instruction. Where
relevant, additional notes about the instruction are also provided.



“app-a” — 2003/6/30 — page 524 — #4

524 appendix a The LC-3 ISA

Table A.1 Notational Conventions

Notation Meaning

xNumber The number in hexadecimal notation.
#Number The number in decimal notation.
A[l:r] The field delimited by bit [l] on the left and bit [r] on the right, of the datum A. For

example, if PC contains 0011001100111111, then PC[15:9] is 0011001. PC[2:2]
is 1. If l and r are the same bit number, the notation is usually abbreviated PC[2].

BaseR Base Register; one of R0..R7, used in conjunction with a six-bit offset to compute
Base+offset addresses.

DR Destination Register; one of R0..R7, which specifies which register the result of an
instruction should be written to.

imm5 A 5-bit immediate value; bits [4:0] of an instruction when used as a literal
(immediate) value. Taken as a 5-bit, 2’s complement integer, it is sign-extended to
16 bits before it is used. Range: −16..15.

LABEL An assembly language construct that identifies a location symbolically (i.e., by means
of a name, rather than its 16-bit address).

mem[address] Denotes the contents of memory at the given address.
offset6 A 6-bit value; bits [5:0] of an instruction; used with the Base+offset addressing mode.

Bits [5:0] are taken as a 6-bit signed 2’s complement integer, sign-extended to
16 bits and then added to the Base Register to form an address. Range: −32..31.

PC Program Counter; 16-bit register that contains the memory address of the next
instruction to be fetched. For example, during execution of the instruction at address
A, the PC contains address A + 1, indicating the next instruction is contained in
A + 1.

PCoffset9 A 9-bit value; bits [8:0] of an instruction; used with the PC+offset addressing mode.
Bits [8:0] are taken as a 9-bit signed 2’s complement integer, sign-extended to 16
bits and then added to the incremented PC to form an address. Range −256..255.

PCoffset11 An 11-bit value; bits [10:0] of an instruction; used with the JSR opcode to compute
the target address of a subroutine call. Bits [10:0] are taken as an 11-bit 2’s
complement integer, sign-extended to 16 bits and then added to the incremented PC
to form the target address. Range −1024..1023.

PSR Processor Status Register; 16-bit register that contains status information of the
process that is running. PSR[15] = privilege mode. PSR[2:0] contains the condition
codes. PSR[2] = N, PSR[1] = Z, PSR[0] = P.

setcc() Indicates that condition codes N, Z, and P are set based on the value of the result
written to DR. If the value is negative, N = 1, Z = 0, P = 0. If the value is zero,
N = 0, Z = 1, P = 0. If the value is positive, N = 0, Z = 0, P = 1.

SEXT(A) Sign-extend A. The most significant bit of A is replicated as many times as necessary to
extend A to 16 bits. For example, if A = 110000, then SEXT(A) = 1111 1111
1111 0000.

SP The current stack pointer. R6 is the current stack pointer. There are two stacks, one
for each privilege mode. SP is SSP if PSR[15] = 0; SP is USP if PSR[15] = 1.

SR, SR1, SR2 Source Register; one of R0..R7 which specifies the register from which a source
operand is obtained.

SSP The Supervisor Stack Pointer.
trapvect8 An 8-bit value; bits [7:0] of an instruction; used with the TRAP opcode to determine

the starting address of a trap service routine. Bits [7:0] are taken as an unsigned
integer and zero-extended to 16 bits. This is the address of the memory location
containing the starting address of the corresponding service routine. Range 0..255.

USP The User Stack Pointer.
ZEXT(A) Zero-extend A. Zeros are appended to the leftmost bit of A to extend it to 16 bits. For

example, if A = 110000, then ZEXT(A) = 0000 0000 0011 0000.



“app-a” — 2003/6/30 — page 525 — #5

A.3 The Instruction Set 525

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

+

+

+

+

+

+

+

+

+

reserved

15 12 11 017 6 5 4 3 210 9 81314

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND

ADD

ADD

AND

JMP

LD

LDI

LDR

LEA

NOT

RET

RTI

ST

JSRR

JSR

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes



“app-a” — 2003/6/30 — page 526 — #6

526 appendix a The LC-3 ISA

ADD Addition

Assembler Formats
ADD DR, SR1, SR2
ADD DR, SR1, imm5

Encodings
12 11 9 8 6 5 4 3 2 0

15 12 11 9 8 6 5 4 0

15

SR2

0001 DR SR1 1 imm5

0001 DR SR1 0 00

Operation
if (bit[5] == 0)

DR = SR1 + SR2;
else

DR = SR1 + SEXT(imm5);
setcc();

Description
If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the
second source operand is obtained by sign-extending the imm5 field to 16 bits.
In both cases, the second source operand is added to the contents of SR1 and the
result stored in DR. The condition codes are set, based on whether the result is
negative, zero, or positive.

Examples
ADD R2, R3, R4 ; R2← R3 + R4
ADD R2, R3, #7 ; R2← R3 + 7



“app-a” — 2003/6/30 — page 527 — #7

A.3 The Instruction Set 527

AND Bit-wise Logical AND
Assembler Formats

AND DR, SR1, SR2
AND DR, SR1, imm5

Encodings

12 11 9 8 6 5 4 0

02345689111215

15

0101 DR SR1 1 imm5

DR SR1 0 00 SR20101

Operation
if (bit[5] == 0)

DR = SR1 AND SR2;
else

DR = SR1 AND SEXT(imm5);
setcc();

Description
If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1,
the second source operand is obtained by sign-extending the imm5 field to 16
bits. In either case, the second source operand and the contents of SR1 are bit-
wise ANDed, and the result stored in DR. The condition codes are set, based on
whether the binary value produced, taken as a 2’s complement integer, is negative,
zero, or positive.

Examples
AND R2, R3, R4 ;R2← R3 AND R4
AND R2, R3, #7 ;R2← R3 AND 7



“app-a” — 2003/6/30 — page 528 — #8

528 appendix a The LC-3 ISA

BR Conditional Branch

Assembler Formats

BRn LABEL BRzp LABEL
BRz LABEL BRnp LABEL
BRp LABEL BRnz LABEL
BR† LABEL BRnzp LABEL

Encoding

zn p

15 12 11 10 9 8 0

0000 PCoffset9

Operation
if ((n AND N) OR (z AND Z) OR (p AND P))

PC = PC‡ + SEXT(PCoffset9);

Description
The condition codes specified by the state of bits [11:9] are tested. If bit [11] is
set, N is tested; if bit [11] is clear, N is not tested. If bit [10] is set, Z is tested, etc.
If any of the condition codes tested is set, the program branches to the location
specified by adding the sign-extended PCoffset9 field to the incremented PC.

Examples
BRzp LOOP ; Branch to LOOP if the last result was zero or positive.
BR† NEXT ; Unconditionally branch to NEXT.

†The assembly language opcode BR is interpreted the same as BRnzp; that is, always branch to the
target address.
‡This is the incremented PC.



“app-a” — 2003/6/30 — page 529 — #9

A.3 The Instruction Set 529

JMP
RET

Jump

Return from Subroutine

Assembler Formats
JMP BaseR
RET

Encoding

000 000000

05689111215

BaseRJMP 1100

000 111 000000

05689111215

RET 1100

Operation
PC = BaseR;

Description
The program unconditionally jumps to the location specified by the contents of
the base register. Bits [8:6] identify the base register.

Examples
JMP R2 ; PC← R2
RET ; PC← R7

Note
The RET instruction is a special case of the JMP instruction. The PC is loaded
with the contents of R7, which contains the linkage back to the instruction
following the subroutine call instruction.



“app-a” — 2003/6/30 — page 530 — #10

530 appendix a The LC-3 ISA

JSR
JSRR

Jump to Subroutine

Assembler Formats
JSR LABEL
JSRR BaseR

Encoding

1

010111215

PCoffset11

000 BaseR 000000

0568910111215

JSRR

JSR 0100

0100

Operation
R7 = PC;†

if (bit[11] == 0)
PC = BaseR;

else
PC = PC† + SEXT(PCoffset11);

Description
First, the incremented PC is saved in R7. This is the linkage back to the calling
routine. Then the PC is loaded with the address of the first instruction of the
subroutine, causing an unconditional jump to that address. The address of the
subroutine is obtained from the base register (if bit [11] is 0), or the address is
computed by sign-extending bits [10:0] and adding this value to the incremented
PC (if bit [11] is 1).

Examples
JSR QUEUE ; Put the address of the instruction following JSR into R7;

; Jump to QUEUE.
JSRR R3 ; Put the address following JSRR into R7; Jump to the

; address contained in R3.

†This is the incremented PC.



“app-a” — 2003/6/30 — page 531 — #11

A.3 The Instruction Set 531

LD Load

Assembler Format
LD DR, LABEL

Encoding

PCoffset90010 DR

15 12 11 9 8 0

Operation
DR = mem[PC† + SEXT(PCoffset9)];
setcc();

Description
An address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. The contents of memory at this address are loaded
into DR. The condition codes are set, based on whether the value loaded is
negative, zero, or positive.

Example
LD R4, VALUE ; R4← mem[VALUE]

†This is the incremented PC.



“app-a” — 2003/6/30 — page 532 — #12

532 appendix a The LC-3 ISA

LDI Load Indirect

Assembler Format
LDI DR, LABEL

Encoding

PCoffset91010 DR

15 12 11 9 8 0

Operation
DR = mem[mem[PC† + SEXT(PCoffset9)]];
setcc();

Description
An address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. What is stored in memory at this address is the
address of the data to be loaded into DR. The condition codes are set, based on
whether the value loaded is negative, zero, or positive.

Example
LDI R4, ONEMORE ; R4← mem[mem[ONEMORE]]

†This is the incremented PC.



“app-a” — 2003/6/30 — page 533 — #13

A.3 The Instruction Set 533

LDR Load Base+offset

Assembler Format
LDR DR, BaseR, offset6

Encoding
15 12 11 9 8 6 5 0

BaseRDR0110 offset6

Operation
DR = mem[BaseR + SEXT(offset6)];
setcc();

Description
An address is computed by sign-extending bits [5:0] to 16 bits and adding this
value to the contents of the register specified by bits [8:6]. The contents of memory
at this address are loaded into DR. The condition codes are set, based on whether
the value loaded is negative, zero, or positive.

Example
LDR R4, R2, #−5 ; R4← mem[R2− 5]



“app-a” — 2003/6/30 — page 534 — #14

534 appendix a The LC-3 ISA

LEA Load Effective Address

Assembler Format
LEA DR, LABEL

Encoding
15 12 11 9 8 0

DR1110 PCoffset9

Operation
DR = PC† + SEXT(PCoffset9);
setcc();

Description
An address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. This address is loaded into DR.‡ The condition
codes are set, based on whether the value loaded is negative, zero, or positive.

Example
LEA R4, TARGET ; R4← address of TARGET.

†This is the incremented PC.
‡The LEA instruction does not read memory to obtain the information to load into DR. The address
itself is loaded into DR.



“app-a” — 2003/6/30 — page 535 — #15

A.3 The Instruction Set 535

NOT Bit-Wise Complement

Assembler Format
NOT DR, SR

Encoding

11111

15 12 11 9 8 6 5 4 3 2 0

DR1001 SR 1

Operation
DR = NOT(SR);
setcc();

Description
The bit-wise complement of the contents of SR is stored in DR. The condi-
tion codes are set, based on whether the binary value produced, taken as a 2’s
complement integer, is negative, zero, or positive.

Example
NOT R4, R2 ; R4← NOT(R2)



“app-a” — 2003/6/30 — page 536 — #16

536 appendix a The LC-3 ISA

RET† Return from Subroutine

Assembler Format

RET

Encoding

000 111 000000

05689111215

1100

Operation
PC = R7;

Description
The PC is loaded with the value in R7. This causes a return from a previous JSR
instruction.

Example
RET ; PC← R7

†The RET instruction is a specific encoding of the JMP instruction. See also JMP.



“app-a” — 2003/6/30 — page 537 — #17

RTI Return from Interrupt

Assembler Format
RTI

Encoding
15 12 11 0

0000000000001000

Operation
if (PSR[15] == 0)

PC = mem[R6]; R6 is the SSP
R6 = R6+1;
TEMP = mem[R6];
R6 = R6+1;
PSR = TEMP; the privilege mode and condition codes of
the interrupted process are restored

else
Initiate a privilege mode exception;

Description
If the processor is running in Supervisor mode, the top two elements on the
Supervisor Stack are popped and loaded into PC, PSR. If the processor is running
in User mode, a privilege mode violation exception occurs.

Example
RTI ; PC, PSR← top two values popped off stack.

Note
On an external interrupt or an internal exception, the initiating sequence first
changes the privilege mode to Supervisor mode (PSR[15] = 0). Then the PSR
and PC of the interrupted program are pushed onto the Supervisor Stack before
loading the PC with the starting address of the interrupt or exception service
routine. Interrupt and exception service routines run with Supervisor privilege.
The last instruction in the service routine is RTI, which returns control to the
interrupted program by popping two values off the Supervisor Stack to restore
the PC and PSR. In the case of an interrupt, the PC is restored to the address of the
instruction that was about to be processed when the interrupt was initiated. In the
case of an exception, the PC is restored to either the address of the instruction
that caused the exception or the address of the following instruction, depending
on whether the instruction that caused the exception is to be re-executed. In the
case of an interrupt, the PSR is restored to the value it had when the interrupt was
initiated. In the case of an exception, the PSR is restored to the value it had when
the exception occurred or to some modified value, depending on the exception.
See also Section A.4.

If the processor is running in User mode, a privilege mode violation exception
occurs. Section A.4 describes what happens in this case.



“app-a” — 2003/6/30 — page 538 — #18

538 appendix a The LC-3 ISA

ST Store

Assembler Format
ST SR, LABEL

Encoding

PCoffset90011 SR

15 12 11 9 8 0

Operation
mem[PC† + SEXT(PCoffset9)] = SR;

Description
The contents of the register specified by SR are stored in the memory location
whose address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC.

Example
ST R4, HERE ; mem[HERE]← R4

†This is the incremented PC.



“app-a” — 2003/6/30 — page 539 — #19

A.3 The Instruction Set 539

STI Store Indirect

Assembler Format
STI SR, LABEL

Encoding

PCoffset91011 SR

15 12 11 9 8 0

Operation
mem[mem[PC† + SEXT(PCoffset9)]] = SR;

Description
The contents of the register specified by SR are stored in the memory location
whose address is obtained as follows: Bits [8:0] are sign-extended to 16 bits and
added to the incremented PC. What is in memory at this address is the address of
the location to which the data in SR is stored.

Example
STI R4, NOT_HERE ; mem[mem[NOT_HERE]]← R4

†This is the incremented PC.



“app-a” — 2003/6/30 — page 540 — #20

540 appendix a The LC-3 ISA

STR Store Base+offset

Assembler Format
STR SR, BaseR, offset6

Encoding
15 12 11 9 8 6 5 0

BaseRSR0111 offset6

Operation
mem[BaseR + SEXT(offset6)] = SR;

Description
The contents of the register specified by SR are stored in the memory location
whose address is computed by sign-extending bits [5:0] to 16 bits and adding this
value to the contents of the register specified by bits [8:6].

Example
STR R4, R2, #5 ; mem[R2 + 5]← R4



“app-a” — 2003/6/30 — page 541 — #21

A.3 The Instruction Set 541

TRAP System Call

Assembler Format
TRAP trapvector8

Encoding
078111215

1111 0000 trapvect8

Operation
R7 = PC;†

PC = mem[ZEXT(trapvect8)];

Description
First R7 is loaded with the incremented PC. (This enables a return to the instruction
physically following the TRAP instruction in the original program after the service
routine has completed execution.) Then the PC is loaded with the starting address
of the system call specified by trapvector8. The starting address is contained in
the memory location whose address is obtained by zero-extending trapvector8 to
16 bits.

Example
TRAP x23 ; Directs the operating system to execute the IN system call.

; The starting address of this system call is contained in
; memory location x0023.

Note
Memory locations x0000 through x00FF, 256 in all, are available to contain
starting addresses for system calls specified by their corresponding trap vectors.
This region of memory is called the Trap Vector Table. Table A.2 describes the
functions performed by the service routines corresponding to trap vectors x20
to x25.

†This is the incremented PC.



“app-a” — 2003/6/30 — page 542 — #22

542 appendix a The LC-3 ISA

Unused Opcode
Assembler Format

none

Encoding
0111215

1101

Operation
Initiate an illegal opcode exception.

Description
If an illegal opcode is encountered, an illegal opcode exception occurs.

Note
The opcode 1101 has been reserved for future use. It is currently not defined. If
the instruction currently executing has bits [15:12] = 1101, an illegal opcode
exception occurs. Section A.4 describes what happens.



“app-a” — 2003/6/30 — page 543 — #23

A.4 Interrupt and Exception Processing 543

Table A.2 Trap Service Routines

Trap Vector Assembler Name Description

x20 GETC Read a single character from the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.

x21 OUT Write a character in R0[7:0] to the console display.
x22 PUTS Write a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in R0. Writing terminates with the occurrence of x0000 in a
memory location.

x23 IN Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into R0.
The high eight bits of R0 are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in R0. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in a memory location.

x25 HALT Halt execution and print a message on the console.

Table A.3 Device Register Assignments

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register Also known as KBSR. The ready bit (bit [15]) indicates if
the keyboard has received a new character.

xFE02 Keyboard data register Also known as KBDR. Bits [7:0] contain the last
character typed on the keyboard.

xFE04 Display status register Also known as DSR. The ready bit (bit [15]) indicates if
the display device is ready to receive another character
to print on the screen.

xFE06 Display data register Also known as DDR. A character written in the low byte
of this register will be displayed on the screen.

xFFFE Machine control register Also known as MCR. Bit [15] is the clock enable bit.
When cleared, instruction processing stops.

A.4 Interrupt and Exception Processing
Events external to the program that is running can interrupt the processor. A
common example of an external event is interrupt-driven I/O. It is also the case
that the processor can be interrupted by exceptional events that occur while the
program is running that are caused by the program itself. An example of such an
“internal” event is the presence of an unused opcode in the computer program
that is running.

Associated with each event that can interrupt the processor is an 8-bit vector
that provides an entry point into a 256-entry interrupt vector table. The starting
address of the interrupt vector table is x0100. That is, the interrupt vector table



“app-a” — 2003/6/30 — page 544 — #24

544 appendix a The LC-3 ISA

occupies memory locations x0100 to x01FF. Each entry in the interrupt vector
table contains the starting address of the service routine that handles the needs of
the corresponding event. These service routines execute in Supervisor mode.

Half (128) of these entries, locations x0100 to x017F, provide the starting
addresses of routines that service events caused by the running program itself.
These routines are called exception service routines because they handle excep-
tional events, that is, events that prevent the program from executing normally. The
other half of the entries, locations x0180 to x01FF, provide the starting addresses
of routines that service events that are external to the program that is running, such
as requests from I/O devices. These routines are called interrupt service routines.

A.4.1 Interrupts
At this time, an LC-3 computer system provides only one I/O device that can
interrupt the processor. That device is the keyboard. It interrupts at priority level
PL4 and supplies the interrupt vector x80.

An I/O device can interrupt the processor if it wants service, if its Interrupt
Enable (IE) bit is set, and if the priority of its request is greater than the priority
of the program that is running.

Assume a program is running at a priority level less than 4, and someone
strikes a key on the keyboard. If the IE bit of the KBSR is 1, the currently executing
program is interrupted at the end of the current instruction cycle. The interrupt
service routine is initiated as follows:

1. The processor sets the privilege mode to Supervisor mode (PSR[15] = 0).
2. The processor sets the priority level to PL4, the priority level of the

interrupting device (PSR[10:8] = 100).
3. R6 is loaded with the Supervisor Stack Pointer (SSP) if it does not already

contain the SSP.
4. The PSR and PC of the interrupted process are pushed onto the Supervisor

Stack.
5. The keyboard supplies its 8-bit interrupt vector, in this case x80.
6. The processor expands that vector to x0180, the corresponding 16-bit

address in the interrupt vector table.
7. The PC is loaded with the contents of memory location x0180, the address

of the first instruction in the keyboard interrupt service routine.

The processor then begins execution of the interrupt service routine.
The last instruction executed in an interrupt service routine is RTI. The top two

elements of the Supervisor Stack are popped and loaded into the PC and PSR reg-
isters. R6 is loaded with the appropriate stack pointer, depending on the new value
of PSR[15]. Processing then continues where the interrupted program left off.

A.4.2 Exceptions
At this time, the LC-3 ISA specifies two exception conditions: privilege mode
violation and illegal opcode. The privilege mode violation occurs if the processor



“app-a” — 2003/6/30 — page 545 — #25

A.4 Interrupt and Exception Processing 545

encounters the RTI instruction while running in User mode. The illegal opcode
exception occurs if the processor encounters the unused opcode (Bits [15:12] =
1101) in the instruction it is is processing.

Exceptions are handled as soon as they are detected. They are initiated very
much like interrupts are initiated, that is:

1. The processor sets the privilege mode to Supervisor mode (PSR[15] = 0).
2. R6 is loaded with the Supervisor Stack Pointer (SSP) if it does not already

contain the SSP.
3. The PSR and PC of the interrupted process are pushed onto the Supervisor

Stack.
4. The exception supplies its 8-bit vector. In the case of the Privilege mode vio-

lation, that vector is x00. In the case of the illegal opcode, that vector is x01.
5. The processor expands that vector to x0100 or x0101, the corresponding

16-bit address in the interrupt vector table.
6. The PC is loaded with the contents of memory location x0100 or x0101,

the address of the first instruction in the corresponding exception service
routine.

The processor then begins execution of the exception service routine.
The details of the exception service routine depend on the exception and the

way in which the operating system wishes to handle that exception.
In many cases, the exception service routine can correct any problem caused

by the exceptional event and then continue processing the original program. In
those cases the last instruction in the exception service routine is RTI, which pops
the top two elements from the Supervisor Stack and loads them into the PC and
PSR registers. The program then resumes execution with the problem corrected.

In some cases, the cause of the exceptional event is so catastrophic that the
exception service routine removes the program from further processing.

Another difference between the handling of interrupts and the handling of
exceptions is the priority level of the processor during the execution of the service
routine. In the case of exceptions, we normally do not change the priority level
when we service the exception. The priority level of a program is the urgency
with which it needs to be executed. In the case of the two exceptions specified by
the LC-3 ISA, the urgency of a program is not changed by the fact that a privilege
mode violation occurred or there was an illegal opcode in the program.



“app-a” — 2003/6/30 — page 546 — #26


