CSCE 580: Artificial Intelligence

Informed Search

Instructor: Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, ai.berkeley.edu]

Today

" Informed Search
= Heuristics
= Greedy Search
= A* Search

" Graph Search

Recap: Search

Recap: Search

= Search problem:

States (configurations of the world)
Actions and costs

Successor function (world dynamics)

Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
» Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

KE

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
s N (-
Action: flip top two A{ Path to reach goal:
Cost: 2 —2 Flip four, flip three

/ Total cost: 7
i —

The One Queue

= All these search algorithms are the
same except for fringe strategies L@{Lﬂo\}q\o@Al&l \lﬁ\
= Conceptually, all fringes are priority |

gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Uninformed Search

Uniform Cost Search

= Strategy: expand lowest path cost
" The good: UCS is complete and optimal!

" The bad:
= Explores options in every “direction” Sonl
. . . oa
= No information about goal location

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

= A heuristic is:

= A function that estimates how close a state is to a goal /"\,\\
. . h/\ GoAL!
= Designed for a particular search problem -

Examples: Manhattan distance, Euclidean distance for
pathing

Heuristi - Tron

f__@]

>

Heuristi - Tron

Example: Heuristic Function

[] Vaslui

Timisoara
142

" Pitesti

98

[[] Hirsova

86

[] Mehadia Urziceni

75

Bucharest
Dobreta [

. Eforie
] Giurgiu

_

’ Straight—line distance \

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199

374

h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

ar—n h(x)

4L 3_=‘\\ﬁ

N 3 — 0 —
N

! 4 = —_

Greedy Search

Example: Heuristic Function

[] Vaslui

Timisoara
142

" Pitesti

98

[[] Hirsova

86

[] Mehadia Urziceni

75

Bucharest
Dobreta [

. Eforie
] Giurgiu

_

’ Straight—line distance \

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199

374

h(x)

Greedy Search

= Expand the node that seems closest...

] Mehadia

~ Arad
[] Giurgiu Eforie
‘ 329 374
366 380 193
253 0

= What can go wrong?

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

@ h=3 h=0 @
2 G 3

h=1

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

Admissible Heuristics

ldea: Admissibility

e — l
- Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

= Aisan optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
= |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n)is less or equal to f(A) k

f(n) =g(n) + h(n)
f(n) < g(A)

g(A) = f(A)
.

Definition of f-cost

Admissibility of h
h =0 at a goal

J

Optimality of A* Tree Search: Blocking

Proof:
= |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)
2. f(A)is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the fringe

Some ancestor n of A is on the

fringe, too (maybe Al)

Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)

All ancestors of A expan

3. nexpands before B
dNL f(n) < f(A) < f(B)]

A expands before B
A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
Optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

MENU

IV
L

A* Applications

Video games

Pathing / routing problems
Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS / A*

= Pydey - Edigee

File Edit MNavigate Search Project Run Window |Help

¥ -0~ Q- - - 2 o - - A Pyier | & Team
@ 1search demo empty
¢ e 2 search -~ cantaurs greedy vs ucs (greedy i ud
: @ 3 search -- contours greedy vs ucs (ucs| ct
@ A search -- contours greedy vi ucs (astar)
@ Ssearch - plan tiny assar
& Gsearch--p N tiny ucs
@ 7 uearch - Jl‘?id:, bad
& 8cearch - greedy good
& 9 search demo minze
@ search dermp costs

Run As ’
Run Carfigurations

Qrganize Favorites

[J Consale -

<terminated> empty. bt

Video of Demo Empty Water Shallow/Deep — Guess Algorithm

= Pydev - Echpse
File Edit Mavigate Search Project fun Window |Help

— %-0~Q -~ . = " - - - A Pyder | S0 Team
@ 1search -- plan by astar [
9 & 2search - plan tiny ucs | d
! @ 3search demo empty =
@ A search - contours greedy vs ucs (greedy
& 5search - canmtours greedy vs ucs (ucs
& 6 search -- contours greedy vs ucs (astar)
@ [uearch -« greedy bad
&

8 search - greedy good
9

search demo maze

LA

search «{‘*“l 0 costs
o

Kun A b
Eun Carfiqurations

Organtze Favorites

2 Consale

<terminated> L 5

‘aroyea't: [57

"numMovea*: [27],

il 4 ¥

Creating Heuristics

YOuUu GOT

HEURISTILC
UFPGRADE!

Creating Admissible Heuristics

* Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= [nadmissible heuristics are often useful too

Example: 8 Puzzle

3
6

2
>
&

Start State

Goal State

What are the states?
How many states?
What are the actions?
How many successors from the start state?
What should the costs be?

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

2
>
-

Goal State

Average nodes expanded
when the optimal path has...

...4 steps |...8 steps |...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

2k

2
3 45
678

Goal State

Average nodes expanded
when the optimal path has...

...4 steps |...8 steps |...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

"= How about using the actual cost as a heuristic?
= Would it be admissible?

= Would we save on nodes expanded?
= What’s wrong with it? ?j r&

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

= Dominance: h, > h. if

Vn : hqg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(ha(n), hy(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Graph Search

Tree Search: Extra Work!

" Failure to detect repeated states can cause exponentially more work.

/ State Graph

A e
7 N
! '
N o

B :.'.'-1.‘:.'.- '
7 ™
()

C T
' ™N
Y‘\ /Y

D e ——agl
K

~

-~

Search Tree

~

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p
N |
@ h r g
| /@l
r f
- @
f q ¢ G
|
/\G !

Cc
I
a

Graph Search

Idea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

A/////\\\\\t
A (1+4) B(1+1)
| }
C (2+1) C (3+1)

! |

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from

relaxed problems

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* is optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe <— INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do

if fringe is empty then return failure

node < REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE([node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

