CSCE 580: Artificial Intelligence

Informed Search



Instructor: Pooyan Jamshidi

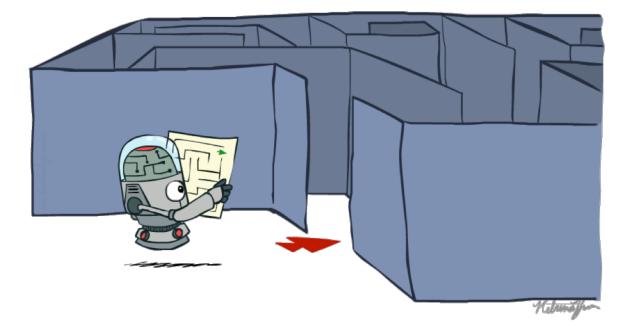
University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]

Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
- Graph Search

Recap: Search



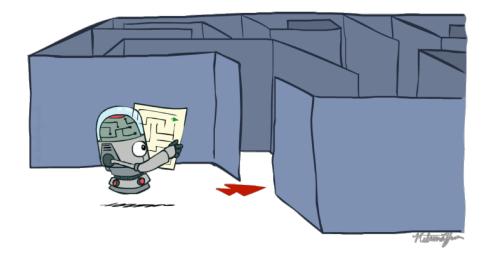
Recap: Search

Search problem:

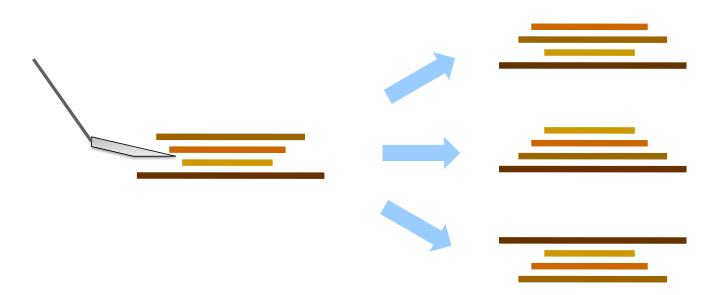
- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)
- Search algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans



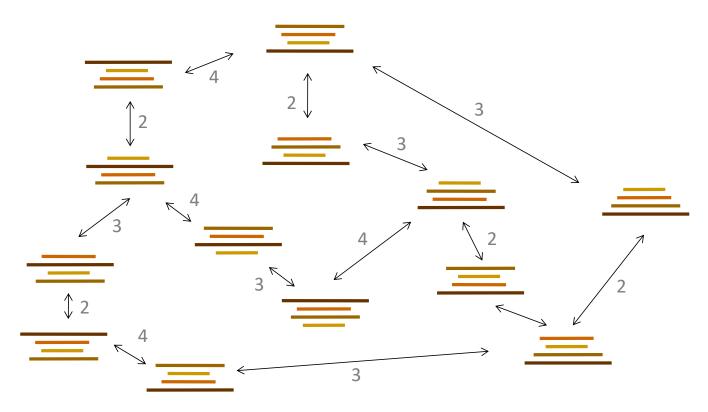
Example: Pancake Problem



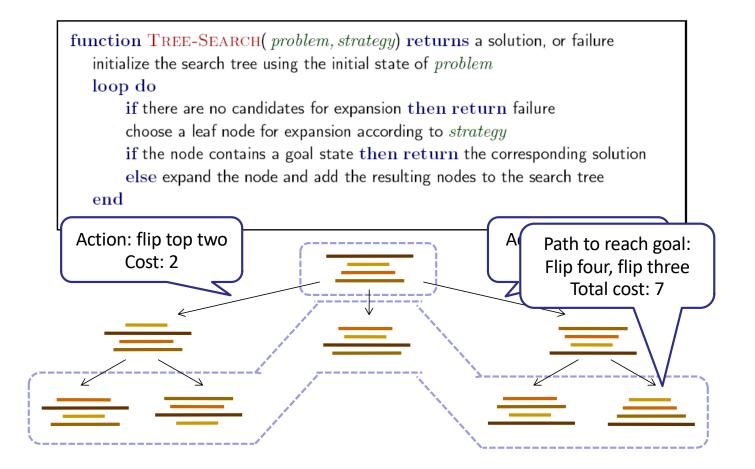
Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

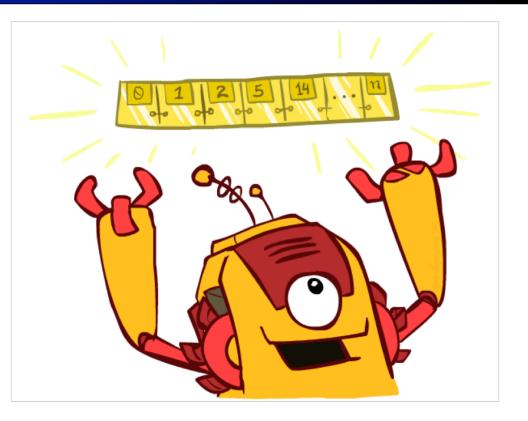


General Tree Search

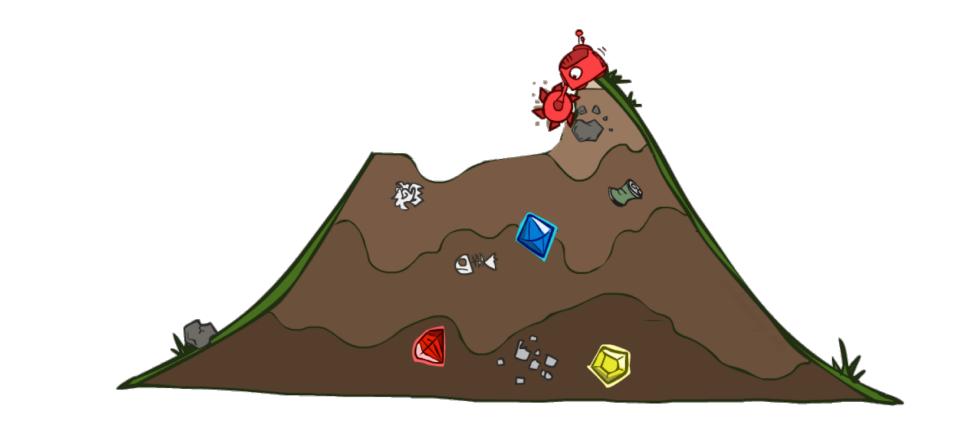


The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object



Uninformed Search

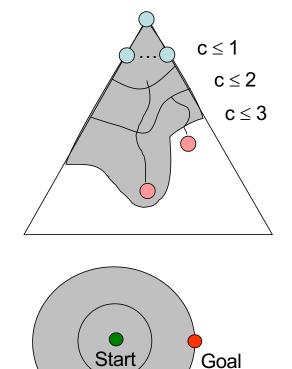


Uniform Cost Search

Strategy: expand lowest path cost

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location



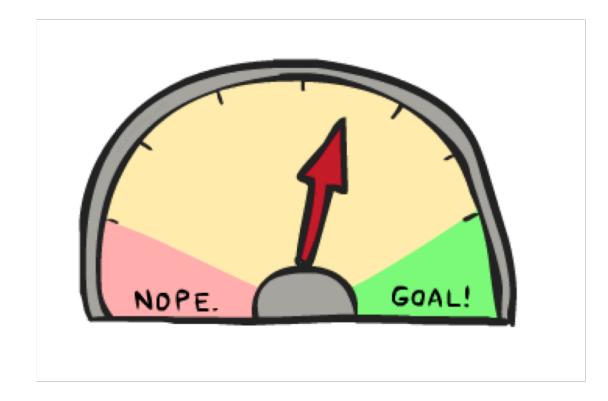
[Demo: contours UCS pacman small maze (L3D3)]

[Demo: contours UCS empty (L3D1)]

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

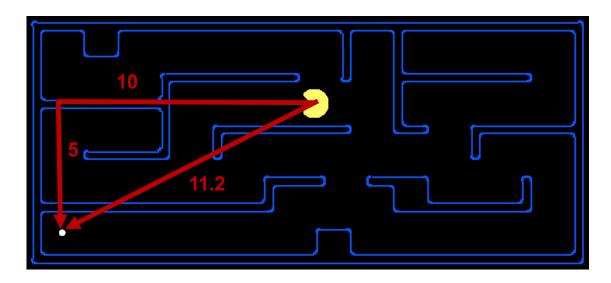
Informed Search

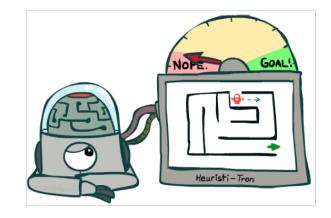


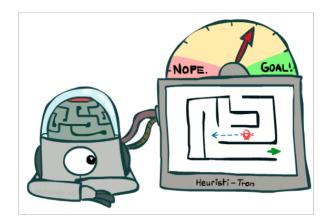
Search Heuristics

• A heuristic is:

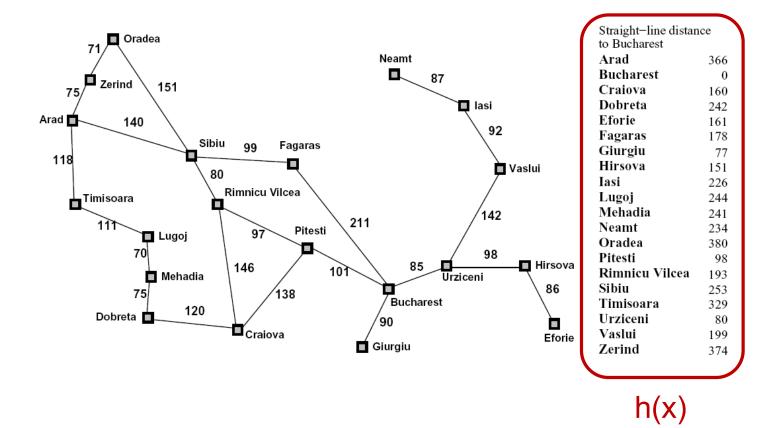
- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing





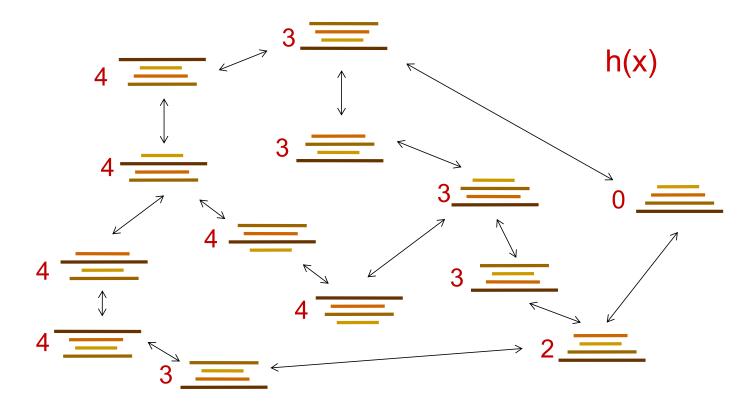


Example: Heuristic Function



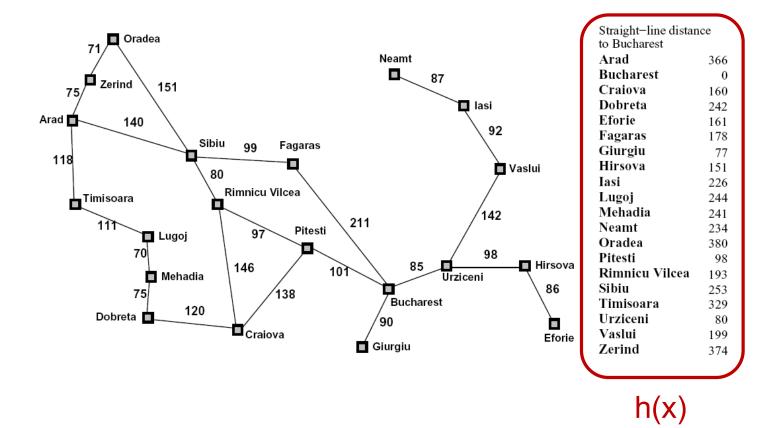
Example: Heuristic Function

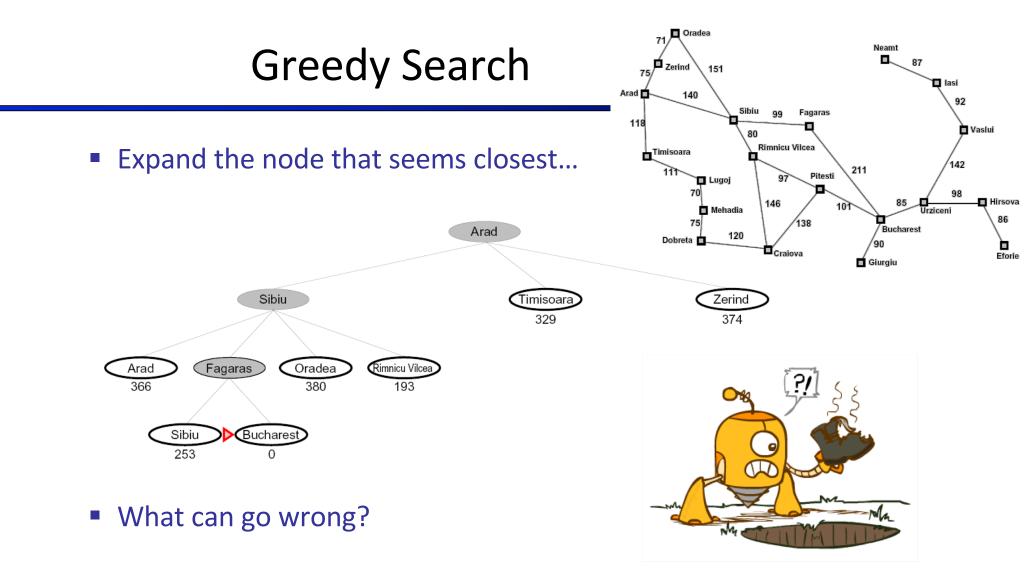
Heuristic: the number of the largest pancake that is still out of place



Greedy Search

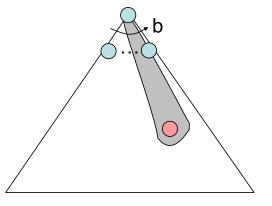
Example: Heuristic Function

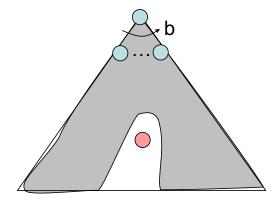




Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS





[Demo: contours greedy empty (L3D1)] [Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

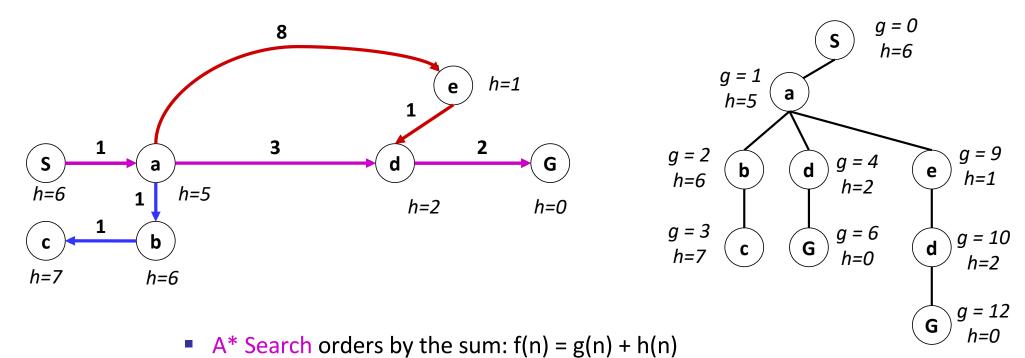
Video of Demo Contours Greedy (Pacman Small Maze)

A* Search



Combining UCS and Greedy

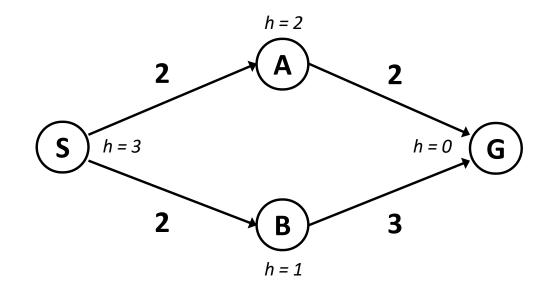
- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)



Example: Teg Grenager

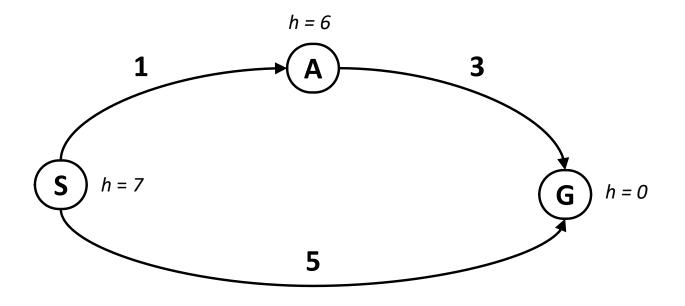
When should A* terminate?

Should we stop when we enqueue a goal?



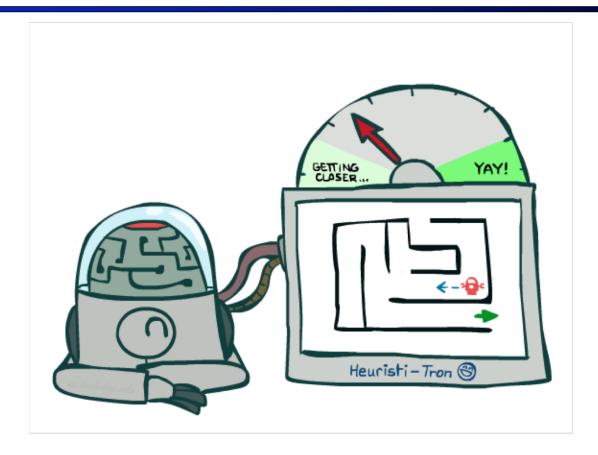
No: only stop when we dequeue a goal

Is A* Optimal?

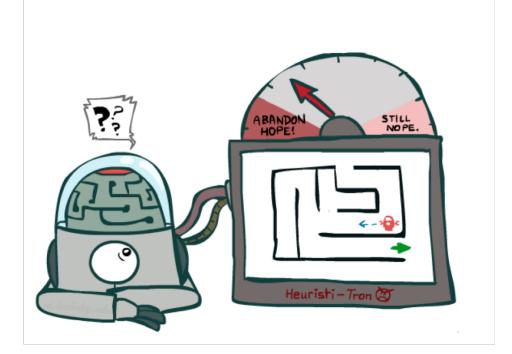


- What went wrong?
- Actual bad goal cost < estimated good goal cost</p>
- We need estimates to be less than actual costs!

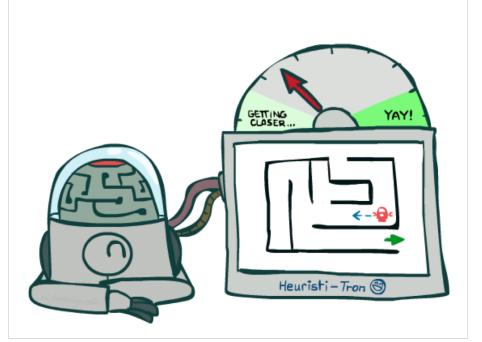
Admissible Heuristics



Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe



Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

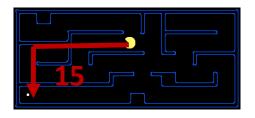
Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

 $0 \le h(n) \le h^*(n)$

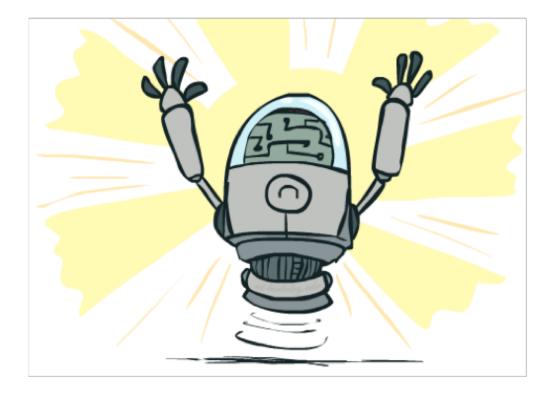
where $h^*(n)$ is the true cost to a nearest goal

Examples:



 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search



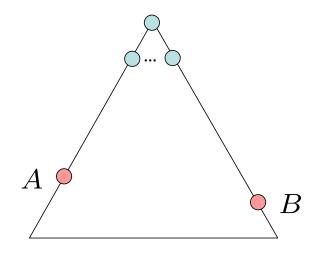
Optimality of A* Tree Search

Assume:

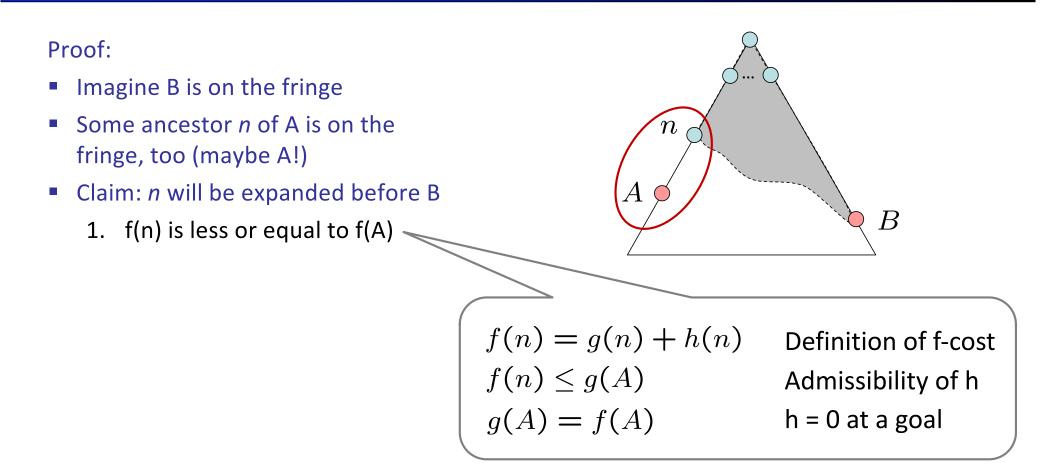
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

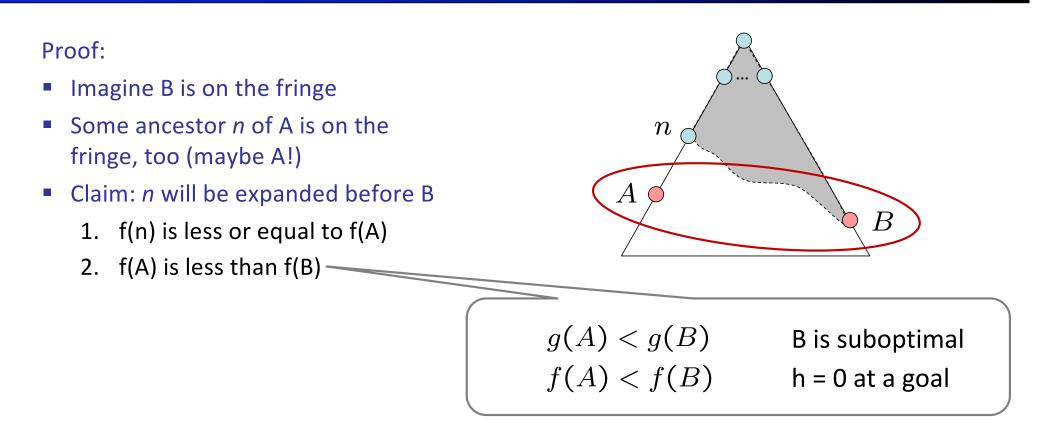
• A will exit the fringe before B



Optimality of A* Tree Search: Blocking



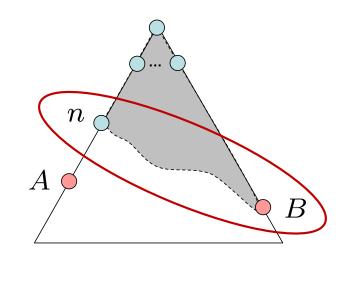
Optimality of A* Tree Search: Blocking



Optimality of A* Tree Search: Blocking

Proof:

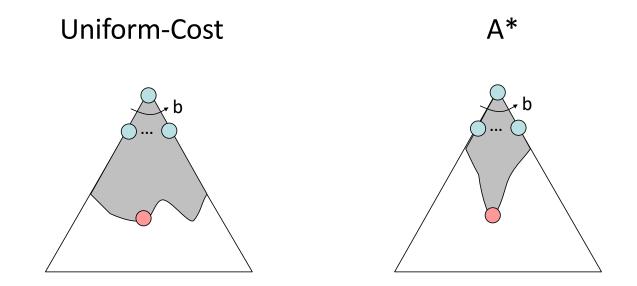
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B—
- All ancestors of A expand before B
- A expands before B
- A* search is optimal



 $f(n) \le f(A) < f(B)$

Properties of A*

Properties of A*

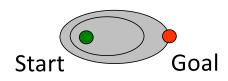


UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

Start Goal

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality



[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy

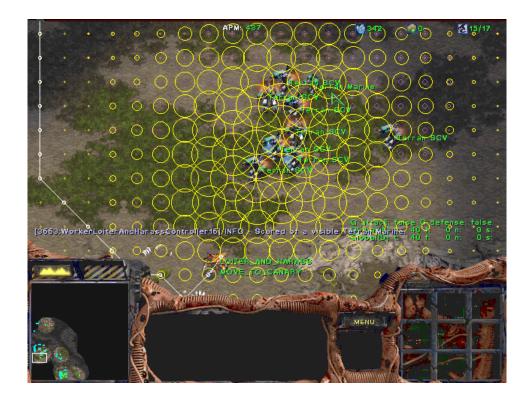
Uniform Cost

A*

A* Applications

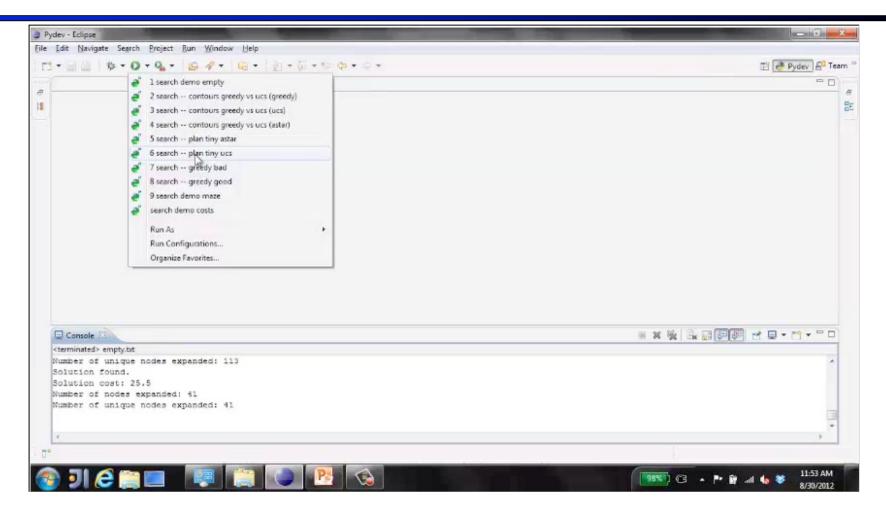
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

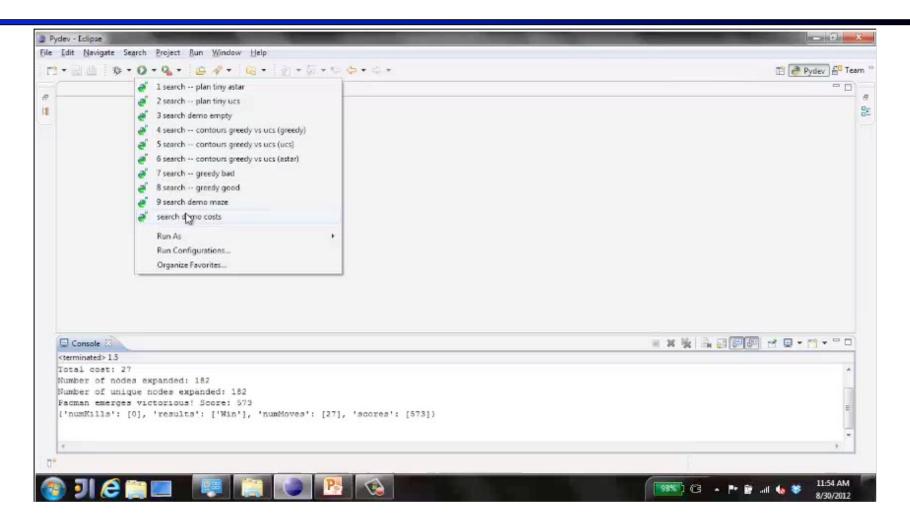


[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

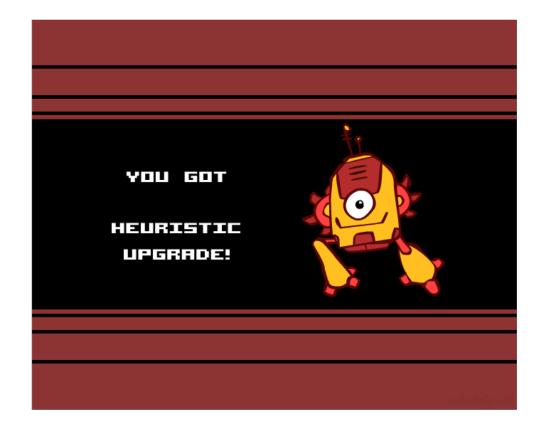
Video of Demo Pacman (Tiny Maze) – UCS / A*



Video of Demo Empty Water Shallow/Deep – Guess Algorithm

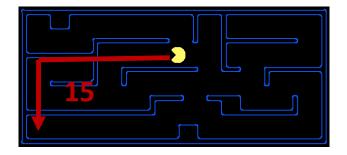


Creating Heuristics



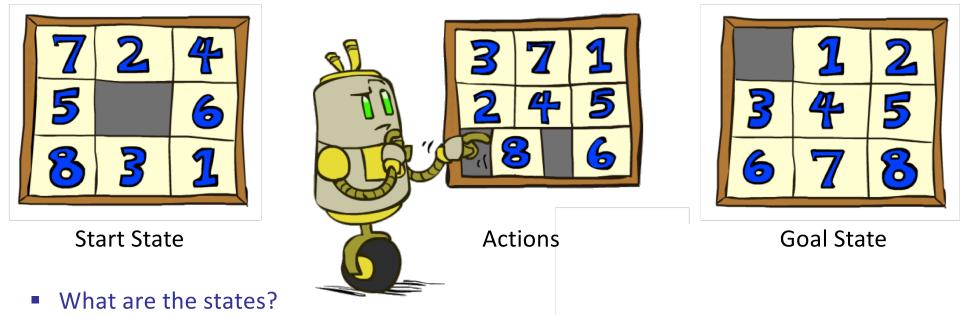
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available



Inadmissible heuristics are often useful too

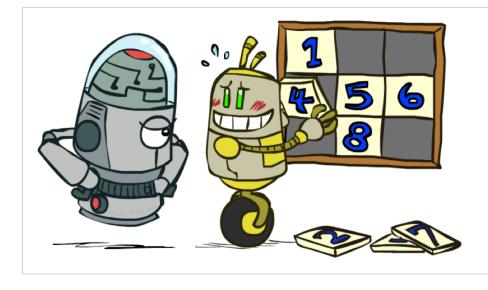
Example: 8 Puzzle

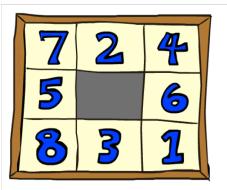


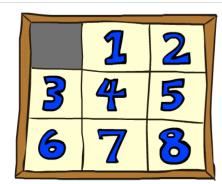
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic







Start State

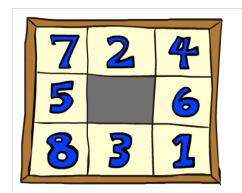
Goal State

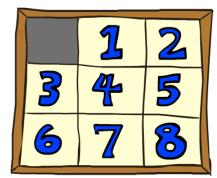
	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18





Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

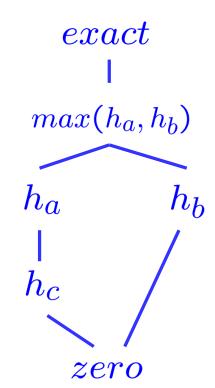
Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

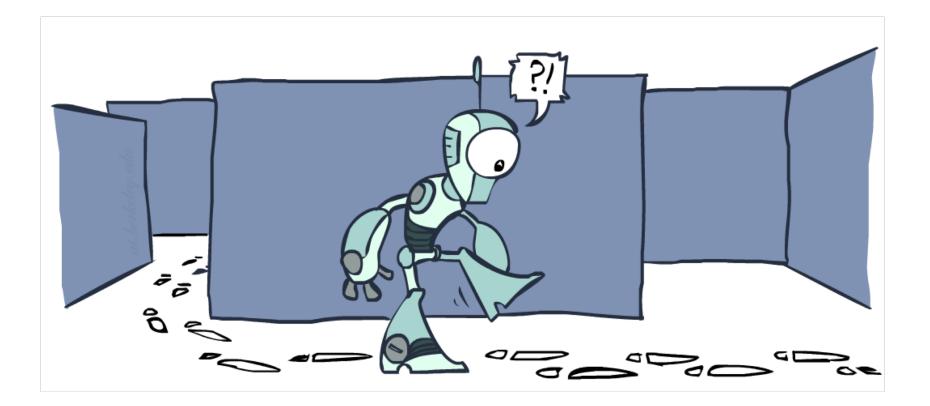
- Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) > h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

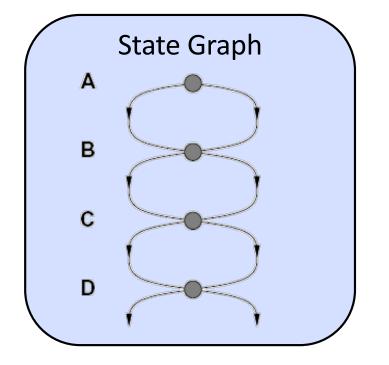


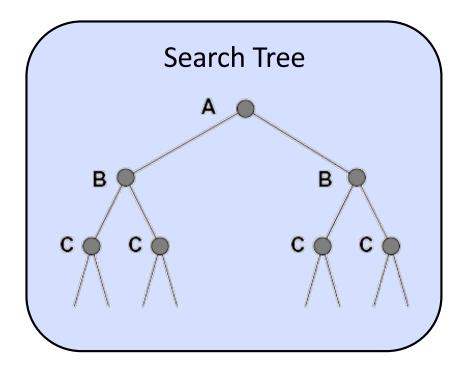
Graph Search



Tree Search: Extra Work!

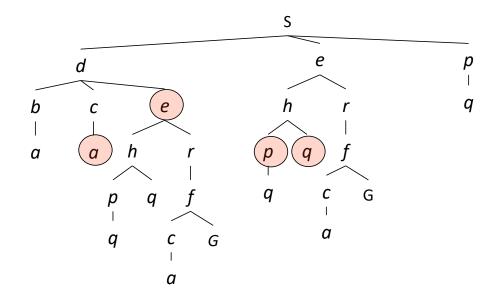
Failure to detect repeated states can cause exponentially more work.





Graph Search

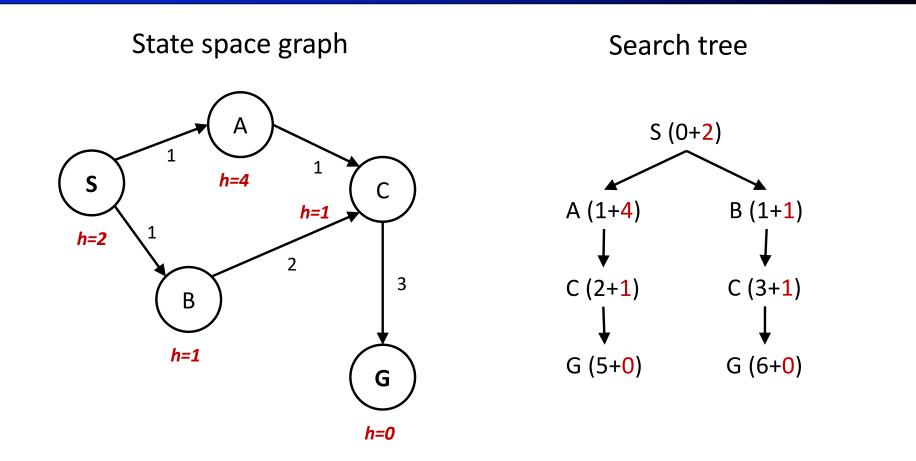
In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



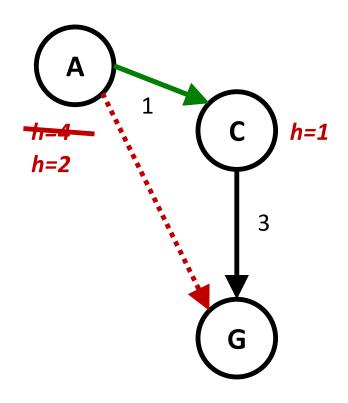
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?



Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

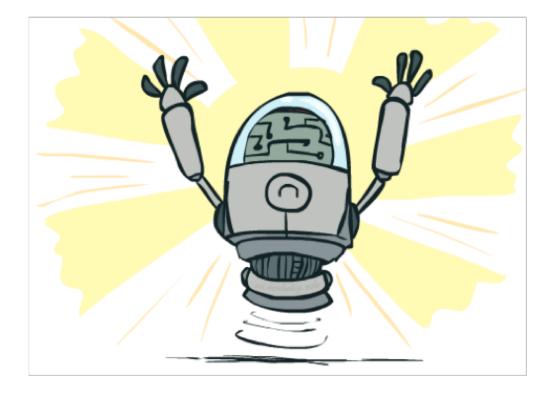
 $h(A) \leq actual cost from A to G$

- Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases

 $h(A) \le cost(A to C) + h(C)$

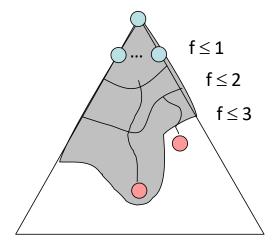
A* graph search is optimal

Optimality of A* Graph Search



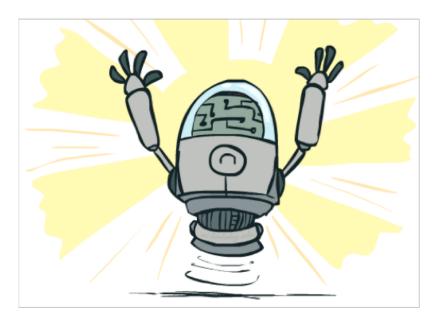
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal



Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems



A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems



Tree Search Pseudo-Code

Graph Search Pseudo-Code