Structure Learning in Bayesian

Networks:
The PC Algorithm

Mohammad Ali Javidian
April 2020




Overview

* Bayesian Networks and Learning

e Structure Learning in Bayesian Networks

* Markov Condition, Faithfulness and Causal Sufficiency Assumptions
e Markov Equivalence in Bayesian Networks

e PC algorithm

e Complexity

* Discussion



Bayesian Networks and Learning

e A Bayesian network consists of two main components:
1) adirected acyclic graph,
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Bayesian Networks and Learning

e A Bayesian network consists of two main components:

1) adirected acyclic graph,

2) ajoint probability distribution (To each variable A with parents B1, . ..

a conditional probability table P(A | B1, ..., Bn) is attached.)
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Structure Learning in Bayesian Networks

1) Constraint-based structure learning:
* Bayesian network as a representation of independencies
* Based on conditional independence tests in the data

* Example: PC!, Grow-Shrink?, Incremental Association based on the Markov
blanket discovery (IAMB)3

2) Score-based structure learning:
* Learning as a model selection problem
* Example: Hill-Climbing*, Tabu Search?

3) Hybrid algorithms:
* Example: Max-Min Hill-Climbing (MMHC)>



Markov Condition & Faithfulness Assumption

* The Markov condition is said to hold for a DAG G =(V, E) and a
probability distribution P(V) if every variable T is statistically
independent of its graphical non-descendants (the set of vertices for
which there is no directed path from T) conditional on its graphical

parents in P.
* Implication: VXY ¢ V,\VZ C V\{X,Y}: (X L, Y|Z = X 1, Y|Z).

* The faithfulness assumption states that the only conditional
independencies to hold are those specified by the Markov condition,
formally: VXY e V,VZ CV\{X,Y}: (X U, Y|Z = X U, Y|Z).

* Implication: faithfulness is assumed to prove that the learned graph is
correct.



Causal Sufficiency Assumption

* there are no unmeasured common causes and no unmeasured
selection variables.

* Example:  » The simplest model:
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» Fisher’'s Smoking and Lung Cancer Model:
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Markov Equivalence in Bayesian Networks

* Two DAGs are Markov equivalent if and only if, based on the Markov
condition, they entail the same conditional independencies.

e Example (Quiz): o o (X)
$ p >
0 W) W)

* Theorem. Two DAGs G1 and G2 are Markov equivalent if and only if
they have the same links[skeleton] (edges without regard for
direction) and the same set of unshielded colliders (v-structures).




Markov Equivalence in Bayesian Networks

* we define a DAG pattern for a Markov equivalence class to be the
graph that has the same links as the DAGs in the equivalence class
and has oriented all and only the edges common to all of the DAGSs in
the equivalence class.

. Example
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PC algorithm

Algorithm 1: The PC algorithm for learning DAGs
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Input: A set V of nodes and a probability distribution p faithful to an
unknown DAG G and an ordering order(V') on the variables.
Output: DAG pattern H.
Let H denote the complete undirected graph over V;
/* Skeleton Recovery */
for i < 0 to |Vy| —2 do
while possible do
Select any ordered pair of nodes u and v in H such that u € adg(v) and
|adm (u) \ v| > i using order(V);
/* adp(z) :={yeV|r —y,y — x, or xt — y} */
if there exists S C (adm(u) \ v) s.t. |S| =17 and u 1L, v|S (i.e., u is
independent of v given S in the probability distribution p) then
Set Syy = Spu = S;

Remove the edge u — v from H;

end
end

end
/* v-structure Recovery x/
for each separator Sy, do

if u — w —— v appears in the skeleton and w is not in Sy, then

| Determine a v-structure u — w <— v;

end
end
return H;




PC algorithm (Skeleton Recovery)

Naive approach:

* construct an undirected graph H such that
vertices u — vifand only if no set S, can be

found such that u 1, v[S,,.

* To determine whether there is a_set separating

u and v, we might search all 2174 subsets of all
n random variables excluding u and v.

* So, the complexit}:l for investigating each
ossible edge in the skeleton is O(2"") and
ence the comE)Ig%(ity for constructing the

skeleton is O(n“2""), where n is the number of
vertices in the DAG.

1 fori < Oto |Vy|—2do

2

3

end

while possible do

Select any ordered pair of nodes v and v in H
such that u € ady (v) and |ad(u) \ v| > i;
/* adg(z) ={yeV]z = y,y —

x, orx —y} */
if there exists S C (ady(u) \ v) s.t. |S| =i and
u L, v|S (i.e., u is independent of v given S
in the probability distribution p) then

Set Suv = Spu = 5
Remove the edge © — v from H;

end
end




PC algorithm (Skeleton Recovery)

* Example: alphabetical ordering

e Al - fa c
A B C D
1 |c _lb a d
2 | -4.37815 3.250093 1.171418 -1.8429
3 -2.0754 1.744617 0.175751 -0.84926
4 | 1.252989 -2.76795 0.421092 1.448017
5 | -1.54862 1.817924 1.299873 0.220929
6 | 4193677 -4.55141 -2.17857 1.546651
Q 7 | 1.296974 -0.3538 0.721286 0.483316
8 | -2.39266 0.194322 0.750423 -0.4586
9 | -2.32502 0.614471 0.683146 0.993996
10 | 1.472147 -1.71747 -1.47815 -0.96295

* Obtained conditional independence tests: B L, C|A, A L, D|(B, C).



PC algorithm (Skeleton Recovery)
*B 1, C|A, A L, D|(B,C).
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end

i(—0t0|V1]| —2do

while possible do

Select any ordered pair of nodes v and v in H
such that u € ady (v) and |ad(u) \ v| > i;

/* ady(z) ={yeV]z -y y—

x, orx —y} */
if there exists S C (ady(u) \ v) s.t. |S| =i and
w 1L, v|S (i.e., wis independent of v given S
in the probability distribution p) then

Set Suy = Spu = S;
Remove the edge u — v from H;

end
end

after
i=2
A 1, D|(B,C)



v-structure Recovery

11 for each separator S, do
¢ B J—p C |A; A J—p D | (B; C) 12 if u — w —— v appears in the skeleton and w is not in Sy, then

13 ‘ Determine a v-structure u — w <— v;

end

14

15 end
16 return H;

after
Skeleton
recovery -

phase




Complexity

* The complexity of the algorithm for a graph G is bounded by the
largest degree in G. Let k be the maximal degree of any vertex and let
n be the number of vertices. Then in the worst case the number of

conditional independence (Cl) tests required by the algorithm is

bounded by:
n n— 2 n?(n — 2)*
2 E <

k+2)_

* PC algorithm has a worst-case running time of O (n



Discussion

1) PCand Order-dependence problem: the output can depend on the
order in which the variables are given.
» Stable (order-independent) PC algorithm

2) Scalability problem with PC algorithm:
» Parallel PC algorithm

3) Can we relax the causal sufficiency assumption?
» Yes, Fast Causal Inference (FCl) algorithm

4) Can we weaken the faithfulness assumption?

»Yes, Greedy Equivalence Search (GES) an inclusion optimal structure learning
algorithm



