CSCE 580: Artificial Intelligence

Perceptrons and Logistic Regression

Instructor: Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley, ai.berkeley.edu]

Linear Classifiers

Feature Vectors

f(x

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free

YOUR NAME
MISSPELLED
FROM_FRIEND

PIXEL-7,12
PIXEL-7,13

NUM_LOOPS

o ON

SPAM
or

Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma

Linear Classifiers

" |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) =) w; - fi(z) = w- f(z)

= |f the activation is: Wi
1
= Positive, output +1 f Wa Z — =07 —>
= Negative, output -1 El&’

Weights

* Binary case: compare features to a weight vector

= Learning: figure out the weight vector from examples

free : 4
YOUR NAME :-1
MISSPELLED 1 # free : 2
FROM_FRIEND :-3 w YOUR_NAME . 0
MISSPELLED : 2
w 1 FROM_FRIEND : 0
free : 0
f (‘/L. 2) YOUR NAME : 1
Y MISSPELLED 1
Dot product w - f positive erom ERTEND 1

means the positive class

Decision Rules

Binary Decision Rule

" |n the space of feature vectors

Examples are points

Any weight vector is a hyperplane

One side corresponds to Y=+1

Other corresponds to Y=-1

)

2 2

£

W +1 = SPAM
BIAS : =3 1
free : 4
money : 2 0
-1=HAM 0 \ 1 free

Weight Updates

Learning: Binary Perceptron

= Start with weights =0

* For each training instance: @ -]
— - -
= Classify with current weights +

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights =0
= For each training instance: w

= Classify with current weights

| y* - f
i we f(x) >0

YY1 i we fa) <0

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y" f

Examples: Perceptron

= Separable Case

5
as

o + +
as|

3 + 0
25!

z + o o
15 o

L5 o O
osl

o

1 1 1 1 1 1 1
-4 0 % 1 2 2 3 I B3 4 S 5 B

Multiclass Decision Rule

= |f we have multiple classes:

= A weight vector for each class:
Wy
= Score (activation) of a class y:

= Prediction highest score wins

y = arg max wy - f(x)
y

wi - f biggest
w1
w
wo 3
wo - f w3 - f
biggest
biggest '99

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)
Wapx — Wey* + f(:l?)

Example: Multiclass Perceptron

“win the vote”
“win the election”

“‘win the game”

WSPORTS WpOLITICS WTECH
BIAS 1 BIAS 0 BIAS : 0
win 0 win 0 win 0
game : O game : O game : O
vote 0 vote 0 vote 0
the 0 the 0 the : 0

Properties of Perceptrons

. : . Separable
= Separability: true if some parameters get the training set
perfectly correct + o,
- + 4,
= Convergence: if the training is separable, perceptron will - +
eventually converge (binary case) -

= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

, k
mistakes < 52 _

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

training
Overtraining: test / held-out >
accuracy usually rises, then falls ©
= Qvertraining is a kind of overfitting § test
© held-out

iterations

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

Perceptron scoring: z = w - f(x)
If z=w-f(x) verypositive =2 want probability goingto 1
If z=w-f(x) verynegative =2 want probability goingto 0

Sigmoid function of]
¢(2) = 1+e2
]‘ Z05 /_'
62) = 1= -

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)]x(i);w)

1
1+ e w- f(z(4))
1

with: P(y () = "‘Hx(z w) =

(¢) — _ (’L — 1 _
P(1‘37) 1 1+ e—w'f(fc(i))

= Logistic Regression

Separable Case: Deterministic Decision — Many Options

5. 5.
as}
4s} 45t
4t
ar 4 o+ o+
35}
a5t 35|
3k
3F 3 -
25F
ast 25l
2k
2k
2
15F O O
15F 15k
1k
1k
:
05k o o
05F 05l
0L—
0 0

Separable Case: Probabilistic Decision — Clear Preference

B T LI T LI T LI T LI T 1
o -t o ~ o (] wa EN o o
T T T T T T T T T 1

= |

Multiclass Logistic Regression

wi - f biggest
= Recall Perceptron: w1
= A weight vector for each class: wy
= Score (activation) of a class y: Wy - f(:zj) w3
w2
* Prediction highest scorewins ¢y = arg max wy, - f(x) wo - f w3 - f
Y biggest biggest
= How to make the scores into probabilities?
A A 4
et <2 e~3

215 %2,%3 7 - y)

et + €72 1% et ez + e e*l +e*2 4 e*s

\ J \ J
I I

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)]x(i);w)

w

(8) | (0 ey @)
with: P(y ‘x 7w) — Zy 6wy.f(ac(z‘))

= Multi-Class Logistic Regression

Next Lecture

= Optimization

= j.e., how do we solve:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

