
CSCE 580: Artificial Intelligence

Optimization and Neural Nets

Instructor: Pooyan Jamshidi

University of South Carolina
[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]



Reminder: Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1

f2

f3

w1

w2

w3
>0?



How to get probabilistic decisions?

§ Activation:
§ If very positive à want probability going to 1
§ If  very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



Multiclass Logistic Regression
§ Multi-class linear classification

§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction w/highest score wins:

§ How to make the scores into probabilities? 

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



This Lecture

§ Optimization

§ i.e., how do we solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Hill Climbing

§ Recall from CSPs lecture: simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h



2-D Optimization

Source: offconvex.org



Gradient Ascent

§ Perform update in uphill direction for each coordinate
§ The steeper the slope (i.e. the higher the derivative) the bigger the step 

for that coordinate

§ E.g., consider: 

§ Updates:

g(w1, w2)

w2  w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1  w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates in vector notation:

with:

w  w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

= gradient



§ Idea: 
§ Start somewhere
§ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



What is the Steepest Direction?

§ First-Order Taylor Expansion:

§ Steepest Descent Direction:

§ Recall: à

§ Hence, solution: 

g(w +�) ⇡ g(w) +
@g

@w1
�1 +

@g

@w2
�2

rg =

"
@g
@w1
@g
@w2

#
Gradient direction = steepest direction!

max
�:�2

1+�2
2"

g(w +�)

max
�:�2

1+�2
2"

g(w) +
@g

@w1
�1 +

@g

@w2
�2

� = "
rg

krgk

� = "
a

kak
max

�:k�k"
�>a



Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775



Optimization Procedure: Gradient Ascent

§ init
§ for iter = 1, 2, …

w

§ : learning rate --- tweaking parameter that needs to be 
chosen carefully

§ How? Try multiple choices
§ Crude rule of thumb: update changes       about 0.1 – 1 %

↵

w

w  w + ↵ ⇤ rg(w)



Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init
§ for iter = 1, 2, …

w

w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)



Stochastic Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init
§ for iter = 1, 2, …

§ pick random j

w

w  w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init
§ for iter = 1, 2, …

§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one

w  w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)



§ We’ll talk about that once we covered neural networks, which 
are a generalization of logistic regression 

How about computing all the derivatives?



Neural Networks



Multi-class Logistic Regression

§ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…



Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…



Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(2)

K(2)

z(2)1

z(2)2

z(2)3

z(OUT )
1

z(OUT )
2

z(OUT )
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j ) g = nonlinear activation function



Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT )
1

z(OUT )
2

z(OUT )
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j ) g = nonlinear activation function



Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Deep Neural Network: Also Learn the Features!

§ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector J

àjust run gradient ascent 
+ stop when log likelihood of hold-out data starts to decrease

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Neural Networks Properties

§ Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.

§ Practical considerations
§ Can be seen as learning the features 

§ Large number of neurons
§ Danger for overfitting
§ (hence early stopping!)



Universal Function Approximation Theorem*

§ In words: Given any continuous function f(x), if a 2-layer neural 
network has enough hidden units, then there is a choice of 
weights that allow it to closely approximate f(x). 

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”



Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”



Fun Neural Net Demo Site

§ Demo-site:
§ http://playground.tensorflow.org/

http://playground.tensorflow.org/


§ Derivatives tables:

How about computing all the derivatives?

[source:  http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

n But neural net f is never one of those?
n No problem: CHAIN RULE:

If 

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)



§ Automatic differentiation software 
§ e.g. Theano, TensorFlow, PyTorch, Chainer
§ Only need to program the function g(x,y,w)
§ Can automatically compute all derivatives w.r.t. all entries in w
§ This is typically done by caching info during forward computation pass 

of f, and then doing a backward pass = “backpropagation”
§ Autodiff / Backpropagation can often be done at computational cost 

comparable to the forward pass
§ Need to know this exists
§ How this is done?  -- outside of scope of CS188

Automatic Differentiation



Summary of Key Ideas
§ Optimize probability of label given input

§ Continuous optimization
§ Gradient ascent:

§ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
§ Take step in the gradient direction
§ Repeat (until held-out data accuracy starts to drop = “early stopping”)

§ Deep neural nets
§ Last layer = still logistic regression
§ Now also many more layers before this last layer

§ = computing the features
§ à the features are learned rather than hand-designed

§ Universal function approximation theorem
§ If neural net is large enough 
§ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
§ But remember: need to avoid overfitting  / memorizing the training data à early stopping!

§ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



How well does it work?



Computer Vision



Object Detection



Manual Feature Design



Features and Generalization

[HoG: Dalal and Triggs, 2005]



Features and Generalization

Image HoG



Performance

graph credit Matt 
Zeiler, Clarifai



Performance

graph credit Matt 
Zeiler, Clarifai



Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



MS COCO Image Captioning Challenge

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more 



Visual QA Challenge
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh 



Speech Recognition

graph credit Matt Zeiler, Clarifai



Machine Translation
Google Neural Machine Translation (in production)



Next: More Neural Net Applications!


