CSCE 580: Artificial Intelligence

Optimization and Neural Nets

Instructor: Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley, ai.berkeley.edu]



Reminder: Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) = w- f(z)

If the activation is:
= Positive, output +1
= Negative, output -1
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How to get probabilistic decisions?

= Activation: 2z =w - f(x)
" If z=w-f(x) verypositive 2> want probability goingto 1
" If 2=w-f(x) verynegative 2> want probability goingto 0

= Sigmoid function g ]
¢(z)=1+e‘z
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Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)]x(i);w)

1
1+ e w- f(z(4))
1

with: P(y () = "‘Hx(z w) =

(¢) — _ (’L — 1 _
P( 1‘37 ) 1 1+ e—w'f(fc(i))

= Logistic Regression



Multiclass Logistic Regression

= Multi-class linear classification wy - f biggest
w1
= A weight vector for each class: wy
= Score (activation) of a class y: Wy - f(g;) w3
w2
= Prediction w/highest score wins: ¢y — arg max Wy - f(q;) wo - f w3 - f
J biggest biggest
= How to make the scores into probabilities?
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Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)]x(i);w)

w

(8) | (0 ey @)
with: P(y ‘x 7w) — Zy 6wy.f(ac(z‘))

= Multi-Class Logistic Regression



This Lecture

= Optimization

= j.e., how do we solve:

w

max [l(w) = max ZlogP(y(i)\x(i);w)



Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

S —

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?



1-D Optimization

= Could evaluate g(wg +h) and g(wog — h)

" Then step in best direction

dg(wo)

, _ . glwg+h) —glwg — h
= Or, evaluate derivative: D :;lfi% (wo )2h (wo — h)

= Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent

= Perform update in uphill direction for each coordinate
" The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: g(wq,ws)

= Updates: = Updates in vector notation:
dg
8w1
dg

8’(1]2

Wy < W1 + O % (w17w2) w — w~+ a*x Vy,g(w)

Wy < W2 + (¢ *

9g
(wlv w2) with: V,g(w) = [6(%1 (w ] = gradient



Gradient Ascent

= |dea:
= Start somewhere

= Repeat: Take a step in the gradient direction

1 1 1 1 1 1
-6 -4 -2 o] 2 4 6

Figure source: Mathworks



What is the Steepest Direction?

max glw+ A) /AF,’“A"\

A:A%JrA%Sé v , /\

First-Order Taylor Expansion:

Steepest Descent Direction:

-
. max A'a
Recall: AllAT < -
. \Y
Hence, solution: A=egY
IVyll

dg dg
w4+ A) = glw)+ —A1 + —A
g( )~ g(w) 90 T Gy
dg dg
A:Arfnfi{gga glw) + Ow At Ows =
a
A=eg—r0
al
. . . . . ag
Gradient direction = steepest direction! Vg = 8&%1
8’(1)2




Gradient in n dimensions




Optimization Procedure: Gradient Ascent

= init
= for iter =1, 2, ..

w +— w+ a*x Vg(w)

= «: learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes W about0.1-1%



Batch Gradient Ascent on the Log Likelihood Objective

max [l(w) = max ZlogP(y(i)m(i);w)

w

\ )

g(w)

= init W
= for iter = 1, 2, ..

W — W+ Qo * ZVIogP(y(i)\a:(i);w)




Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
= for iter = 1, 2,

" pick random j

w4 w ~+ o Vlog Py |z w)




Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" init w
= for iter = 1, 2,
" pick random subset of training examples J

W — W+ « * ZVIogP(y(j)|az(j);w)
jeJ




How about computing all the derivatives?

= We’'ll talk about that once we covered neural networks, which
are a generalization of logistic regression



Neural Networks




Multi-class Logistic Regression

» = gspecial case of neural network

fi(x)
e

el + e*2 + e*3

2, > S —» Plylaw) =

fa(x) o

e*2

e*l + e*2 + e*3

——  P(y2|r;w) =
f3(x)

X o8  Hh

e*3

el + e*2 + e*3

23 T > Plyslrw) =

fi(x)



Deep Neural Network = Also learn the features!

fi(x)

z, > S — P(yp|z;w) =
fa(x) (@]

el + e*2 + e*3

» z, [ Plelnw) =

X o8  Hh

z3 [ Plslmw)=— Fpe—

fi(x)



Deep Neural Network = Also learn the features!
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g = nonlinear activation function



Deep Neural Network = Also learn the features!
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 ‘ . - 1+ - — 5 . ‘
0.8} g((zz)) - 05} 33) . 41 g(?» '
0.6} - 3
0
04} 2t
asl | -05 | 'l
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1 e? —e~ %
- — = z)=max (0, z
9@)=1—= 9@) = ———= 9(z) (0,2)
1 z>0
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g'(z)= g(2)(1-g(2)) 9'(z)=1-9(2) g9 (2) {o, otherwise

[source: MIT 6.5191 introtodeeplearning.com]



Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)]af;(i);w)

just w tends to be a much, much larger vector ©

—just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease



Neural Networks Properties

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

" Practical considerations
= Can be seen as learning the features
" Large number of neurons

= Danger for overfitting

" (hence early stopping!)



Universal Function Approximation Theorem*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure p, standard multilayer feedforward networks can approximate any
function in LP(x) (the space of all functions on R* such that [p« |f(z)[Pdp(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

" |[n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”




Universal Function Approximation Theorem*

Math. Control Signals Systems (1989) 2: 303-314 m
Signals, and Systems

© 1989 Springer-Veriag New Yorknc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univari i i uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
onlyasingle internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse ication areas are d with the ion of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

I
Y. %o(yfx +6), )

I=

where y; € R" and «;, 6 € R are fixed. (y" is the transpose of y so that y"x is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

o® 1 as t— 400,
-
0 as t— —o0.

Such functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if o is any continuous sigmoidal

* Date received: October 21, 1988. Date revised: February 17, 1989. This research was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-
8SER25001.
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Engineering, University of Illinois, Urbana, Illinois 61801, US.A.
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Printed in the USA. All ights reserved.

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KUrT HORNIK
Technische Universitit Wicn. Vienna, Austria
(Received 30 January 1990 revised and accepied 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect 10 LX(y) per-
formance criteria, for arbitrary finite input environment measures y, provided only that sufficiently many hidden
units are available. If the activation function is continuous. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and

s derivatives.

Keywords—Multilayer feedforward networks, Activation function, Universal approximation capabilities. Input
measure, L7(s) Uniform . Soboley spaces. Smooth approximation.

measured by the uniform distance between functions
on X, that is,

1. INTRODUCTION

‘The approximation capabilities of neural network ar-

chitectures have recently been investigated by many Puxlf.g) = sup 1f(x) = gl
authors, including Carroll and Dickinson (1989), C}
benko (1989). Funahashi (1989). Gallant and Whi

In other applications, we think of the inputs as ran-

(1988). Hecht-Niclsen (1989), Hornik, Stinchcombe,  dom variables and are interested in the average per-
and White (1989, 1990). Irie and Miyake (1988).  formance where the average is taken with respect to
Lapedes and Farber (1988), Stinchcombe and White ~ the input environment measure i, where u(R) <

(1989, 1990). (This list is by no means complete.) In this case, closeness is measured by the L#(x) dis-
1f we think of the network architecture as a rule  tances
for computing values at [ output units given values

at k input units. hence implementing a class of map- 2l = l [ 1 = g dutor |
pings from R* to R', we can ask how well arbitrary

mappings from ' to R'can be approximated by the 1 = p < =, the most popular choice being p =
network, in particular, if as many hidden units as corresponding to mean square error.

required for internal representation and computation
may be employed

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-

How to measure the accuracy of approximation plications, it is also necessary that the derivatives of
depends on how we measure closeness between func- the approximating function implemented by the net-
tions, which in turn varies significantly with the spe- work closely resemble those of the function to be
cific problem to be dealt with. In many applications,  approximated, up to some order. This issue was first
itis necessary to have the network perform simul-  taken up in Homnik et al. (1990), who discuss the
taneously well on all input samples taken from some  sources of need of smooth functional approximation
compact input set X in R". In this case, closenessis  in more detail. Typical examples arise in robotics

(learning of smooth movements) and signal process-
- ing (analysis of chaotic time series): for a recent ap-

Requests for reprints should be sent to Kurt Hornik, Instisr  PliCatiON (0 problems of nonparametric inference in

fur Statistik und Wahrscheinlichkeitstheorie, Technische Uni-  Statistics and econometrics, see Gallant and White

versitat Wien, Wicdner HauptstraBe 8-100107. A-1040 Wien. Aus. (1989),

ria All papers establishing certain approximation ca-
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Fun Neural Net Demo Site

= Demo-site:
= http://playground.tensorflow.org/



http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables: 4 (@=0 )= £ g, =14

dx u dx
d d 1 du
—(x)=1 loc ul=1loe ¢
dx d.r[ %% u] 08¢ i dx

{ . il
L((Ill) = uﬂ ie” . (,"dl
dx dx dx dx

d . o du  dv o dw . )
—(u+v—w)=(—+(——(— ia"z(t"ln(l@
dx dv dx dx dx dx

1 v il - ] iy
Ly =+ ™ i‘”")zw,‘“‘ﬂﬂn,, ,,"ﬂ
dx dx dx dx "t dx dx
d (u] ldu u dv d . du
—| -l —sinu = cosu—
dx\v vdx vodx dx dx

d i dit d . du
—(u )=nu  — —COSU = —=SInU—
dx dx dx dx

d . 1 du d > du
(W)= —— —tanu =sec u—
dx 2-Ju dx dx dx

. { s dl
i(l]:_i‘ﬂ “ cotu=—csetu
dx\u u” dx dx dx
1 1

d(1)_ _n du ¢ secu= sccutzmuﬂ
dx 1(-’1 - u"“l dx dx dx
i[f(‘u}]—i[f(u)]ﬂ 2 cscu=—cscucotu
dx du™  dx dx dx

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

f f(z) = g(h(z))
Then f'(x) = ¢ (h(z))h' (z)

- Derivatives can be computed by following well-defined procedures



Automatic Differentiation

» Automatic differentiation software
" e.g. Theano, TensorFlow, PyTorch, Chainer
" Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

" This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

= Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
" How this is done? -- outside of scope of CS188



Summary of Key ldeas

= Optimize probability of label given input ~ max ll(w) = max Zlogp(y(i)\fﬁ(i);w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets

= Last layer = still logistic regression

= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed
= Universal function approximation theorem
= ITf neural net is large enough
* Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



How well does it work?



Computer Vision




Object Detection




Manual Feature Design




Features and Generalization
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Features and Generalization
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Performance
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MS COCO Image Captioning Challeng

”a e

'man in black shirt is "construction worker in "two young girls are "boy is doing backflip on
playing guitar." orange safety vest is playing with lego toy." wakeboard.
working on road."

2 Rl L v y b A = :
‘girlin pink dress is "black and white dog "young girl in pink shirt is ‘man in blue wetsuit is
jumping in air." jumps over bar." swinging on swing." surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more



Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?
Neural Net: brown

Ground Truth: brown

How many school busses
are there?

Neural Net: 2

Ground. ‘Truth: 2

What sport is this?
Neural Net: baseball
Ground Truth: baseball

What is on top of th
refrigerator?

Neural Net: magnets
Ground Truth: cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent




Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai



Machine Translation
= ____Google Neural Macnine Transtation (in proauaccon) .

| | 1 J |
Encoder € || € ] (2 Pameetil - O [l Q4 JEemmte] O Eedl  ©O8
Decoder do e ds dz ds



Next: More Neural Net Applications!



