
CSCE 580: Artificial Intelligence

Advanced Applications: Robotics**

Instructor: Pooyan Jamshidi

University of South Carolina
[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]

So Far: Foundational Methods

Now: Advanced Applications

How would you
make an AI for Go?

MiniMax!

Why is it hard?

In particular, why is it harder than chess?

Exhaustive search

Reducing depth with value network

Reducing breadth with policy network

Neural network training pipeline

Human expert
positions

Supervised Learning
policy network

Self-play data Value networkReinforcement Learning
policy network

One more thing: Monte-Carlo rollouts

Robotic Helicopters

Motivating Example

n How do we execute a task like this?
[VIDEO: tictoc_results.wmv]

Autonomous Helicopter Flight

§ Key challenges:

§ Track helicopter position and orientation during flight

§ Decide on control inputs to send to helicopter

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Autonomous Helicopter Setup

On-board inertial
measurement unit (IMU)

Send out controls to
helicopter

Position

HMM for Tracking the Helicopter

§ State:

§ Measurements: [observation update]
§ 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer

§ Transitions (dynamics): [time elapse update]
§ st+1 = f (st, at) + wt f: encodes helicopter dynamics, w: noise

s = (x, y, z,�, ✓, , ẋ, ẏ, ż, �̇, ✓̇, ̇)

Helicopter MDP

§ State:

§ Actions (control inputs):
§ alon : Main rotor longitudinal cyclic pitch control (affects pitch rate)
§ alat : Main rotor latitudinal cyclic pitch control (affects roll rate)
§ acoll : Main rotor collective pitch (affects main rotor thrust)
§ arud : Tail rotor collective pitch (affects tail rotor thrust)

§ Transitions (dynamics):
§ st+1 = f (st, at) + wt
[f encodes helicopter dynamics]
[w is a probabilistic noise model]

§ Can we solve the MDP yet?

s = (x, y, z,�, ✓, , ẋ, ẏ, ż, �̇, ✓̇, ̇)

Problem: What’s the Reward?

§ Reward for hovering:

RL: Helicopter Flight

[Andrew Ng] [Video: HELICOPTER]

Problem for More General Case: What’s the Reward?

§ Rewards for “Flip”?

§ Problem: what’s the target trajectory?

§ Just write it down by hand?

Flips (?)

[VIDEO: 20061204---bad.wmv]

Helicopter Apprenticeship?

30

Demonstrations
[VIDEO: airshow_unaligned.wmv]

Learning a Trajectory

• HMM-like generative model
– Dynamics model used as HMM transition model
– Demos are observations of hidden trajectory

• Problem: how do we align observations to hidden
trajectory?

Demo 1

Demo 2

Hidden

Abbeel, Coates, Ng, IJRR 2010

Probabilistic Alignment using a Bayes’ Net

§ Dynamic Time Warping
(Needleman&Wunsch 1970, Sakoe&Chiba, 1978)

§ Extended Kalman filter / smoother

Demo 1

Demo 2

Hidden

Abbeel, Coates, Ng, IJRR 2010

Aligned Demonstrations
[VIDEO: airshow_unaligned.wmv]

Alignment of Samples

§ Result: inferred sequence is much cleaner!

Learned Behavior

[Abbeel, Coates, Quigley, Ng, 2010][VIDEO: airshow_trimmed.wmv]

Legged Locomotion

For Perspective: Darpa Robotics Challenge (2015)

How About Continuous Control, e.g., Locomotion?

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

[15] J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In AAAI Conference on Artificial

Intelligence, 2010.

[16] J Andrew Bagnell and Jeff Schneider. Covariant policy search. IJCAI, 2003.

[17] Peter L Bartlett and Jonathan Baxter. Infinite-horizon policy-gradient estimation. arXiv preprint

arXiv:1106.0665, 2011.

[18] Michail G Lagoudakis and Ronald Parr. Reinforcement learning as classification: Leveraging modern
classifiers. In ICML, volume 3, pages 424–431, 2003.

[19] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific Belmont,
MA, 3rd edition, 2005.

[20] Andrew Y Ng and Michael Jordan. Pegasus: A policy search method for large mdps and pomdps. In
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages 406–415. Morgan
Kaufmann Publishers Inc., 2000.

[21] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190, 2008.

[22] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033.
IEEE, 2012.

[23] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pages 745–750.
ACM, 2007.

[24] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. Systems, Man and Cybernetics, IEEE Transactions on, (5):834–846,
1983.

[25] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing times. American
Mathematical Society, 2009.

[26] Stephen J Wright and Jorge Nocedal. Numerical optimization, volume 2. Springer New York, 1999.

[27] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint

arXiv:1301.3584, 2013.

[28] James Bergstra et al. Theano: a CPU and GPU math expression compiler.

A Approximating policies with neural networks

Jo
in

ta
ng

le
s

an
d

ki
ne

m
at

ic
s

Control

Standard
deviations

Fully
connected

layer

30 units

Input
layer

Mean
parameters Sampling

Figure 4: Neural network architecture for the locomotion domain: Two fully connected hidden lay-
ers transform the input to the mean µ of a Normal distribution from which the controls are sampled.

To represent the stochastic policy ⇡✓, we use a neural network with weights ✓. The network maps the
observations to a set of parameters indexing the probability distribution that is then used to sample
the controls for the rollouts. We now describe the architecture used in the respective domains in
more detail.

13

Neural network architecture:

Input: joint angles and velocities
Output: joint torques

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 1: Robot models used for locomotion experiments, instantiated in MuJoCo physics simulator.
The three models on the left are constrained to two dimensions and are called the swimmer, hopper,
and walker—these models were used for the main experimental comparisons.

two other approaches: reward-weighted regression (RWR) [23]4 and the cross entropy method. All
of the methods were used to optimize the same neural-network parameterization of the policy.5 A
detailed listing of parameters used in the experiment is provided in Appendix E. We include the
classic cart-pole balancing task in additional to the more challenging locomotion domains, based on
the formulation from Barto et al. [24].

Learning curves of the policy optimization methods are shown in Figure 2. Our vine algorithm was
able to solve all of the tasks, learning a stable and naturalistic gait for the 2D hopper and walker.
The single path algorithm exhibits the best looking learning curves (the most reliably monotonic
improvement of total expected cost), but it did not yield a locomotion controller for the 2D walker;
instead, it yielded a controller that stood up but did not bother to move.

The cross-entropy method was not able to solve any of the tasks other than cart-pole, presumably
because it does not perform well for optimization problems with more than a couple dozen parame-
ters. Reward-weighted regression also performed reasonably well on the tasks, which is consistent
with the fact that it is performing gradient-based optimization of the policy, thus it can be expected
to scale with the number of parameters.6

We have also obtained promising preliminary results optimizing control policies for a 3D humanoid
model, which has 51 state dimensions and 19 actuators, using the single path algorithm. While the
initial policy falls over immediately, after several hundred iterations of policy iteration, we obtain a
policy that make substantial forward progress and survives for more than ten seconds before falling
over. Learning curves are shown in Figure 2.

6.2 Atari Domain

Next, we studied invested applied our algorithms to learn learn policies for playing Atari games,
using raw images as input. These games require a variety of different behaviors, such as dodging
bullets and hitting balls with paddles. Some games are made more difficult by the timing of when
rewards are delivered; for example, in most games, no immediate penalty is received after losing a
life. The diversity of the games makes Atari an interesting testbed for reinforcement learning. We
tested our policy optimization algorithms on the same seven games that Mnih et al. [5] reported
results on, since theirs is the only prior work on this domain that uses raw images as input, so that
work is the only meaningful reference for comparison.

As for the mundane implementation details, we first convert the images to grayscale and downsample
by a factor of four. We use the last four images as input to the policy. The policy is represented by a
convolutional neural network, whose structure is shown in Figure 5.

4We implemented the following variant of reward-weighted regression. First, sample a set of trajectories
from the stochastic policy. Select the top 10% of trajectories that achieve the lowest total cost. Then use
L-BFGS to maximize the log-likelihood of all of the controls performed along those trajectories.

5 We reduced the number of hidden units for the cross-entropy method, which improved its performance.
6 The learning curves slightly overstate the performance of RWR, though, because the experiment with

RWR used a single initial state, whereas the other methods used a distribution over initial states. Using a
single initial state was necessary for good performance of our implementation of RWR, but there may be some
modifications that make RWR suitable for a distribution of initial states.

8

Robot models in physics simulator
(MuJoCo, from Emo Todorov)

Learning Locomotion

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]

Deep RL: Virtual Stuntman

[Peng, Abbeel, Levine, van de Panne, 2018] Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.AI

Quadruped

§ Low-level control problem: moving a foot into a new location
à search with successor function ~ moving the motors

§ High-level control problem: where should we place the feet?

§ Reward function R(x) = w . f(s) [25 features]

[Kolter, Abbeel & Ng, 2008]

§ Demonstrate path across the “training terrain”

§ Learn the reward function
§ Receive “testing terrain”---height map.

§ Find the optimal policy with respect to the learned reward
function for crossing the testing terrain.

Reward Learning + Reinforcement Learning

[Kolter, Abbeel & Ng, 2008]

Without reward learning

With reward learning

Autonomous Driving

§ 150 mile off-road robot race
across the Mojave desert

§ Natural and manmade hazards
§ No driver, no remote control
§ No dynamic passing

Grand Challenge 2005: Barstow, CA, to Primm, NV

Autonomous Vehicles

Autonomous vehicle slides adapted from Sebastian Thrun

Grand Challenge 2005 Nova Video

[VIDEO: nova-race-supershort.mp4]

Grand Challenge 2005 – Bad

[VIDEO: grand challenge – bad.wmv]

An Autonomous Car

5 Lasers
Camera

Radar

E-stop
GPS

GPS compass
6 Computers

IMU Steering motor
Control Screen

Actions: Steering Control

Reference Trajectory

Error

Velocity

Steering
Angle

(with respect
to trajectory)

Laser Readings for Flat / Empty Road

1
23

Laser Readings for Road with Obstacle

DZ

Raw Measurements: 12.6% false positives

Obstacle Detection

Trigger if |Zi-Zj| > 15cm for nearby zi, zj

xt+2xt xt+1

zt+2zt zt+1

Probabilistic Error Model

GPS
IMU

GPS
IMU

GPS
IMU

HMM Inference: 0.02% false positivesRaw Measurements: 12.6% false positives

HMMs for Detection

Sensors: Camera

Vision for a Car

Vision for a Car
[VIDEO: lidar vision for a car]

Self-Supervised Vision
[VIDEO: self-supervised vision]

Urban Environments

Google Self-Driving Car (2013)
[VIDEO: ROBOTICS – gcar.m4v]

(mostly lidar)

Recent Progress: NN Semantic Scene Segmentation

PSPNet50
~ neural net classifies every pixel

Self-Driving Cars -- Stats

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.AI

Self-Driving Cars -- Stats

Energy-Inference-Accuracy Landscape on the Squeezelator

68

ImageNet energy-accuracy for different NNs

SqueezeNext vs

SqueezeNet/AlexNet

• 8% more accurate

• 2.25x better than SqueezeNet

• 7.5x better than AlexNet

* MobileNet
v1

[slide credit: Kurt Keutzer]

Personal Robotics

[Wyrobek, Berger, van der Loos, Salisbury, ICRA 2008]

PR-1

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.AI

Challenge Task: Robotic Laundry

Sock Sorting

How about a range of skills?

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]
Pieter Abbeel -- UC Berkeley /

OpenAI / Gradescope

Reinforcement Learning

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

Learned Skills

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016
Pieter Abbeel -- UC Berkeley /

OpenAI / Gradescope

Unsupervised Learning for Interaction?

[Levine et al, 2016]

