CSCE 580: Artificial Intelligence

Advanced Applications: Robotics**

Instructor: Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, ai.berkeley.edu]



So Far: Foundational Methods




Now: Advanced Applications
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Google is trying to make artificial
intelligence history — and it could happen
this week
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In Two Moves, AlphaGo and Lee Sedol Redefined the Future SUBSCRIBE
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IN TWO MOVES. ALPHAGO AND
LEE SEDOL REDEFINED THE AL 1V L4
FUTURE
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GEORDIE WODD FOR WIRED

SEOUL. SOUTH KOREA — In Game Two, the Google machine
made a move that no human ever would. And it was
beautiful. As the world looked on, the move so perfectly DESIGN

Neural Nets Got You
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How would you
make an Al for Go?
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Why is it hard?

In particular, why is it harder than chess?
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Exhaustive search
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Reducing depth with value network
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Reducing breadth with policy network
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Neural network training pipeline

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network
Classification ‘Self Play l’ ‘Self Play : Q @

N-Layer Neural Network Policy Search N-Layer Neural Network
— = Simplest .poliq./ %e:ar.ch: ) ) — — —
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- = |f there are a lot of features, this can be impractical [} - -
2 > = Better methods exploit lookahead structure, sample wisely, change 2 2 1
L multiple parameters... I L




One more thing: Monte-Carlo rollouts
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Editor's summary Ay yall

The victory in 1997 of the chess-playing computer
Deep Blue in a six-game series against the then
world champion Gary Kasparov was seen as a
significant milestone in the development of artificial
inte...

4)) Related audio

Hear from the makers of the Al that mastered Go -
and the professional player it beat.
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Authors with Loop profiles

Julian Schrittwieser

Marc Lanctot
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AlphaGo Zero goes solo

MaSterlng the game Of GO WlthOUt human To beat world champions at the game of Go,
knOWIed ge the computer program AlphaGo has relied

largely on supervised learning from millions of

David Silver ® Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, human expert moves. David Silver and
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Robotic Helicopters



Motivating Example

= How do we execute a task like this?




Autonomous Helicopter Flight

= Key challenges:

= Track helicopter position and orientation during flight

= Decide on control inputs to send to helicopter



Autonomous Helicopter Setup

On-board inertial
measurement unit (IMU)

Position

Send out controls to
helicopter




HMM for Tracking the Helicopter

(50

S0 > S1 >S9

= State: S — (ajay727¢767¢7i’7?)727¢79’7¢)

= Measurements: [observation update]

= 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer
= Transitions (dynamics): [time elapse update]

" Siq =T (S, ay) + Wy f: encodes helicopter dynamics, w: noise



Helicopter MDP

State: § = (ajayaza¢797¢7i79727¢7é7¢)

Actions (control inputs):

don - Main rotor longitudinal cyclic pitch control (affects pitch rate)
® Q,5t: Main rotor latitudinal cyclic pitch control (affects roll rate)

Aco : Main rotor collective pitch (affects main rotor thrust)

A,,q : Tail rotor collective pitch (affects tail rotor thrust)

Transitions (dynamics):
" Steq =T (Sy, @) + Wy
[f encodes helicopter dynamics]
[w is a probabilistic noise model]

Can we solve the MDP yet?




Problem: What’s the Reward?

= Reward for hovering:

R(s) = —ag(z—ax*)?
—ay(y —y*)’
—a,(z — 2%)?
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RL: Helicopter Flight

[Andrew Ng]



Problem for More General Case: What’s the Reward?

= Rewards for “Flip”?

" Problem: what’s the target trajectory?

= Just write it down by hand?






Helicopter Apprenticeship?




[VIDEO: airshow_unaligned.wmv]

Demonstrations




Learning a Trajectory
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e HMM-like generative model
— Dynamics model used as HMM transition model
— Demos are observations of hidden trajectory

* Problem: how do we align observations to hidden

trajectory?
Abbeel, Coates, Ng, IJRR 2010



Probabilistic Alignment using a Bayes’ Net
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= Dynamic Time Warping
(Needleman&Wunsch 1970, Sakoe&Chiba, 1978)

= Extended Kalman filter / smoother

Abbeel, Coates, Ng, IJRR 2010



[VIDEO: airshow_unaligned.wmv]

Aligned Demonstrations




Alignment of Samples

— —
o o o o
T T T T

Altitude (m)

[
o
T

= Result: inferred sequence is much cleaner!



Learned Behavior
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[Abbeel, Coates, Quigley, Ng, 2010]




Legged Locomotion




For Perspective: Darpa Robotics Challenge (2015)
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How About Continuous Control, e.g., Locomotion?

Input: joint angles and velocities
.. Full
Output: joint torques put o eded M e

layer layer | Parameters
A
et
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Standard

30 units deviations

Robot models in physics simulator
(MuloCo, from Emo Todorov)

Neural network architecture:

Joint angles and kinematics



Learning Locomotion

lteration O

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]



Deep RL: Virtual Stuntman
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Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al



Quadruped

= Low-level control problem: moving a foot into a new location
— search with successor function ~ moving the motors

= High-level control problem: where should we place the feet?

= Reward function R(x) = w .f(s) [25 features]

[Kolter, Abbeel & Ng, 2008]



Reward Learning + Reinforcement Learning

* Demonstrate path across the “training terrain”

S e B

= Learn the reward function

" Receive “testing terrain”---height map.

= Find the optimal policy with respect to the learned reward
function for crossing the testing terrain. Koter, Abbeel & Ng, 2008]



Without reward learning




With reward learning




Autonomous Driving




Grand Challenge 2005: Barstow, CA, to Primm, NV
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150 mile off-road robot race
across the Mojave desert

= "‘; ~y Natural and manmade hazards
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Autonomous Vehicles

Autonomous vehicle slides adapted from Sebastian Thrun



Grand Challenge 2005 Nova Video

[VIDEO: nova-race-supershort.mp4]



Grand Challenge 2005 — Bad

[VIDEO: grand challenge — bad.wmv]
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An Autonomous Car

E-stop 5 Lasers

adar
: Control Screen



Actions: Steering Control

Steering
Angle
(with respect
to trajectory)



Laser Readings for Flat / Empty Road




Laser Readings for Road with Obstacle




Obstacle Detection

Trigger if |Zi-Z)| > 15c¢m for nearby zi, z

Raw Measurements: 12.6% false positives



Probabilistic Error Model
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HMMs for Detection
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Raw Measurements: 12.6% false positives HMM Inference: 0.02% false positives



Sensors: Camera




Vision for a Car




[VIDEQ: lidar vision for a car]

Vision for a Car




[VIDEO: self-supervised vision]

Self-Supervised Vision




Urban Environments




[VIDEO: ROBOTICS — gcar.m4v]

Google Self-Driving Car (2013)

(mostly lidar)



Recent Progress: NN Semantic Scene Segmentation

~ neural net classifies every pixel

PSPNet50



Events/1000 miles

Self-Driving Cars -- Stats

14 Autonomous vehicle safety progress
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Events/1000 miles

80 Autonomous vehicle safety progress
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Energy-Inference-Accuracy Landscape on the Squeezelator

ImageNet energy-accuracy for different NNs

90
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@) v1
2.25x better than SqueezeNet < 87 - 0‘
« 7.5x better than AlexNet 80 | ‘
10° 102
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[slide credit: Kurt Keutzer]



Personal Robotics




[Wyrobek, Berger, van der Loos, Salisbury, ICRA 2008]

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al




Challenge Task: Robotic Laundry
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Sock Sorting

Five previously unseen socks are placed on the table.
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How about a range of skills?

Pieter Abbeel -- UC Berkeley /
[Levine*, Finn*, Darrell, Abbeel, IMLEREA]/ Gradescope



Reinforcement Learning

[Levine*, Finn*, Darrell, Abbeel, IMLR 2016]



Learned Skills

Pieter Abbeel -- UC Berkeley /
[Levine*, Finn*, Darrell, AbbeeOPRIVH 2@mksiescope



ol
[Levine et al, 2016]




