CSCE 580: Artificial Intelligence

Markov Decision Processes

Instructor: Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, ai.berkeley.edu]

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

= Asetofstatesse S

= AsetofactionsaeA

A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

“Markov” generally means that given the present state, the
future and the past are independent

For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si41 = 5'|St = s, Ay = ag, Se—1 = 5¢—1, Ay—1,...S0 = 50)

Andrey Markov
P(Sii1 = 8|St = 8¢, Ay = ay) (1856-1922)

This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problemes,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy & gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies

® |t computed the action for a single state only

Optimal Policies

| | | [
A A |
Al>=|) |=

R(s)=-0.4

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

AS —J s is a state

P (s,a,s’) called a transition
T(s,a,s’)=P(s’|s,a)
R(s,a,s’)

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3, 4]

= Now orlater? [0,0,1] or [1,0,0]

A

oy P
| ‘"}
N

Discounting

= |t's reasonable to maximize the sum of rewards
= |t's also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we

N/
multiply in the discount once v
v%

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge V.,

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5%2+0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences
:
et g
[al,ag,...] — [bl,bg,...] @ Q
b \ [

[Tv ai,dz, ..] >~ [T, bl,bQ, ..]

= Theorem: if we assume stationary preferences:

= Then: there are only two ways to define utilities

= Additive utility: U([rg,71,72,...])) =rg+7r1+ 710+ -

= Discounted utility: U([rg,r1,72,...]) =719+ yr1 + »y?f,az ..

Quiz: Discounting

Given: 10 1

a b C d s
= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (t depends on time left)

= Discounting:use0<y<1

U([ro,-..Toc]) = > ¥'re < Rmax/(1—7)
=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

* Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
* Rewards R(s,a,s’) (and discount vy) 78,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sis a
acting optimally state
A (s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 5,8,](ts,a,s.)t}s a
’ ransition

(thereafter) acting optimally

= The optimal policy:
7 (s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Gridworlc

o
Ve

“

Values of States

= Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value: ,
Vi(s) = max Q" (s, a)

Q*(s,a) = ZT(S, a,s') {R(s, a,s’) + ’yV*(S/)]

S

V*(s) = mngT(s, a,s’) [R(s,a,s/) -+ 'yV*(s/)}

S

Racing Search Tree

Racing Search Tree

1

LTI

CILETRTIEETELL

CILETMEHEUTRR LY

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing

depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

H

-

Ll

i
'

AR TN

T

CILEIELL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’s what a depth-k expectimax would give from s

S o &

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

GCridworld Display

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=8

Gridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

H
A
H.

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

Gridworld Display

AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Gridworld Display

AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Computing Time-Limited Values

Vi@) Vy(as)]

Vs(@) Vs(as)

Va(@) Vo(4as)

LT T A T I B O B O N

Vil) Vi(4as)

| O T Y| O O e L) AU | O O Y

Vo(@) Vo(as) DNVRNT THVMRTEARE FHLNME CRINNEERNE LINNL T

(=
| =
ja(fer s s s =]
| =
| =

Value Iteration

Value Iteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(8) < mC?XZT(S, a,s) {R(s,a, N + ka(s’)}

S

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value lteration

Overheated

Assume no discount!

" [° ° 0] Vi1(s) < maxd_T(s,a,s') |R(s,a,5") + v Vi(s)

S

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

“’s,a,S

"A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy nt(s), then the tree would be simpler — only one action per state

= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy n:

V™(s) = expected total discounted rewards starting in s and following &

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) +~vV"(s)]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy n?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Va(s) =0

Vii 1(s) < > T(s,m(s),s)[R(s,7(s),s) + Vi (s)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

) . . . sk
Let’s imagine we have the optimal values V*(s) n
= |t's not obvious!
u
We need to do a mini-expectimax (one step) .

m*(s) = argmax 3. T(s,a,s)[R(s,a,5) +1V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values:

= How should we act?

= Completely trivial to decide!
e
ZANZON AN

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

/5

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Viet1(s) < mC?XZT(S, a,s) {R(s,a, N + 7\@(3’)}

S

* Problem 1: It’s slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

GCridworld Display

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=8

Gridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

H
A
H.

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

Gridworld Display

AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Gridworld Display

AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy 7, find values with policy evaluation:
= [terate until values converge:

Vit (s) < > T(s,mi(s),8') |R(s,mi(s),s') + 7 Vi (s))]

= |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi+1(s) = arg maxZT(s, a,s) [R(S, a,s’) + ’}/Vﬂi(sl)}

S

Comparison

= Both value iteration and policy iteration compute the same thing (all optimal values)

= |n value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

= |n policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
= The new policy will be better (or we’re done)

= Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= So you want to....

= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
= They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments

= They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

= Actions: Blue, Red No discount

= States: Win, Lose 025 <0 100 time steps

Both states have
the same value

Offline Planning

= Solving MDPs is offline planning No discount
" You determine all quantities through computation 100 time steps
" You need to know the details of the MDP Both states have
= You do not actually play the game! the same value

4 N

Value
Play Red 150
Play Blue 100

_ J

Let’s Play!

$2 S2 S0 S2 S2
$2 S2 SO0 S0 SO

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

SO SO SO S2 SO
$2 SO0 SO S0 SO

What Just Happened?

* That wasn’t planning, it was learning!
= Specifically, reinforcement learning

= There was an MDP, but you couldn’t solve it with just computation
= You needed to actually act to figure it out

" Important ideas in reinforcement learning that came up

= Exploration: you have to try unknown actions to get information

Exploitation: eventually, you have to use what you know

Regret: even if you learn intelligently, you make mistakes

Sampling: because of chance, you have to try things repeatedly

Difficulty: learning can be much harder than solving a known MDP

