CSCE 580: Artificial Intelligence

Bayes' Nets

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]

Midterm Grades (Distribution and Top 5 grades)

Mon-Nan How
100
Wade Curlee (James Curlee?)
100
Robert Semler
90
Chien-hsueh Huang
89
Elizabeth Stewart
88

Mid-Term Grade Distribution

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Independence

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $\quad X \Perp Y$
- Independence is a simplifying modeling assumption

- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

$P_{1}(T, W)$		
T W P hot sun 0.4 hot rain 0.1 cold sun 0.2 cold rain 0.3		

$P(T)$

T	P
hot	0.5
cold	0.5

$P_{2}(T, W)$

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$		$P\left(X_{2}\right)$		$P\left(X_{n}\right)$			
H	0.5						
T	0.5						
H	0.5						
T	0.5				$\quad \cdots$	H	0.5
:---	:---	:---					
T	0.5						

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity)
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch | +toothache, -cavity) $=\mathrm{P}(+$ catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) $=\mathrm{P}($ Catch | Cavity $)$

- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}$ (Toothache | Cavity)
- $P($ Toothache, Catch | Cavity $)=P($ Toothache | Cavity) $P($ Catch | Cavity $)$
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z
if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic \mid Rain $) P$ (Umbrella|Rain, Traffic)
- With assumption of conditional independence:

$P($ Traffic, Rain, Umbrella $)=$ $P($ Rain $) P($ Traffic \mid Rain $) P($ Umbrella|Rain $)$
- Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T : Top square is red B: Bottom square is red G: Ghost is in the top
- Givens:
$P(+g)=0.5$
$P(-g)=0.5$
$P(+t \mid+g)=0.8$
$\mathrm{P}(+\mathrm{t} \mid-\mathrm{g})=0.4$

$\mathrm{P}(+\mathrm{b}$	$+\mathrm{g})=0.4$
$\mathrm{P}(+\mathrm{b}$	$-\mathrm{g})=0.8$

$$
P(T, B, G)=P(G) P(T \mid G) P(B \mid G)
$$

T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
+t	+b	+g	0.16
+t	+b	-g	0.16
+t	-b	+g	0.24
+t	-b	-g	0.04
-t	+b	+g	0.04
-t	+b	-g	0.24
-t	-b	+g	0.06
-t	-b	-g	0.06

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to CSP constraints
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean
 direct causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic

- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Example:

$$
P(+ \text { cavity, +catch, -toothache })
$$

Probabilities in BNs

- Why are we guaranteed that setting

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
- Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
\rightarrow Consequence: $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$
P(+r,-t)=
$$

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

John
calls

A	J	$P(J \mid A)$
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

A	M	$P(M \mid A)$
$+a$	$+m$	0.7
$+a$	$-m$	0.3
$-a$	$+m$	0.01
$-a$	$-m$	0.99

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

E	$P(E)$
$+e$	0.002
$-e$	0.998

Example: Traffic

- Causal direction

$P(T, R)$	
$+r$ $+t$ $3 / 16$ $+r$ $-t$ $1 / 16$ $-r$ $+t$ $6 / 16$ $-r$ $-t$ $6 / 16$	

Example: Reverse Traffic

- Reverse causality?

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
- Today:
- First assembled BNs using an intuitive notion of conditional independence as causality
- Then saw that key property is conditional independence
- Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

BAYES' NETS: INDEPENDENCE

Probability Recap

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad X \Perp Y \mid Z
$$

Bayes' Nets

- A Bayes' net is an efficient encoding of a probabilistic model of a domain
- Questions we can ask:

- Inference: given a fixed $B N$, what is $P(X \mid e)$?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Example: Alarm Network

$P(+b,-e,+a,-j,+m)=$

B			
$+b$	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
2^{N}
- How big is an N-node net if nodes have up to k parents?
$\mathrm{O}\left(\mathrm{N}^{*} 2^{\mathrm{k}+1}\right)$
- Both give you the power to calculate

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)
$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

Representation

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

- X and Y are independent if

$$
\forall x, y P(x, y)=P(x) P(y) \rightarrow-\rightarrow \quad X \Perp Y
$$

- X and Y are conditionally independent given Z

$$
\forall x, y, z P(x, y \mid z)=P(x \mid z) P(y \mid z) \cdots X \Perp Y \mid Z
$$

- (Conditional) independence is a property of a distribution
- Example: Alarm \Perp Fire \mid Smoke

Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Beyond above "chain rule \rightarrow Bayes net" conditional independence assumptions
- Often additional conditional independences
- They can be read off the graph
- Important for modeling: understand assumptions made
 when choosing a Bayes net graph

Example

- Conditional independence assumptions directly from simplifications in chain rule:
- Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Guaranteed X independent of Z? No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
- In numbers:

$$
\begin{aligned}
& P(+y \mid+x)=1, P(-y \mid-x)=1, \\
& P(+z \mid+y)=1, P(-z \mid-y)=1
\end{aligned}
$$

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Guaranteed X independent of Z given Y?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y)
\end{aligned}
$$

Yes!

- Evidence along the chain "blocks" the influence

Common Cause

- This configuration is a "common cause"

- Guaranteed X independent of Z? No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Project due causes both forums busy and lab full
- In numbers:

$$
\begin{aligned}
& P(+x \mid+y)=1, P(-x \mid-y)=1 \\
& P(+z \mid+y)=1, P(-z \mid-y)=1
\end{aligned}
$$

$$
P(x, y, z)=P(y) P(x \mid y) P(z \mid y)
$$

Common Cause

- This configuration is a "common cause"

$$
P(x, y, z)=P(y) P(x \mid y) P(z \mid y)
$$

- Guaranteed X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \\
& \text { Yes! }
\end{aligned}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)
- Are X and Y independent given Z ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
- Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN , are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables \{Z\}?
- Yes, if X and Y " d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

D-Separation

- Query: $\quad X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$?
- Check all (undirected!) paths between X_{i} and X_{j}
- If one or more active, then independence not guaranteed

$$
X_{i} X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

Example

$R \Perp B$	Yes
$R \Perp B \mid T$	
$R \Perp B \mid T^{\prime}$	

Example

$L \Perp T^{\prime} \mid T$	Yes
$L \Perp B$	Yes
$L \Perp B \mid T$	
$L \Perp B \mid T^{\prime}$	
$L \Perp B \mid T, R$	Yes

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I’m sad
- Questions:

$$
\begin{array}{lr}
T \Perp D & \\
T \Perp D \mid R \quad \text { Yes } \\
T \Perp D \mid R, S &
\end{array}
$$

Structure Implications

- Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- This list determines the set of probability distributions that can be represented

Computing All Independences

COMPUTE ALL THE INDEPENDENCES!

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain
(conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

```
{X\PerpY,X\PerpZ,Y\PerpZ,
X\PerpZ|Y,X\PerpY|Z,Y\PerpZ|X}
```


Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net' s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

Representation
Conditional Independences

- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

BAYES' NETS: INFERENCE

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Example: Alarm Network

E	$P(E)$
$+e$	0.002
$-e$	0.998

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

[Demo: BN Applet]

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Alarm Network

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likely explanation:

$$
\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)
$$

Inference by Enumeration

- General case:
$\left.\begin{array}{ll}\text { - Evidence variables: } & E_{1} \ldots E_{k}=e_{1} \ldots e_{k} \\ \text { - Query* variable: } & Q \\ \text { - Hidden variables: } & H_{1} \ldots H_{r}\end{array}\right\} \begin{gathered}X_{1}, X_{2}, \ldots X_{n} \\ \text { All variables }\end{gathered}$
- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- We want:
* Works fine with multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{Z} \\
Z=\sum_{q} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{gathered}
$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$
P(B \mid+j,+m) \propto_{B} P(B,+j,+m)
$$

$$
=\sum_{e, a} P(B, e, a,+j,+m)
$$

$$
=\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)
$$

$$
\begin{aligned}
= & P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a) \\
& P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

- First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- Entries $\mathrm{P}(\mathrm{x}, \mathrm{y})$ for all x, y
- Sums to 1

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: P(x,Y)
- A slice of the joint distribution
- Entries $\mathrm{P}(\mathrm{x}, \mathrm{y})$ for fixed x , all y
- Sumsto $\mathrm{P}(\mathrm{x})$
$P($ cold,$W)$

T	W	P
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: $P(Y \mid x)$
- Entries $P(y \mid x)$ for fixed x, all
- Sums to 1

$P(W \mid$ cold $)$

T	W	P
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: $P(Y \mid X)$
- Multiple conditionals
- Entries $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for all x, y
- Sumsto $\mid \mathrm{X\mid}$

$P(W \mid T)$
$\left.\begin{array}{|c|c|c|}\hline \text { T } & \mathrm{W} & \mathrm{P} \\ \hline \text { hot } & \text { sun } & 0.8 \\ \hline \text { hot } & \text { rain } & 0.2 \\ \hline \text { cold } & \text { sun } & 0.4 \\ \hline \text { cold } & \text { rain } & 0.6 \\ \hline\end{array}\right\} P(W \mid$ hot $)$

Factor Zoo III

- Specified family: $\mathrm{P}(\mathrm{y} \mid \mathrm{X})$
- Entries $P(y \mid x)$ for fixed y, but for all x
- Sums to ... who knows!
$P(\operatorname{rain} \mid T)$
\(\left.\begin{array}{|c|c|c|}\hline \mathrm{T} \& \mathrm{W} \& \mathrm{P}

\hline hot \& rain \& 0.2

\hline cold \& rain \& 0.6

\hline\end{array}\right\}\)| $P($ rain \mid hot $)$ |
| :--- |
| $P($ rain \mid cold $)$ |

Factor Zoo Summary

- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are $P\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{M}\right)$
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

$$
\begin{aligned}
P(L) & =? \\
& =\sum_{r, t} P(r, t, L) \\
& =\sum_{r, t} P(r) P(t \mid r) P(L \mid t)
\end{aligned}
$$

$P(R)$
$+r$ 0.1 $-r$ 0.9 $P(T \mid R)$ $+r$ $+t$ 0.8 $+r$ $-t$ 0.2 $-r$ $+t$ 0.1 $-r$ $-t$ 0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$P(R)$	$P(T \mid R)$				
$+r$ 0.1 $-r$ 0.9	$+r$ +t 0.8 $+r$ -t 0.2 -r +t 0.1 -r -t 0.9		+t	+l	0.3
:---:	:---:	:---:	:---:		
+t	-l	0.7			
-t	+l	0.1			
-t	-l	0.9			

- Any known values are selected
- E.g. if we know $L=+\ell$, the initial factors are
$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$

$+r$	$+t$	0.8
$+r$	$-t$	0.2
$-r$	$+t$	0.1
$-r$	$-t$	0.9

$P(+\ell \mid T)$

+t	+l	0.3
-t	+1	0.1

- Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables
 involved
- Example: Join on R

- Computation for each entry: pointwise products $\quad \forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)$

Example: Multiple Joins

Example: Multiple Joins

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R

\longleftrightarrow | $P(T)$ | |
| :---: | :---: |
| +t | 0.17 |
| -t | 0.83 |

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

(R) $\quad P(L)=$?

- Inference by Enumeration
- Variable Elimination

Marginalizing Early! (aka VE)

$P(R)$	
$+r$ 0.1 $-r$ 0.9	

Join R	$P(R, T)$			Sum out R	$P(T)$				Sum out T								
\square	+r	+t	0.08														
	+r	-t	0.02		+t		0.17										
	-r	+t	0.09		-t		0.83										
	-r	-t	0.81					$\begin{gathered} T, L \\ P(T, L) \end{gathered}$				(L)$P(L)$					
					+t	+1	0.051										
					+t	-1	0.119	+1	0.134								
					-t	+1	0.083	-1	0.866								
	$+\mathrm{t}$	+1	0.3						+t	+1	0.3		-t	-1	0.747		
	$+$	-1	0.7						+t	-I	0.7						
	-t	+1	0.1						-t	+1	0.1						
	-t	-1	0.1						-t	-I	0.9						

Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:
$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$

$+r$	$+t$	0.8
$+r$	$-t$	0.2
$-r$	$+t$	0.1
$-r$	$-t$	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- Computing $P(L \mid+r)$ the initial factors become:

\[

\]

$$
\begin{aligned}
& P(T \mid+r) \\
& \begin{array}{|c|c|c|}
\hline+r & +\mathrm{t} & 0.8 \\
\hline+\mathrm{r} & -\mathrm{t} & 0.2 \\
\hline
\end{array}
\end{aligned}
$$

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for P(L | +r), we would end up with:

$P(+r, L)$
+r +I 0.026 +r -I 0.074
:---:
-I

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)

- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H

$$
\pi^{8} \times \frac{1}{5}
$$

Example

$$
\begin{aligned}
& P(B \mid j, m) \propto P(B, j, m) \\
& P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
\end{aligned}
$$

Choose A

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Choose E

$P(B) \quad P(j, m \mid B)$

Finish with B
$\begin{array}{ccc}P(B) \\ P(j, m \mid B) & \times \sqrt{2} & P(j, m, B) \\ \text { Normalize }\end{array} P(B \mid j, m)$

Same Example in Equations

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)$

$$
\begin{array}{rlrl}
P(B \mid j, m) & \propto P(B, j, m) & & \text { marginal obtained frc } \\
& =\sum_{e, a} P(B, j, m, e, a) & & \text { use Bayes' net joint } \mathrm{d} \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a) & & \text { use } \mathrm{x}^{*}(\mathrm{y}+\mathrm{z})=\mathrm{xy} \mathrm{t} \mathrm{xz} \\
& =\sum_{e} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a) & & \text { joining on a, and ther } \\
& =\sum_{e} P(B) P(e) f_{1}(B, e, j, m) & & \text { use } \mathrm{x}^{*}(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz} \\
& =P(B) \sum_{e} P(e) f_{1}(B, e, j, m) & & \text { joining on } \mathrm{e}, \text { and ther } \\
& =P(B) f_{2}(B, j, m) &
\end{array}
$$

marginal obtained from joint by summing out
use Bayes' net joint distribution expression
joining on a, and then summing out gives f_{1}
use $x^{*}(y+z)=x y+x z$
joining on e, and then summing out gives f_{2}

All we are doing is exploiting $u w y+u w z+u x y+u x z+v w y+v w z+v x y+v x z=(u+v)(w+x)(y+z)$ to improve computational efficiency!

Another Variable Elimination Example

Query: $P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)$
Start by inserting evidence, which gives the following initial factors:

$$
p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{1}, this introduces the factor $f_{1}\left(Z, y_{1}\right)=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and we are left with:

$$
p(Z) f_{1}\left(Z, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{2}, this introduces the factor $f_{2}\left(Z, y_{2}\right)=\sum_{x_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and we are left with:

$$
p(Z) f_{1}\left(Z, y_{1}\right) f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate Z, this introduces the factor $f_{3}\left(y_{1}, y_{2}, X_{3}\right)=\sum_{z} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right)$, and we are left:

$$
p\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)
$$

No hidden variables left. Join the remaining factors to get:

$$
f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right) f_{3}\left(y_{1}, y_{2}, X_{3}\right)
$$

Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X_{3} respectively).

Variable Elimination Ordering

- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $Z, X_{1}, \ldots, X_{n-1}$ and $X_{1}, \ldots, X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2^{n+1} versus 2^{2} (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide's example 2^{n} vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Worst Case Complexity?

- CSP:

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{2} \vee x_{5} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6} \vee \neg x_{7}\right) \wedge\left(\neg x_{5} \vee \neg x_{6} \vee x_{7}\right)
$$

$$
\begin{aligned}
& P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5 \\
& Y_{1}=X_{1} \vee X_{2} \vee \neg X_{3} \\
& \ldots \\
& Y_{8}=\neg X_{5} \vee X_{6} \vee X_{7} \\
& Y_{1,2}=Y_{1} \wedge Y_{2} \\
& Y_{7,8}=Y_{7} \wedge Y_{8} \\
& Y_{1,2,3,4}=Y_{1,2} \wedge Y_{3,4} \\
& Y_{5,6,7,8}=Y_{5,6} \wedge Y_{7,8} \\
& Z=Y_{1,2,3,4} \wedge Y_{5,6,7,8}
\end{aligned}
$$

- If we can answer $\mathrm{P}(\mathrm{z})$ equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
- Try it!!
- Cut-set conditioning for Bayes' net inference
- Choose set of variables such that if removed only a polytree remains
- Exercise: Think about how the specifics would work out!

Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

BAYES' NETS: SAMPLING

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Variable Elimination

- Interleave joining and marginalizing
- d^{k} entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net

Approximate Inference: Sampling

Sampling

- Sampling is a lot like repeated simulation
- Predicting the weather, basketball games, ...
- Basic idea
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why sample?
- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling

- Sampling from given distribution
- Step 1: Get sample u from uniform distribution over [0, 1)
- E.g. random() in python
- Step 2: Convert this sample u into an outcome for the given distribution by having each target outcome associated with a sub-interval of $[0,1$) with sub-interval size equal to probability of the outcome
- Example

C	$P(C)$
red	0.6
green	0.1
blue	0.3

$$
\begin{aligned}
& 0 \leq u<0.6, \rightarrow C=\text { red } \\
& 0.6 \leq u<0.7, \rightarrow C=\text { green } \\
& 0.7 \leq u<1, \rightarrow C=\text { blue }
\end{aligned}
$$

- If random() returns $u=0.83$, then our sample is $C=$ blue
- E.g, after sampling 8 times:

Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

Prior Sampling

Prior Sampling

Prior Sampling

- For $i=1,2, \ldots, n$
- Sample x_{i} from $P\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$
- Return $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Prior Sampling

- This process generates samples with probability:

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{P S}\left(x_{1} \ldots x_{n}\right)$
- Then $\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right)=\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$

$$
=S_{P S}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
=P\left(x_{1} \ldots x_{n}\right)
$$

- I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the $B N$:

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$

- If we want to know $P(W)$
- We have counts <+w:4, -w:1>
- Normalize to get $\mathrm{P}(\mathrm{W})=<+\mathrm{w}: 0.8,-\mathrm{w}: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $P(C \mid+w)$? $P(C \mid+r,+w)$? $P(C \mid-r,-w)$?
- Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

Rejection Sampling

- Let's say we want P(C)
- No point keeping all samples around
- Just tally counts of C as we go
- Let's say we want P(C|+s)
- Same thing: tally C outcomes, but ignore (reject) samples which don' t have $S=+s$
- This is called rejection sampling
- It is also consistent for conditional

$+c,-s,+r,+w$
$+c,+s,+r,+w$
$-C,+s,+r,-w$
$+C,-s,+r,+w$
$-\mathrm{C},-\mathrm{s},-\mathrm{r},+\mathrm{W}$ probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence instantiation
- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample x_{i} from $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- If x_{i} not consistent with evidence
- Reject: return - no sample is generated in this cycle
- Return ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$)

Likelihood Weighting

Likelihood Weighting

- Problem with rejection sampling:
- If evidence is unlikely, rejects lots of samples
- Evidence not exploited as you sample
- Consider P(Shape \| blue)

- Idea: fix evidence variables and sample the rest
- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents
pyramid, blue
 sphere, blue cube, blue

Likelihood Weighting

| $P(C)$ | |
| :--- | :--- | :--- |
| $+c$ | 0.5 |
| $-c$ | 0.5 |

Likelihood Weighting

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{\mathrm{WS}}(z, e) \cdot w(z, e) & =\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right) \\
& =P(\mathbf{z}, \mathbf{e})
\end{aligned}
$$

Likelihood Weighting

- Likelihood weighting is good
- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence

- Likelihood weighting doesn't solve all our problems
- Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable (leads to Gibbs sampling)

Gibbs Sampling

Gibbs Sampling

- Procedure: keep track of a full instantiation $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$. Start with an arbitrary instantiation consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed. Keep repeating this for a long time.
- Property: in the limit of repeating this infinitely many times the resulting samples come from the correct distribution (i.e. conditioned on evidence).
- Rationale: both upstream and downstream variables condition on evidence.
- In contrast: likelihood weighting only conditions on upstream evidence, and hence weights obtained in likelihood weighting can sometimes be very small. Sum of weights over all samples is indicative of how many "effective" samples were obtained, so we want high weight.

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
- R = +r

- Step 2: Initialize other variables
- Randomly

- Steps 3: Repeat
- Choose a non-evidence variable X
- Resample X from $P(X \mid$ all other variables)

Efficient Resampling of One Variable

- Sample from $\mathrm{P}(\mathrm{S} \mid+\mathrm{c},+\mathrm{r},-\mathrm{w})$

$$
\begin{aligned}
P(S \mid+c,+r,-w) & =\frac{P(S,+c,+r,-w)}{P(+c,+r,-w)} \\
& =\frac{P(S,+c,+r,-w)}{\sum_{s} P(s,+c,+r,-w)} \\
& =\frac{P(+c) P(S \mid+c) P(+r \mid+c) P(-w \mid S,+r)}{\sum_{s} P(+c) P(s \mid+c) P(+r \mid+c) P(-w \mid s,+r)} \\
& =\frac{P(+c) P(S \mid+c) P(+r \mid+c) P(-w \mid S,+r)}{P(+c) P(+r \mid+c) \sum_{s} P(s \mid+c) P(-w \mid s,+r)} \\
& =\frac{P(S \mid+c) P(-w \mid S,+r)}{\sum_{s} P(s \mid+c) P(-w \mid s,+r)}
\end{aligned}
$$

- Many things cancel out - only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Bayes' Net Sampling Summary

- Prior Sampling $\mathrm{P}(\mathrm{Q})$

- Likelihood Weighting $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

- Rejection Sampling P(Q|e)

- Gibbs Sampling $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

Further Reading on Gibbs Sampling*

- Gibbs sampling produces sample from the query distribution $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$ in limit of re-sampling infinitely often
- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
- Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods - they're just sampling

