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Probabilistic Models

§ Models describe how (a portion of) the world works

§ Models are always simplifications

§ May not account for every variable

§ May not account for all interactions between variables

§ “All models are wrong; but some are useful.”

– George E. P. Box

§ What do we do with probabilistic models?

§ We (or our agents) need to reason about unknown 

variables, given evidence

§ Example: explanation (diagnostic reasoning)

§ Example: prediction (causal reasoning)

§ Example: value of information



Independence



§ Two variables are independent if:

§ This says that their joint distribution factors into a product two 
simpler distributions

§ Another form:

§ We write: 

§ Independence is a simplifying modeling assumption

§ Empirical joint distributions: at best “close” to independent

§ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence



Example: Independence?

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Example: Independence

§ N fair, independent coin flips:

H 0.5
T 0.5

H 0.5
T 0.5

H 0.5
T 0.5



Conditional Independence
§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Conditional Independence and the Chain Rule

§ Chain rule: 

§ Trivial decomposition:

§ With assumption of conditional independence:

§ Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

§ Each sensor depends only
on where the ghost is

§ That means, the two sensors are 
conditionally independent, given the 
ghost position

§ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

§ Givens:
P( +g ) = 0.5
P(  -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  |  -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16
+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04
-t +b +g 0.04
-t +b -g 0.24
-t -b +g 0.06
-t -b -g 0.06



Bayes’Nets: Big Picture



Bayes’ Nets: Big Picture

§ Two problems with using full joint distribution tables 
as our probabilistic models:
§ Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
§ Hard to learn (estimate) anything empirically about more 

than a few variables at a time

§ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
§ More properly called graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect 

interactions
§ For about 10 min, we’ll be vague about how these 

interactions are specified



Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Similar to CSP constraints
§ Indicate “direct influence” between variables
§ Formally: encode conditional independence 

(more later)

§ For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

§ N independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

§ Variables:
§ R: It rains
§ T: There is traffic

§ Model 1: independence

§ Why is an agent using model 2 better?

R

T

R

T

§ Model 2: rain causes traffic



§ Let’s build a causal graphical model!
§ Variables

§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity

Example: Traffic II



Example: Alarm Network
§ Variables

§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!



Bayes’ Net Semantics



Bayes’ Net Semantics
§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node

§ A collection of distributions over X, one for each 
combination of parents’ values

§ CPT: conditional probability table

§ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

§ Example:



Probabilities in BNs
§ Why are we guaranteed that setting

results in a proper joint distribution?  

§ Chain rule (valid for all distributions): 

§ Assume conditional independences: 

à Consequence:

§ Not every BN can represent every joint distribution

§ The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes� net with no arcs.

Example: Coin Flips

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2 Xn



Example: Traffic

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99



Example: Traffic

§ Causal direction

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16



Example: Reverse Traffic

§ Reverse causality?

T

R

+t 9/16
-t 7/16

+t +r 1/3
-r 2/3

-t +r 1/7
-r 6/7

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16



Causality?
§ When Bayes’ nets reflect the true causal patterns:

§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to elicit from experts

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Drips
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence



Bayes’ Nets
§ So far: how a Bayes’ net encodes a joint 

distribution

§ Next: how to answer queries about that 
distribution
§ Today: 

§ First assembled BNs using an intuitive notion of 
conditional independence as causality

§ Then saw that key property is conditional independence
§ Main goal: answer queries about conditional 

independence and influence 

§ After that: how to answer numerical queries 
(inference)



BAYES’ NETS: INDEPENDENCE

35



Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

§ A Bayes’ net is an
efficient encoding
of a probabilistic
model of a domain

§ Questions we can ask:

§ Inference: given a fixed BN, what is P(X | e)?

§ Representation: given a BN graph, what kinds of distributions can it encode?

§ Modeling: what BN is most appropriate for a given domain?



Bayes’ Net Semantics

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents� values

§ Bayes� nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ



Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ



Size of a Bayes� Net

§ How big is a joint distribution over N 
Boolean variables?

2N

§ How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

§ Both give you the power to calculate

§ BNs: Huge space savings!

§ Also easier to elicit local CPTs

§ Also faster to answer queries (coming)



Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference

§ Learning Bayes’ Nets from Data



Conditional Independence

§ X and Y are independent if

§ X and Y are conditionally independent given Z

§ (Conditional) independence is a property of a distribution

§ Example: 



Bayes Nets: Assumptions

§ Assumptions we are required to make to define the 
Bayes net when given the graph:

§ Beyond above “chain rule àBayes net” conditional 
independence assumptions 

§ Often additional conditional independences

§ They can be read off the graph

§ Important for modeling: understand assumptions made 
when choosing a Bayes net graph

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))



Example

§ Conditional independence assumptions directly from simplifications in chain rule:

§ Additional implied conditional independence assumptions?

X Y Z W



Independence in a BN

§ Important question about a BN:
§ Are two nodes independent given certain evidence?
§ If yes, can prove using algebra (tedious in general)
§ If no, can prove with a counter example
§ Example:

§ Question: are X and Z necessarily independent?
§ Answer: no.  Example: low pressure causes rain, which causes traffic.
§ X can influence Z, Z can influence X (via Y)
§ Addendum: they could be independent: how?

X Y Z



D-separation: Outline



D-separation: Outline

§ Study independence properties for triples

§ Analyze complex cases in terms of member triples

§ D-separation: a condition / algorithm for answering such 
queries



Causal Chains

§ This configuration is a �causal chain�

X: Low pressure          Y: Rain                          Z: Traffic

§ Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

§ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains
§ This configuration is a �causal chain� § Guaranteed X independent of Z given Y?

§ Evidence along the chain �blocks� the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

§ This configuration is a �common cause� § Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Project due causes both forums busy 
and lab full 

§ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Cause
§ This configuration is a �common cause� § Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Effect

§ Last configuration: two causes of one 

effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 

they are not correlated

§ Still need to prove they must be (try it!)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in 

competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame



The General Case



The General Case

§ General question: in a given BN, are two variables independent 
(given evidence)?

§ Solution: analyze the graph

§ Any complex example can be broken
into repetitions of the three canonical cases



Reachability

§ Recipe: shade evidence nodes, look 
for paths in the resulting graph

§ Attempt 1: if two nodes are connected 
by an undirected path not blocked by 
a shaded node, they are conditionally 
independent

§ Almost works, but not quite
§ Where does it break?
§ Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

§ Question: Are X and Y conditionally independent given 
evidence variables {Z}?
§ Yes, if X and Y �d-separated� by Z
§ Consider all (undirected) paths from X to Y
§ No active paths = independence!

§ A path is active if each triple is active:
§ Causal chain A ® B ® C where B is unobserved (either direction)
§ Common cause A ¬ B ® C where B is unobserved
§ Common effect (aka v-structure)

A ® B ¬ C where B or one of its descendents is observed

§ All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



§ Query:

§ Check all (undirected!) paths between        and 
§ If one or more active, then independence not guaranteed

§ Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}



Example

Yes R

T

B

T�



Example

R

T

B

D

L

T�

Yes

Yes

Yes



Example

§ Variables:
§ R: Raining
§ T: Traffic
§ D: Roof drips
§ S: I’m sad

§ Questions:
T

S

D

R

Yes



Structure Implications

§ Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

§ This list determines the set of probability 
distributions that can be represented 

Xi �� Xj |{Xk1 , ..., Xkn}



Computing All Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z



X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology Limits Distributions
§ Given some graph topology 

G, only certain joint 
distributions can be 
encoded

§ The graph structure 
guarantees certain 
(conditional) independences

§ (There might be more 
independence)

§ Adding arcs increases the 
set of distributions, but has 
several costs

§ Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}



Bayes Nets Representation Summary

§ Bayes nets compactly encode joint distributions

§ Guaranteed independencies of distributions can be 
deduced from BN graph structure

§ D-separation gives precise conditional independence 
guarantees from graph alone

§ A Bayes� net�s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution



Bayes’ Nets

§ Representation
§ Conditional Independences
§ Probabilistic Inference

§ Enumeration (exact, exponential complexity)
§ Variable elimination (exact, worst-case

exponential complexity, often better)
§ Probabilistic inference is NP-complete
§ Sampling (approximate)

§ Learning Bayes’ Nets from Data



BAYES’ NETS: INFERENCE
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Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents� values

§ Bayes� nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

[Demo: BN Applet]



Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ



Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ



Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference

§ Enumeration (exact, exponential 
complexity)

§ Variable elimination (exact, worst-case 
exponential complexity, often better)

§ Inference is NP-complete

§ Sampling (approximate)

§ Learning Bayes’ Nets from Data



§ Examples:
§ Posterior probability

§ Most likely explanation:

Inference

§ Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z



Inference by Enumeration in Bayes’ Net
§ Given unlimited time, inference in BNs is easy

§ Reminder of inference by enumeration by example:
B E

A

MJ

P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)



Inference by Enumeration?



Inference by Enumeration vs. Variable Elimination
§ Why is inference by enumeration so slow?

§ You join up the whole joint distribution before 
you sum out the hidden variables

§ Idea: interleave joining and marginalizing!
§ Called �Variable Elimination�
§ Still NP-hard, but usually much faster than 

inference by enumeration

§ First we’ll need some new notation: factors



Factor Zoo



Factor Zoo I

§ Joint distribution: P(X,Y)
§ Entries P(x,y) for all x, y
§ Sums to 1

§ Selected joint: P(x,Y)
§ A slice of the joint distribution
§ Entries P(x,y) for fixed x, all y
§ Sums to P(x)

§ Number of capitals = 
dimensionality of the table

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
cold sun 0.2
cold rain 0.3



Factor Zoo II

§ Single conditional: P(Y | x)
§ Entries P(y | x) for fixed x, all y
§ Sums to 1

§ Family of conditionals: 
P(Y | X)
§ Multiple conditionals
§ Entries P(y | x) for all x, y
§ Sums to |X|

T W P
hot sun 0.8
hot rain 0.2
cold sun 0.4
cold rain 0.6

T W P
cold sun 0.4
cold rain 0.6



Factor Zoo III

§ Specified family: P( y | X )

§ Entries P(y | x) for fixed y,

but for all x

§ Sums to … who knows!

T W P

hot rain 0.2

cold rain 0.6



Factor Zoo Summary

§ In general, when we write P(Y1 … YN | X1 … XM)

§ It is a �factor,� a multi-dimensional array

§ Its values are P(y1 … yN | x1 … xM)

§ Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array



Example: Traffic Domain

§ Random Variables
§ R: Raining
§ T: Traffic
§ L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)



Inference by Enumeration: Procedural Outline

§ Track objects called factors
§ Initial factors are local CPTs (one per node)

§ Any known values are selected
§ E.g. if we know                  , the initial factors are

§ Procedure: Join all factors, eliminate all hidden variables, normalize

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

§ First basic operation: joining factors
§ Combining factors:

§ Just like a database join
§ Get all factors over the joining variable
§ Build a new factor over the union of the variables 

involved

§ Example: Join on R

§ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Example: Multiple Joins



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T



Operation 2: Eliminate

§ Second basic operation: marginalization

§ Take a factor and sum out a variable
§ Shrinks a factor to a smaller one

§ A projection operation

§ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Marginalizing Early (= Variable Elimination)



Traffic Domain

§ Inference by EnumerationT

L

R P (L) = ?

§ Variable Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate t



Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Evidence

§ If evidence, start with factors that select that evidence
§ No evidence uses these initial factors:

§ Computing                        , the initial factors become:

§ We eliminate all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Evidence II

§ Result will be a selected joint of query and evidence
§ E.g. for P(L | +r), we would end up with:

§ To get our answer, just normalize this!

§ That’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



General Variable Elimination

§ Query:

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables 
(not Q or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

§ Join all remaining factors and normalize



Example

Choose A



Example

Choose E

Finish with B

Normalize



Same Example in Equations

marginal obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Computational complexity critically 
depends on the largest factor being 
generated in this process.  Size of factor 
= number of entries in table.  In 
example above (assuming binary) all 
factors generated are of size 2 --- as 
they all only have one variable (Z, Z, 
and X3 respectively). 



Variable Elimination Ordering

§ For the query P(Xn|y1,…,yn) work through the following two different orderings 
as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the 
maximum factor generated for each of the orderings?

§ Answer: 2n+1 versus 22 (assuming binary)

§ In general: the ordering can greatly affect efficiency.  

…

…



VE: Computational and Space Complexity

§ The computational and space complexity of variable elimination is 
determined by the largest factor

§ The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., previous slide’s example 2n vs. 2

§ Does there always exist an ordering that only results in small factors?
§ No!



Worst Case Complexity?
§ CSP:  

§ If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

§ Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general.

…

…



Polytrees

§ A polytree is a directed graph with no undirected cycles

§ For poly-trees you can always find an ordering that is efficient 
§ Try it!!

§ Cut-set conditioning for Bayes’ net inference
§ Choose set of variables such that if removed only a polytree remains
§ Exercise: Think about how the specifics would work out!



Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference

§ Enumeration (exact, exponential 
complexity)

§ Variable elimination (exact, worst-case 
exponential complexity, often better)

§ Inference is NP-complete

§ Sampling (approximate)

§ Learning Bayes’ Nets from Data



BAYES’ NETS: SAMPLING
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Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents� values

§ Bayes� nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Variable Elimination

§ Interleave joining and marginalizing

§ dk entries computed for a factor over k 
variables with domain sizes d

§ Ordering of elimination of hidden variables 
can affect size of factors generated

§ Worst case: running time exponential in the 
size of the Bayes’ net

…

…



Approximate Inference: Sampling



Sampling

§ Sampling is a lot like repeated simulation

§ Predicting the weather, basketball games, …

§ Basic idea

§ Draw N samples from a sampling distribution S

§ Compute an approximate posterior probability

§ Show this converges to the true probability P

§ Why sample?

§ Learning: get samples from a distribution 

you don’t know

§ Inference: getting a sample is faster than 

computing the right answer (e.g. with 

variable elimination)



Sampling

§ Sampling from given distribution

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ E.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome 
associated with a sub-interval of [0,1) 
with sub-interval size equal to 
probability of the outcome

§ Example

§ If random() returns u = 0.83, 
then our sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3



Sampling in Bayes’ Nets

§ Prior Sampling

§ Rejection Sampling

§ Likelihood Weighting

§ Gibbs Sampling



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w
…



Prior Sampling

§ For i = 1, 2, …, n
§ Sample xi from P(Xi | Parents(Xi))

§ Return (x1, x2, …, xn)



Prior Sampling

§ This process generates samples with probability:

…i.e. the BN’s joint probability

§ Let the number of samples of an event be

§ Then

§ I.e., the sampling procedure is consistent



Example

§ We’ll get a bunch of samples from the BN:
+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

§ If we want to know P(W)
§ We have counts <+w:4, -w:1>

§ Normalize to get P(W) = <+w:0.8, -w:0.2>

§ This will get closer to the true distribution with more samples

§ Can estimate anything else, too

§ What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)?

§ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

§ Let’s say we want P(C)
§ No point keeping all samples around

§ Just tally counts of C as we go

§ Let’s say we want P(C | +s)
§ Same thing: tally C outcomes, but 

ignore (reject) samples which don�t 
have S=+s

§ This is called rejection sampling

§ It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
§ Input: evidence instantiation
§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ If xi not consistent with evidence
§ Reject: return – no sample is generated in this cycle

§ Return (x1, x2, …, xn)



Likelihood Weighting



§ Idea: fix evidence variables and sample the 
rest
§ Problem: sample distribution not consistent!
§ Solution: weight by probability of evidence 

given parents

Likelihood Weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P( Shape | blue )

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
§ Input: evidence instantiation
§ w = 1.0
§ for i = 1, 2, …, n

§ if Xi is an evidence variable
§ Xi = observation xi for Xi

§ Set w = w * P(xi | Parents(Xi))
§ else

§ Sample xi from P(Xi | Parents(Xi))

§ return (x1, x2, …, xn), w



Likelihood Weighting

§ Sampling distribution if z sampled and e fixed evidence

§ Now, samples have weights

§ Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting
§ Likelihood weighting is good

§ We have taken evidence into account as we 
generate the sample

§ E.g. here, W’s value will get picked based on the 
evidence values of S, R

§ More of our samples will reflect the state of the 
world suggested by the evidence

§ Likelihood weighting doesn’t solve all our 
problems
§ Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

§ We would like to consider evidence when we 
sample every variable (leads to Gibbs sampling)

S R

W

C



Gibbs Sampling



Gibbs Sampling

§ Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an 
arbitrary instantiation consistent with the evidence.  Sample one variable 
at a time, conditioned on all the rest, but keep evidence fixed.  Keep 
repeating this for a long time.

§ Property: in the limit of repeating this infinitely many times the resulting 
samples come from the correct distribution (i.e. conditioned on evidence).

§ Rationale: both upstream and downstream variables condition on 
evidence.

§ In contrast: likelihood weighting only conditions on upstream evidence, 
and hence weights obtained in likelihood weighting can sometimes be 
very small.  Sum of weights over all samples is indicative of how many 
“effective” samples were obtained, so we want high weight.



§ Step 2: Initialize other variables 
§ Randomly

Gibbs Sampling Example: P( S | +r)

§ Step 1: Fix evidence
§ R = +r

§ Steps 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C



Efficient Resampling of One Variable

§ Sample from P(S | +c, +r, -w)

§ Many things cancel out – only CPTs with S remain!
§ More generally: only CPTs that have resampled variable need to be considered, and 

joined together

S +r

W

C



Bayes’ Net Sampling Summary
§ Prior Sampling  P( Q )

§ Likelihood Weighting  P( Q | e)

§ Rejection Sampling  P( Q | e )

§ Gibbs Sampling  P( Q | e )



Further Reading on Gibbs Sampling*

§ Gibbs sampling produces sample from the query distribution P( Q | e ) 
in limit of re-sampling infinitely often

§ Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods 

§ Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 

sampling is a special case of Metropolis-Hastings) 

§ You may read about Monte Carlo methods – they’re just sampling


