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Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search



Agents that Plan



Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and 

maybe memory)

▪ May have memory or a model of the world’s 
current state

▪ Do not consider the future consequences of 
their actions

▪ Consider how the world IS

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]



Video of Demo Reflex Optimal



Video of Demo Reflex Odd 



Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized) 
consequences of actions

▪ Must have a model of how the world evolves in 
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

[Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]



Planning vs. replanning

Planning is the process of computing a course of action before 
execution, assuming a model of the world.

Inputs:

▪ Initial state

▪ Goals

▪ Action model (preconditions, effects, costs)

Output:

▪ A plan or policy (sequence of actions or a decision rule)

Key assumption:

▪ The world behaves as expected.



Planning vs. replanning

Characteristics

▪ Done offline or upfront

▪ Often computationally heavy

▪ Optimizes for some objective (cost, reward, makespan)

▪ Works well in static, predictable environments



Planning vs. replanning

Examples

▪ Classical AI planning (STRIPS, PDDL)

▪ Computing a shortest path with A*

▪ Pre-computing a schedule or workflow

▪ Generating a full task plan for a robot in a known environment

Analogy: Planning a road trip using Google Maps before you start 
driving.



Planning vs. replanning

Replanning is the process of updating or repairing a plan while 
executing it, in response to changes or unexpected events.

Triggered by:

▪ Environment changes

▪ Model mismatch

▪ New constraints or goals

▪ Failures or uncertainty resolution



Planning vs. replanning

Characteristics

▪ Happens online, during execution

▪ Incremental or partial

▪ Balances responsiveness vs. optimality

▪ Essential in dynamic or uncertain environments



Planning vs. replanning

Examples

▪ A robot recomputing its path when an obstacle appears

▪ An autonomous car reacting to traffic or accidents

▪ A cloud scheduler adapting to node failures

▪ An LLM agent revising its plan after a tool call fails

Analogy: Google Maps rerouting you because of traffic or a road 
closure.



Video of Demo Mastermind



Video of Demo Replanning



Search Problems



Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Search Problems Are Models



Example: Traveling in Romania

▪ State space:

▪ Cities

▪ Successor function:

▪ Roads: Go to adjacent city with 
cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?



What’s in a State Space?

▪ Problem: Pathing

▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location 
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots

▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location 
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)



State Space Sizes?

▪ World state:

▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)



Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared

▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)



State Space Graphs and Search Trees



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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Search Trees

▪ A search tree:

▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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Quiz: State Space Graphs vs. Search Trees
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Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search Trees
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Consider this 4-state graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
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Tree Search



Search Example: Romania



Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible



General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?



Example: Tree Search
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Example: Tree Search
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Depth-First Search



Depth-First Search
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deepest node first

Implementation: 
Fringe is a LIFO stack



Search Algorithm Properties



Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:

▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?

▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers



Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?

▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?

▪ m could be infinite, so only if we prevent 
cycles (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, 

regardless of depth or cost



Breadth-First Search



Breadth-First Search
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Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?

▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?

▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Quiz: DFS vs BFS



Video of Demo Maze Water DFS/BFS (part 1)



Video of Demo Maze Water DFS/BFS (part 2)



Quiz: DFS vs BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages

▪ Run a DFS with depth limit 1.  If no solution…

▪ Run a DFS with depth limit 2.  If no solution…

▪ Run a DFS with depth limit 3.  …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest 
level searched, so not so bad!



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?

▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the 
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

▪ Is it optimal?
▪ Yes!  (Proof next lecture via A*)

b

C*/  “tiers”
c  3

c  2

c  1



Uniform Cost Issues

▪ Remember: UCS explores increasing cost 
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow 

water DFS/BFS/UCS (L2D7)]



Video of Demo Empty UCS



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)



The One Queue

▪ All these search algorithms are the 
same except for fringe strategies

▪ Conceptually, all fringes are priority 
queues (i.e. collections of nodes with 
attached priorities)

▪ Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

▪ Can even code one implementation 
that takes a variable queuing object



Search Gone Wrong?



Search and Models

▪ Search operates over 
models of the world

▪ The agent doesn’t 
actually try all the plans 
out in the real world!

▪ Planning is all “in 
simulation”

▪ Your search is only as 
good as your models…
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