
CSCE 580: Artificial Intelligence

Search

Instructor: Pooyan Jamshidi

University of South Carolina
[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]

Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Agents that Plan

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)

▪ May have memory or a model of the world’s
current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized)
consequences of actions

▪ Must have a model of how the world evolves in
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

[Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]

Planning vs. replanning

Planning is the process of computing a course of action before
execution, assuming a model of the world.

Inputs:

▪ Initial state

▪ Goals

▪ Action model (preconditions, effects, costs)

Output:

▪ A plan or policy (sequence of actions or a decision rule)

Key assumption:

▪ The world behaves as expected.

Planning vs. replanning

Characteristics

▪ Done offline or upfront

▪ Often computationally heavy

▪ Optimizes for some objective (cost, reward, makespan)

▪ Works well in static, predictable environments

Planning vs. replanning

Examples

▪ Classical AI planning (STRIPS, PDDL)

▪ Computing a shortest path with A*

▪ Pre-computing a schedule or workflow

▪ Generating a full task plan for a robot in a known environment

Analogy: Planning a road trip using Google Maps before you start
driving.

Planning vs. replanning

Replanning is the process of updating or repairing a plan while
executing it, in response to changes or unexpected events.

Triggered by:

▪ Environment changes

▪ Model mismatch

▪ New constraints or goals

▪ Failures or uncertainty resolution

Planning vs. replanning

Characteristics

▪ Happens online, during execution

▪ Incremental or partial

▪ Balances responsiveness vs. optimality

▪ Essential in dynamic or uncertain environments

Planning vs. replanning

Examples

▪ A robot recomputing its path when an obstacle appears

▪ An autonomous car reacting to traffic or accidents

▪ A cloud scheduler adapting to node failures

▪ An LLM agent revising its plan after a tool call fails

Analogy: Google Maps rerouting you because of traffic or a road
closure.

Video of Demo Mastermind

Video of Demo Replanning

Search Problems

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

▪ State space:

▪ Cities

▪ Successor function:

▪ Roads: Go to adjacent city with
cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

What’s in a State Space?

▪ Problem: Pathing

▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots

▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:

▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared

▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

▪ A search tree:

▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p
q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s → d
s → e
s → p
s → d → b
s → d → c
s → d → e
s → d → e → h
s → d → e → r
s → d → e → r → f
s → d → e → r → f → c
s → d → e → r → f → G

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:

▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?

▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?

▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?

▪ m could be infinite, so only if we prevent
cycles (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?

▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?

▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Quiz: DFS vs BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?

▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

Search and Models

▪ Search operates over
models of the world

▪ The agent doesn’t
actually try all the plans
out in the real world!

▪ Planning is all “in
simulation”

▪ Your search is only as
good as your models…

	Slide 2: CSCE 580: Artificial Intelligence
	Slide 3: Today
	Slide 4: Agents that Plan
	Slide 5: Reflex Agents
	Slide 6: Video of Demo Reflex Optimal
	Slide 7: Video of Demo Reflex Odd
	Slide 8: Planning Agents
	Slide 9: Planning vs. replanning
	Slide 10: Planning vs. replanning
	Slide 11: Planning vs. replanning
	Slide 12: Planning vs. replanning
	Slide 13: Planning vs. replanning
	Slide 14: Planning vs. replanning
	Slide 15: Video of Demo Mastermind
	Slide 16: Video of Demo Replanning
	Slide 17: Search Problems
	Slide 18: Search Problems
	Slide 19: Search Problems Are Models
	Slide 20: Example: Traveling in Romania
	Slide 21: What’s in a State Space?
	Slide 22: State Space Sizes?
	Slide 23: Quiz: Safe Passage
	Slide 24: State Space Graphs and Search Trees
	Slide 25: State Space Graphs
	Slide 26: State Space Graphs
	Slide 27: Search Trees
	Slide 28: State Space Graphs vs. Search Trees
	Slide 30: Quiz: State Space Graphs vs. Search Trees
	Slide 31: Quiz: State Space Graphs vs. Search Trees
	Slide 32: Tree Search
	Slide 33: Search Example: Romania
	Slide 34: Searching with a Search Tree
	Slide 35: General Tree Search
	Slide 36: Example: Tree Search
	Slide 37: Example: Tree Search
	Slide 38: Depth-First Search
	Slide 39: Depth-First Search
	Slide 40: Search Algorithm Properties
	Slide 41: Search Algorithm Properties
	Slide 42: Depth-First Search (DFS) Properties
	Slide 43: Breadth-First Search
	Slide 44: Breadth-First Search
	Slide 45: Breadth-First Search (BFS) Properties
	Slide 46: Quiz: DFS vs BFS
	Slide 47: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 48: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 49: Quiz: DFS vs BFS
	Slide 50: Iterative Deepening
	Slide 51: Cost-Sensitive Search
	Slide 52: Uniform Cost Search
	Slide 53: Uniform Cost Search
	Slide 54: Uniform Cost Search (UCS) Properties
	Slide 55: Uniform Cost Issues
	Slide 56: Video of Demo Empty UCS
	Slide 57: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 58: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 59: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 60: The One Queue
	Slide 61: Search Gone Wrong?
	Slide 62: Search and Models

