CSCE 580: Artificial Intelligence

Search

Instructor: Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, ai.berkeley.edu]

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Agents that Plan

Reflex Agents

Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Pydey - Ecip:

Video of Demo Reflex Odd

TS
Pydev - Ecipse - : j

Planning Agents

" Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

" Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= QOptimal vs. complete planning

" Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Planning vs. replanning

Planning is the process of computing a course of action before
execution, assuming a model of the world.

Inputs:

" |nitial state

" Goals

= Action model (preconditions, effects, costs)

Output:

= A plan or policy (sequence of actions or a decision rule)
Key assumption:

" The world behaves as expected.

Planning vs. replanning

Characteristics

Done offline or upfront

Often computationally heavy

Optimizes for some objective (cost, reward, makespan)
Works well in static, predictable environments

Planning vs. replanning

Examples

= Classical Al planning (STRIPS, PDDL)

* Computing a shortest path with A*

" Pre-computing a schedule or workflow

" Generating a full task plan for a robot in a known environment

Analogy: Planning a road trip using Google Maps before you start
driving.

Planning vs. replanning

Replanning is the process of updating or repairing a plan while
executing it, in response to changes or unexpected events.

Triggered by:

" Environment changes

" Model mismatch

= New constraints or goals

" Failures or uncertainty resolution

Planning vs. replanning

Characteristics

" Happens online, during execution

" |[ncremental or partial

= Balances responsiveness vs. optimality

= Essential in dynamic or uncertain environments

Planning vs. replanning

Examples

= A robot recomputing its path when an obstacle appears
" An autonomous car reacting to traffic or accidents

" A cloud scheduler adapting to node failures

" An LLM agent revising its plan after a tool call fails

Analogy: Google Maps rerouting you because of traffic or a road
closure.

Video of Demo Mastermind

—ol x|

Pydev - Edhipse

SCORE: 0

Video of Demo Replanning

SCORE:

Search Problems

Search Problems

= A search problem consists of:

= A successor function N" 1.0 u
(with actions, costs) ! —

.
”E”, 1.0

= A state space

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

State space:
= (Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

Start state:
= Arad

Goal test:

m |s state == Bucharest?

Eforie

Solution?

What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(230)x(122)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

Quiz: Safe Passage

" Problem: eat all dots while keeping the ghosts perma-scared
= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

Search Trees

u _ This is now / start
“N”, 1.0 “E”, 1.0
/
u ! _ Possible futures

= A search tree:

= A “whatif” tree of plans and their outcomes

The start state is the root node

Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-~

Search Tree

S
T
e
g o~
b e h r
I —~ AN 1
a h r p q f
AN 1 . _—
p q f q c G
[] /\
9 ¢ G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
N
a b
o OREEANA
b G a G
AN AN
a/ G Ié G

/N /N

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

"] Oradea

M Vaslui

_ _ Hirsova
Urziceni
36
- Bucharest
L)O
Eforie

M Giurgiu

Searching with a Search Tree

Arad

CArad > CFagaras> COradea> @imicu Vie)

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

-S—
‘_ ;C)\ @ s>e
< s=2>p
C>/32\ /ﬁ\ f q s>d>b
| s>d=2>c
a ® © p q f s> d>e
A 'q /NE s>d>e>h
P q N s

O c
I /b !
s=d—=>e—>+—=>F
a
. © s>dYe>r>f>c
a

S>>+ G

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

’
Space complexity? 1 node
b nodes
2

Cartoon of search tree: | b“nodes

= bis the branching factor m tiers <

" misthe maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
" 1+b+b2+...bMm=0(b™)

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
" Could process the whole tree! b nodes
* |f mis finite, takes time O(b™) b2 nodes
_ m tiers <
= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sit complete? b™ nodes

= m could be infinite, so only if we prevent
cycles (more later)

" |sit optimal?
= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue e 0 \ ;
4 ®
@ (@ @
Search S |
o © © ® @
Tiers | N N
a h r p q
N | | RN
\ p q f q ¢
| PN !
q G a

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

~

" Processes all nodes above shallowest solution b 1 node

» Let depth of shallowest solution be s _ b nodes

, stiers <

= Search takes time O(b®) / b2 nodes
» How much space does the fringe take? - / o \ bs nodes

= Has roughly the last tier, so O(b®)

O

" |s it complete? o b™ nodes

= s must be finite if a solution exists, so yes!

" |sit optimal?
= Onlyif costs are all 1 (more on costs later)

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Quiz: DFS vs BFS

* When will BFS outperform DFS?

* When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

/[
/

= Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

(S0
@ 3 © 9 O
< |
o).. (@5 W17 (H 1 (@) 16
| T h ey AL
a W1BO7 p q f
gaN | | | N
p g (B8 9 ¢ G
| S |
q 11 @) 10 a

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?

" Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/¢

C*/e “tiers” <
= Takes time O(b¢"¢) (exponential in effective depth)

How much space does the fringe take?
= Has roughly the last tier, so O(b¢"%)

M)
/

Is it complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

Is it optimal?
= Yes! (Proof next lecture via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall!

" The bad:
= Explores options in every “direction”
* No information about goal location Goal
s \We’'ll fix that soon! [Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

= All these search algorithms are the
same except for fringe strategies L@‘xﬂv\?—) \@D\Iéﬂl . L@j
= Conceptually, all fringes are priority |

qgueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

Microsod®

- MAPQVEST. | 1. MapPoint'

!
L3

ICELAND I_I End | T

MO
[®PiH
¥S

eq

i

.,f}:éue sinki Tver
Relangrers
L e
g ® smplensk .

E"-.-"éxjf:'l
1 Vilnius

.l'T il T
8 e
Biaty=tok @‘; BELARI.ISFU

POLAND ¢~ Kievy

pabi - i
.I:i:w[:I ”E,UﬂhﬂLESPEL

B .

7; . 500, Loog
~7 200 400 AO0

~ o
%98(S

Start: Hougesund, Rogaland, Norway

End: Trondheim, Sar-Trandelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ .com, Inc.

nrk.no/alltidmoro

Search and Models

= Search operates over
models of the world
" The agent doesn’t

actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

	Slide 2: CSCE 580: Artificial Intelligence
	Slide 3: Today
	Slide 4: Agents that Plan
	Slide 5: Reflex Agents
	Slide 6: Video of Demo Reflex Optimal
	Slide 7: Video of Demo Reflex Odd
	Slide 8: Planning Agents
	Slide 9: Planning vs. replanning
	Slide 10: Planning vs. replanning
	Slide 11: Planning vs. replanning
	Slide 12: Planning vs. replanning
	Slide 13: Planning vs. replanning
	Slide 14: Planning vs. replanning
	Slide 15: Video of Demo Mastermind
	Slide 16: Video of Demo Replanning
	Slide 17: Search Problems
	Slide 18: Search Problems
	Slide 19: Search Problems Are Models
	Slide 20: Example: Traveling in Romania
	Slide 21: What’s in a State Space?
	Slide 22: State Space Sizes?
	Slide 23: Quiz: Safe Passage
	Slide 24: State Space Graphs and Search Trees
	Slide 25: State Space Graphs
	Slide 26: State Space Graphs
	Slide 27: Search Trees
	Slide 28: State Space Graphs vs. Search Trees
	Slide 30: Quiz: State Space Graphs vs. Search Trees
	Slide 31: Quiz: State Space Graphs vs. Search Trees
	Slide 32: Tree Search
	Slide 33: Search Example: Romania
	Slide 34: Searching with a Search Tree
	Slide 35: General Tree Search
	Slide 36: Example: Tree Search
	Slide 37: Example: Tree Search
	Slide 38: Depth-First Search
	Slide 39: Depth-First Search
	Slide 40: Search Algorithm Properties
	Slide 41: Search Algorithm Properties
	Slide 42: Depth-First Search (DFS) Properties
	Slide 43: Breadth-First Search
	Slide 44: Breadth-First Search
	Slide 45: Breadth-First Search (BFS) Properties
	Slide 46: Quiz: DFS vs BFS
	Slide 47: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 48: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 49: Quiz: DFS vs BFS
	Slide 50: Iterative Deepening
	Slide 51: Cost-Sensitive Search
	Slide 52: Uniform Cost Search
	Slide 53: Uniform Cost Search
	Slide 54: Uniform Cost Search (UCS) Properties
	Slide 55: Uniform Cost Issues
	Slide 56: Video of Demo Empty UCS
	Slide 57: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 58: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 59: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 60: The One Queue
	Slide 61: Search Gone Wrong?
	Slide 62: Search and Models

