
Announcements
▪ Project 0: Python Tutorial

▪ Graded and corrected!

▪ Homework 0: Math self-diagnostic
▪ Graded and corrected!

▪ Homework 1: Search
▪ Will be released this week.

▪ Project 1: Search
▪ Will be released this week.

▪ Longer than most, and best way to test your programming preparedness

▪ Office hours
▪ I have a new office when you want to meet, please check both for the next few weeks ☺

▪ Current Office: Room 2207, Storey Innovation Center

▪ New Office: Room 2235, Storey Innovation Center

▪ Clarifications for homework and projects as well as technical questions

▪ Make sure you fully submit your project and homework.
▪ You can team up, up to 2 students!

CSCE 580: Artificial Intelligence

Search

Pooyan Jamshidi

University of South Carolina
[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]

Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Designing Rational Agents

▪ An agent is an entity that perceives and acts.

▪ A rational agent selects actions that maximize its
(expected) utility.

▪ Characteristics of the percepts, environment, and
action space dictate techniques for selecting
rational actions

▪ This course is about:

▪ General AI techniques for a variety of problem
types

▪ Learning to recognize when and how a new
problem can be solved with an existing
technique

A
ge

n
t

?

Sensors

Actuators

En
viro

n
m

en
t

Percepts

Actions

Pac-Man as an Agent

Agents

▪ A Goal of AI: Build robust, fully autonomous agents in the real
world

Intelligent (Autonomous) Agents: Examples

▪ Autonomous robot

▪ Information gathering agent

 − Find me the cheapest?

▪ E-commerce agents

 − Decides what to buy/sell and does it

▪ Air-traffic controller

▪ Meeting scheduler

▪ Computer-game-playing agent

Not Intelligent Agents

▪ Thermostat

▪ Telephone

▪ Answering machine

▪ Pencil

▪ Java object

What is an Agent?

Agents and Environments

▪ An agent perceives its environment through sensors and acts upon
it through actuators.

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Agents and Environments

▪ Are humans agents?

▪ Yes!

▪ Sensors = vision, audio, touch, smell, taste, …

▪ Actuators = muscles, secretions, changing brain state

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Agents and Environments

▪ Are Robots agents?

▪ Yes!
▪ Sensors = cameras, laser range finders, GPS
▪ Actuators = various motors

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Agents and Environments

▪ Are pocket calculators agents?

▪ Yes!

▪ Sensors = key state sensors

▪ Actuators = digit display

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Agents and Environments

▪ AI is more interested in agents with substantial computation
resources and environments requiring nontrivial decision making

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Agents and Environments

▪ AI is more interested in agents with substantial computation
resources and environments requiring nontrivial decision making

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Example: Vacuum world

▪ Percepts: [location,status], e.g., [A,Dirty]

▪ Actions: Left, Right, Suck, NoOp

A B

Rational Agents

▪ A rational agent selects actions that
maximize its (expected) utility.

▪ Utility or performance measure of a
vacuum-cleaner agent:
▪ amount of dirt cleaned up

▪ amount of time taken

▪ amount of electricity consumed

▪ amount of noise generated

▪ etc.

A
ge

n
t

?

Sensors

Actuators

En
viro

n
m

en
t

Percepts

Actions

Rational vs. Irrational Agents

• Rational Agent: Selects actions that maximize expected utility
based on knowledge and available information.

• Example: A chess AI choosing the best possible move after evaluating all
options.

• Irrational Agent: Makes decisions without optimizing for utility
or ignoring available information.

• Example: Random move generator in a game of chess.

What is Utility in AI?

• Utility is a measure of how desirable a particular outcome is.

• Expected Utility: The sum of utilities of all possible outcomes,
weighted by their probabilities.

• Examples of Utility in Different Scenarios:

• Robotics: Minimize energy use while maximizing task efficiency.

• Recommendation Systems: Maximize user satisfaction with suggested
content.

• Healthcare AI: Maximize diagnostic accuracy while minimizing time.

Rational Agents in Real Life

• Self-Driving Cars:

• Maximize passenger safety

• Minimize fuel consumption

• Avoid traffic delays

• Delivery Drones:

• Maximize delivery speed

• Minimize battery consumption

• Avoid obstacles or hazards

Activity: Is This Agent Rational?

▪ “Consider the following scenarios. Are these agents rational?
Why or why not?”

1.A thermostat keeps the room at a constant temperature by
turning on/off the heater.

2.A navigation app suggests the longest possible route to avoid all
traffic lights.

3.A robot vacuum keeps cleaning the same spot repeatedly.

Rational Agents

▪ A rational agent

▪ acts appropriately given goals and
circumstances

▪ is flexible to changing environments and
goals

▪ learns from experience

▪ makes appropriate choices given
perceptual and computational
limitations

▪ Characteristics of the percepts, environment,
and action space dictate techniques for
selecting rational actions.

A
ge

n
t

?

Sensors

Actuators

En
viro

n
m

en
t

Percepts

Actions

Rational Agents

▪ Are rational agents omniscient?

▪ No – they are limited by the available percepts

▪ Are rational agents clairvoyant?

▪ No – they may lack knowledge of the environment dynamics

▪ Do rational agents explore and learn?

▪ Yes – in unknown environments these are essential

▪ So rational agents are not necessarily successful, but they are
autonomous.

Discussion Item

▪ A realistic agent has finite amount of computation and memory available.
Assume an agent is killed because it did not have enough computation
resources to calculate some rare event that eventually ended up killing it. Can
this agent still be rational?

Announcements
▪ Homework 1: Search

▪ Released today---Thursday, Feb 13.

▪ It will be due on Monday, Feb 24 (late day on Friday, Feb 28)

▪ We may extend due dates depending on when we finish the lecture on search ☺

▪ Project 1: Search
▪ It will be released on Monday, Feb 17.

▪ It will be due on Monday, Feb 24 (late day on Friday, Feb 28)

▪ Please wait until you receive a notification about it from us!

▪ We may extend due dates, if necessary, but do not rely on them!

Please take a picture of the announcement in class

and post it to Piazza (official)/GroupME (unofficial) for those who could not attend!

Announcements
▪ I encourage teams of two students to do the projects

▪ I encourage pair programming

▪ DO NOT SEPARATE THE TASKS BETWEEN EACH OTHER!

▪ Please pay attention to pinned posts on Piazza

PEAS: Performance measure, Environment, Actuators, Sensors

PEAS: Pacman

▪ Performance measure

▪ -1 per step; + 10 food; +500 win; -500 die;

▪ Environment

▪ Maze, food, ghosts, …

▪ Actuators

▪ Pacman’s body and mouth

▪ Sensors

▪ Some sort of Vision (Entire state is visible)

PEAS: Automated Taxi

▪ Performance measure

▪ Income, happy customer, vehicle costs,
fines, insurance premiums

▪ Environment

▪ US streets, other drivers, customers

▪ Actuators

▪ Steering, brake, gas, display/speaker

▪ Sensors

▪ Camera, radar, accelerometer, engine
sensors, microphone Image: http://nypost.com/2014/06/21/how-google-

might-put-taxi-drivers-out-of-business/

PEAS: Medical Diagnosis System

▪ Performance measure

▪ Patient health, cost, reputation

▪ Environment

▪ Patients, medical staff, insurers, courts

▪ Actuators

▪ Screen display, email

▪ Sensors

▪ Keyboard/mouse

Environment Types

Environment Types

▪ Fully Observable (vs. Partially Observable)

▪ Deterministic (vs. Stochastic)

▪ Episodic (vs. Sequential)

▪ Static (vs. Dynamic)

▪ Discrete (vs. Continuous)

▪ Single-Agent (vs. Multi-Agent):

Fully Observable vs. Partially-Observable Domains

▪ Fully-observable: The agent has access to all information in the
environment relevant to its task.

▪ Partially-observable: Parts of the environment are inaccessible

Pacman Crossword Backgammon
Pick&Place

Robot
Diagnosis Taxi

Fully Fully Fully Partially PartiallyPartially

Pacman Crossword Backgammon
Pick&Place

Robot
Diagnosis Taxi

Deterministic vs. Stochastic Domains

If an agent knew the initial state and its action, could it predict the
resulting state? The dynamics can be:

▪ Deterministic: the resulting state is determined from the action
and the state

▪ Stochastic: there is uncertainty about the resulting state

Deterministic Deterministic Stochastic Stochastic StochasticStochastic

Pacman Crossword Backgammon
Pick&Place

Robot
Diagnosis Taxi

Episodic vs Sequential Domains

▪ Episodic: Current action is independent of previous actions.

▪ Sequential: Current choice of action will affect future actions

Sequential Sequential Sequential Sequential SequentialEpisodic

Pacman Crossword Backgammon
Pick&Place

Robot
Diagnosis Taxi

Static vs Dynamic Domains

▪ Static: Environment does not change while the agent is
deliberating over what to do

▪ Dynamic: Environments does change

Static Static Static Dynamic DynamicDynamic

Pacman Crossword Backgammon
Pick&Place

Robot
Diagnosis Taxi

Discrete vs Continuous Domains

▪ Discrete: A limited number of distinct, clearly defined states,
percepts, actions, and time steps (otherwise continuous)

Discrete Discrete Discrete Continuous ContinuousContinuous

Pacman Crossword Backgammon
Pick&Place

Robot
Diagnosis Taxi

Single-agent vs. Multi-agent Domains

• Does the environment include other agents?

• If there are other agents whose actions affect us

▪ It can be useful to explicitly model their goals and beliefs, and how they
react to our actions

• Other agents can be: cooperative, competitive, or a bit of both

Multi Single Multi Single MultiSingle

Environment Types: Summary

Pacman Crossword Backgammon
Pick&Plac

e Robot
Diagnosis Taxi

Fully or Partially

Observable
Fully Fully Fully Partially Partially Partially

Deterministic or

Stochastic

Deterministi

c
Deterministic Stochastic Stochastic Stochastic Stochastic

Episodic or

Sequential
Sequential Sequential Sequential Episodic Sequential Sequential

Static or Dynamic Static Static Static Dynamic Dynamic Dynamic

Discrete or

Continuous
Discrete Discrete Discrete Continuous Continuous Continuous

Single-agent or

Multiagent
Multi Single Multi Single Single Multi

Agent Types

Pac-Man as an Agent

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)

▪ May have memory or a model of the world’s
current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

▪ Can a reflex agent be rational?

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized)
consequences of actions

▪ Must have a model of how the world evolves in
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

Video of Demo Re-planning

Video of Demo Mastermind

Ethics and Implications

▪ Robust, fully autonomous agents in the real world

▪ What happens when we achieve this goal?

Ethics and Implications

▪ Who is liable if a robot driver has an accident?

▪ What will we do with super-intelligent machines?

▪ Would such machines have conscious existence? Rights?

▪ Can human minds exist indefinitely within machines (in
principle)?

Agents that Plan

Agents that Plan Ahead (In Depth)

• Reflex Agents:

• React immediately to percepts (e.g., thermostat).

• Planning Agents:

• Predict consequences of actions before acting (e.g., Chess AI).

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)

▪ May have memory or a model of the world’s
current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized)
consequences of actions

▪ Must have a model of how the world evolves in
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

[Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]

Video of Demo Mastermind

Video of Demo Replanning

Class Discussion

1. Can you think of real-world examples of planning agents?

2. Can you think of examples where both reflex and planning
behaviors are combined in real-world AI systems?

Search Problems

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Formalizing Search Problems

• State Space: All possible configurations of the problem.

• Successor Function: Possible actions from each state.

• Start State & Goal Test: Where the search begins and how
success is defined.

• Cost Function: Measures the cost of a path (if applicable).

• Example: Traveling between cities or solving mazes.

Search Problems Are Models

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:

▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared

▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in the
search tree is an

entire PATH in the
state space graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p
q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s → d
s → e
s → p
s → d → b
s → d → c
s → d → e
s → d → e → h
s → d → e → r
s → d → e → r → f
s → d → e → r → f → c
s → d → e → r → f → G

Depth-First Search

Depth-First Search (DFS) in Action

• How It Works:

• Explores as far as possible along a branch before backtracking.

• Advantages:

• Low memory usage; good for deep solutions.

• Disadvantages:

• May get stuck in infinite loops; not optimal.

• Visualization:

• Simple tree traversal showing DFS paths.

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent

cycles (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search (BFS) in Action

• How It Works:

• Explores all nodes at the current depth before moving deeper.

• Advantages:

• Finds the shortest path; complete.

• Disadvantages:

• High memory consumption.

• Visualization:

• Compare with DFS using the same problem.

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Quiz: DFS vs BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform-Cost Search (UCS) Explained

• How It Works:

• Expands the node with the lowest cumulative cost first using a priority
queue.

• Advantages:

• Finds least-cost paths; handles varying path costs.

• Disadvantages:

• Can be inefficient if all paths have similar costs.

• Example: Finding the cheapest flight across multiple cities.

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c 3

c 2

c 1

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c 3

c 2

c 1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

Search and Models

▪ Search operates over
models of the world

▪ The agent doesn’t
actually try all the plans
out in the real world!

▪ Planning is all “in
simulation”

▪ Your search is only as
good as your models…

	Slide 1: Announcements
	Slide 2: CSCE 580: Artificial Intelligence
	Slide 3: Today
	Slide 4: Designing Rational Agents
	Slide 5: Pac-Man as an Agent
	Slide 6
	Slide 7: Agents
	Slide 8: Intelligent (Autonomous) Agents: Examples
	Slide 9: Not Intelligent Agents
	Slide 10
	Slide 11: Agents and Environments
	Slide 12: Agents and Environments
	Slide 13: Agents and Environments
	Slide 14: Agents and Environments
	Slide 15: Agents and Environments
	Slide 16: Agents and Environments
	Slide 17: Example: Vacuum world
	Slide 18: Rational Agents
	Slide 19: Rational vs. Irrational Agents
	Slide 20: What is Utility in AI?
	Slide 21: Rational Agents in Real Life
	Slide 22: Activity: Is This Agent Rational?
	Slide 23: Rational Agents
	Slide 24: Rational Agents
	Slide 25: Discussion Item
	Slide 26: Announcements
	Slide 27: Announcements
	Slide 28
	Slide 29
	Slide 30: PEAS: Pacman
	Slide 31: PEAS: Automated Taxi
	Slide 32: PEAS: Medical Diagnosis System
	Slide 33
	Slide 34: Environment Types
	Slide 35: Fully Observable vs. Partially-Observable Domains
	Slide 36: Deterministic vs. Stochastic Domains
	Slide 37: Episodic vs Sequential Domains
	Slide 38: Static vs Dynamic Domains
	Slide 39: Discrete vs Continuous Domains
	Slide 40: Single-agent vs. Multi-agent Domains
	Slide 41: Environment Types: Summary
	Slide 42
	Slide 43: Pac-Man as an Agent
	Slide 44: Reflex Agents
	Slide 45: Video of Demo Reflex Optimal
	Slide 46: Video of Demo Reflex Odd
	Slide 47: Planning Agents
	Slide 48: Video of Demo Re-planning
	Slide 49: Video of Demo Mastermind
	Slide 50
	Slide 51: Ethics and Implications
	Slide 52: Ethics and Implications
	Slide 53: Agents that Plan
	Slide 54: Agents that Plan Ahead (In Depth)
	Slide 55: Reflex Agents
	Slide 56: Video of Demo Reflex Optimal
	Slide 57: Video of Demo Reflex Odd
	Slide 58: Planning Agents
	Slide 59: Video of Demo Mastermind
	Slide 60: Video of Demo Replanning
	Slide 61: Class Discussion
	Slide 62: Search Problems
	Slide 63: Search Problems
	Slide 64: Formalizing Search Problems
	Slide 65: Search Problems Are Models
	Slide 66: Example: Traveling in Romania
	Slide 67: What’s in a State Space?
	Slide 68: State Space Sizes?
	Slide 69: Quiz: Safe Passage
	Slide 70: State Space Graphs and Search Trees
	Slide 71: State Space Graphs
	Slide 72: State Space Graphs
	Slide 73: Search Trees
	Slide 74: State Space Graphs vs. Search Trees
	Slide 76: Quiz: State Space Graphs vs. Search Trees
	Slide 77: Quiz: State Space Graphs vs. Search Trees
	Slide 78: Tree Search
	Slide 79: Search Example: Romania
	Slide 80: Searching with a Search Tree
	Slide 81: General Tree Search
	Slide 82: Example: Tree Search
	Slide 83: Example: Tree Search
	Slide 84: Depth-First Search
	Slide 85: Depth-First Search (DFS) in Action
	Slide 86: Depth-First Search
	Slide 87: Search Algorithm Properties
	Slide 88: Search Algorithm Properties
	Slide 89: Depth-First Search (DFS) Properties
	Slide 90: Breadth-First Search
	Slide 91: Breadth-First Search (BFS) in Action
	Slide 92: Breadth-First Search
	Slide 93: Breadth-First Search (BFS) Properties
	Slide 94: Quiz: DFS vs BFS
	Slide 95: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 96: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 97: Quiz: DFS vs BFS
	Slide 98: Iterative Deepening
	Slide 99: Cost-Sensitive Search
	Slide 100: Uniform Cost Search
	Slide 101: Uniform-Cost Search (UCS) Explained
	Slide 102: Uniform Cost Search
	Slide 103: Uniform Cost Search (UCS) Properties
	Slide 104: Uniform Cost Issues
	Slide 105: Video of Demo Empty UCS
	Slide 106: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 107: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 108: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 109: The One Queue
	Slide 110: Search Gone Wrong?
	Slide 111: Search and Models

