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Constraint Satisfaction Problems
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What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed

state, discrete state Space
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Planning: sequences of actions

= The path to the goal is the important thing
= Paths have various costs, depths

= Heuristics give problem-specific guidance

ldentification: assignments to variables
= The goal itself is important, not the path

= All paths at the same depth (for some formulations)
= CSPs are a specialized class of identification problems



Constraint Satisfaction Problems







Constraint Satisfaction Problems

Standard search problems:
= Stateis a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on 1)

= Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms




Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA %= NT

Explicit: (WA,NT) € {(red, green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}




Example: N-Queens

" Formulation 1:

= Variables: X;;
= Domains: {0,1}
= Constraints

Vi, g,k (X5, Xix) € {(0,0),(0,1),(1,0)}

Vi.j.k (Xij Xp;) € {(0,0),(0,1), (1,0} X, =
Vi, 5,k (Xij, Xigr j+1) € {(0,0),(0,1),(1,0)} ]
Vi, j, k (Xij, Xigk j—k) € {(0,0),(0,1),(1,0)}



Example: N-Queens

= Formulation 2:

Q1
* Variables: Qp Q2
Q3
= Domains: {1,2,3,...N} Q4

= Constraints:

Implicit: V4, j non-threatening(Q;, Q;)

Explicit:  (Q1,Q2) € {(1,3),(1,4),...}



Constraint Graphs




Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables e
o

" Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]



Example: Cryptarithmetic

= \/ariables:

FTUWRO X1 Xo X3
= Domains:
{0,1,2,3,4,5,6,7,8,9}
= Constraints:
alldiff(F, T, U, W, R, O)

O—|—O:R—|—1O-X1




Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting

line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

P,
= Approach:

m  Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations




Varieties of CSPs and Constraints




Varieties of CSPs

= Discrete Variables
" Finite domains
= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP- =
complete) - @
* |nfinite domains (integers, strings, etc.) e

= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations
= Linear constraints solvable in polynomial time by LP methods




Varieties of Constraints

Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA # green
= Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
=  Gives constrained optimization problems
= (We’ll ignore these until we get to Bayes’ nets)



Real-World CSPs

Scheduling problems: e.g., when can we all meet?

Timetabling problems: e.g., which class is offered when and where?
Assignment problems: e.g., who teaches what class

Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...




Solving CSPs




Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
" |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

» Goal test: the current assignment is
complete and satisfies all constraints

= We’ll start with the straightforward,
naive approach, then improve it




Search Methods

= \What would BFS do?

= \What would DFS do?

= What problems does naive search have? @

[Demo: coloring -- dfs]



Video of Demo Coloring -- DFS







Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e. [WA=redthen NT =green] same as [NT = green then WA =red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go

= |.e.consider only values which do not conflict with previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25




Video of Demo Coloring — Backtracking




Backtracking Example
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Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE( VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS|[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING( assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation
= What are the choice points?

[Demo: coloring -- backtracking]



Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?
" |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?




Filtering




Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
s
SA [NSw

v

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]



Video of Demo Coloring — Backtracking with Forward Checking




Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
VT i I i ireirmsmi
‘ A T B CEEEEIEESE] ]
e mam]  u| CH IL D I 1

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation: reason from constraint to constraint



Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW \ SA
Q

S B FEETEErE[ETEE .

NSW
\Y

A —

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment



Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT [ g WA NT Q NSW Vv SA
A e I | 1 [ | 1 |

v 1\ VVV

= |mportant: If X loses a value, neighbors of X need to be rechecked!

= Arc consistency detects failure earlier than forward checking
= Can berun as a preprocessor or after each assignment
= What's the downside of enforcing arc consistency?

Remember:
Delete from
the tail!




Enforcing Arc Consistency in a CSP

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, X, ..., X}
local variables: gueue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;. X;) then
for each X} in NEIGHBORS[X;| do
add (X3, X;) to queue

function REMOVE-INCONSISTENT- VALUES( .X;, X;) returns true iff succeeds
removed «— false
for each r in DoMAIN[X}] do
if no value y in DOMAIN[.X] allows (,y) to satisfy the constraint X; «— X,
then delete = from DOMAIN[.X;]; removed — true
return removed

= Runtime: O(n%d3), can be reduced to O(n?d?)
= .. but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]



Announcements
Midterm: Instead of 3/20 -> 3/27 (next week!)

Reason: We will have a study session on 3/25

| will send out questions this week; so you get a

chance to solve them and ask your questions.

ldeally, we solve each problem together! So, we
learn how to approach each problem and learn

something from each problem.

If anyone has any conflict for 3/27, do not worry;

please just let me know!



Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can
= Can
= Can

nave one solution left

have multiple solutions left

nave no solutions left (and

not know it)

= Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]



Video of Demo Coloring — Backtracking with Forward Checking —
Complex Graph




Video of Demo Coloring — Backtracking with Arc Consistency —
Complex Graph




Ordering




Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):

= Choose the variable with the fewest legal left values in its domain

=S

" Why min rather than max?

= Also called “most constrained variable”

= “Fail-fast” ordering




Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value
" Given a choice of variable, choose the least ‘\_Lt:

constraining value
= |.e., the one that rules out the fewest values in ‘\_Lb

the remaining variables

= Note that it may take some computation to ‘ ’:

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring — backtracking + AC + ordering]



K-Consistency




K-Consistency

" |ncreasing degrees of consistency

= 1-Consistency (Node Consistency): Each single node’s domain has a Q
value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any Q =) Q
consistent assignment to one can be extended to the other

= K-Consistency: For each k nodes, any consistent assignment to k-1 @
can be extended to the k™" node.

= Higher k more expensive to compute

* (You need to know the k=2 case: arc consistency) ‘1’



Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
= Choose any assignment to any variable
= Choose a new variable
= By 2-consistency, there is a choice consistent with the first
" Choose a new variable
= By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)






Problem Structure

Extreme case: independent subproblems @

= Example: Tasmania and mainland do not interact M "o

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into o
subproblems of only c variables:
= Worst-case solution cost is O((n/c)(d¢)), linear in n @
= Eg,n=80,d=2,¢c=20
m 280 =4 billion years at 10 million nodes/sec
= (4)(22°) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

(AHBHC)\DHE)F)
] ]
= (B m

L] CI()

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X)
= Assign forward: Fori=1 :n, assign X; consistently with Parent(X;)

= Runtime: O(n d?) (why?)

2




Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure




Nearly Tree-Structured CSPs

@‘@"’ C
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= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O( (d°) (n-c) d?), very fast for small c



Cutset Conditioning
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Compute residual CSP
for each assignment
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Solve the residual CSPs
(tree structured)




Cutset Quiz

" Find the smallest cutset for the graph below.




Iterative Improvement




Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints

. . # ' ?é
= QOperators reassign variable values H H

"= No fringe! Live on the edge.

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

= States: 4 queens in 4 columns (4* = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]



Video of Demo Iterative Improvement — n Queens




Video of Demo Iterative Improvement — Coloring




Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

P number of constraints
number of variables

A

|
critical
ratio

CPU
time




Summary: CSPs

= CSPs are a special kind of search problem:
= States are partial assignments
" Goal test defined by constraints

M|

= Basic solution: backtracking search |
= Speed-ups: e WA
* Ordering !
" Filtering _

= Structure

" [terative min-conflicts is often effective in practice




Local Search




Local Search

= Tree search keeps unexplored alternatives on the fringe (ensures completeness)
" Local search: improve a single option until you can’t make it better (no fringe!)

= New successor function: local changes

O

1999

= Generally much faster and more memory efficient (but incomplete and suboptimal)



Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state

® |f no neighbors better than current, quit

= What's bad about this approach?
= Complete?
= Optimal?

= What's good about it?




Hill Climbing Diagram

objective function global maximum

shoulder

\ local maximum

"flat” local maximum

state space
curren

state



Hill Climbing Quiz

Objective Function
F 3

State Space

Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?



Simulated Annealing

* |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED- ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
1, a "temperature” controlling prob. of downward steps

current «— MAKE-NODE(INITIAL-STATE[problem])
for 1< 1 to oo do
T'— schedulelt]
if "= 0 then return current
next<—a randomly selected successor of current
AE«— VALUE[next] = VALUE[current]
if AE > 0 then current « next

. aps / /
else current «— next only with probability ¢® /1




Simulated Annealing

" Theoretical guarantee: B(2)
= Stationary distribution: p(x) o< e kT

= |f T decreased slowly enough,
will converge to optimal state!

= |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

* The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them allin a
row

= People think hard about ridge operators which let you
jump around the space in better ways



Genetic Algorithms

24748552 | 24 31% _| 32752411 >_< 32748552 327480)2

32752411 [ 23 29% | 24748552 24752411 24752411

24415124 | 20 26% ~| 32752411 >_< 32752124 3252124

32543213 | 11 14% ~| 24415124 24415411 2441541[7]
Fithness Selection Pairs Cross—-Over

= Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

= Possibly the most misunderstood, misapplied (and even maligned) technique around



Example: N-Queens

hy does crossover make sense here?
nen wouldn’t it make sense?

hat would mutation be?

hat would a good fitness function be?




Example: Fault Diagnhosis

Causes Symptoms
= Fault networks: ymp
= Variables? SMTP down , _
= Constraints? own Can't IM
Firewall
) blockin W
= Various ways to query, J Can't print
Printer jam

given symptoms
= Some cause (abduction)
= Simplest cause
All possible causes
What test is most useful?
= Prediction: cause to effect

= We'll see this idea again with Bayes’ nets



Beam Search

Like greedy hillclimbing search, but keep K states at
all times:

C\‘\\ C\\\\ C\‘\ C
N N LQEN
LNEREN NN N
AN o N So N ~
N ~ N ~ N ~
~ ~ N
N N N
~ ~ N
N N N
. .
\AO \AO \‘O

Greedy Search Beam Search

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?

Why do we still need optimal methods?



Next Time: Adversarial Search!
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