
Constraint Satisfaction Problems

CSCE 580: Artificial Intelligence

Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, ai.berkeley.edu]

What is Search For?

▪ Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing

▪ Paths have various costs, depths

▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path

▪ All paths at the same depth (for some formulations)

▪ CSPs are a specialized class of identification problems

Constraint Satisfaction Problems

CSP Examples

Constraint Satisfaction Problems

▪ Standard search problems:
▪ State is a “black box”: arbitrary data structure
▪ Goal test can be any function over states
▪ Successor function can also be anything

▪ Constraint satisfaction problems (CSPs):
▪ A special subset of search problems
▪ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
▪ Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

▪ Simple example of a formal representation language

▪ Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different
colors

▪ Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints

Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:

Constraint Graphs

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:

Example: The Waltz Algorithm

▪ The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

▪ An early example of an AI computation
posed as a CSP

▪ Approach:

▪ Each intersection is a variable
▪ Adjacent intersections impose constraints

on each other
▪ Solutions are physically realizable 3D

interpretations

?

Varieties of CSPs and Constraints

Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments

▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job

▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations

▪ Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

▪ Scheduling problems: e.g., when can we all meet?

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Assignment problems: e.g., who teaches what class

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Many real-world problems involve real-valued variables…

Solving CSPs

Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned
so far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an

unassigned variable
▪ Goal test: the current assignment is

complete and satisfies all constraints

▪ We’ll start with the straightforward,
naïve approach, then improve it

Search Methods

▪ What would BFS do?

▪ What would DFS do?

▪ What problems does naïve search have?

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Backtracking Search

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict with previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
 is called backtracking search (not the best name)

▪ Can solve n-queens for n  25

Video of Demo Coloring – Backtracking

Backtracking Example

Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation

▪ What are the choice points?

[Demo: coloring -- backtracking]

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:

▪ Which variable should be assigned next?

▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

Filtering

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Announcements

▪ Midterm: Instead of 3/20 -> 3/27 (next week!)

▪ Reason: We will have a study session on 3/25

▪ I will send out questions this week; so you get a

chance to solve them and ask your questions.

▪ Ideally, we solve each problem together! So, we

learn how to approach each problem and learn

something from each problem.

▪ If anyone has any conflict for 3/27, do not worry;

please just let me know!

Limitations of Arc Consistency

▪ After enforcing arc
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and
not know it)

▪ Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking –
Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

Ordering

Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):

▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value

▪ I.e., the one that rules out the fewest values in
the remaining variables

▪ Note that it may take some computation to
determine this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

K-Consistency

K-Consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

▪ Higher k more expensive to compute

▪ (You need to know the k=2 case: arc consistency)

Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

▪ Extreme case: independent subproblems
▪ Example: Tasmania and mainland do not interact

▪ Independent subproblems are identifiable as
connected components of constraint graph

▪ Suppose a graph of n variables can be broken into
subproblems of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ Order: Choose a root variable, order variables so that parents precede children

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2) (why?)

Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

▪ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

▪ Find the smallest cutset for the graph below.

Iterative Improvement

Iterative Algorithms for CSPs

▪ Local search methods typically work with “complete” states, i.e., all variables assigned

▪ To apply to CSPs:
▪ Take an assignment with unsatisfied constraints
▪ Operators reassign variable values
▪ No fringe! Live on the edge.

▪ Algorithm: While not solved,
▪ Variable selection: randomly select any conflicted variable
▪ Value selection: min-conflicts heuristic:

▪ Choose a value that violates the fewest constraints
▪ I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

▪ States: 4 queens in 4 columns (44 = 256 states)
▪ Operators: move queen in column
▪ Goal test: no attacks
▪ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring

Performance of Min-Conflicts

▪ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

▪ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

▪ CSPs are a special kind of search problem:
▪ States are partial assignments
▪ Goal test defined by constraints

▪ Basic solution: backtracking search

▪ Speed-ups:
▪ Ordering

▪ Filtering

▪ Structure

▪ Iterative min-conflicts is often effective in practice

Local Search

Local Search

▪ Tree search keeps unexplored alternatives on the fringe (ensures completeness)

▪ Local search: improve a single option until you can’t make it better (no fringe!)

▪ New successor function: local changes

▪ Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

▪ Simple, general idea:
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s bad about this approach?
▪ Complete?

▪ Optimal?

▪ What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

▪ Idea: Escape local maxima by allowing downhill moves
▪ But make them rarer as time goes on

69

Simulated Annealing

▪ Theoretical guarantee:
▪ Stationary distribution:

▪ If T decreased slowly enough,
 will converge to optimal state!

▪ Is this an interesting guarantee?

▪ Sounds like magic, but reality is reality:
▪ The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a
row

▪ People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

▪ Genetic algorithms use a natural selection metaphor
▪ Keep best N hypotheses at each step (selection) based on a fitness function

▪ Also have pairwise crossover operators, with optional mutation to give variety

▪ Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

▪ Why does crossover make sense here?

▪ When wouldn’t it make sense?

▪ What would mutation be?

▪ What would a good fitness function be?

Example: Fault Diagnosis

▪ Fault networks:
▪ Variables?

▪ Domains?

▪ Constraints?

▪ Various ways to query,

 given symptoms
▪ Some cause (abduction)

▪ Simplest cause

▪ All possible causes

▪ What test is most useful?

▪ Prediction: cause to effect

▪ We’ll see this idea again with Bayes’ nets

SMTP down

DNS down

Firewall

blocking

Printer jam

Can’t print

Can’t email

Can’t IM

Causes Symptoms

Beam Search

▪ Like greedy hillclimbing search, but keep K states at
all times:

▪ Variables: beam size, encourage diversity?
▪ The best choice in MANY practical settings
▪ Complete? Optimal?
▪ Why do we still need optimal methods?

Greedy Search Beam Search

Next Time: Adversarial Search!

	Slide 1
	Slide 2: What is Search For?
	Slide 3: Constraint Satisfaction Problems
	Slide 4: CSP Examples
	Slide 5: Constraint Satisfaction Problems
	Slide 6: Example: Map Coloring
	Slide 7: Example: N-Queens
	Slide 8: Example: N-Queens
	Slide 9: Constraint Graphs
	Slide 10: Constraint Graphs
	Slide 12: Example: Cryptarithmetic
	Slide 14: Example: The Waltz Algorithm
	Slide 15: Varieties of CSPs and Constraints
	Slide 16: Varieties of CSPs
	Slide 17: Varieties of Constraints
	Slide 18: Real-World CSPs
	Slide 19: Solving CSPs
	Slide 20: Standard Search Formulation
	Slide 21: Search Methods
	Slide 22: Video of Demo Coloring -- DFS
	Slide 23: Backtracking Search
	Slide 24: Backtracking Search
	Slide 25: Video of Demo Coloring – Backtracking
	Slide 26: Backtracking Example
	Slide 27: Backtracking Search
	Slide 28: Improving Backtracking
	Slide 29: Filtering
	Slide 30: Filtering: Forward Checking
	Slide 31: Video of Demo Coloring – Backtracking with Forward Checking
	Slide 32: Filtering: Constraint Propagation
	Slide 33: Consistency of A Single Arc
	Slide 34: Arc Consistency of an Entire CSP
	Slide 35: Enforcing Arc Consistency in a CSP
	Slide 37: Announcements
	Slide 38: Limitations of Arc Consistency
	Slide 39: Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph
	Slide 40: Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph
	Slide 41: Ordering
	Slide 42: Ordering: Minimum Remaining Values
	Slide 43: Ordering: Least Constraining Value
	Slide 44: K-Consistency
	Slide 45: K-Consistency
	Slide 46: Strong K-Consistency
	Slide 47: Structure
	Slide 48: Problem Structure
	Slide 49: Tree-Structured CSPs
	Slide 50: Tree-Structured CSPs
	Slide 51: Tree-Structured CSPs
	Slide 52: Improving Structure
	Slide 53: Nearly Tree-Structured CSPs
	Slide 54: Cutset Conditioning
	Slide 55: Cutset Quiz
	Slide 57: Iterative Improvement
	Slide 58: Iterative Algorithms for CSPs
	Slide 59: Example: 4-Queens
	Slide 60: Video of Demo Iterative Improvement – n Queens
	Slide 61: Video of Demo Iterative Improvement – Coloring
	Slide 62: Performance of Min-Conflicts
	Slide 63: Summary: CSPs
	Slide 64: Local Search
	Slide 65: Local Search
	Slide 66: Hill Climbing
	Slide 67: Hill Climbing Diagram
	Slide 68: Hill Climbing Quiz
	Slide 69: Simulated Annealing
	Slide 70: Simulated Annealing
	Slide 71: Genetic Algorithms
	Slide 72: Example: N-Queens
	Slide 73: Example: Fault Diagnosis
	Slide 74: Beam Search
	Slide 75: Next Time: Adversarial Search!

