Reconciling Accuracy, Cost, and Latency of Inference Serving Systems

<https://pooyanjamshidi.github.io/>

Pooyan Jamshidi University of South Carolina

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology^{*}, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

Journal of Systems Research

Saeid Ghafouri[®] University of South Carolina & Queen Mary University of London

Mehran Salmani[®] Technical University of Ilmenau

Alireza Sanaee ® Queen Mary University of London

Joseph Doyle Queen Mary University of London

JSys

Sponge: Inference Serving with Dynamic SLOs Using In-Place **Vertical Scaling**

Kamran Razavi*

Pooyan Jamshidi University of South Carolina

Roblox

Lin Wang^o Paderborn University

Pooyan Jamshidi ® University of South Carolina

Saeid Ghafouri* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Lin Wang Paderborn University

Multi-Objective Optimization with Known Constraints under Uncertainty

$$
\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC
$$
\n
$$
\text{subject to} \quad \lambda \le \sum_{m \in M} th_m(n_m),
$$
\n
$$
\lambda_m \le th_m(n_m)
$$
\n
$$
p_m(n_m) \le L, \forall m \in M,
$$
\n
$$
RC \le B,
$$

Solutions:

InfAdapter [2023]: Autoscaling for **ML Inference**

IPA [2024]: Autoscaling for **ML Inference Pipeline**

Sponge [2024]: Autoscaling for ML Inference Pipeline **Dynamic SLO**

Problem:

Different Assumptions

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology^{*}, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

Journal of Systems Research

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH **ACCURACY AND COST-EFFICIENCY**

Saeid Ghafouri[®] University of South Carolina & Queen Mary University of London

Mehran Salmani[®] Technical University of Ilmenau

Alireza Sanaee[®] Queen Mary University of London

Joseph Doyle[®] Queen Mary University of London Tania Lorido Botran ® Roblox

Pooyan Jamshidi^o University of South Carolina

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Saeid Ghafouri* Kamran Razavi* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Volume 4, Issue 1, April 2024

Kamran Razavi [⊙] Technical University of Darmstadt

> Lin Wang \bullet Paderborn University

InfAdapter [2023]: **Autoscaling for ML Model Inference**

IPA [2024]: Autoscaling for ML Inference Pipeline

Sponge [2024]: Autoscaling for ML Inference Pipeline with Dynamic SLO

"More than 90% of data center compute for ML workload, is used by inference services"

ML inference services have strict requirements

Highly Responsive!

-
-
-
-
-
-
-
-

ML inference services have strict requirements

Highly Responsive! Cost-Efficient!

ML inference services have strict requirements

Highly Responsive! Cost-Efficient! Highly Accurate!

ML inference services have strict & **conflicting** requirements

Highly Responsive! Cost-Efficient! Highly Accurate!

More challenge: Dynamic workload

makeameme.org

10

11

15

Over Provisioning

Under Provisioning

Quality adaptation

ResNet18: Tiger ResNet152: Dog

Workload Time over-provisioning wasted compute **Required** esource **Allocated** under-provisioning
latency SLO violation \simeq

Time

Quality adaptation

Solution: InfAdapter

InfAdapter is a latency SLO-aware, highly accurate, and cost-efficient inference serving system.

Model Variant

Different throughputs with different model variants

Higher average accuracy by using multiple model variants

21

InfAdapter: How?

22

Selecting a **subset of model variants**, each having its size meeting latency requirements for the predicted workload while **maximizing accuracy and minimizing resource cost**

max $\alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$

Maximizing Average Accuracy

 $(\alpha \cdot AA) - (\beta \cdot RC + \gamma \cdot LC)$

Maximizing Average Accuracy Minimizing Resource and Loading Costs

 $(\beta \cdot RC + \gamma \cdot L\vec{C})$

- $max \ \alpha \cdot A$
- subject to $\lambda \leq$
	- $\lambda_m \leq$
	- $p_m(n)$
	- $RC \leq$
	-

$$
\alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)
$$

\n
$$
\lambda \le \sum_{m \in M} th_m(n_m),
$$

\n
$$
\lambda_m \le th_m(n_m)
$$

\n
$$
p_m(n_m) \le L, \forall m \in M,
$$

\n
$$
RC \le B,
$$

\n
$$
n_m \in W, \forall m \in M.
$$

27

$$
A - (\beta \cdot RC + \gamma \cdot LC)
$$

\n
$$
\sum_{m \in M} th_m(n_m),
$$
\n
$$
\leq th_m(n_m)
$$

\n
$$
n_m) \leq L, \forall m \in M,
$$

\n
$$
\leq B,
$$

 $n_m \in \mathbb{W}, \forall m \in M.$

$$
\begin{aligned}\n&\frac{A - (\beta \cdot RC + \gamma \cdot LC)}{\sum_{m \in M} th_m(n_m)}, \quad \text{Supporting incoming workload} \\
&\leq th_m(n_m) \\
&\frac{n_m}{\leq L}, \forall m \in M, \\
&\leq B,\n\end{aligned}
$$

 $n_m \in \mathbb{W}, \forall m \in M.$

InfAdapter: Design

InfAdapter: Design

InfAdapter: Design

InfAdapter: Experimental evaluation setup

Workload: **Twitter-trace** sample (2022-08) Baselines: **Kubernetes VPA** and **Model-Switching**

Used models: Resnet18, Resnet34, Resnet50, Resnet101, Resnet152 Interval adaptation: 30 seconds Kubernetes cluster: 48 Cores, 192 GiB RAM

-
-

32

Workload Pattern

InfAdapter: P99-Latency evaluation

34

InfAdapter: P99-Latency evaluation

InfAdapter: Tradeoff Space

Takeaway

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

Using a set of model variants simultaneously provides higher average accuracy compared to having one variant.

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

https://github.com/reconfigurable-ml-pipeline/InfAdapter

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology^{*}, Queen Mary University of London[§], Technical University of Darmstadt¹, University of South Carolina³

Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Volume 4, Issue 1, April 2024

Kamran Razavi [●] Technical University of Darmstadt

Lin Wang \bullet Paderborn University

InfAdapter [2023]: **Autoscaling for ML Model Inference**

IPA [2024]: Autoscaling for ML Inference Pipeline

Max Mühlhäuser

Sponge [2024]: Autoscaling for ML Inference Pipeline with Dynamic SLO

Inference Pipeline

What should be characteristic of an inference pipeline?

What should be characteristic of an inference pipeline?

- **Scalability**: The pipeline should be able to handle large volumes of data and scale horizontally to accommodate increases in input size or request frequency.
- **Low Latency**: Inference should be fast, especially in real-time or near-real-time applications. The pipeline should minimize processing time to deliver quick predictions.
- **Reproducibility**: The pipeline should consistently produce the same results for the same input, ensuring that predictions are reproducible across different environments.
- **Robustness and Fault Tolerance**: The pipeline should be resilient to failures, with mechanisms to handle errors gracefully, such as retry logic, circuit breakers, or fallback models.

What should be characteristic of an inference pipeline?

- **Model Management**: The pipeline should allow for easy integration, updating, and switching of models. This includes versioning, rollback capabilities, and support for different model formats (e.g., TensorFlow, PyTorch, ONNX).
- **Resource Efficiency**: The pipeline should make optimal use of computational resources, balancing the trade-offs between cost, speed, and accuracy. This includes utilizing CPU/GPU resources effectively and managing memory usage.
- **Adaptability**: The pipeline should be flexible enough to adapt to new types of data, different model architectures, or changes in the environment (e.g., hardware upgrades or cloud migration).

Is only scaling enough?

The Variabilities ML Pipelines

Effect of Batching

How to navigate the Accuracy/Latency trade-off space?

Previous works, **INFaaS** and **Model-Switch**, have proven that there is a big latencyaccuracy-resource footprint tradeoff of models trained for the same task.

Cheap
Inference

Accurate Model

User Goals

Goal: Providing a flexible inference pipeline

Snapshot of the System

Search Space

Problem Formulation

Problem Formulation

$$
f(n, s, I) = \alpha \sum_{s \in P} (\sum_{m \in M_s} a_{s,m}.I_{s,m})
$$

\n
$$
-\beta \sum_{s \in P} n_s.R_s
$$

\n
$$
-\delta \sum_{s \in P} b_s
$$

\n
$$
\underbrace{\overbrace{\text{one active} \text{model per}}}_{\text{node per}}
$$

Implementation and Experimental Setup

- 1. Industry standard
- Used in recent research
- 3. Complete set of autoscaling, scheduling, observability tools (e.g. CPU usage)
- 4. APIs for changing the current AutoScaling algorithms

Jo CORE

- 1. Industry standard ML server
- 2. Have the ability make inference graph
- 3. Rest and GRPC endpoints
- 4. Have many of the features we need like monitoring stack out of the box

How to navigate Model Variants

Experimental Results

Video Pipeline

Audio + QA Pipeline

Summarization + QA Pipeline

Summarization + QA Pipeline

NLP Pipeline

Adaptivity to multiple objectives

Accuracy-priorotize Balance Resource-priorotize

70

Effect of predictor

Gurobi solver scalability

Full replication package is available

<https://github.com/reconfigurable-ml-pipeline>

Model Serving Pipeline

Is only scaling enough?

Snapshot of the System

Adaptivity to multiple objectives

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology^{*}, Queen Mary University of London[§], Technical University of Darmstadt¹, University of South Carolina³

Journal of Systems Research

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH **ACCURACY AND COST-EFFICIENCY**

Saeid Ghafouri[®] University of South Carolina & Queen Mary University of London

Mehran Salmani[®] Technical University of Ilmenau

Alireza Sanaee ® Queen Mary University of London

Joseph Doyle[®] Queen Mary University of London

Pooyan Jamshidi^o University of South Carolina

Sponge: Inference Serving with Dynamic SLOs Using In-Place **Vertical Scaling**

Kamran Razavi* Saeid Ghafouri* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Volume 4, Issue 1, April 2024

Kamran Razavi [⊙] Technical University of Darmstadt

Tania Lorido Botran O Roblox

Lin Wang \odot Paderborn University

InfAdapter [2023]: Autoscaling for ML **Model Inference**

IPA [2024]: Autoscaling for **ML Inference Pipeline**

Sponge [2024]: Autoscaling for ML Inference Pipeline with **Dynamic SLO**

Dynamic User -> Dynamic Network Bandwidths

- ˻ Users move
	- ˻ Fluctuations in the network bandwidths
		- ˻ Reduced time-budget for processing requests

-
-
-
-
-
-
-
- - -

Dynamic User -> Dynamic Network Bandwidths

- ˻ Users move
	- ˻ Fluctuations in the network bandwidths
		- ˻ Reduced time-budget for processing requests

Inference Serving Requirements

Highly Responsive! Cost-Efficient!

In-place Vertical Scaling | Horizontal Scaling Sponson

Resource Scaling

(end-to-end latency guarantee) (least resource consumption)

(more responsive) (more cost

efficient)

Vertical Scaling DL Model Profiling YOLOv_{5s}

- ˻ How much resource should be allocated to a DL model?
	- ˻ Latency/batch size → linear relationship
	- ˻ Latency/CPU allocation → inverse relationship

 (ms) atency 800 $\frac{1}{\overline{6}}$ 400 $\frac{6}{5}$ 400 atency 200 በነ **DON**

ResNet18

Minimize $c + \delta \times b$

subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \geq \lambda$ $b, c \in \mathbb{Z}^+$

 $c + \delta \times b$

Minimize

subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \geq \lambda$ $b, c \in \mathbb{Z}^+$

Minimize resource costs

Minimize resource costs $C + \delta \times b \longrightarrow$ Limit the batch size to grow infinitely! subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \geq \lambda$ $b, c \in \mathbb{Z}^+$

Minimize

Minimize resource costs $C + \delta \times b \longrightarrow$ Limit the batch size to grow infinitely! Minimize subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b, c) \geq \lambda$
 $b, c \in \mathbb{Z}^+$ \boldsymbol{R} Set of all requests \bm{b} Model's batch size Model's CPU allocation \boldsymbol{c} Communication latency associated with $r \in R$ cl_r cl_{max} Highest cl_r in R Pre-defined SLO for R *SLO* $l(b,c)$ Processing time of a model with allocation core c and batch size *b* $q_r(b,c)$ Queuing time of $r \in R$ with allocation core c and batch size *b* $h(b,c)$ Throughput of a model with allocation core c and batch size *b* Request arrival rate λ

3 design choices:

1. In-place vertical scaling

- Fast response time
- **2. Request reordering**
	- High priority requests
- **3. Dynamic batching**
	- Increase system utilization

System Design

Evaluation

SLO guarantees (99th percentile) with up to 20% resource save up compared to static resource allocation.

Sponge source code: \bigcirc

<https://github.com/saeid93/sponge>

Sponso

How can both scaling mechanisms be used jointly under a dynamic workload to be responsive and cost efficient while guaranteeing SLOs?

Performance goals are competing and users have preferences over these goals

The variability space (design space) of (composed) systems is exponentially increasing

Goal: Enabling users to find the right quality tradeoff

Systems operate in uncertain environments with imperfect and incomplete knowledge

Thank you, Saeid Ghafouri!

Over the past decade, advancements in machine learning (ML) have paved the way for numerous realworld use cases such as chatbots, self-driving cars, and recommender systems. Traditional ML applications typically use a single deep neural network (DNN) to perform inference tasks, such as object recognition or natural language understanding. In contrast, modern ML systems - those used in sophisticated systems (think digital assistant services such as Amazon Alexa) - are very complex. These systems employ a series of interconnected DNNs, often structured as directed acyclic graphs (DAGs), to handle a variety of inference tasks, including speech recognition, question interpretation, question answering, and text-to-speech conversion, all working together to meet user queries and requirements.

Optimizing Production ML Inference for Accuracy and **Cost Efficiency**

Pushing the Boundaries of Cost-Effective ML Inference on **Chameleon Testbed**

May 28, 2024 by Saeid Ghafouri

Suser Experiments, Featured

