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Problem: Solutions:

Multi-Objective Optimization Different Assumptions
with Known Constraints

under Uncertainty InfAdapter [2023]:

Autoscaling for
ML Inference

max o -AA—(f-RC+y-LC)

subjectto A < Z thy, (nm,), | IPA [2024]:
meM ool Autoscaling for
Am < thy,(n,) ML Inference Pipeline

Dm(Ny) < L,VYm € M,

RC < B,

Sponge [2024]:
Autoscaling for
ML Inference Pipeline

Dynamic SLO
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“‘More than 90% of data center compute for ML
workload, is used by inference services”
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ML inference services have strict requirements

Highly Responsive!

~



ML inference services have strict requirements

Highly Responsive! Cost-Efficient!
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ML inference services have strict requirements

Highly Responsive! Cost-Efficient! Highly Accurate!
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ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!
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More challenge: Dynamic workload

DYNAMIC CHARACTER

(N =

THAT:CHANGES

makeamemerong

10



Workload

Resource allocation

Time
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Workload

Resource allocation

Time

Time
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Workload

Resource
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Workload

Resource

Resource allocation

under-provisioning
latency SLO violation
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Workload

Resource

Resource allocation

A
»
Time
A
over-provisioning
wasted compute Required
Allocated

under-provisioning
latency SLO violation
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Resource

Time
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Over
Provisioning

Resource allocation

Under
Provisioning

-
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Quality adaptation

ResNetl8: Tiger

ResNet152: Dog
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Quality adaptation

Adapted

Static

Time



Solution: InfAdapter

InfAdapter is a latency SLO-aware, highly accurate, and cost-efficient
inference serving system.
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InfAdapter: Why?

Different throughputs with different model variants

W CPU=8 W CPU=20
200

150

100

!

=l

Resnet50 Resnhet152

50

Sustained Throughput (RPS)

Model Variant
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InfAdapter: Why?

Higher average accuracy by using multiple model variants

2.5
204 MS :
" B InfAdapter
FRELESE = TR Ee——
9
L R I ———
=
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<

0.0 -20

Budget (CPU cores)
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InfAdapter. How?

- @D Dispatcherj<=--------

Load Generator

Selecting a subset of model variants, each having its size
meeting latency requirements for the predicted workload
while maximizing accuracy and minimizing resource cost
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InfAdapter: Formulation

max o -AA—-(f-RC+y-LC)
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InfAdapter: Formulation

max — (f-RC+y-LC)

Maximizing Average Accuracy
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InfAdapter: Formulation

max — (@C + yE)

Maximizing Average Accuracy

N

Minimizing Resource and Loading Costs
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InfAdapter: Formulation

max o-AA—-(f-RC+y-LC)

subjectto A < Z thm (Nm),
meM

Am < th,,(n,,)
Pm(nm) < L,Vm € M,
RC < B,

n, € W,Vm € M.
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InfAdapter: Formulation

max o-AA—-(f-RC+y-LC)

SUbjeCt to 6 thm(n\m)a -Supporting incoming workload
meM /

Am < thy,(ng,)
Pm(ny) < L,Vm e M,
RC < B,

n, € W,Vm € M.
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InfAdapter: Formulation

max o-AA—-(f-RC+y-LC)

SUbJ€Ct to @ thm -Supporting incoming workload

mem
Am < thm(nm)

Guaranteeing end-to-end latency - @nm) < L)Vm € M,
RC < B,
n, € W,Vm € M.
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InfAdapter

Load Generator

. @D Dispatcher j<=z------- Quota, - -

. Design

Pull metrics
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InfAdapter: Design

- @D Dispatcher
e

Load Generator

Adapter

@ g

3

qovt?? 3

o

3,

--------- Quotapy - - 2
= @

Pull metrics
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InfAdapter: Design

p Configure new sizes
AP| Server for model variants _
\
Apply
Configuration—__
Qout??
- @D Dispatcher j<=-------- Quotam - -
= —
Uotan

Load Generator

Adapter

sajaw Alanp

Update quotas—

Pull metrics
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InfAdapter:. Experimental evaluation setup

Workload: Twitter-trace sample (2022-08)

Baselines: Kubernetes VPA and Model-Switching

Used models: Resnetl8, Resnet34, Resnet50, Resnet101, Resnet152

Interval adaptation: 30 seconds

Kubernetes cluster: 48 Cores, 192 GiB RAM
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Workload (RPS)
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: Accuracy evaluation

2

2

—

Workload (RPS)
|_I

Accuracy lass (%)

50
. ‘\ "\ prediction
00 "l --------------- ;—MH T -
/ .
T . s
V‘f
0 | \ --------------------
S0 T i/ \_,»\/w\]w\w\,\q\;\! w'tv\,LVMww(
~ InfAdapter MS+ VPA-18 VPA-50 — VPA-152
10
8 _________________________________________________________________________________________________________________________
6— w
4 ________________________________________________________________________________________________________________________
2 _______________________________________________________________________________________________________________________
O———A
0 200 400 600 800 1000 1200

39



InfAdapter: Cost evaluation
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InfAdapter: Tradeoff Space
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Takeaway

@

Inference Serving Systems should consider

accuracy, latency, and cost at the same time.
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Takeaway

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

Model variants provide the opportunity Using a set of model variants
to reduce resource costs while adapting simultaneously provides higher average
to the dynamic workload. accuracy compared to having one variant.
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Takeaway

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

Model variants provide the opportunity Using a set of model variants

simultaneously provides higher average
accuracy compared to having one variant.

to reduce resource costs while adapting
to the dynamic workload.
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O https://github.com/reconfigurable-ml-pipeline/InfAdapter

ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!

[ |

Inf Adapter: Design

/%A Configure new sizes
T for model variants Adapter
i \

Apply
Configuration—___

»

Qe \\\0\-
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soujew any

Quotﬂ m ==

Quoio
Load Generator Yol T
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~————Update quatas—

———Pull metricg——————" MO"“"'"G/

Takeaway

©

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

oo / N oo

Model variants provide the opportunity to Using a sct of madel variants
recuce resource cosls while adapting L simullznzously provides higher gverage
the dynamic workload. accuracy comparec Lo having one variznl.

{ InfAdaprer! ]

mal
prediction
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Inference Pipeline

# Configuration Options

44 14

| .I Stream

| Video |,
| Decoder | | Muxer |

COLLECT

86

| of Primary |
| Detector |

99

f Object |
| Tracker |

86

| o Secondary
“| Classifier |

Alerts

Analytics

Visualization
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What should be characteristic of an inference pipeline?

Hardware
)
N
Latency/ 4 A
Throughput - Users Third-Party Companies Clusters

/A 2 ¢ R o -

-

FAS

On premise

Model
accuracy

o
-©




What should be characteristic of an inference pipeline?

» Scalability: The pipeline should be able to handle large volumes of data and scale
horizontally to accommodate increases in input size or request frequency.

 Low Latency: Inference should be fast, especially in real-time or near-real-time

applications. The pipeline should minimize processing time to deliver quick
predictions.

 Reproducibility: The pipeline should consistently produce the same results for the
same input, ensuring that predictions are reproducible across different environments.

 Robustness and Fault Tolerance: The pipeline should be resilient to failures, with

mechanisms to handle errors gracefully, such as retry logic, circuit breakers, or
fallback models.



What should be characteristic of an inference pipeline?

 Model Management: The pipeline should allow for easy integration, updating,
and switching of models. This includes versioning, rollback capabilities, and
support for different model formats (e.g., TensorFlow, PyTorch, ONNX).

 Resource Efficiency: The pipeline should make optimal use of computational
resources, balancing the trade-offs between cost, speed, and accuracy. This
includes utilizing CPU/GPU resources effectively and managing memory
usage.

 Adaptability: The pipeline should be flexible enough to adapt to new types of
data, different model architectures, or changes in the environment (e.g.,
hardware upgrades or cloud migration).



Is only scaling enough?

N
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The Variabilities ML Pipelines
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Effect of Batching
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How to navigate the Accuracy/Latency trade-off space?

Previous works, INFaaS and Model-Switch,

have proven that there is a big latency- i n m
aas

accuracy-resource footprint tradeoff of models
trained for the same task.

Resnet18 v v "I Inference
' . Accurate
N/ "I Model

Accuracy Latency Resource

Footprint User Goals



Goal: Providing a flexible inference
pipeline

Least <o > Most

Acourate (T T (@) Accurate
$ IPA IPA $ $ $

| config 1 config 2 |
'I System
Q m Designer
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Snapshot of the System
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Problem Formulation




Problem Formulation

max  f(n,s,]) f(n,s,I)

subject to Y Is(bs) +g5(bs) < SLAp,

seP Throughput
. C i
lf IS m — 1 then onstraint

s hs(bs) > A,, VseP
Z Iom=1, VseP One e
mEM nhode

ng,bs €Z", I,€q{0,1}, VseS§




Implementation and Experimental
Setup
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How to navigate Model Variants

kubernetes dq<) CORE

1. Industry standard Industry standard ML server
Used in recent research Have the ability make inference graph

Complete set of autoscaling, scheduling, Rest and GRPC endpoints
observability tools (e.g. CPU usage) Have many of the features we need like

4. APIls for changing the current AutoScaling monitoring stack out of the box
algorithms

W N
W=



Evaluation
) https://github.com/reconfigurable-ml-pipeline/ipa
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Experimental Results
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NLP Pipeline
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Adaptivity to multiple objectives

B Accuracy-priorotize ® Balance I Resource-priorotize
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Pipelines
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Effect of predictor
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Gurobi solver scalability
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Full replication package is available

https://github.com/reconfigurable-ml-pipeline

AdaptiveFlow Unfollow

Repositories related to Sustainability, Performance, Auto-scaling, Reconfiguration, Runtime Optimizations for ML Inference Pipelines

A2 1follower ™ United States of America

Popular repositories & View as: Public ~
You are viewing the README and pinned
ipa Public InfAdapter Public repositories as a public user.
Source code of IPA Source code of "Reconciling High Accuracy, Cost-Efficiency, and Low

You can create a README file or pin repositories

Latency of Inference Serving Systems" o
visible to anyone.

® Jupyter Notebook Y 8 4 ® Python Y 7 ,
2 k4 ’ Get started with tasks that most successful

organizations complete.

load_tester Public kubernetes-python-client Public
Discussions

® Python  Yr 2 @ Python
Set up discussions to engage with your
community!

INFaaS Public Turn on discussions

Forked from stanford-mast/INFaaS

Model-less Inference Serving
People

®C++

G61dc0


https://github.com/reconfigurable-ml-pipeline

Model Serving Is only scaling enough?
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EuroMLSys

Sponge: Inference Serving with Dynamic SLOs Using In-Place

Vertical Scaling i%?:fcz ﬁingg]r

ML Inference Pipeline with
Dynamic SLO

Kamran Razavi’ Saeid Ghafouri’ Max Miihlhauser
Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

Pooyan Jamshidi Lin Wang

University of South Carolina Paderborn University




Dynamic User -> Dynamic Network Bandwidths

. Users move

. Fluctuations in the network
bandwidths

. Reduced time-budget for
processing requests
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Dynamic User -> Dynamic Network Bandwidths

. Users move

. Fluctuations in the network
bandwidths

. Reduced time-budget for
processing requests
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Inference Serving Requirements

Highly Responsive! Cost-Efficient!

(end-to-end latency guarantee) (least resource consumption)

~

6 (

Resource Scaling

N

Horizontal Scaling

(more cost
efficient)




Vertical Scaling DL Model Profiling
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Problem Formulation

Minimize c¢+0 X b

subject to [(b,c) + g, (b,c) + clyax < SLO, Vr € R
h(b,c) > A
bceZ"




Problem Formulation

- Minimize resource costs

Minimize ¢+38Xb

subject to [(b,c) + g, (b,c) + clyax < SLO, Vr € R
h(b,c) > A
bceZ"




Problem Formulation

- Minimize resource costs

Limit the batch size to grow infinitely!

Minimize c.'. SXbh—>
subjectto I(b,c) + q,(b,¢) + clypax < SLO, Vr € R
h(b,c) > A
b,ceZ"




Problem Formulation

Minimize

subject to

- Minimize resource costs

Limit the batch size to grow infinitely!

[(b,c) +g,(b,c) + clypax < SLO, Vr eR

h(b,c) > A R
b,c e Z" 'Z

cl,

Clmax

SLO
[(b,c)

CIr (b3 C)
h(b,c)

A

Set of all requests

Model’s batch size

Model’s CPU allocation

Communication latency associated with r € R
Highest cl, in R

Pre-defined SLO for R

Processing time of a model with allocation core ¢ and
batch size b

Queuing time of r € R with allocation core ¢ and
batch size b

Throughput of a model with allocation core ¢ and
batch size b

Request arrival rate




System Design

3 design choices:

/
Sponge

1. In-place vertical scaling
o Fastresponse time patched Requests—

: =
2. Request reordering - Queue R
: . Requests—  epF) (DL Model)
e High priority requests
User

CPU Core

3. Dynamic batching satchsize |
oo . R i SLO Statistical Data
e Increase system utilization emaining (Latency, RPS)
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Offline Performance - u
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RPS

Results




Evaluation

SLO guarantees (99th percentile) with
up to 20% resource save Up compared —— Sponge —— FA2 CPU8 CPU16
to static resource allocation. |

O
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o

Sponge source code: O
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https://github.com/saeid93/sponge

Future Directions

Resource Scalmg

Horlzontal Scaling

(more cost
effluent)

How can both scaling mechanlsms be used jointly under a
dynamic workload to be responsive and cost efficient
while guaranteeing SLOs?




The variability space (design space) of

(composed) systems is exponentially increasing
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Optimizing Production ML Inference for Accuracy and
Cost Efficiency

Pushing the Boundaries of Cost-Effective ML Inference on
Chameleon Testbed
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Over the past decade, advancements in machine learning (ML) have paved the way for numerous real-
warld use cases such as chatbots, self-driving cars, and recommender systems. Traditional ML
applications typically use a single deep neural network (DNN) to perform inference tasks, such as object
recognition or natural language understanding. In contrast, modern ML systems - those used in

sophisticated systems (think digital assistant services such as Amazon Alexa) - are very complex. These
systems employ a series of interconnected DNNs, often structured as directed acyclic graphs (DAGs), to
handle a variety of inference tasks, including speech recognition, question interpretation, question

answering, and text-to-speech canversion, all working together to meet user queries and requirements.
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