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Multi-Objective Optimization
with Known Constraints

under Uncertainty

Solutions:

InfAdapter [2023]: 
Autoscaling for 
ML Inference

IPA [2024]: 
Autoscaling for 

ML Inference Pipeline

Sponge [2024]: 
Autoscaling for 

ML Inference Pipeline 
Dynamic SLO

Problem:

Different Assumptions



InfAdapter [2023]: 
Autoscaling for 

ML Model Inference

IPA [2024]: 
Autoscaling for 

ML Inference Pipeline

Sponge [2024]: 
Autoscaling for 

ML Inference Pipeline with 
Dynamic SLO



“More than 90% of data center compute for ML 
workload, is used by inference services”
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ML inference services have strict requirements
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Highly Responsive!



ML inference services have strict requirements
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Highly Responsive! Cost-Efficient!



ML inference services have strict requirements
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Highly Accurate!Highly Responsive! Cost-Efficient!



ML inference services have strict & conflicting 
requirements
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Highly Accurate!Highly Responsive! Cost-Efficient!



More challenge: Dynamic workload

10



Resource allocation
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Resource allocation
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Resource allocation
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Resource allocation
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Resource allocation
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Resource allocation
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Over 
Provisioning

Under 
Provisioning



Quality adaptation
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ResNet18: Tiger ResNet152: Dog



Quality adaptation
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Solution: InfAdapter
InfAdapter is a latency SLO-aware, highly accurate, and cost-efficient 

inference serving system.
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InfAdapter: Why?

Different throughputs with different model variants
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InfAdapter: Why?

Higher average accuracy by using multiple model variants
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InfAdapter: How?
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Selecting a subset of model variants, each having its size 
meeting latency requirements for the predicted workload 
while maximizing accuracy and minimizing resource cost



InfAdapter: Formulation
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InfAdapter: Formulation
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Maximizing Average Accuracy



InfAdapter: Formulation
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Maximizing Average Accuracy Minimizing Resource and Loading Costs



InfAdapter: Formulation
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InfAdapter: Formulation
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Supporting incoming workload



InfAdapter: Formulation
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Supporting incoming workload

Guaranteeing end-to-end latency



InfAdapter: Design
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InfAdapter: Design
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InfAdapter: Design
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InfAdapter: Experimental evaluation setup
Workload: Twitter-trace sample (2022-08) 

Baselines: Kubernetes VPA and Model-Switching 

Used models: Resnet18, Resnet34, Resnet50, Resnet101, Resnet152 

Interval adaptation: 30 seconds 

Kubernetes cluster: 48 Cores, 192 GiB RAM
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Workload Pattern
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: Accuracy evaluation
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InfAdapter: Cost evaluation



InfAdapter: Tradeoff Space
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Takeaway
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Inference Serving Systems should consider 
accuracy, latency, and cost at the same time.



Takeaway
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Model variants provide the opportunity 
to reduce resource costs while adapting 

to the dynamic workload.

Using a set of model variants 
simultaneously provides higher average 

accuracy compared to having one variant.

Inference Serving Systems should consider 
accuracy, latency, and cost at the same time.



Takeaway
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Model variants provide the opportunity 
to reduce resource costs while adapting 

to the dynamic workload.

Using a set of model variants 
simultaneously provides higher average 

accuracy compared to having one variant.

Inference Serving Systems should consider 
accuracy, latency, and cost at the same time.

InfAdapter!
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https://github.com/reconfigurable-ml-pipeline/InfAdapter



InfAdapter [2023]: 
Autoscaling for 

ML Model Inference

IPA [2024]: 
Autoscaling for 

ML Inference Pipeline

Sponge [2024]: 
Autoscaling for 

ML Inference Pipeline with 
Dynamic SLO



Inference Pipeline
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Video  
Decoder

Stream 
Muxer

Primary 
Detector

Object 
Tracker

Secondary 
Classifier

# Configuration Options

55861444 86



What should be characteristic of an inference pipeline?

Hardware

Model 
accuracy

Latency/ 
Throughput



What should be characteristic of an inference pipeline?

• Scalability: The pipeline should be able to handle large volumes of data and scale 
horizontally to accommodate increases in input size or request frequency.


• Low Latency: Inference should be fast, especially in real-time or near-real-time 
applications. The pipeline should minimize processing time to deliver quick 
predictions.


• Reproducibility: The pipeline should consistently produce the same results for the 
same input, ensuring that predictions are reproducible across different environments.


• Robustness and Fault Tolerance: The pipeline should be resilient to failures, with 
mechanisms to handle errors gracefully, such as retry logic, circuit breakers, or 
fallback models.



What should be characteristic of an inference pipeline?

• Model Management: The pipeline should allow for easy integration, updating, 
and switching of models. This includes versioning, rollback capabilities, and 
support for different model formats (e.g., TensorFlow, PyTorch, ONNX).


• Resource Efficiency: The pipeline should make optimal use of computational 
resources, balancing the trade-offs between cost, speed, and accuracy. This 
includes utilizing CPU/GPU resources effectively and managing memory 
usage.


• Adaptability: The pipeline should be flexible enough to adapt to new types of 
data, different model architectures, or changes in the environment (e.g., 
hardware upgrades or cloud migration).



Is only scaling enough?

?
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The Variabilities ML Pipelines



Effect of Batching



How to navigate the Accuracy/Latency trade-off space?

Previous works, INFaaS and Model-Switch, 
have proven that there is a big latency-
accuracy-resource footprint tradeoff of models 
trained for the same task.
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Goal: Providing a flexible inference 
pipeline
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Snapshot of the System



Search Space



Problem Formulation
Accuracy 
Objective

Resource 
Objective

Batch 
Control



Problem Formulation
Latency SLA

Throughput 
Constraint

One active 
model per 

node



Implementation and Experimental 
Setup

60



1. Industry standard
2. Used in recent research
3. Complete set of autoscaling, scheduling, 

observability tools (e.g. CPU usage)
4. APIs for changing the current AutoScaling 

algorithms

1. Industry standard ML server
2. Have the ability make inference graph
3. Rest and GRPC endpoints
4. Have many of the features we need like 

monitoring stack out of the box

How to navigate Model Variants
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Evaluation
https://github.com/reconfigurable-ml-pipeline/ipa

https://github.com/reconfigurable-ml-pipeline/ipa


Experimental Results
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Video Pipeline
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Audio + QA
Pipeline
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Summarization + QA  
Pipeline
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Summarization + QA  
Pipeline
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NLP Pipeline
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Adaptivity to multiple objectives
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Effect of predictor
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Gurobi solver scalability



Full replication package is available
https://github.com/reconfigurable-ml-pipeline

https://github.com/reconfigurable-ml-pipeline


Model Serving
Pipeline

Is only scaling enough?

?

 X

Snapshot of the System

 X

Adaptivity to multiple objectives



InfAdapter [2023]: 
Autoscaling for 

ML Model Inference

IPA [2024]: 
Autoscaling for 

ML Inference Pipeline

Sponge [2024]: 
Autoscaling for 

ML Inference Pipeline with 
Dynamic SLO



Dynamic User -> Dynamic Network Bandwidths 
˻ Users move 

˻ Fluctuations in the network 
bandwidths 
˻ Reduced time-budget for 

processing requests
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SLO

network latency processing latency



Dynamic User -> Dynamic Network Bandwidths 
˻ Users move 

˻ Fluctuations in the network 
bandwidths 
˻ Reduced time-budget for 

processing requests
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SLO

network latency processing latency



Inference Serving Requirements
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Highly Responsive! Cost-Efficient!

Resource Scaling

In-place Vertical Scaling Horizontal Scaling

(end-to-end latency guarantee) (least resource consumption)

(more responsive) (more cost 
efficient)

Sp
onge

!



Vertical Scaling DL Model Profiling
˻ How much resource 

should be allocated to a 
DL model?  
˻ Latency/batch size  →   

linear relationship 
˻ Latency/CPU allocation  →   

inverse relationship
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Problem Formulation
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Problem Formulation
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Minimize resource costs 



Problem Formulation
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Limit the batch size to grow infinitely!

Minimize resource costs 



Problem Formulation
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Limit the batch size to grow infinitely!

Minimize resource costs 



3 design choices: 

1. In-place vertical scaling 

• Fast response time 

2. Request reordering 

• High priority requests 

3. Dynamic batching 

• Increase system utilization
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System Design



Evaluation
SLO guarantees (99th percentile) with 
up to 20% resource save up compared 
to static resource allocation. 

Sponge source code:  
https://github.com/saeid93/sponge
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https://github.com/saeid93/sponge


Future Directions
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Resource Scaling

In-place Vertical Scaling Horizontal Scaling
(more responsive) (more cost 

efficient)

Sp
onge

!

How can both scaling mechanisms be used jointly under a 
dynamic workload to be responsive and cost efficient  

while guaranteeing SLOs?



Performance goals are competing and users 
have preferences over these goals

The variability space (design space) of 
(composed) systems is exponentially increasing

Systems operate in uncertain environments 
with imperfect and incomplete knowledge

Goal: Enabling users to find the right quality 
tradeoff

Lander Testbed (NASA) Turtlebot 3 (UofSC)

Husky UGV (UofSC)CoBot (CMU)



Thank you,  
Saeid Ghafouri!
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