
Reconciling Accuracy, Cost, and Latency of
Inference Serving Systems

Pooyan Jamshidi

https://pooyanjamshidi.github.io/

University of South Carolina

https://pooyanjamshidi.github.io/

Multi-Objective Optimization
with Known Constraints

under Uncertainty

Solutions:

InfAdapter [2023]:
Autoscaling for
ML Inference

IPA [2024]:
Autoscaling for

ML Inference Pipeline

Sponge [2024]:
Autoscaling for

ML Inference Pipeline
Dynamic SLO

Problem:

Different Assumptions

InfAdapter [2023]:
Autoscaling for

ML Model Inference

IPA [2024]:
Autoscaling for

ML Inference Pipeline

Sponge [2024]:
Autoscaling for

ML Inference Pipeline with
Dynamic SLO

“More than 90% of data center compute for ML
workload, is used by inference services”

5

ML inference services have strict requirements

6

Highly Responsive!

ML inference services have strict requirements

7

Highly Responsive! Cost-Efficient!

ML inference services have strict requirements

8

Highly Accurate!Highly Responsive! Cost-Efficient!

ML inference services have strict & conflicting
requirements

9

Highly Accurate!Highly Responsive! Cost-Efficient!

More challenge: Dynamic workload

10

Resource allocation

11

Resource allocation

12

Resource allocation

13

Resource allocation

14

Resource allocation

15

Resource allocation

16

Over
Provisioning

Under
Provisioning

Quality adaptation

17

ResNet18: Tiger ResNet152: Dog

Quality adaptation

18

Solution: InfAdapter
InfAdapter is a latency SLO-aware, highly accurate, and cost-efficient

inference serving system.

19

InfAdapter: Why?

Different throughputs with different model variants

20

InfAdapter: Why?

Higher average accuracy by using multiple model variants

21

InfAdapter: How?

22

Selecting a subset of model variants, each having its size
meeting latency requirements for the predicted workload
while maximizing accuracy and minimizing resource cost

InfAdapter: Formulation

23

InfAdapter: Formulation

24

Maximizing Average Accuracy

InfAdapter: Formulation

25

Maximizing Average Accuracy Minimizing Resource and Loading Costs

InfAdapter: Formulation

26

InfAdapter: Formulation

27

Supporting incoming workload

InfAdapter: Formulation

28

Supporting incoming workload

Guaranteeing end-to-end latency

InfAdapter: Design

29

InfAdapter: Design

30

InfAdapter: Design

31

InfAdapter: Experimental evaluation setup
Workload: Twitter-trace sample (2022-08)

Baselines: Kubernetes VPA and Model-Switching

Used models: Resnet18, Resnet34, Resnet50, Resnet101, Resnet152

Interval adaptation: 30 seconds

Kubernetes cluster: 48 Cores, 192 GiB RAM

32

Workload Pattern

33

InfAdapter: P99-Latency evaluation

34

InfAdapter: P99-Latency evaluation

35

InfAdapter: P99-Latency evaluation

36

InfAdapter: P99-Latency evaluation

37

InfAdapter: P99-Latency evaluation

38

InfAdapter: Accuracy evaluation

39

40

InfAdapter: Cost evaluation

InfAdapter: Tradeoff Space

41

Takeaway

42

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

Takeaway

43

Model variants provide the opportunity
to reduce resource costs while adapting

to the dynamic workload.

Using a set of model variants
simultaneously provides higher average

accuracy compared to having one variant.

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

Takeaway

44

Model variants provide the opportunity
to reduce resource costs while adapting

to the dynamic workload.

Using a set of model variants
simultaneously provides higher average

accuracy compared to having one variant.

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

InfAdapter!

45

https://github.com/reconfigurable-ml-pipeline/InfAdapter

InfAdapter [2023]:
Autoscaling for

ML Model Inference

IPA [2024]:
Autoscaling for

ML Inference Pipeline

Sponge [2024]:
Autoscaling for

ML Inference Pipeline with
Dynamic SLO

Inference Pipeline

47

Video
Decoder

Stream
Muxer

Primary
Detector

Object
Tracker

Secondary
Classifier

Configuration Options

55861444 86

What should be characteristic of an inference pipeline?

Hardware

Model
accuracy

Latency/
Throughput

What should be characteristic of an inference pipeline?

• Scalability: The pipeline should be able to handle large volumes of data and scale
horizontally to accommodate increases in input size or request frequency.

• Low Latency: Inference should be fast, especially in real-time or near-real-time
applications. The pipeline should minimize processing time to deliver quick
predictions.

• Reproducibility: The pipeline should consistently produce the same results for the
same input, ensuring that predictions are reproducible across different environments.

• Robustness and Fault Tolerance: The pipeline should be resilient to failures, with
mechanisms to handle errors gracefully, such as retry logic, circuit breakers, or
fallback models.

What should be characteristic of an inference pipeline?

• Model Management: The pipeline should allow for easy integration, updating,
and switching of models. This includes versioning, rollback capabilities, and
support for different model formats (e.g., TensorFlow, PyTorch, ONNX).

• Resource Efficiency: The pipeline should make optimal use of computational
resources, balancing the trade-offs between cost, speed, and accuracy. This
includes utilizing CPU/GPU resources effectively and managing memory
usage.

• Adaptability: The pipeline should be flexible enough to adapt to new types of
data, different model architectures, or changes in the environment (e.g.,
hardware upgrades or cloud migration).

Is only scaling enough?

?

52

The Variabilities ML Pipelines

Effect of Batching

How to navigate the Accuracy/Latency trade-off space?

Previous works, INFaaS and Model-Switch,
have proven that there is a big latency-
accuracy-resource footprint tradeoff of models
trained for the same task.

55

Goal: Providing a flexible inference
pipeline

56

Snapshot of the System

Search Space

Problem Formulation
Accuracy
Objective

Resource
Objective

Batch
Control

Problem Formulation
Latency SLA

Throughput
Constraint

One active
model per

node

Implementation and Experimental 
Setup

60

1. Industry standard
2. Used in recent research
3. Complete set of autoscaling, scheduling,

observability tools (e.g. CPU usage)
4. APIs for changing the current AutoScaling

algorithms

1. Industry standard ML server
2. Have the ability make inference graph
3. Rest and GRPC endpoints
4. Have many of the features we need like

monitoring stack out of the box

How to navigate Model Variants

62

Evaluation
https://github.com/reconfigurable-ml-pipeline/ipa

https://github.com/reconfigurable-ml-pipeline/ipa

Experimental Results

63

64

Video Pipeline

65

Audio + QA
Pipeline

66

Summarization + QA  
Pipeline

67

Summarization + QA  
Pipeline

68

NLP Pipeline

69

Adaptivity to multiple objectives

70

Effect of predictor

71

Gurobi solver scalability

Full replication package is available
https://github.com/reconfigurable-ml-pipeline

https://github.com/reconfigurable-ml-pipeline

Model Serving
Pipeline

Is only scaling enough?

?

 X

Snapshot of the System

 X

Adaptivity to multiple objectives

InfAdapter [2023]:
Autoscaling for

ML Model Inference

IPA [2024]:
Autoscaling for

ML Inference Pipeline

Sponge [2024]:
Autoscaling for

ML Inference Pipeline with
Dynamic SLO

Dynamic User -> Dynamic Network Bandwidths
˻ Users move

˻ Fluctuations in the network
bandwidths
˻ Reduced time-budget for

processing requests

75

SLO

network latency processing latency

Dynamic User -> Dynamic Network Bandwidths
˻ Users move

˻ Fluctuations in the network
bandwidths
˻ Reduced time-budget for

processing requests

76

SLO

network latency processing latency

Inference Serving Requirements

77

Highly Responsive! Cost-Efficient!

Resource Scaling

In-place Vertical Scaling Horizontal Scaling

(end-to-end latency guarantee) (least resource consumption)

(more responsive) (more cost
efficient)

Sp
onge

!

Vertical Scaling DL Model Profiling
˻ How much resource

should be allocated to a
DL model?
˻ Latency/batch size →

linear relationship
˻ Latency/CPU allocation →

inverse relationship

78

Problem Formulation

79

Problem Formulation

80

Minimize resource costs

Problem Formulation

81

Limit the batch size to grow infinitely!

Minimize resource costs

Problem Formulation

82

Limit the batch size to grow infinitely!

Minimize resource costs

3 design choices:

1. In-place vertical scaling

• Fast response time

2. Request reordering

• High priority requests

3. Dynamic batching

• Increase system utilization

83

System Design

Evaluation
SLO guarantees (99th percentile) with
up to 20% resource save up compared
to static resource allocation.

Sponge source code:
https://github.com/saeid93/sponge

84

https://github.com/saeid93/sponge

Future Directions

85

Resource Scaling

In-place Vertical Scaling Horizontal Scaling
(more responsive) (more cost

efficient)

Sp
onge

!

How can both scaling mechanisms be used jointly under a
dynamic workload to be responsive and cost efficient

while guaranteeing SLOs?

Performance goals are competing and users
have preferences over these goals

The variability space (design space) of
(composed) systems is exponentially increasing

Systems operate in uncertain environments
with imperfect and incomplete knowledge

Goal: Enabling users to find the right quality
tradeoff

Lander Testbed (NASA) Turtlebot 3 (UofSC)

Husky UGV (UofSC)CoBot (CMU)

Thank you,
Saeid Ghafouri!

87

