Reconciling Accuracy, Cost, and Latency of Inference Serving Systems

Pooyan Jamshidi University of South Carolina

https://pooyanjamshidi.github.io/

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani^{*}, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology*, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

Journal of Systems Research

Saeid Ghafouri 😳 University of South Carolina & Queen Mary University of London

Mehran Salmani 💿 Technical University of Ilmenau

Alireza Sanaee 💿 Queen Mary University of London

Joseph Doyle 💿 Queen Mary University of London

JSys

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Kamran Razavi*

Saeid Ghafouri* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Pooyan Jamshidi University of South Carolina

Pooyan Jamshidi 💿 University of South Carolina

Lin Wang Paderborn University

Problem:

Multi-Objective Optimization with Known Constraints under Uncertainty

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$

subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m),$$
$$\lambda_m \leq th_m(n_m)$$
$$p_m(n_m) \leq L, \forall m \in M,$$
$$RC \leq B,$$

Solutions:

Different Assumptions

InfAdapter [2023]: Autoscaling for ML Inference

IPA [2024]: Autoscaling for ML Inference Pipeline

Sponge [2024]: Autoscaling for ML Inference Pipeline Dynamic SLO

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani^{*}, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology*, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH ACCURACY AND COST-EFFICIENCY

University of South Carolina & Queen Mary University of London

Mehran Salmani 💿

Alireza Sanaee 🔘 Queen Mary University of London

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Saeid Ghafouri* Kamran Razavi* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Volume 4, Issue 1, April 2024

Tania Lorido Botran 💷

Lin Wang 💿

InfAdapter [2023]: Autoscaling for ML Model Inference

IPA [2024]: Autoscaling for **ML Inference Pipeline**

Sponge [2024]: Autoscaling for ML Inference Pipeline with **Dynamic SLO**

"More than 90% of data center compute for ML workload, is used by inference services"

ML inference services have strict requirements

Highly Responsive!

ML inference services have strict requirements

Highly Responsive! Cost

Cost-Efficient!

ML inference services have strict requirements

Highly Responsive! Cost

Cost-Efficient!

Highly Accurate!

ML inference services have strict & conflicting requirements

Highly Responsive! Cos

Cost-Efficient! Highly Accurate!

More challenge: Dynamic workload

makeameme.org

Over Provisioning

Under Provisioning

ResNet18: Tiger

Quality adaptation

ResNet152: Dog

Quality adaptation

Solution: InfAdapter

InfAdapter is a latency SLO-aware, highly accurate, and cost-efficient inference serving system.

Different throughputs with different model variants

Model Variant

Higher average accuracy by using multiple model variants

InfAdapter: How?

Selecting a **subset of model variants**, each having its size meeting latency requirements for the predicted workload while **maximizing accuracy and minimizing resource cost**

$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$

Maximizing Average Accuracy

 $\alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$

Maximizing Average Accuracy Minimizing Resource and Loading Costs

 $(\beta \cdot RC + \gamma \cdot LC)$

- max $\alpha \cdot A$
- subject to $\lambda \leq$
 - $\lambda_m \leq$
 - $p_m(n)$
 - $RC \leq$

$$\alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$

$$\lambda \leq \sum_{m \in M} th_m(n_m),$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

$$A - (\beta \cdot RC + \gamma \cdot LC)$$

$$\sum_{m \in M} th_m(n_m), \qquad \text{Supporting incoming worklos}$$

$$\leq th_m(n_m)$$

$$n_m) \leq L, \forall m \in M,$$

$$\leq B,$$

 $n_m \in W, \forall m \in M.$

$$A - (\beta \cdot RC + \gamma \cdot LC)$$

$$\sum_{m \in M} th_m(n_m), \qquad \text{Supporting incoming worklos}$$

$$\leq th_m(n_m)$$

$$n_m) \leq L, \forall m \in M,$$

$$\leq B,$$

 $n_m \in \mathbb{W}, \forall m \in M.$

InfAdapter: Design

InfAdapter: Design

InfAdapter: Design

InfAdapter: Experimental evaluation setup

Workload: Twitter-trace sample (2022-08) Baselines: Kubernetes VPA and Model-Switching

Used models: Resnet18, Resnet34, Resnet50, Resnet101, Resnet152 Interval adaptation: 30 seconds Kubernetes cluster: 48 Cores, 192 GiB RAM

Workload Pattern

InfAdapter: P99-Latency evaluation

InfAdapter: P99-Latency evaluation

InfAdapter: Tradeoff Space

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Takeaway

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

Using a set of model variants simultaneously provides higher average accuracy compared to having one variant.

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

() https://github.com/reconfigurable-ml-pipeline/InfAdapter

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani^{*}, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology^{*}, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

Kamran Razavi* Saeid Ghafouri* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Volume 4, Issue 1, April 2024

Kamran Razavi 😳 Technical University of Darmstadt

Lin Wang 💿 Paderborn University

InfAdapter [2023]: Autoscaling for ML Model Inference

IPA [2024]: Autoscaling for **ML Inference Pipeline**

Sponge [2024]: Autoscaling for ML Inference Pipeline with **Dynamic SLO**

Inference Pipeline

What should be characteristic of an inference pipeline?

What should be characteristic of an inference pipeline?

- Scalability: The pipeline should be able to handle large volumes of data and scale horizontally to accommodate increases in input size or request frequency.
- Low Latency: Inference should be fast, especially in real-time or near-real-time applications. The pipeline should minimize processing time to deliver quick predictions.
- **Reproducibility**: The pipeline should consistently produce the same results for the same input, ensuring that predictions are reproducible across different environments.
- Robustness and Fault Tolerance: The pipeline should be resilient to failures, with mechanisms to handle errors gracefully, such as retry logic, circuit breakers, or fallback models.

What should be characteristic of an inference pipeline?

- Model Management: The pipeline should allow for easy integration, updating, and switching of models. This includes versioning, rollback capabilities, and support for different model formats (e.g., TensorFlow, PyTorch, ONNX).
- Resource Efficiency: The pipeline should make optimal use of computational resources, balancing the trade-offs between cost, speed, and accuracy. This includes utilizing CPU/GPU resources effectively and managing memory usage.
- Adaptability: The pipeline should be flexible enough to adapt to new types of data, different model architectures, or changes in the environment (e.g., hardware upgrades or cloud migration).

Is only scaling enough?

The Variabilities ML Pipelines

Effect of Batching

How to navigate the Accuracy/Latency trade-off space?

Previous works, **INFaaS** and **Model-Switch**, have proven that there is a big latencyaccuracy-resource footprint tradeoff of models trained for the same task.

Cheap Inference

Accurate Model

User Goals

Goal: Providing a flexible inference pipeline

Snapshot of the System

Search Space

Problem Formulation

Problem Formulation

Implementation and Experimental Setup

How to navigate Model Variants

- 1. Industry standard
- 2. Used in recent research
- 3. Complete set of autoscaling, scheduling, observability tools (e.g. CPU usage)
- 4. APIs for changing the current AutoScaling algorithms

B CORE

- 1. Industry standard ML server
- 2. Have the ability make inference graph
- 3. Rest and GRPC endpoints
- 4. Have many of the features we need like monitoring stack out of the box

⁽e) Natural Language Processing

Experimental Results

Video Pipeline

Audio + QA Pipeline

Summarization + QA Pipeline

Summarization + QA Pipeline

NLP Pipeline

Adaptivity to multiple objectives

Accuracy-priorotize 🗾 Balance 🔲 Resource-priorotize

Effect of predictor

Gurobi solver scalability

Full replication package is available

https://github.com/reconfigurable-ml-pipeline

AdaptiveFlow Repositories related to Sus Repositories related to Sus Repositories related to Sus	tainability, Performance es of America	e, Auto-scaling, Reconfiguration, Runtime Optimizations for ML Inferenc	e Pipelines
opular repositories			⊙ View as: Public
ipa	Public	InfAdapter	You are viewing the README and pinned repositories as a public user.
Source code of IPA		Source code of "Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems"	You can create a README file or pin repositories visible to anyone.
● Jupyter Notebook 🖒 8 🖓 4		● Python 🏠 7	Get started with tasks that most successful organizations complete.
oad_tester	Public	kubernetes-python-client Public	
Python 🟠 2		Python	Discussions
			Set up discussions to engage with your community!
INFaaS Forked from <u>stanford-mast/INFaaS</u>	Public		Turn on discussions
Model-less Inference Serving			
C++			People
Model Serving Pipeline

Snapshot of the System

Is only scaling enough?

Adaptivity to multiple objectives

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani^{*}, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology^{*}, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH **ACCURACY AND COST-EFFICIENCY**

University of South Carolina & Queen Mary University of London

Mehran Salmani 💿

Alireza Sanaee 🕕 Queen Mary University of London

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Kamran Razavi* Saeid Ghafouri* Max Mühlhäuser Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

> Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Volume 4, Issue 1, April 2024

Tania Lorido Botran 🔘

Lin Wang 🕔

InfAdapter [2023]: Autoscaling for ML Model Inference

IPA [2024]: Autoscaling for **ML Inference Pipeline**

Sponge [2024]: Autoscaling for ML Inference Pipeline with **Dynamic SLO**

Dynamic User -> Dynamic Network Bandwidths

- Users move
 - Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

Dynamic User -> Dynamic Network Bandwidths

- L Users move
 - Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

Inference Serving Requirements

Highly Responsive!

(end-to-end latency guarantee)

Sponse. In-place Vertical Scaling

(more responsive)

Cost-Efficient!

(least resource consumption)

Resource Scaling

Horizontal Scaling (more cost

efficient)

Vertical Scaling DL Model Profiling YOLOv5s

- How much resource should be allocated to a DL model?
 - Latency/batch size → linear relationship
 - Latency/CPU allocation → inverse relationship

ResNet18

Minimize $c + \delta \times b$

subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \geq \lambda$ $b, c \in \mathbb{Z}^+$

 $c + \delta \times b$

Minimize

subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \geq \lambda$ $b, c \in \mathbb{Z}^+$

Minimize resource costs

Minimize resource costs $c + \delta \times b$ — Limit the batch size to grow infinitely! subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \geq \lambda$ $b, c \in \mathbb{Z}^+$

Minimize

Minimize resource costs $c + \delta \times b$ — Limit the batch size to grow infinitely! Minimize subject to $l(b, c) + q_r(b, c) + cl_{max} \leq SLO$, $\forall r \in R$ $h(b,c) \ge \lambda$ $b,c \in \mathbb{Z}^+$ R Set of all requests b Model's batch size Model's CPU allocation С Communication latency associated with $r \in R$ cl_r cl_{max} Highest cl_r in R Pre-defined SLO for *R* SLO l(b,c)Processing time of a model with allocation core *c* and batch size b Queuing time of $r \in R$ with allocation core c and $q_r(b,c)$ batch size b h(b,c)Throughput of a model with allocation core c and batch size b Request arrival rate λ

3 design choices:

In-place vertical scaling 1.

- Fast response time
- 2. Request reordering
 - High priority requests
- **3.** Dynamic batching
 - Increase system utilization \bullet

System Design

SLO guarantees (99th percentile) with up to 20% resource save up compared to static resource allocation.

Sponge source code: (7)

https://github.com/saeid93/sponge

Evaluation

sponse. In-place Vertical Scaling (more responsive)

How can both scaling mechanisms be used jointly under a dynamic workload to be responsive and cost efficient while guaranteeing SLOs?

The variability space (design space) of (composed) systems is exponentially increasing

Systems operate in uncertain environments with imperfect and incomplete knowledge Husky UGV (UofSC)

Turtlebot 3 (UofSC)

Performance goals are competing and users have preferences over these goals

Goal: Enabling users to find the right quality tradeoff

Thank you, **Saeid Ghafouri!**

Over the past decade, advancements in machine learning (ML) have paved the way for numerous realworld use cases such as chatbots, self-driving cars, and recommender systems. Traditional ML applications typically use a single deep neural network (DNN) to perform inference tasks, such as object recognition or natural language understanding. In contrast, modern ML systems – those used in sophisticated systems (think digital assistant services such as Amazon Alexa) – are very complex. These systems employ a series of interconnected DNNs, often structured as directed acyclic graphs (DAGs), to handle a variety of inference tasks, including speech recognition, question interpretation, question answering, and text-to-speech conversion, all working together to meet user queries and requirements.

Optimizing Production ML Inference for Accuracy and Cost Efficiency

Pushing the Boundaries of Cost-Effective ML Inference on **Chameleon Testbed**

May 28, 2024 by Saeid Ghafouri

Solution Contents Seatured

