
Pooyan Jamshidi
UofSC

Designing Computer Systems
for Machine Learning
CSCE 585: Machine Learning Systems

Machine
Learning

Computer
Systems

So
ft
wa

re

En
gi

ne
er

in
g

ML Systems

Course overview

What’s machine learning systems design?

The process of defining the interface, algorithms, data, infrastructure, and
hardware for a machine learning system to satisfy specified requirements.

3

What’s machine learning systems design?

The process of defining the interface, algorithms, data, infrastructure, and
hardware for a machine learning system to satisfy specified requirements.

4

reliable, scalable, maintainable, adaptable

5

Infrastructure

Interface

Data ML algorithms

System

Hardware

We’ll learn
about all of this

This class will cover ...

● ML production in the real-world from software, hardware, business perspectives
● Iterative process for building ML systems at scale
○ project scoping, data management, developing, deploying, monitoring & maintenance, infrastructure &

hardware, business analysis
● Challenges and solutions of ML engineering

6

This class will not teach ...

● Machine learning/deep learning algorithms
○ Machine Learning
○ Deep Learning
○ Convolutional Neural Networks for Visual Recognition
○ Natural Language Processing with Deep Learning

● Computer systems
○ Principles of Computer Systems
○ Operating systems design and implementation

● UX design
○ Introduction to Human-Computer Interaction Design
○ Designing Machine Learning: A Multidisciplinary Approach

7

Machine learning: expectation

8

This class won’t teach you
how to do this

http://www.youtube.com/watch?v=0Rg5brwfnF0

Machine learning: reality

9

This class will teach you how to
build something like this
(buggy but cool)

http://www.youtube.com/watch?v=bvPxsmZLqgw

Prerequisites

● Knowledge of CS principles and skills
● Understanding of ML algorithms
● Familiar with at least one framework such as TensorFlow, PyTorch, JAX
● Familiarity with basic probability theory.

10

You will be fine and would take away lots of good
things if you are eager to learn :)

AI value creation by 2030

13 trillion USD
Most of it will be outside the
consumer internet industry

11

We need more people from
non-CS background in AI!

ML System course (CSCE 585) is project-based

12

● Build an ML-powered application
● Must work in group of three
● Demo + report (creative formats encouraged)
● Evaluated by course staff and may include industry experts

See course website: https://pooyanjamshidi.github.io/mls/

https://pooyanjamshidi.github.io/mls/

Grading (undergraduate)

• 10% Participation

• 60% Course Project (Code+Short Report)

• 30% Homework/Quizzes/Assignments/Exams

Grading (graduate)

• 10% Participation

• 40% Course Project (Code+Short Report)

• 20% Short Paper (e.g., SysML workshops at ICLR/ICML)

• 30% Homework/Quizzes/Assignments/Exams

Grading
• A [90 – 100]

• B+ [86 – 90)

• B [75 – 86)

• C+ [70 – 75)

• C [60 – 70)

• D+ [55 – 60)

• D [40 – 55)

• F [0 – 40)

Office hours

• When? TR 13:00 pm – 14 pm

• Where? Innovation Building 2212

https://pooyanjamshidi.github.io/mls/

https://pooyanjamshidi.github.io/mls/

Discussions

• Piazza: you have already been added!

• Ask questions

• Answer others’ questions

• Learn from others’ questions and answers

• Find teammates

Course Information:
Feedback

• Please give feedback (positive or
negative) as often as and as early
as you can.

Link: tiny.cc/s2tkbz

Project Proposal
• What is the problem that you will be investigating? Why is it interesting?

• What reading will you examine to provide context and background?

• What data will you use? If you are collecting new data, how will you do it?

• What method or algorithm are you proposing? If there are existing
implementations, will you use them and how? How do you plan to improve
or modify such implementations? You don't have to have an exact answer at
this point, but you should have a general sense of how you will approach the
problem you are working on.

• How will you evaluate your results? Qualitatively, what kind of results do you
expect (e.g. plots or figures)? Quantitatively, what kind of analysis will you
use to evaluate and/or compare your results (e.g. what performance metrics
or statistical tests)?

How projects will be
evaluated

• You can work in teams of up to 2 or 3 people.

• No communications between the two teams

• Every teammate should be able to demonstrate her/his
contribution

• The outcome will be evaluated based on the quality of the
results, report, and final presentation.

• The final report is an iPython notebook that has
documentation, results, comparisons, discussions, and
related work.

Honor code: permissive but strict - don’t test us ;)

● OK to search, ask in public about the systems we’re studying. Cite all the
resources you reference.

○ E.g. if you read it in a paper, cite it. If you ask on Quora, include the link.
● NOT OK to ask someone to do assignments/projects for you.
● OK to discuss questions with classmates. Disclose your discussion partners.
● NOT OK to copy solutions from classmates.
● OK to use existing solutions as part of your projects/assignments. Clarify your

contributions.
● NOT OK to pretend that someone’s solution is yours.
● OK to publish your final project after the course is over (we encourage that!)
● NOT OK to post your assignment solutions online.
● ASK the course staff if unsure! 22

Important Dates

• Project proposal: due Thursday, September 12.

• Project milestone: due October 17.

• Final report: due December 3.

• Poster PDF: November 28

How the project report
should looks like?

How the project report
should looks like?

How the project report
should looks like?

Design think it a lil
• Have each member of your team flesh out 20 quick ideas down on paper before

meeting. Don’t be afraid to get creative

• Filter out list by doing quick Google searches on data a. Anything below GB scale of
data...good luck. Vision = big datasets b. If you have an idea, Google it first! Don’t want
to “just” reproduce the same result. There’s probably a Github with your project already

• Pay attention to how long and much data the models you see are trained on

• Find pattern in data+architecture combos

• Ask are there little tweaks or other experiments that haven’t been done yet?

• Can you extend the idea in one paper with another?

• Which idea gives you more things to experiment with? 8. How can you get pretty
images / figures?

Try to avoid
• Nothing special in data pipeline. Uses prepackaged source  

Team starts late. Just instance and draft of code up by milestone

• Explore 3 architectures with code that already exists a. One RES-
net, then a VGG, and then some slightly different thing

• Only ran models until they got ~65% accuracy 5. Didn’t
hyperparameter search much

• A few standard graphs: loss curves, accuracy chart, simple
architecture graphic

• Conclusion doesn’t have much to say about the task besides that
it didn’t work

Aim for this
• Workflow set-up configured ASAP

• Have running code and have baseline model running and fully-trained

• Creative hypothesis is being tested

• Mixing knowledge from different aspects in DL

• Have a meaningful graphic (pretty or info rich)

• Conclusion and Results teach me something

• ++interactive demo

• ++novel / impressive engineering feat

• ++good results

Milestone Goals
• We want to see you have code up and running

• Data source explained correctly a. Give the true train/test/val split b. Number
training examples c. Where you got the data

• What Github repo, or other code you’re basing off of

• Ran baseline model have results a. Points off for no model running, no results

• Data pipeline should be in place

• Brief discussion of initial, preliminary results

• Reasonable literature review (3+ sources)

• 1-2 page progress report. Not super formal

ML Systems Project Ideas

Reviewed for technical accuracy May 24, 2021
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. AWS Reference Architecture

Run Machine Learning Algorithms with Satellite Data
Use AWS Ground Station to ingest satellite imagery, and use Amazon SageMaker to label image data, train a machine
learning model, and deploy inferences to customer applications. 2

3

1
Satellite sends data and imagery to the AWS
Ground Station antenna.

AWS Ground Station delivers baseband or
digitized RF-over-IP data to an Amazon EC2
instance.

The Amazon EC2 instance receives and
processes the data, and then stores the data
in an Amazon S3 bucket.

A Jupyter Notebook ingests data from the
Amazon S3 bucket to prepare the data for
training.

Amazon SageMaker Ground Truth labels
the images.

The labeled images are stored in the
Amazon S3 bucket.

The Jupyter Notebook hosts the training
algorithm and code.

Amazon SageMaker runs the training
algorithm on the data and trains the
machine learning (ML) model.

Amazon SageMaker deploys the ML models
to an endpoint.

The SageMaker ML model processes image
data and stores the generated inferences
and metadata in Amazon DynamoDB.

Image data received into Amazon S3
automatically triggers an AWS Lambda
function to run machine learning services on
the image data.

Applications interact with AWS Amplify to
access the ML algorithm and database.

Data Ingestion Machine Learning Applications

Satellite
AWS Ground Station

Digitized RF
over IP

Antenna Control

Contact
Scheduling

Demodulation /
Error Correction

Amazon EC2
instance

Data Preparation Notebooks

Amazon SageMaker
Ground Truth

Training Notebooks

AWS Lambda

SageMaker Model
Endpoints

Amazon
DynamoDB

AWS Amplify

User Applications

1

S3 Bucket

S3 Bucket

2

3

4

5

6

7

Amazon SageMaker

8

9

4

5

7

8

9

10

12

11

10

11

12

6

Other project ideas

• Focusing on one aspect of ML Systems like testing, deployment,
explainability, etc.

• You can work with a company (interview, etc) for documenting their ML
practices, then writing a report to be submitted to a conference or a
workshop

• Mining software repositories for ML Systems practices (with a central
hypothesis)

ML in research vs. production
This part of lecture is mainly adopted from CS 329S: Machine Learning Systems Design at Stanford

37

Research Production
Objectives Model performance* Different stakeholders have different

objectives

“*” It’s actively being worked. See Utility is in the Eye of the User: A Critique of NLP Leaderboards (Ethayarajh and Jurafsky, EMNLP 2020)

ML in research vs. in production

https://arxiv.org/abs/2009.13888

38

ML team
highest accuracy

Stakeholder objectives

39

ML team
highest accuracy

Sales
sells more ads

Stakeholder objectives

40

ML team
highest accuracy

Sales
sells more ads

Stakeholder objectives
Product
fastest inference

41

ML team
highest accuracy

Sales
sells more ads

Manager
maximizes profit
= laying off ML teams

Stakeholder objectives
Product
fastest inference

42

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Computational priority

generating predictions

Latency matters

Latency 100 -> 400 ms reduces searches 0.2% - 0.6% (2009)

30% increase in latency costs 0.5% conversion rate (2019)

43

44

● Latency: time to move a leaf
● Throughput: how many leaves in 1 sec

45

● Real-time: low latency = high throughput
● Batched: high latency, high throughput

46

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

ML in research vs. in production

47

Data

Research Production
● Clean
● Static
● Mostly historical data

● Messy
● Constantly shifting
● Historical + streaming data
● Biased, and you don’t know how biased
● Privacy + regulatory concerns

48

49

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

ML in research vs. in production

50

Fairness

51

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability* Good to have Important

ML in research vs. in production

52

Interpretability

Result from the Zoom poll

53

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

ML in research vs. in production

Breakout
Each lecture, you’ll be randomly assigned to a group

7 mins - no one right answer!

1. How can academic leaderboards be modified to account for multiple
objectives? Should they?

2. ML models are getting bigger and bigger. How does this affect the usability of
these models in production?

55

Don’t forget to introduce yourself to your
classmates!

Future of leaderboards

● More comprehensive utility function
○ Model performance (e.g. accuracy)
○ Latency
○ Prediction cost
○ Interpretability
○ Robustness
○ Ease of use (e.g. OSS tools)
○ Hardware requirements

● Adaptive to different use cases
○ Instead of a leaderboard for each dataset/task, each use case has its own leaderboard

● Dynamic datasets
○ Distribution shifts

56

Dynamic datasets

57

WILDS (Koh and Sagawa et al., 2020): 7 datasets with evaluation metrics and
train/test splits representative of distribution shifts in the wild.

ML systems vs. traditional software
Software 1.0 vs Software 2.0

Traditional software

● Code and data are separate
○ Inputs into the system shouldn’t change the underlying code

59
Image by Arda Cetinkaya

Separation of Concerns is a design principle for
separating a computer program into distinct sections
such that each section addresses a separate concern

https://www.minepla.net/2014/10/prensip-sahibi-yazilimlar-soc-dry/

ML systems

● Code and data are tightly coupled
○ ML systems are part code, part data

● Not only test and version code, need to test and version data too

60

the hard part

ML System: version data

● Line-by-line diffs like Git doesn’t work with datasets
● Can’t naively create multiple copies of large datasets
● How to merge changes?

61

ML System: test data

● How to test data correctness/usefulness?
● How to know if data meets model assumptions?
● How to know when the underlying data distribution has changed? How to

measure the changes?
● How to know if a data sample is good or bad for your systems?
○ Not all data points are equal (e.g. images of road surfaces with cyclists are more important for

autonomous vehicles)
○ Bad data might harm your model and/or make it susceptible to attacks like data poisoning attacks

62

ML System: data poisoning attacks

63
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning (Chen et al., 2017)

https://arxiv.org/abs/1712.05526

Engineering challenges with large ML models

● Too big to fit on-device
● Consume too much energy to work on-device
● Too slow to be useful
○ Autocompletion is useless if it takes longer to make a prediction than to type

● How to run CI/CD tests if a test takes hours/days?

64

ML production myths

Myth #1: Deploying is hard

66

Myth #1: Deploying is hard

Deploying is easy. Deploying reliably is hard

67

Myth #2: You only deploy one or two ML models
at a time

68

Myth #2: You only deploy one or two ML models
at a time

Booking.com: 150+ models, Uber: thousands

69

Myth #3: If we don’t do anything, model
performance remains the same

70

Myth #3: If we don’t do anything, model
performance remains the same

Concept drift

71

Myth #3: If we don’t do anything, model
performance remains the same

Concept drift
Tip: train models on data generated 2 months ago & test

on current data to see how much worse they get.

72

Myth #4: You won’t need to update your models
as much

73

Myth #4: You won’t need to update your models
as much

DevOps standard
● Etsy deployed 50 times/day
● Netflix 1000s times/day
● AWS every 11.7 seconds

Weibo’s ML iteration cycles: 10 minutes

74

Weibo’s iteration cycle: 10 mins

75
Machine learning with Flink in Weibo (Qian Yu, QCon 2019)

https://www.youtube.com/watch?v=WQ520rWgd9A&ab_channel=FlinkForward

ML + DevOps =

76

Myth #5: Most ML engineers don’t need to worry
about scale

77

Myth #5: Most ML engineers don’t need to worry
about scale

78
StackOverflow Developer Survey 2019

https://insights.stackoverflow.com/survey/2019

Myth #6: ML can magically transform your
business overnight

79

Myth #6: ML can magically your business
overnight

Magically: possible
Overnight: no

80

Efficiency improves with maturity

81
2020 state of enterprise machine learning (Algorithmia, 2020)

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf

Trustworthy AI/ML

Software 1.0 vs Software 2.0

• Written in code (C++, ...)

• Requires domain expertise

1. Decompose the problem

2. Design algorithms

3. Compose into a system

• Written in terms of a neural
network model with

• A model architecture

• Weights that are
determined using
optimization

1.0 2.0

https://medium.com/@karpathy/software-2-0-a64152b37c35

Software 1.0 vs Software 2.0

• Input: Algorithms in code

• Compiled to: Machine
instructions

• Input: Training data

• Compiled to: Learned
parameters

1.0 2.0

https://medium.com/@karpathy/software-2-0-a64152b37c35

Software 1.0 vs Software 2.0

• Easier to build and deploy

• Build products faster

• Predictable runtimes and
memory use: easier
qualification

• A wide range of applications
from self-driving cars, to
game, healthcare, robotics,
space, and social good.

• 1000x Productivity: Google
shrinks language translation
code from 500k LoC to 500

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-
automationbetter-jobs/
https://ai.google/social-good/

What is going on in this mad era of AI/ML!
It’s incredible, isn’t it?

Incredible advances in:

1. Image Recognition (ImageNet + Deep Learning)

2. Reinforcement Learning (DeepMind AlphaGo Zero)

3. Natural Language Processing (GPT-3)

What is going on in this mad era of AI/ML!
They are taking over our society too!

AI is becoming the integral part of our everyday life
Should we be worried?

AI is becoming the integral part of our everyday life
Should we be worried?

AI could be racist
Algorithmic bias

AI could be racist
Algorithmic bias

AI could be also gender biased
Algorithmic bias

AI could be also gender biased
Algorithmic bias

What is the source of the problem?
Data or Algorithms or Both?

AI/ML Systems can be easily fooled!
What? Yes, it is true, and the implications could be massive!

AI/ML Systems can be easily fooled!
What? Yes, it is true, and the implications could be massive!

AI and Compute
The amount of compute used in the largest AI training runs has been increasing exponentially with a 3.4-month doubling time (by
comparison, Moore’s Law had a 2-year doubling period).

AI and Compute
Two Distinct Eras of Compute Usage in Training AI Systems

AI and Compute
Two Distinct Eras of Compute Usage in Training AI Systems

AI and Compute
Two Distinct Eras of Compute Usage in Training AI Systems

Machine Learning Systems
Algorithmic Bias Fooling AI Systems AI and Compute

Designing
Machine Learning Systems

What is missing?
The gap between ML Research and Production

What is missing?
The gap between ML Research and Production

What is missing?
The gap between ML Research and Production

In ML Systems, only a small fraction is comprised of actual ML code

A vast array of surrounding infrastructure and processes is needed to support
evolution of ML systems

Technical debt that can accumulate in ML systems

• Data dependencies

• Model complexity

• Reproducibility

• Testing

• Monitoring

• Configuration issues

• External changes

Systems issues in ML Systems

System = Software + Middleware + Hardware

CPU Memory

ControllerGPU

Lib APIClients
Devices

Network

Task Scheduler Device Drivers

File System

Compilers

Memory Manager

Process Manager

Frontend

Application
Layer

OS/Kernel
Layer

Hardware
Layer

Deployment

SoC Generic hardware Production Servers

Systems issues in ML Systems

The Building Process of ML Systems
Continuous Delivery for ML Systems

A Machine Learning System is more than just a model
Change in ML Systems

Train ML model, integrate it with an application, and deploy into production

ML model behind a web application

Challenges

• Throw over the wall

• Models that only work
in a lab environment

• Even if make it to
production, they
become stale and
hard to update

• Reproducible and
auditable

ML pipeline

Configure ML pipeline: DVC tracks ML models and data sets

Configure ML pipeline: DVC tracks ML models and data sets

Configure ML pipeline: DVC tracks ML models and data sets

• Each run will create a file, that can be committed to version control

• DVC allows other people to reproduce the entire ML pipeline, by executing
the dvc repro command.

• Once we find a suitable model, we will treat it as an artifact that needs to be
versioned and deployed to production.

• With DVC, we can use the dvc push and dvc pull commands to publish and
fetch it from external storage.

Configure ML pipeline: DVC tracks ML models and data sets

There are other open source tools for versioning
Pachyderm

There are other open source tools for versioning
MLflow

Model Serving
Abstract level

Model Serving
TF Serving

Model Serving
Web app

Model Serving
Internet of Thing

Model Serving
Stream Processing System

Model Serving
Embedded model

• Simple approach

• You treat the model artifact as a dependency that is built and packaged within
the consuming application.

• You can treat the application artifact and version as being a combination of
the application code and the chosen model.

Model Serving
Model deployed as a separate service

• The model is wrapped in a service that can be deployed independently of the
consuming applications.

• This allows updates to the model to be released independently, but it can also
introduce latency at inference time

• There will be some sort of remote invocation required for each prediction.

Model Serving
Model published as data

• The model is also treated and published independently,

• But the consuming application will ingest it as data at runtime.

• We have seen this used in streaming/real-time scenarios where the
application can subscribe to events that are published whenever a new model
version is released, and ingest them into memory while continuing to predict
using the previous version.

• Software release patterns such as Canary Releases can also be applied in
this scenario.

Export ML models to production environment
Open Neural Network Exchange

Testing and Quality in Machine Learning

• Regardless of which pattern you decide to use, there is always an implicit
contract between the model and its consumers.

• The model will usually expect input data in a certain shape, and if Data
Scientists change that contract to require new input or add new features, you
can cause integration issues and break the applications using it.

• So testing becomes important.

Testing Machine Learning Systems
Validating data

• Tests to validate input data against the expected schema, or to validate our
assumptions about its valid values:

• Values fall within expected ranges

• Values are not null

• Unit tests to check features are calculated correctly:

• Numeric features are scaled or normalized,

• One-hot encoded vectors contain all zeroes and a single 1

• Missing values are replaced appropriately

Testing Machine Learning Systems
Validating component integration

• Test the integration between different services:

• Contract Tests to validate that the expected model interface is compatible
with the consuming application.

• Test that the exported model still produces the same results:

• Running the original and the productionized models against the same
validation dataset, and comparing the results are the same.

https://martinfowler.com/bliki/ContractTest.html

Testing Machine Learning Systems
Validating the model quality

• ML model performance is non-deterministic.

• Collect and monitor metrics to evaluate a model's performance,

• Error rates, accuracy

• Precision, recall

• AUC, ROC, confusion matrix

• Threshold Tests in our pipeline, to ensure that new models don't degrade
against a known performance baseline.

Testing Machine Learning Systems
Validating model bias and fairness

• Check how the model performs against baselines for specific data slices:

• Inherent bias in the training data where there are many more data points for
a given value of a feature (e.g. race, gender, or region) compared to the
actual distribution in the real world.

• A tool like Facets can help you visualize those slices and the distribution of
values across the features in your datasets.

Testing Machine Learning Systems
Integration Test

• When models are distributed or exported to be used by a different
application,

• The engineered features are calculated differently between training and
serving time.

• Distribute a holdout dataset along with the model artifact, and allow the
consuming application team to reassess the model's performance against the
holdout dataset after it is integrated.

• This would be the equivalent of a broad Integration Test in traditional
software development.

Governance process for ML Systems
Experiments Tracking

• To capture and display information that will allow humans to decide if and
which model should be promoted to production.

• It is common that you will have multiple experiments being tried in parallel, and
many of them might not ever make it to production.

• The code for many of these experiments will be thrown away, and only a few
of them will be deemed worthy of making it to production.

• Different Git branches to track the different experiments in source control.

• Tools such as DVC can fetch and display metrics from experiments running in
different branches or tags, making it easy to navigate between them.

Governance process for ML Systems
MLflow Tracking web UI

Model Deployment
Multiple models

• More than one model performing the same task.

• Train a model to predict demand for each product.

• Deploying the models as a separate service might be better for consuming
applications to get predictions with a single API call.

• You can later evolve how many models are needed behind that Published
Interface.

Model Deployment
Shadow models

• Deploy the new model side-by-side with the current one, as a shadow model

• Send the same production traffic to gather data on how the shadow model
performs before promoting it into the production.

Model Deployment
Competing models

• Multiple versions of the model in production — like an A/B test

• Infrastructure and routing rules required to ensure the traffic is being
redirected to the right models.

• To gather enough data to make statistically significant decisions, which can
take some time.

• Evaluating multiple competing models is Multi-Armed Bandits,

• To define a way to calculate and monitor the reward associated with using
each model.

Model Supervisor

French
Bulldog

French
Bulldog

French
Bulldog

No one
likes dogs

Replication Isolation/
Containment

Supervision/
Delegation

Model Deployment
Online learning models

• To use algorithms and techniques that can continuously improve its
performance with the arrival of new data.

• Constantly learning in production.

• Extra complexities, as versioning the model as a static artifact won't yield the
same results if it is not fed the same data.

• You will need to version not only the training data, but also the production
data that will impact the model's performance.

Orchestration in ML Pipelines

• Provisioning of infrastructure and the execution of the ML Pipelines to train
and capture metrics from multiple model experiments

• Building, testing, and deploying Data Pipelines

• Testing and validation to decide which models to promote

• Provisioning of infrastructure and deployment of models to production

Continuous Integration and Delivery
GoCD

A Continuous Delivery Scenario for ML

1. Machine Learning Pipeline:

• To train and evaluate ML models

• To execute threshold test to decide if the model can be promoted or not

• dvc push to publish it as an artifact

2. Application Deployment Pipeline:

• To build and test the application code

• To fetch the promoted model from the upstream pipeline using dvc pull

• To package a new combined artifact that contains the model and the application as a Docker image

• To deploy them to a production cluster

Combining Machine Learning Pipeline and Application Deployment Pipeline

ML Model Monitoring
How models perform in production and rollback mechanisms

• Model inputs:

• What data is being fed to the models, identifying training-serving skew.

• Model outputs:

• What predictions and recommendations are the models making from these
inputs, to understand how the model is performing with real data.

ML Model Monitoring
How models perform in production and rollback mechanisms

• Model interpretability outputs:

• Metrics such as model coefficients, ELI5, or LIME outputs that allow further
investigation to understand how the models are making predictions to
identify potential overfit or bias that was not found during training.

“Why Should I Trust You?”
Explaining the Predictions of Any Classifier

Explaining individual predictions
A model predicts that a patient has the flu, and LIME highlights the symptoms in the patient’s history that led to the prediction

ML Model Monitoring
How models perform in production and rollback mechanisms

• Model outputs and decisions:

• What predictions our models are making given the production input data,
and also which decisions are being made with those predictions.

• Sometimes the application might choose to ignore the model and make a
decision based on pre-defined rules (or to avoid future bias).

ML Model Monitoring
How models perform in production and rollback mechanisms

• User action and rewards:

• Based on further user action, we can capture reward metrics to understand
if the model is having the desired effect.

• For example, if we display product recommendations, we can track when
the user decides to purchase the recommended product as a reward.

A pipeline for model monitoring
ELK

• Elasticsearch: an open source search engine.

• Logstash: an open source data collector for unified logging layer.

• Kibana: an open source web UI that makes it easy to explore and visualize
the data indexed by Elasticsearch.

A pipeline for model monitoring
ELK

Logging

A pipeline for model monitoring

An End-to-End ML Building Process

Machine Learning Systems
Next class: Foundations of Neural Networks and Learning

https://pooyanjamshidi.github.io/mls/ | Pooyan Jamshidi

