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Course overview



What’s machine learning systems design?

The process of defining the interface, algorithms, data, infrastructure, and 
hardware for a machine learning system to satisfy specified requirements.
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What’s machine learning systems design?

The process of defining the interface, algorithms, data, infrastructure, and 
hardware for a machine learning system to satisfy specified requirements.
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reliable, scalable, maintainable, adaptable
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Infrastructure

Interface

Data ML algorithms

System

Hardware

We’ll learn 
about all of this



This class will cover ...

● ML production in the real-world from software, hardware, business perspectives 
● Iterative process for building ML systems at scale 
○ project scoping, data management, developing, deploying, monitoring & maintenance, infrastructure & 

hardware, business analysis 
● Challenges and solutions of ML engineering
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This class will not teach ...

● Machine learning/deep learning algorithms 
○ Machine Learning 
○ Deep Learning 
○ Convolutional Neural Networks for Visual Recognition 
○ Natural Language Processing with Deep Learning 

● Computer systems 
○ Principles of Computer Systems 
○ Operating systems design and implementation 

● UX design 
○ Introduction to Human-Computer Interaction Design 
○ Designing Machine Learning: A Multidisciplinary Approach
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Machine learning: expectation
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This class won’t teach you 
how to do this

http://www.youtube.com/watch?v=0Rg5brwfnF0


Machine learning: reality
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This class will teach you how to 
build something like this 
(buggy but cool)

http://www.youtube.com/watch?v=bvPxsmZLqgw


Prerequisites

● Knowledge of CS principles and skills 
● Understanding of ML algorithms  
● Familiar with at least one framework such as TensorFlow, PyTorch, JAX 
● Familiarity with basic probability theory.
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You will be fine and would take away lots of good 
things if you are eager to learn :)



AI value creation by 2030 

13 trillion USD 
Most of it will be outside the 
consumer internet industry
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We need more people from 
non-CS background in AI!



ML System course (CSCE 585) is project-based
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● Build an ML-powered application 
● Must work in group of three 
● Demo + report (creative formats encouraged) 
● Evaluated by course staff and may include industry experts

See course website: https://pooyanjamshidi.github.io/mls/ 

https://pooyanjamshidi.github.io/mls/


Grading (undergraduate)

• 10% Participation


• 60% Course Project (Code+Short Report)


• 30% Homework/Quizzes/Assignments/Exams



Grading (graduate)

• 10% Participation


• 40% Course Project (Code+Short Report)


• 20% Short Paper (e.g., SysML workshops at ICLR/ICML)


• 30% Homework/Quizzes/Assignments/Exams



Grading
• A [90 – 100] 


• B+ [86 – 90) 


• B [75 – 86) 


• C+ [70 – 75) 


• C [60 – 70) 


• D+ [55 – 60) 


• D [40 – 55) 


• F [0 – 40)



Office hours

• When? TR 13:00 pm – 14 pm


• Where? Innovation Building 2212



https://pooyanjamshidi.github.io/mls/

https://pooyanjamshidi.github.io/mls/


Discussions

• Piazza: you have already been added!


• Ask questions


• Answer others’ questions


• Learn from others’ questions and answers


• Find teammates



Course Information: 
Feedback

• Please give feedback (positive or 
negative) as often as and as early 
as you can.

Link: tiny.cc/s2tkbz



Project Proposal
• What is the problem that you will be investigating? Why is it interesting? 


• What reading will you examine to provide context and background? 


• What data will you use? If you are collecting new data, how will you do it? 


• What method or algorithm are you proposing? If there are existing 
implementations, will you use them and how? How do you plan to improve 
or modify such implementations? You don't have to have an exact answer at 
this point, but you should have a general sense of how you will approach the 
problem you are working on. 


• How will you evaluate your results? Qualitatively, what kind of results do you 
expect (e.g. plots or figures)? Quantitatively, what kind of analysis will you 
use to evaluate and/or compare your results (e.g. what performance metrics 
or statistical tests)?



How projects will be 
evaluated

• You can work in teams of up to 2 or 3 people.


• No communications between the two teams


• Every teammate should be able to demonstrate her/his 
contribution


• The outcome will be evaluated based on the quality of the 
results, report, and final presentation.


• The final report is an iPython notebook that has 
documentation, results, comparisons, discussions, and 
related work.



Honor code: permissive but strict - don’t test us ;)

● OK to search, ask in public about the systems we’re studying. Cite all the 
resources you reference. 

○ E.g. if you read it in a paper, cite it. If you ask on Quora, include the link. 
● NOT OK to ask someone to do assignments/projects for you. 
● OK to discuss questions with classmates. Disclose your discussion partners. 
● NOT OK to copy solutions from classmates. 
● OK to use existing solutions as part of your projects/assignments. Clarify your 

contributions. 
● NOT OK to pretend that someone’s solution is yours. 
● OK to publish your final project after the course is over (we encourage that!) 
● NOT OK to post your assignment solutions online. 
● ASK the course staff if unsure! 22



Important Dates

• Project proposal: due Thursday, September 12. 


• Project milestone: due October 17.


• Final report: due December 3. 


• Poster PDF: November 28 



How the project report 
should looks like?



How the project report 
should looks like?



How the project report 
should looks like?



Design think it a lil
• Have each member of your team flesh out 20 quick ideas down on paper before 

meeting. Don’t be afraid to get creative 


• Filter out list by doing quick Google searches on data a. Anything below GB scale of 
data...good luck. Vision = big datasets b. If you have an idea, Google it first! Don’t want 
to “just” reproduce the same result. There’s probably a Github with your project already 


• Pay attention to how long and much data the models you see are trained on 


• Find pattern in data+architecture combos 


• Ask are there little tweaks or other experiments that haven’t been done yet? 


• Can you extend the idea in one paper with another? 


• Which idea gives you more things to experiment with? 8. How can you get pretty 
images / figures?



Try to avoid
• Nothing special in data pipeline. Uses prepackaged source  

Team starts late. Just instance and draft of code up by milestone 


• Explore 3 architectures with code that already exists a. One RES-
net, then a VGG, and then some slightly different thing 


• Only ran models until they got ~65% accuracy 5. Didn’t 
hyperparameter search much 


• A few standard graphs: loss curves, accuracy chart, simple 
architecture graphic


• Conclusion doesn’t have much to say about the task besides that 
it didn’t work



Aim for this
• Workflow set-up configured ASAP 


• Have running code and have baseline model running and fully-trained 


• Creative hypothesis is being tested 


• Mixing knowledge from different aspects in DL 


• Have a meaningful graphic (pretty or info rich) 


• Conclusion and Results teach me something


• ++interactive demo 


• ++novel / impressive engineering feat 


• ++good results



Milestone Goals
• We want to see you have code up and running 


• Data source explained correctly a. Give the true train/test/val split b. Number 
training examples c. Where you got the data 


• What Github repo, or other code you’re basing off of 


• Ran baseline model have results a. Points off for no model running, no results 


• Data pipeline should be in place 


• Brief discussion of initial, preliminary results 


• Reasonable literature review (3+ sources) 


• 1-2 page progress report. Not super formal



ML Systems Project Ideas



Reviewed for technical accuracy May 24, 2021
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. AWS Reference Architecture

Run Machine Learning Algorithms with Satellite Data 
Use AWS Ground Station to ingest satellite imagery, and use Amazon SageMaker to label image data, train a machine 
learning model, and deploy inferences to customer applications. 2
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1
Satellite sends data and imagery to the AWS 
Ground Station antenna.

AWS Ground Station delivers baseband or 
digitized RF-over-IP data to an Amazon EC2 
instance.

The Amazon EC2 instance receives and 
processes the data, and then stores the data 
in an Amazon S3 bucket.

A Jupyter Notebook ingests data from the 
Amazon S3 bucket to prepare the data for 
training.

Amazon SageMaker Ground Truth labels 
the images.

The labeled images are stored in the 
Amazon S3 bucket.

The Jupyter Notebook hosts the training 
algorithm and code.

Amazon SageMaker runs the training 
algorithm on the data and trains the 
machine learning (ML) model.

Amazon SageMaker deploys the ML models 
to an endpoint.

The SageMaker ML model processes image 
data and stores the generated inferences 
and metadata in Amazon DynamoDB.

Image data received into Amazon S3 
automatically triggers an AWS Lambda 
function to run machine learning services on 
the image data.

Applications interact with AWS Amplify to 
access the ML algorithm and database.

Data Ingestion Machine Learning Applications
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AWS Ground Station

Digitized RF 
over IP

Antenna Control

Contact 
Scheduling

Demodulation /
Error Correction
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Data Preparation Notebooks
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Other project ideas

• Focusing on one aspect of ML Systems like testing, deployment, 
explainability, etc.


• You can work with a company (interview, etc) for documenting their ML 
practices, then writing a report to be submitted to a conference or a 
workshop 


• Mining software repositories for ML Systems practices (with a central 
hypothesis)



ML in research vs. production
This part of lecture is mainly adopted from CS 329S: Machine Learning Systems Design at Stanford
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Research Production
Objectives Model performance* Different stakeholders have different 

objectives

“*” It’s actively being worked. See Utility is in the Eye of the User: A Critique of NLP Leaderboards (Ethayarajh and Jurafsky, EMNLP 2020)

ML in research vs. in production

https://arxiv.org/abs/2009.13888
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ML team 
highest accuracy

Stakeholder objectives
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ML team 
highest accuracy

Sales 
sells more ads

Stakeholder objectives
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ML team 
highest accuracy

Sales 
sells more ads

Stakeholder objectives
Product 
fastest inference
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ML team 
highest accuracy

Sales 
sells more ads

Manager 
maximizes profit 
= laying off ML teams

Stakeholder objectives
Product 
fastest inference
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Computational priority

generating predictions



Latency matters

Latency 100 -> 400 ms reduces searches 0.2% - 0.6% (2009) 

30% increase in latency costs 0.5% conversion rate (2019)

43
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● Latency: time to move a leaf 
● Throughput: how many leaves in 1 sec
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● Real-time: low latency = high throughput 
● Batched: high latency, high throughput
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

ML in research vs. in production
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Data

Research Production
● Clean 
● Static 
● Mostly historical data

● Messy 
● Constantly shifting 
● Historical + streaming data 
● Biased, and you don’t know how biased 
● Privacy + regulatory concerns 
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

ML in research vs. in production
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Fairness
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability* Good to have Important

ML in research vs. in production



52

Interpretability

Result from the Zoom poll
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

ML in research vs. in production



Breakout
Each lecture, you’ll be randomly assigned to a group



7 mins - no one right answer!

1. How can academic leaderboards be modified to account for multiple 
objectives? Should they? 

2. ML models are getting bigger and bigger. How does this affect the usability of 
these models in production?

55

Don’t forget to introduce yourself to your 
classmates!



Future of leaderboards

● More comprehensive utility function 
○ Model performance (e.g. accuracy) 
○ Latency 
○ Prediction cost 
○ Interpretability 
○ Robustness 
○ Ease of use (e.g. OSS tools) 
○ Hardware requirements 

● Adaptive to different use cases 
○ Instead of a leaderboard for each dataset/task, each use case has its own leaderboard 

● Dynamic datasets 
○ Distribution shifts

56



Dynamic datasets

57

WILDS (Koh and Sagawa et al., 2020): 7 datasets with evaluation metrics and 
train/test splits representative of distribution shifts in the wild.



ML systems vs. traditional software
Software 1.0 vs Software 2.0



Traditional software

● Code and data are separate 
○ Inputs into the system shouldn’t change the underlying code

59
Image by Arda Cetinkaya

Separation of Concerns is a design principle for 
separating a computer program into distinct sections 
such that each section addresses a separate concern

https://www.minepla.net/2014/10/prensip-sahibi-yazilimlar-soc-dry/


ML systems

● Code and data are tightly coupled 
○ ML systems are part code, part data 

● Not only test and version code, need to test and version data too

60

the hard part



ML System: version data

● Line-by-line diffs like Git doesn’t work with datasets 
● Can’t naively create multiple copies of large datasets 
● How to merge changes?
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ML System: test data

● How to test data correctness/usefulness? 
● How to know if data meets model assumptions? 
● How to know when the underlying data distribution has changed? How to 

measure the changes? 
● How to know if a data sample is good or bad for your systems? 
○ Not all data points are equal (e.g. images of road surfaces with cyclists are more important for 

autonomous vehicles) 
○ Bad data might harm your model and/or make it susceptible to attacks like data poisoning attacks

62



ML System: data poisoning attacks

63
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning (Chen et al., 2017)

https://arxiv.org/abs/1712.05526


Engineering challenges with large ML models

● Too big to fit on-device 
● Consume too much energy to work on-device 
● Too slow to be useful 
○ Autocompletion is useless if it takes longer to make a prediction than to type 

● How to run CI/CD tests if a test takes hours/days?

64



ML production myths



Myth #1: Deploying is hard
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Myth #1: Deploying is hard 

Deploying is easy. Deploying reliably is hard
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Myth #2: You only deploy one or two ML models 
at a time 
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Myth #2: You only deploy one or two ML models 
at a time 

Booking.com: 150+ models, Uber: thousands
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Myth #3: If we don’t do anything, model 
performance remains the same 
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Myth #3: If we don’t do anything, model 
performance remains the same 

Concept drift
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Myth #3: If we don’t do anything, model 
performance remains the same 

Concept drift 
Tip: train models on data generated 2 months ago & test 

on current data to see how much worse they get.
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Myth #4: You won’t need to update your models 
as much 
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Myth #4: You won’t need to update your models 
as much 

DevOps standard 
● Etsy deployed 50 times/day 
● Netflix 1000s times/day 
● AWS every 11.7 seconds 

Weibo’s ML iteration cycles: 10 minutes 
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Weibo’s iteration cycle: 10 mins

75
Machine learning with Flink in Weibo (Qian Yu, QCon 2019)

https://www.youtube.com/watch?v=WQ520rWgd9A&ab_channel=FlinkForward


ML + DevOps =  

76



Myth #5: Most ML engineers don’t need to worry 
about scale 
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Myth #5: Most ML engineers don’t need to worry 
about scale 

78
StackOverflow Developer Survey 2019

https://insights.stackoverflow.com/survey/2019


Myth #6: ML can magically transform your 
business overnight
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Myth #6: ML can magically your business 
overnight 

Magically: possible 
Overnight: no
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Efficiency improves with maturity

81
2020 state of enterprise machine learning (Algorithmia, 2020)

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf


Trustworthy AI/ML



Software 1.0 vs Software 2.0

• Written in code (C++, ...) 


• Requires domain expertise


1. Decompose the problem


2. Design algorithms 


3. Compose into a system

• Written in terms of a neural 
network model with


• A model architecture


• Weights that are 
determined using 
optimization

1.0 2.0

https://medium.com/@karpathy/software-2-0-a64152b37c35



Software 1.0 vs Software 2.0

• Input: Algorithms in code


• Compiled to: Machine 
instructions

• Input: Training data


• Compiled to: Learned 
parameters

1.0 2.0

https://medium.com/@karpathy/software-2-0-a64152b37c35



Software 1.0 vs Software 2.0

• Easier to build and deploy 

• Build products faster 


• Predictable runtimes and 
memory use: easier 
qualification

• A wide range of applications 
from self-driving cars, to 
game, healthcare, robotics, 
space, and social good.


• 1000x Productivity: Google 
shrinks language translation 
code from 500k LoC to 500

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-
automationbetter-jobs/
https://ai.google/social-good/



What is going on in this mad era of AI/ML!
It’s incredible, isn’t it?

Incredible advances in: 


1. Image Recognition (ImageNet + Deep Learning) 


2. Reinforcement Learning (DeepMind AlphaGo Zero) 


3. Natural Language Processing (GPT-3)



What is going on in this mad era of AI/ML!
They are taking over our society too!



AI is becoming the integral part of our everyday life
Should we be worried?



AI is becoming the integral part of our everyday life
Should we be worried?



AI could be racist
Algorithmic bias



AI could be racist
Algorithmic bias



AI could be also gender biased
Algorithmic bias



AI could be also gender biased
Algorithmic bias



What is the source of the problem?
Data or Algorithms or Both?



AI/ML Systems can be easily fooled!
What? Yes, it is true, and the implications could be massive!



AI/ML Systems can be easily fooled!
What? Yes, it is true, and the implications could be massive!



AI and Compute
The amount of compute used in the largest AI training runs has been increasing exponentially with a 3.4-month doubling time (by 
comparison, Moore’s Law had a 2-year doubling period).



AI and Compute
Two Distinct Eras of Compute Usage in Training AI Systems



AI and Compute
Two Distinct Eras of Compute Usage in Training AI Systems



AI and Compute
Two Distinct Eras of Compute Usage in Training AI Systems



Machine Learning Systems
Algorithmic Bias Fooling AI Systems AI and Compute



Designing  
Machine Learning Systems



What is missing?
The gap between ML Research and Production



What is missing?
The gap between ML Research and Production



What is missing?
The gap between ML Research and Production



In ML Systems, only a small fraction is comprised of actual ML code



A vast array of surrounding infrastructure and processes is needed to support 
evolution of ML systems



Technical debt that can accumulate in ML systems

• Data dependencies


• Model complexity


• Reproducibility


• Testing


• Monitoring


• Configuration issues


• External changes



Systems issues in ML Systems



System = Software + Middleware + Hardware

CPU Memory

ControllerGPU

Lib APIClients
Devices

Network

Task Scheduler Device Drivers

File System

Compilers

Memory Manager

Process Manager

Frontend

Application
Layer

OS/Kernel
Layer

Hardware
Layer

Deployment

SoC Generic hardware Production Servers



Systems issues in ML Systems



The Building Process of ML Systems 
Continuous Delivery for ML Systems 



A Machine Learning System is more than just a model
Change in ML Systems



Train ML model, integrate it with an application, and deploy into production



ML model behind a web application



Challenges

• Throw over the wall


• Models that only work 
in a lab environment 


• Even if make it to 
production, they 
become stale and 
hard to update


• Reproducible and 
auditable



ML pipeline



Configure ML pipeline: DVC tracks ML models and data sets



Configure ML pipeline: DVC tracks ML models and data sets



Configure ML pipeline: DVC tracks ML models and data sets

• Each run will create a file, that can be committed to version control 


• DVC allows other people to reproduce the entire ML pipeline, by executing 
the dvc repro command.


• Once we find a suitable model, we will treat it as an artifact that needs to be 
versioned and deployed to production. 


• With DVC, we can use the dvc push and dvc pull commands to publish and 
fetch it from external storage.



Configure ML pipeline: DVC tracks ML models and data sets



There are other open source tools for versioning
Pachyderm



There are other open source tools for versioning
MLflow



Model Serving
Abstract level



Model Serving
TF Serving



Model Serving
Web app



Model Serving
Internet of Thing



Model Serving
Stream Processing System



Model Serving
Embedded model

• Simple approach


• You treat the model artifact as a dependency that is built and packaged within 
the consuming application. 


• You can treat the application artifact and version as being a combination of 
the application code and the chosen model.



Model Serving
Model deployed as a separate service

• The model is wrapped in a service that can be deployed independently of the 
consuming applications. 


• This allows updates to the model to be released independently, but it can also 
introduce latency at inference time


• There will be some sort of remote invocation required for each prediction.



Model Serving
Model published as data

• The model is also treated and published independently, 


• But the consuming application will ingest it as data at runtime. 


• We have seen this used in streaming/real-time scenarios where the 
application can subscribe to events that are published whenever a new model 
version is released, and ingest them into memory while continuing to predict 
using the previous version. 


• Software release patterns such as Canary Releases can also be applied in 
this scenario.



Export ML models to production environment
Open Neural Network Exchange



Testing and Quality in Machine Learning

• Regardless of which pattern you decide to use, there is always an implicit 
contract between the model and its consumers. 


• The model will usually expect input data in a certain shape, and if Data 
Scientists change that contract to require new input or add new features, you 
can cause integration issues and break the applications using it. 


• So testing becomes important.



Testing Machine Learning Systems
Validating data

• Tests to validate input data against the expected schema, or to validate our 
assumptions about its valid values: 


• Values fall within expected ranges


• Values are not null


• Unit tests to check features are calculated correctly:


• Numeric features are scaled or normalized, 


• One-hot encoded vectors contain all zeroes and a single 1


• Missing values are replaced appropriately



Testing Machine Learning Systems
Validating component integration

• Test the integration between different services:


• Contract Tests to validate that the expected model interface is compatible 
with the consuming application. 


• Test that the exported model still produces the same results:


• Running the original and the productionized models against the same 
validation dataset, and comparing the results are the same.

https://martinfowler.com/bliki/ContractTest.html


Testing Machine Learning Systems
Validating the model quality

• ML model performance is non-deterministic.


• Collect and monitor metrics to evaluate a model's performance, 


• Error rates, accuracy


• Precision, recall


• AUC, ROC, confusion matrix


• Threshold Tests in our pipeline, to ensure that new models don't degrade 
against a known performance baseline.



Testing Machine Learning Systems
Validating model bias and fairness

• Check how the model performs against baselines for specific data slices:


• Inherent bias in the training data where there are many more data points for 
a given value of a feature (e.g. race, gender, or region) compared to the 
actual distribution in the real world. 


• A tool like Facets can help you visualize those slices and the distribution of 
values across the features in your datasets.



Testing Machine Learning Systems
Integration Test

• When models are distributed or exported to be used by a different 
application, 


• The engineered features are calculated differently between training and 
serving time. 


• Distribute a holdout dataset along with the model artifact, and allow the 
consuming application team to reassess the model's performance against the 
holdout dataset after it is integrated. 


• This would be the equivalent of a broad Integration Test in traditional 
software development.



Governance process for ML Systems
Experiments Tracking

• To capture and display information that will allow humans to decide if and 
which model should be promoted to production. 


• It is common that you will have multiple experiments being tried in parallel, and 
many of them might not ever make it to production.


• The code for many of these experiments will be thrown away, and only a few 
of them will be deemed worthy of making it to production.


• Different Git branches to track the different experiments in source control. 


• Tools such as DVC can fetch and display metrics from experiments running in 
different branches or tags, making it easy to navigate between them.



Governance process for ML Systems
MLflow Tracking web UI



Model Deployment
Multiple models

• More than one model performing the same task. 


• Train a model to predict demand for each product. 


• Deploying the models as a separate service might be better for consuming 
applications to get predictions with a single API call. 


• You can later evolve how many models are needed behind that Published 
Interface.



Model Deployment
Shadow models

• Deploy the new model side-by-side with the current one, as a shadow model


• Send the same production traffic to gather data on how the shadow model 
performs before promoting it into the production.



Model Deployment
Competing models

• Multiple versions of the model in production — like an A/B test


• Infrastructure and routing rules required to ensure the traffic is being 
redirected to the right models.


• To gather enough data to make statistically significant decisions, which can 
take some time. 


• Evaluating multiple competing models is Multi-Armed Bandits, 


• To define a way to calculate and monitor the reward associated with using 
each model.



Model Supervisor

French 
Bulldog 

French 
Bulldog 

French 
Bulldog 

No one 
likes dogs

Replication Isolation/ 
Containment

Supervision/ 
Delegation



Model Deployment
Online learning models

• To use algorithms and techniques that can continuously improve its 
performance with the arrival of new data. 


• Constantly learning in production. 


• Extra complexities, as versioning the model as a static artifact won't yield the 
same results if it is not fed the same data. 


• You will need to version not only the training data, but also the production 
data that will impact the model's performance.



Orchestration in ML Pipelines

• Provisioning of infrastructure and the execution of the ML Pipelines to train 
and capture metrics from multiple model experiments 


• Building, testing, and deploying Data Pipelines


• Testing and validation to decide which models to promote


• Provisioning of infrastructure and deployment of models to production



Continuous Integration and Delivery
GoCD



A Continuous Delivery Scenario for ML

1. Machine Learning Pipeline: 


• To train and evaluate ML models


• To execute threshold test to decide if the model can be promoted or not


• dvc push to publish it as an artifact


2. Application Deployment Pipeline: 


• To build and test the application code


• To fetch the promoted model from the upstream pipeline using dvc pull


• To package a new combined artifact that contains the model and the application as a Docker image 


• To deploy them to a production cluster



Combining Machine Learning Pipeline and Application Deployment Pipeline



ML Model Monitoring
How models perform in production and rollback mechanisms

• Model inputs: 


• What data is being fed to the models, identifying training-serving skew. 


• Model outputs: 


• What predictions and recommendations are the models making from these 
inputs, to understand how the model is performing with real data.



ML Model Monitoring
How models perform in production and rollback mechanisms

• Model interpretability outputs: 


• Metrics such as model coefficients, ELI5, or LIME outputs that allow further 
investigation to understand how the models are making predictions to 
identify potential overfit or bias that was not found during training.



“Why Should I Trust You?”
Explaining the Predictions of Any Classifier



Explaining individual predictions
A model predicts that a patient has the flu, and LIME highlights the symptoms in the patient’s history that led to the prediction



ML Model Monitoring
How models perform in production and rollback mechanisms

• Model outputs and decisions: 


• What predictions our models are making given the production input data, 
and also which decisions are being made with those predictions. 


• Sometimes the application might choose to ignore the model and make a 
decision based on pre-defined rules (or to avoid future bias).



ML Model Monitoring
How models perform in production and rollback mechanisms

• User action and rewards: 


• Based on further user action, we can capture reward metrics to understand 
if the model is having the desired effect. 


• For example, if we display product recommendations, we can track when 
the user decides to purchase the recommended product as a reward.



A pipeline for model monitoring
ELK

• Elasticsearch: an open source search engine. 


• Logstash: an open source data collector for unified logging layer. 


• Kibana: an open source web UI that makes it easy to explore and visualize 
the data indexed by Elasticsearch.



A pipeline for model monitoring
ELK



Logging



A pipeline for model monitoring



An End-to-End ML Building Process



Machine Learning Systems 
Next class: Foundations of Neural Networks and Learning

https://pooyanjamshidi.github.io/mls/ | Pooyan Jamshidi


