Convolutional Neural Networks (CNNs, ConvNets)

Pooyan Jamshidi UofSC

Partially based on:

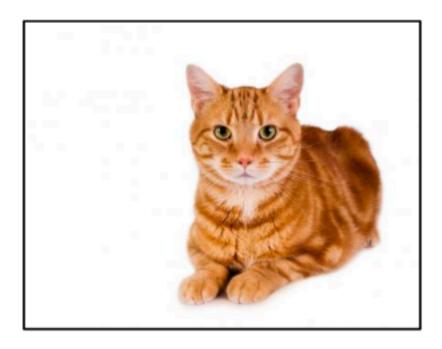
- Chapter 9 of the Deep Learning Book: <u>https://www.deeplearningbook.org/</u>

- <u>CS231n Convolutional Neural Networks for Visual Recognition</u>

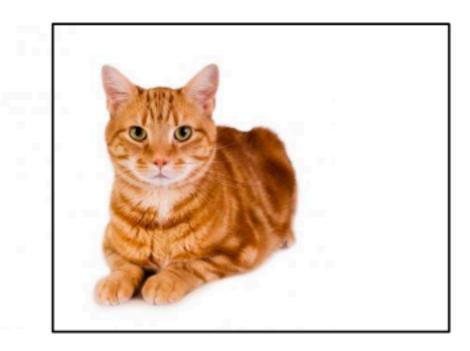
Convolutional Networks

- Scale up neural networks to process very large images / video sequences
 - Sparse connections
 - Parameter sharing
- Automatically generalize across spatial translations of inputs
- Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, ...)

Shift Invariance in Convolutional Neural Networks



Cat



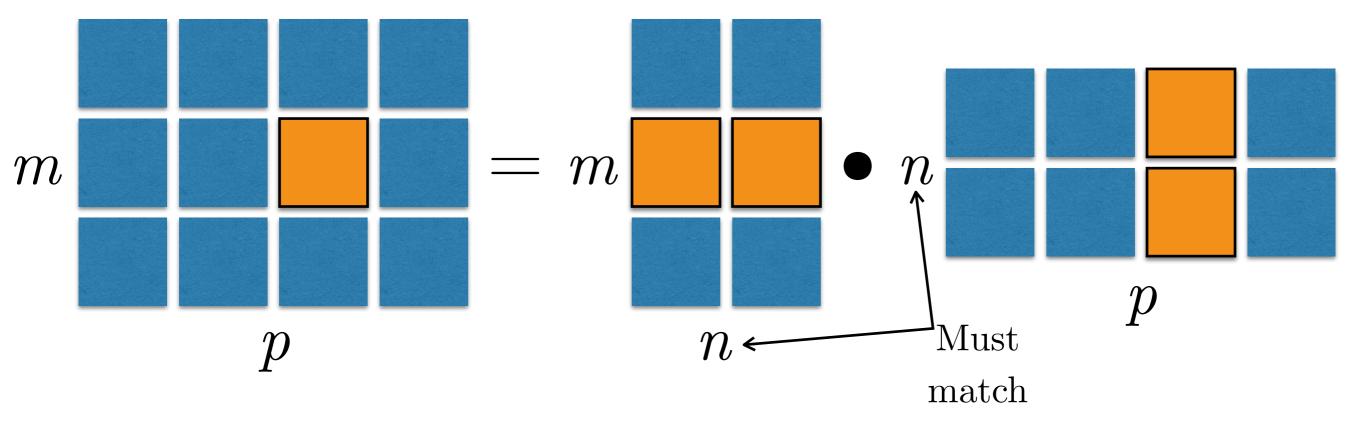
Cat

Key Idea

- Replace matrix multiplication in neural nets with convolution
- Everything else stays the same
 - Maximum likelihood
 - Back-propagation
 - etc.

Matrix (Dot) Product

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$



$$(\boldsymbol{A}^{\top})_{i,j} = A_{j,i}. \tag{2.3}$$

 $(\boldsymbol{A}\boldsymbol{B})^{\top} = \boldsymbol{B}^{\top}\boldsymbol{A}^{\top}.$

2D Convolution

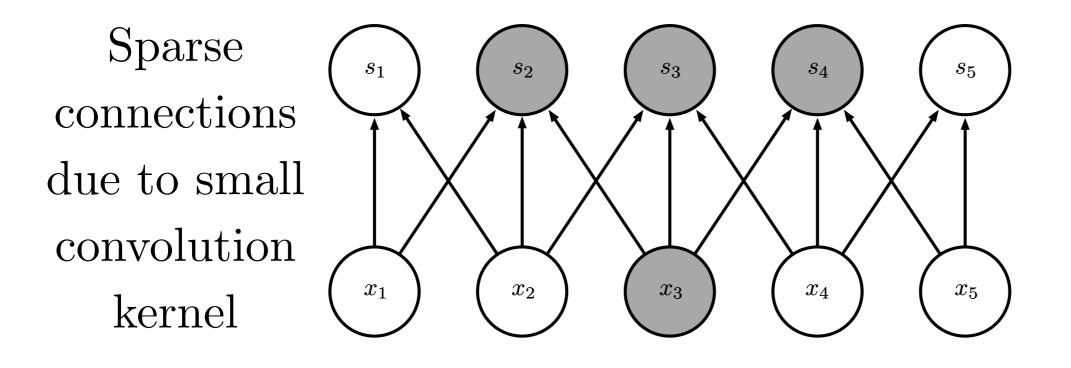
Kernel dbaС xwf hegy \boldsymbol{z} ikj Output + + $\begin{array}{ccc} cx & + \\ gz & \\ \end{array} \quad \begin{array}{ccc} cw & + \\ gy & + \\ \end{array}$ awdx + hzey

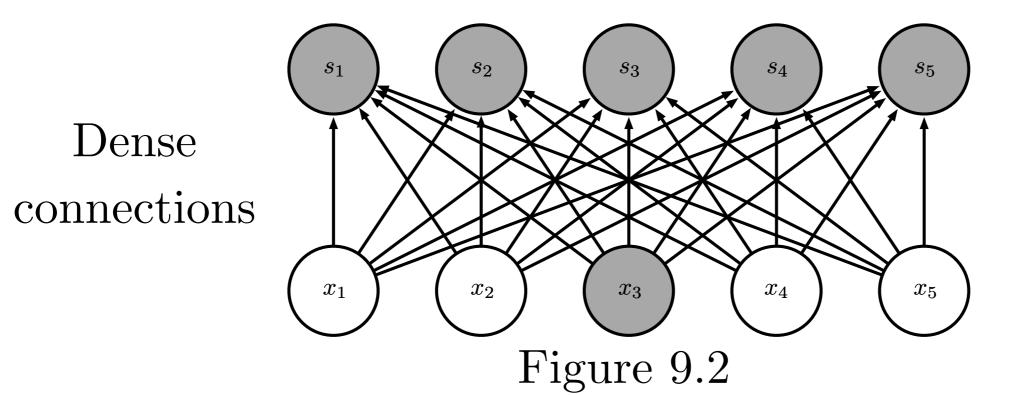
Input

Three Operations

- Convolution: like matrix multiplication
 - Take an input, produce an output (hidden layer)
- "Deconvolution": like multiplication by transpose of a matrix
 - Used to back-propagate error from output to input
 - Reconstruction in autoencoder / RBM
- Weight gradient computation
 - Used to backpropagate error from output to weights
 - Accounts for the parameter sharing

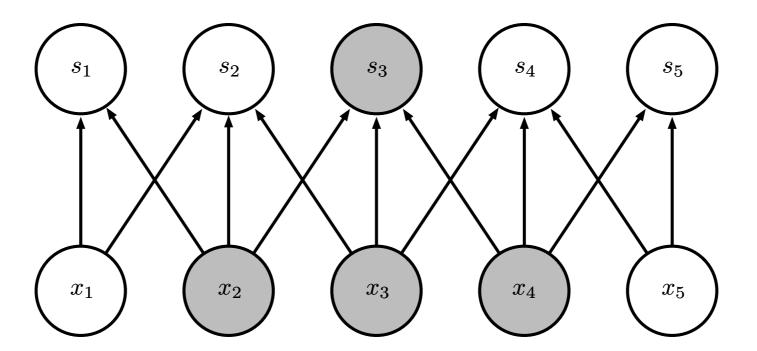
Sparse Connectivity



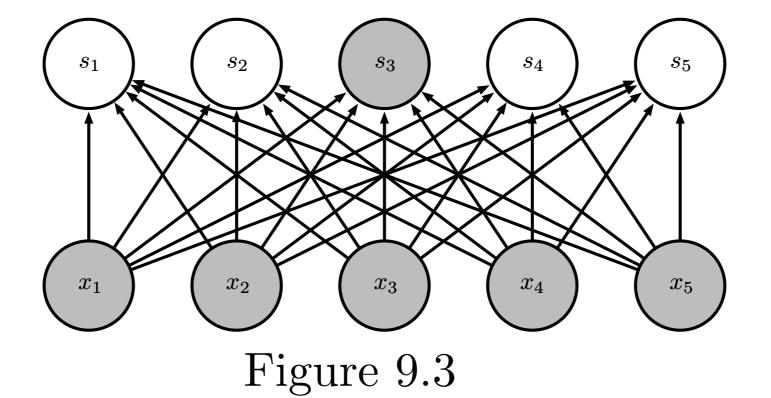


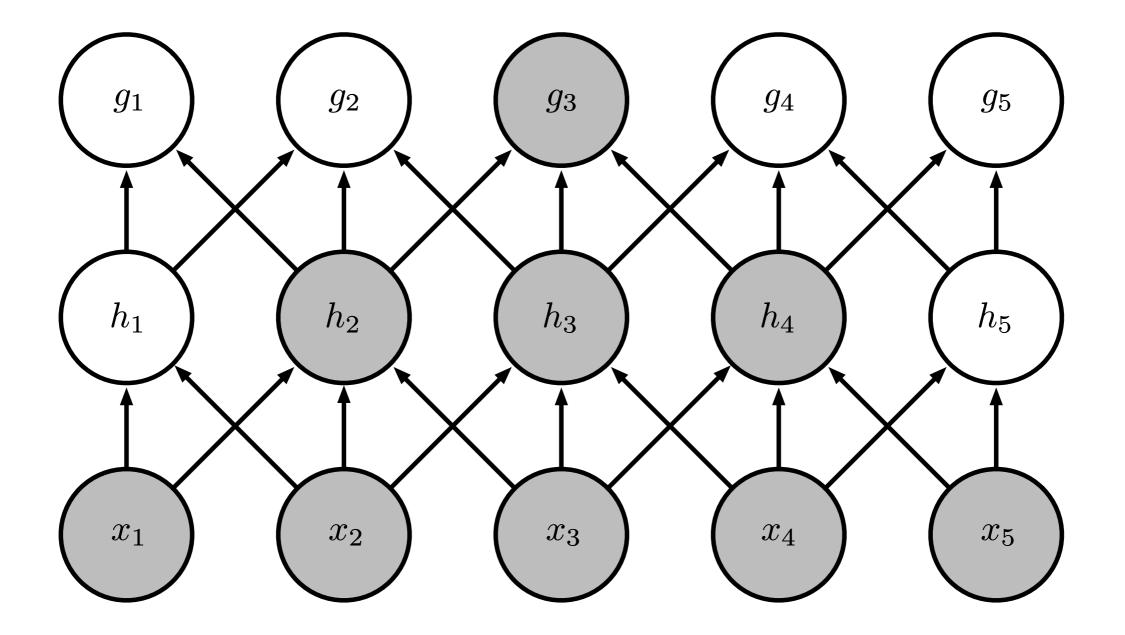
Sparse Connectivity

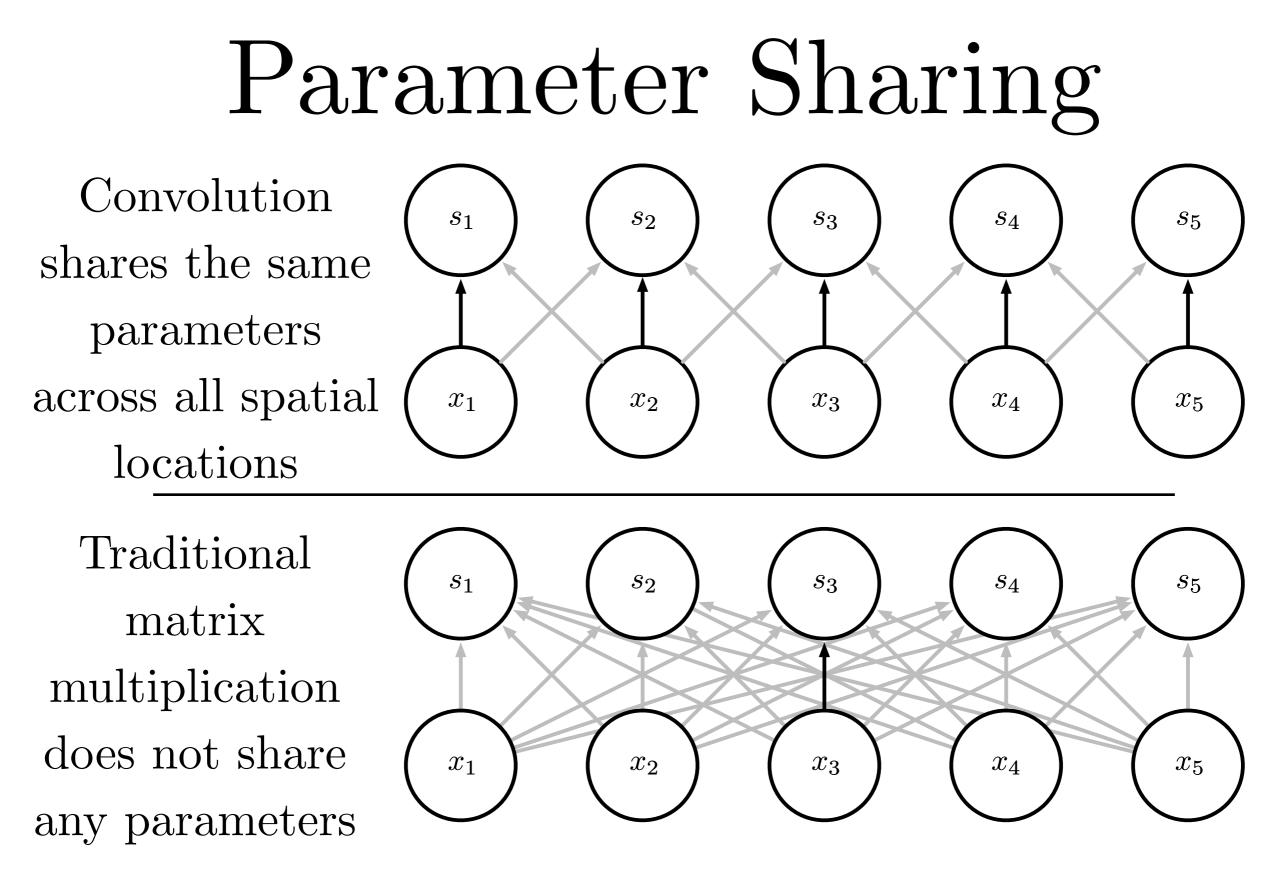
Sparse connections due to small convolution kernel



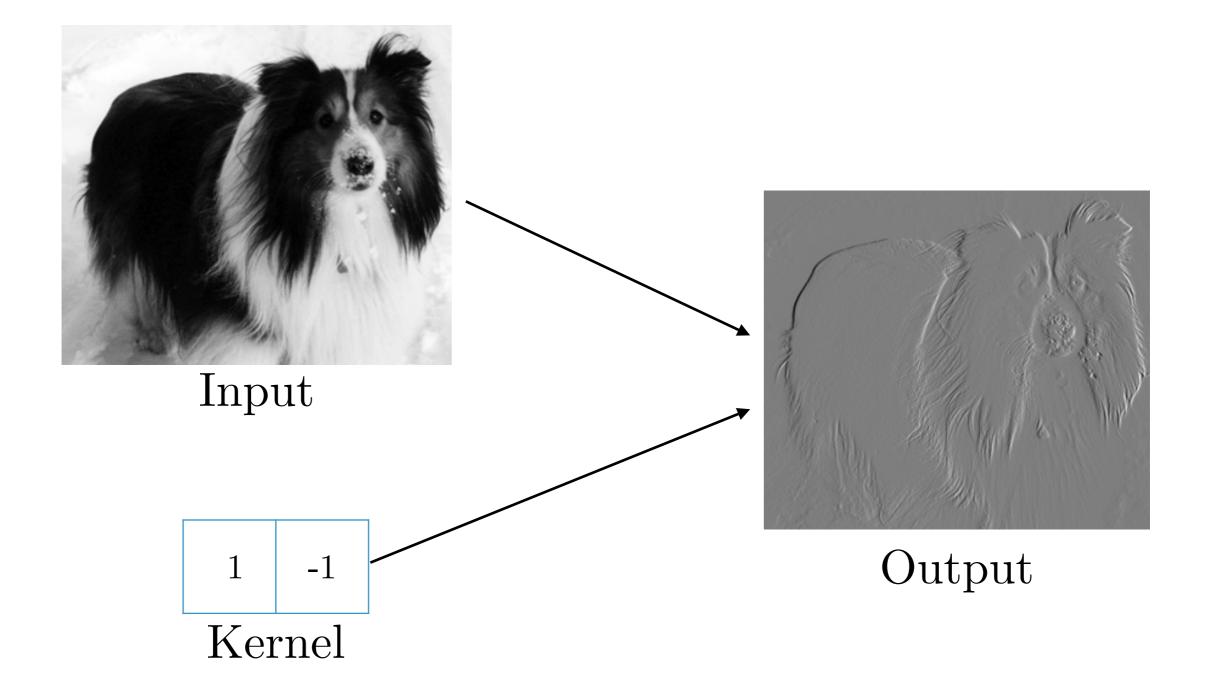
Dense connections







Edge Detection by Convolution

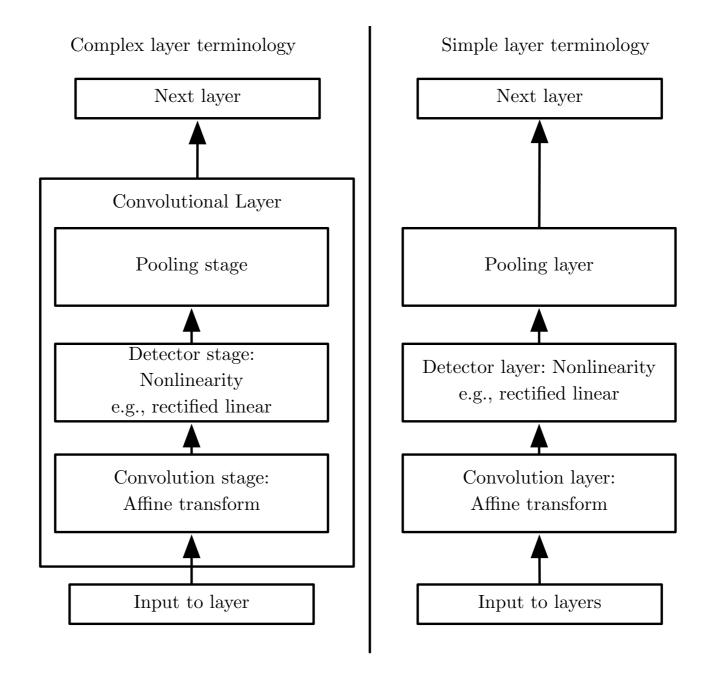


Efficiency of Convolution

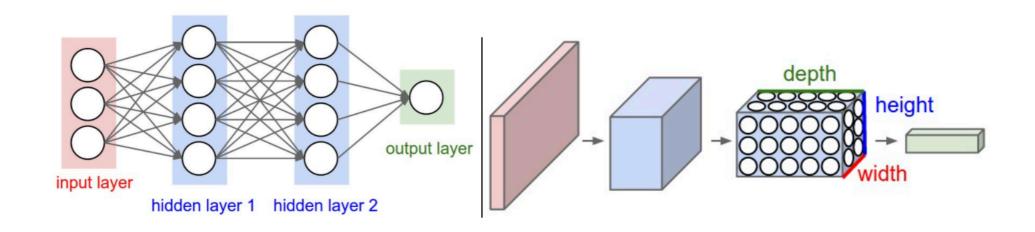
Input size: 320 by 280 Kernel size: 2 by 1 Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	$2*319*280 = 178,\!640$
Float muls or adds	$319^*280^*3 = 267,960$	$> 16\mathrm{e}9$	Same as convolution (267,960)

Convolutional Network Components

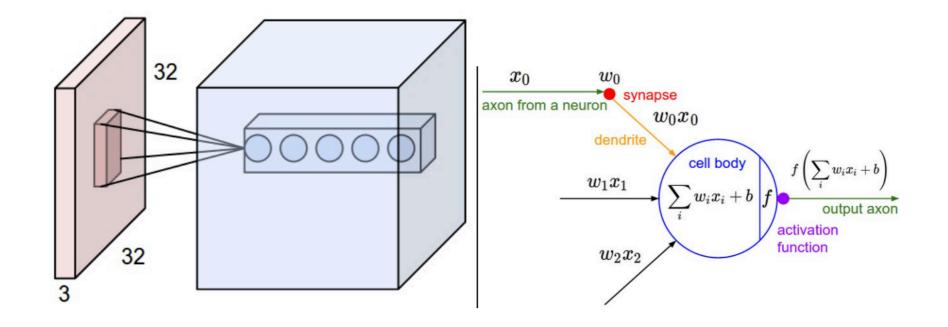


Regular fully-connected NN vs ConvNet



A ConvNet is made up of Layers. Every Layer has a simple API: It transforms an input 3D volume to an output 3D volume with some differentiable function that may or may not have parameters.

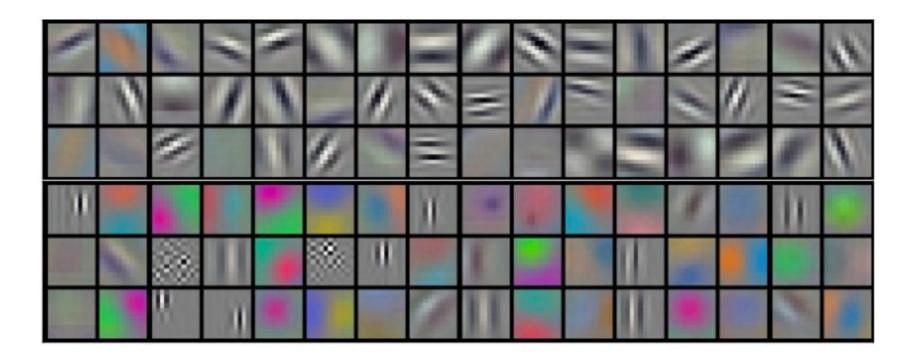
Local Connectivity



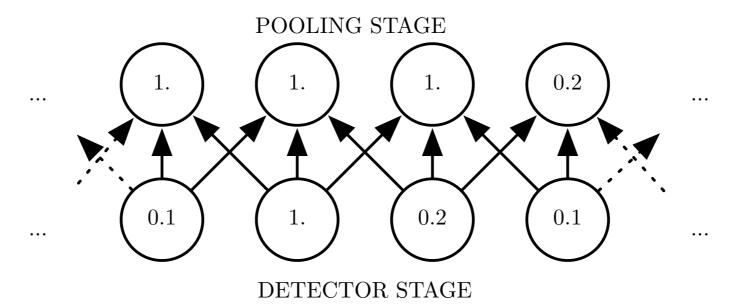
Example 1. For example, suppose that the input volume has size [32x32x3], (e.g. an RGB CIFAR-10 image). If the receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights (and +1 bias parameter). Notice that the extent of the connectivity along the depth axis must be 3, since this is the depth of the input volume.

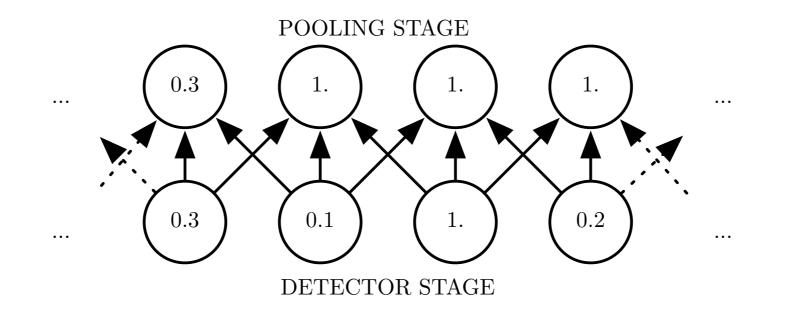
Example 2. Suppose an input volume had size [16x16x20]. Then using an example receptive field size of 3x3, every neuron in the Conv Layer would now have a total of 3*3*20 = 180 connections to the input volume. Notice that, again, the connectivity is local in space (e.g. 3x3), but full along the input depth (20).

Example of learned kernels

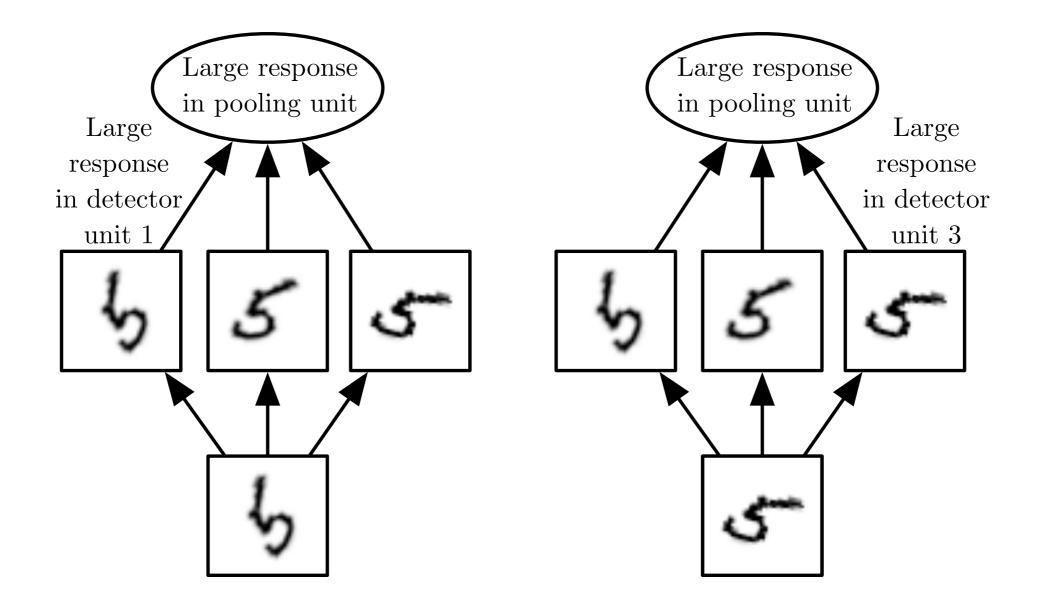


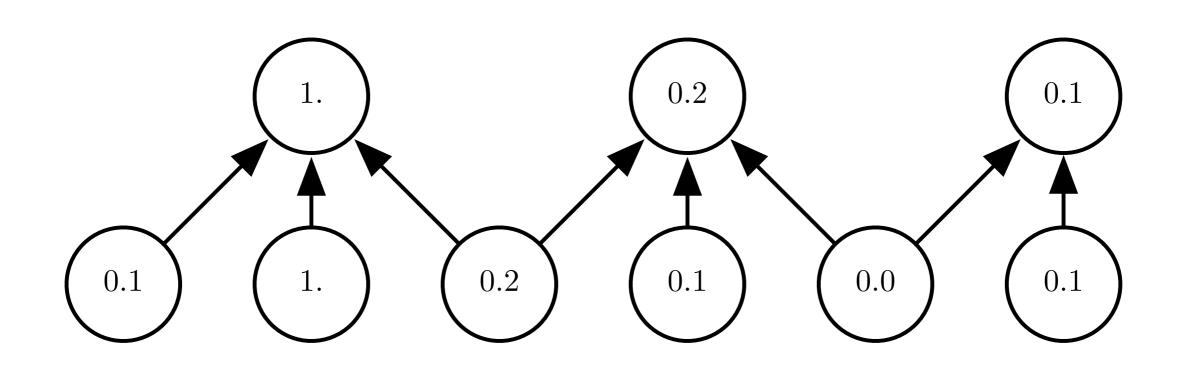
Max Pooling and Invariance to Translation





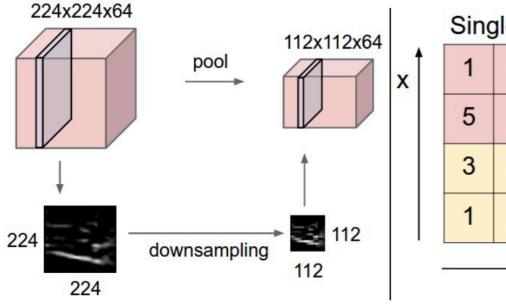
Cross-Channel Pooling and Invariance to Learned Transformations





]

Pooling layer downsamples the volume spatially

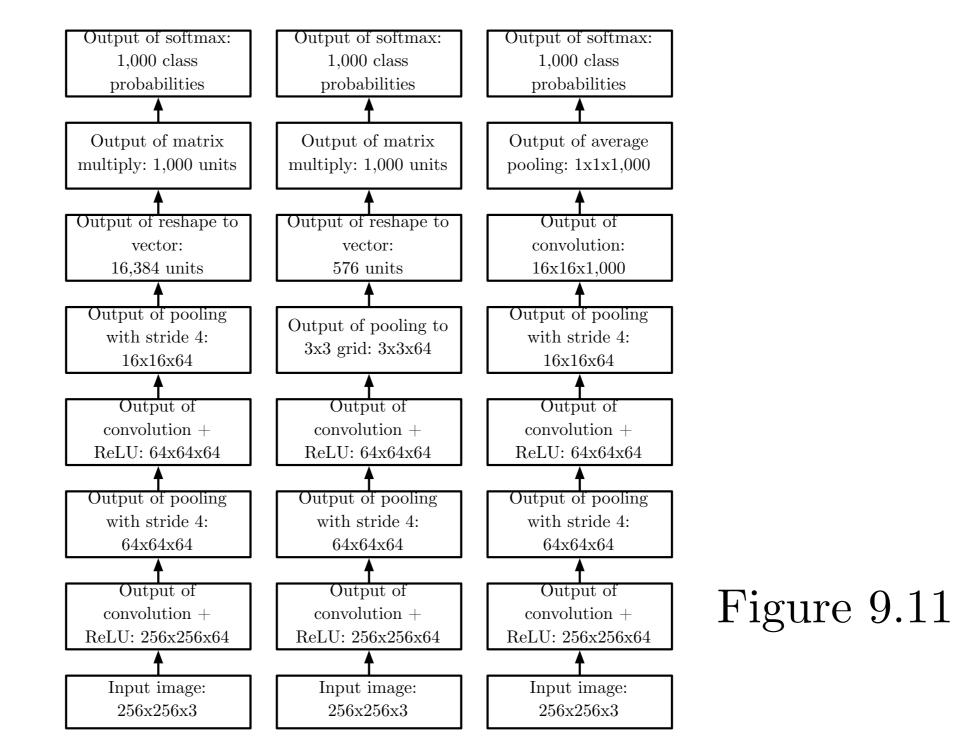


Single depth slice				
1	1	2	4	
5	6	7	8	
3	2	1	0	
1	2	3	4	
			У	

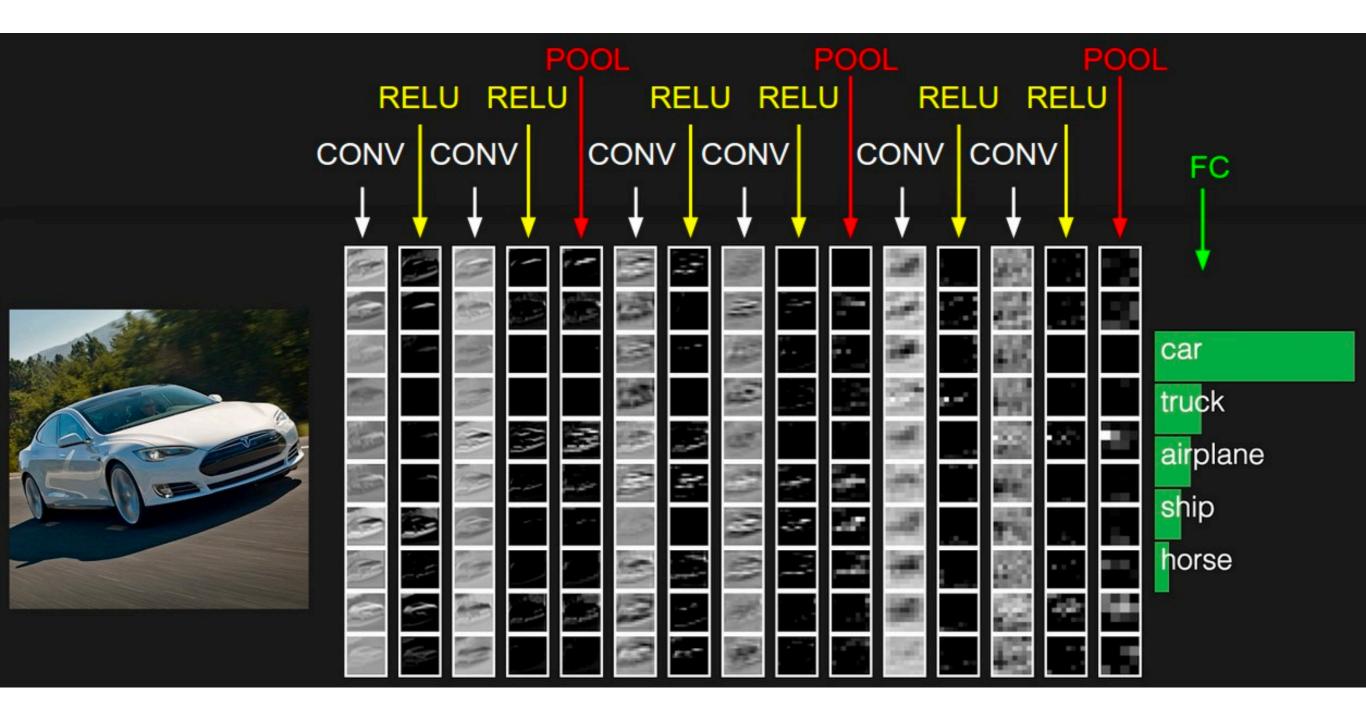
max pool with 2x2 filters and stride 2

6	8
3	4

Example Classification Architectures



ConvNet architecture



Architecture Overview of ConvNets

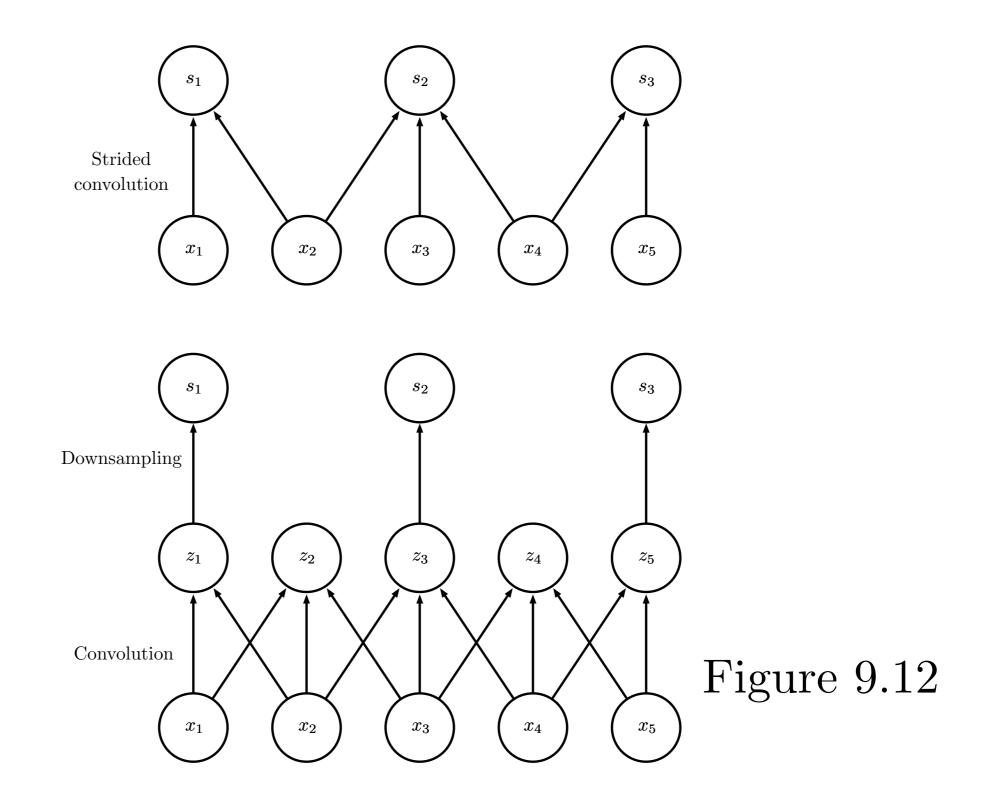
[INPUT - CONV - RELU - POOL - FC]

- INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B.
- CONV layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume. This may result in volume such as [32x32x12] if we decided to use 12 filters.
- RELU layer will apply an elementwise activation function, such as the max(0, x) thresholding at zero. This
 leaves the size of the volume unchanged ([32x32x12]).
- POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12].
- FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

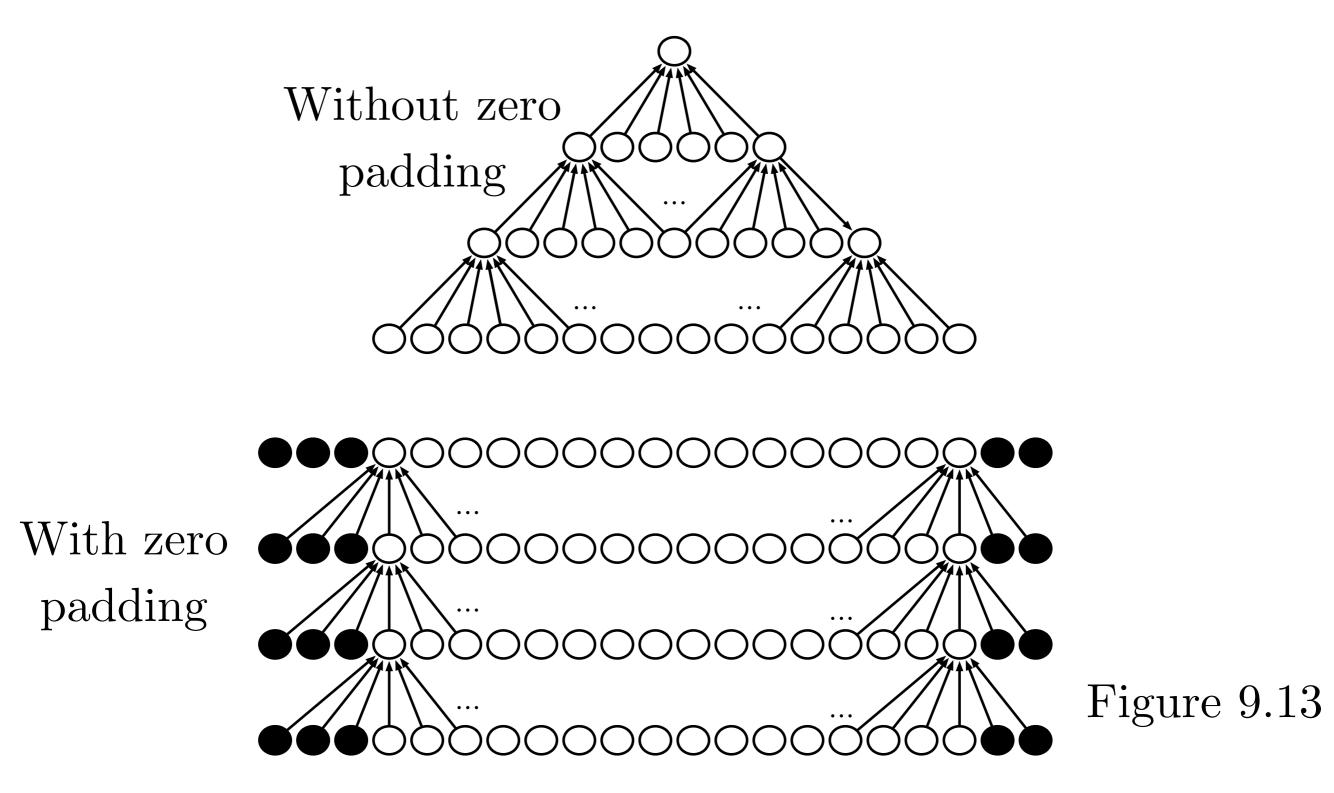
Architecture Overview of ConvNets

- A ConvNet architecture is in the simplest case a list of Layers that transform the image volume into an output volume (e.g. holding the class scores)
- There are a few distinct types of Layers (e.g. CONV/FC/RELU/POOL are by far the most popular)
- Each Layer accepts an input 3D volume and transforms it to an output 3D volume through a differentiable function
- Each Layer may or may not have parameters (e.g. CONV/FC do, RELU/POOL don't)
- Each Layer may or may not have additional hyperparameters (e.g. CONV/FC/POOL do, RELU doesn't)

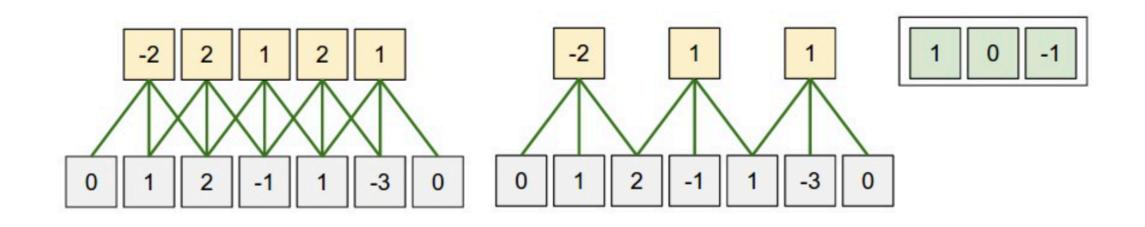
Convolution with Stride



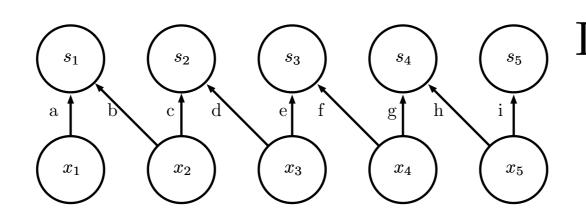
Zero Padding Controls Size



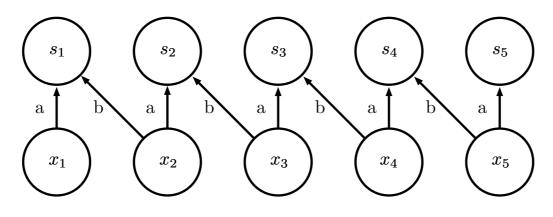
Output size with zero padding and stride



Kinds of Connectivity



Local connection: like convolution, but no sharing



Convolution

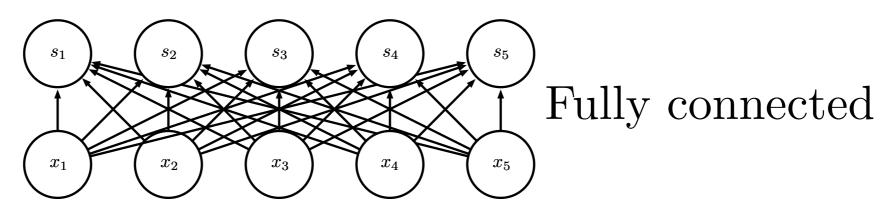
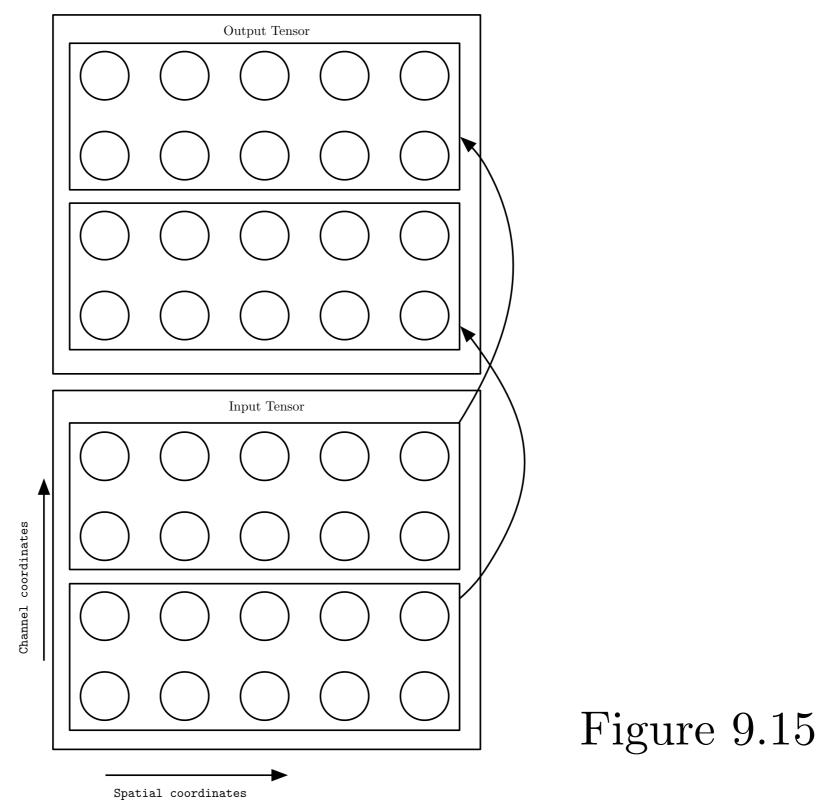


Figure 9.14

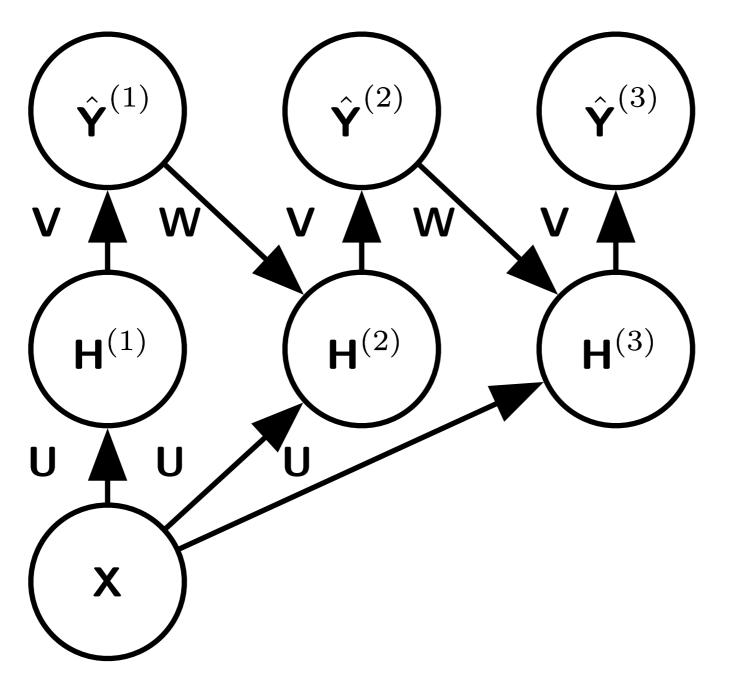
Partial Connectivity Between Channels



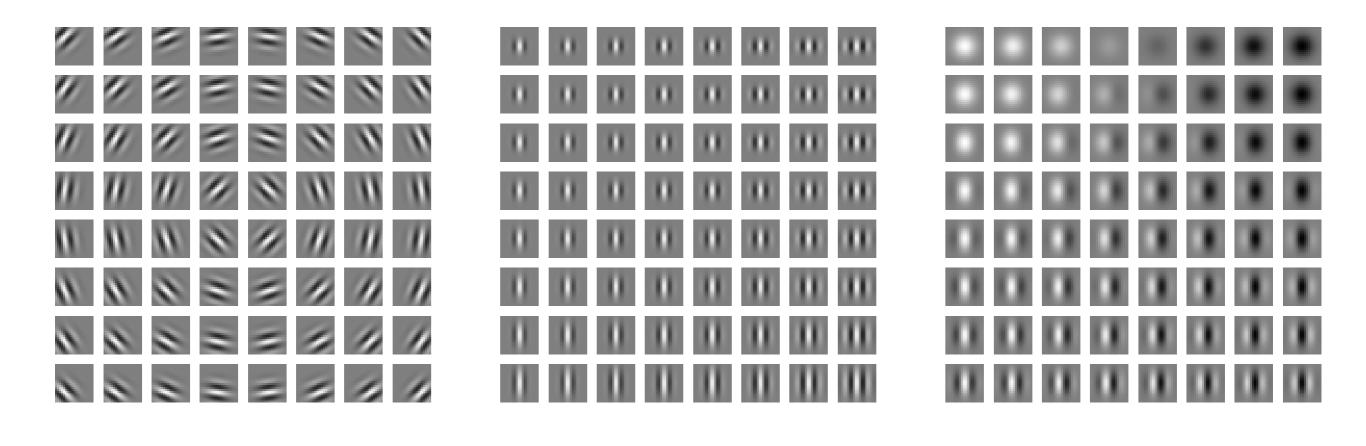
Tiled convolution

 s_1 s_2 s_3 s_4 s_5 Local connection g h ď a (no sharing) x_1 x_2 x_3 x_4 x_5 Tiled convolution s_3 s_5 s_1 s_2 s_4 (cycle between ď b ď с b' a a С \mathbf{a} groups of shared x_5 x_3 x_1 x_2 x_4 parameters) Convolution s_1 s_4 s_5 s_2 s_3 (one group shared b a b a a a a everywhere) x_3 x_4 x_5 x_1 x_2

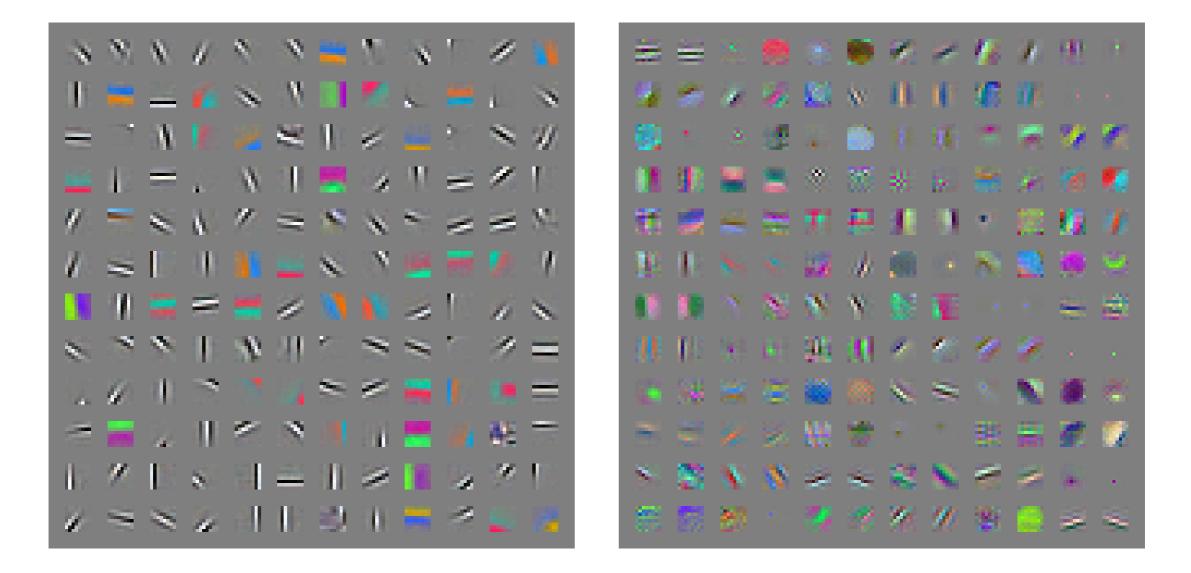
Recurrent Pixel Labeling



Gabor Functions



Gabor-like Learned Kernels



Major Architectures

- Spatial Transducer Net: input size scales with output size, all layers are convolutional
- All Convolutional Net: no pooling layers, just use strided convolution to shrink representation size
- Inception: complicated architecture designed to achieve high accuracy with low computational cost
- ResNet: blocks of layers with same spatial size, with each layer's output added to the same buffer that is repeatedly updated. Very many updates = very deep net, but without vanishing gradient.