Machine Learning System Stack

Pooyan Jamshidi UofSC

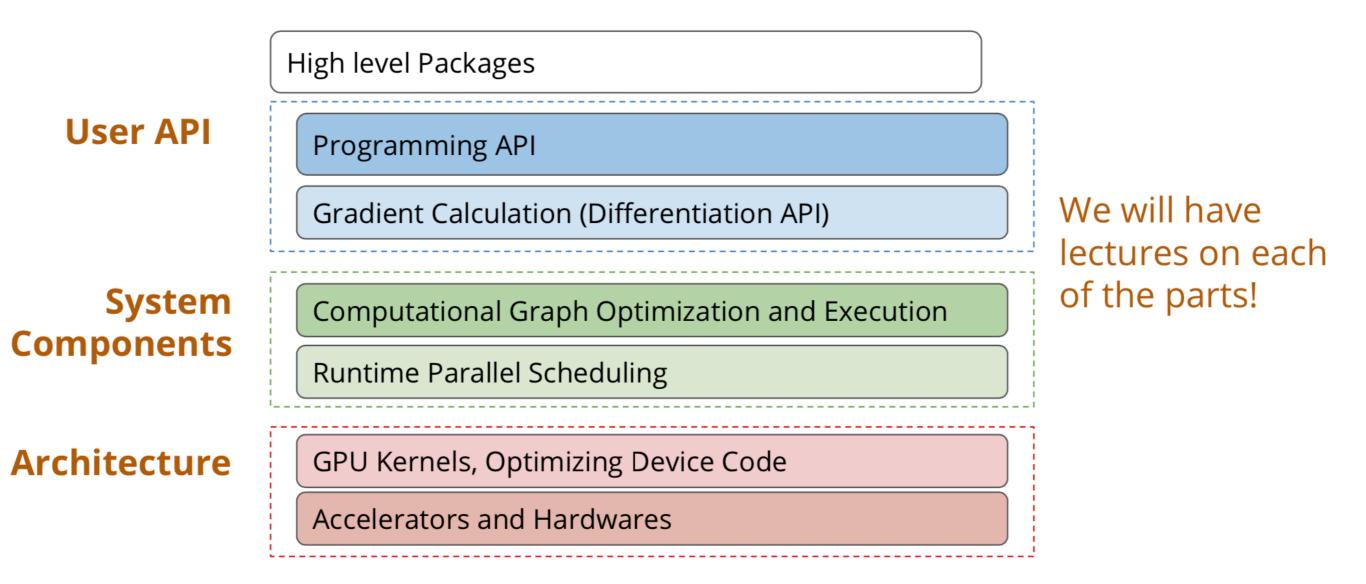
[The slides are mainly based on UW Systems for ML Course]

Machine Learning Systems Juggle

theano

We won't focus on a specific one, but will discuss the common and useful elements of these systems

Typical Machine Learning System Stack



Typical Machine Learning System Stack

User API

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Executior

Runtime Parallel Scheduling

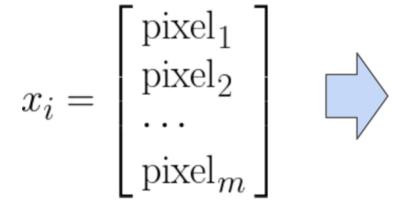
GPU Kernels, Optimizing Device Code

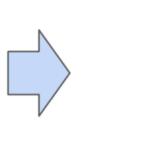
Accelerators and Hardwares

Example: Logistic Regression

Fully Connected Layer

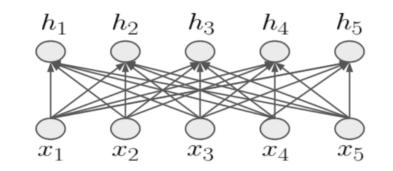
Softmax





$$h_k = w_k^T x_i$$

$$P(y_i = k | x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_i)}$$



Logistic Regression in Numpy

```
import numpy as np
from tinyflow.datasets import get_mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
  return x
# get the mnist dataset
mnist = get_mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
  y_grad = y - batch_ys
  W_grad = np.dot(batch_xs.T, y_grad)
  # update
  W = W - learning_rate * W_grad
```

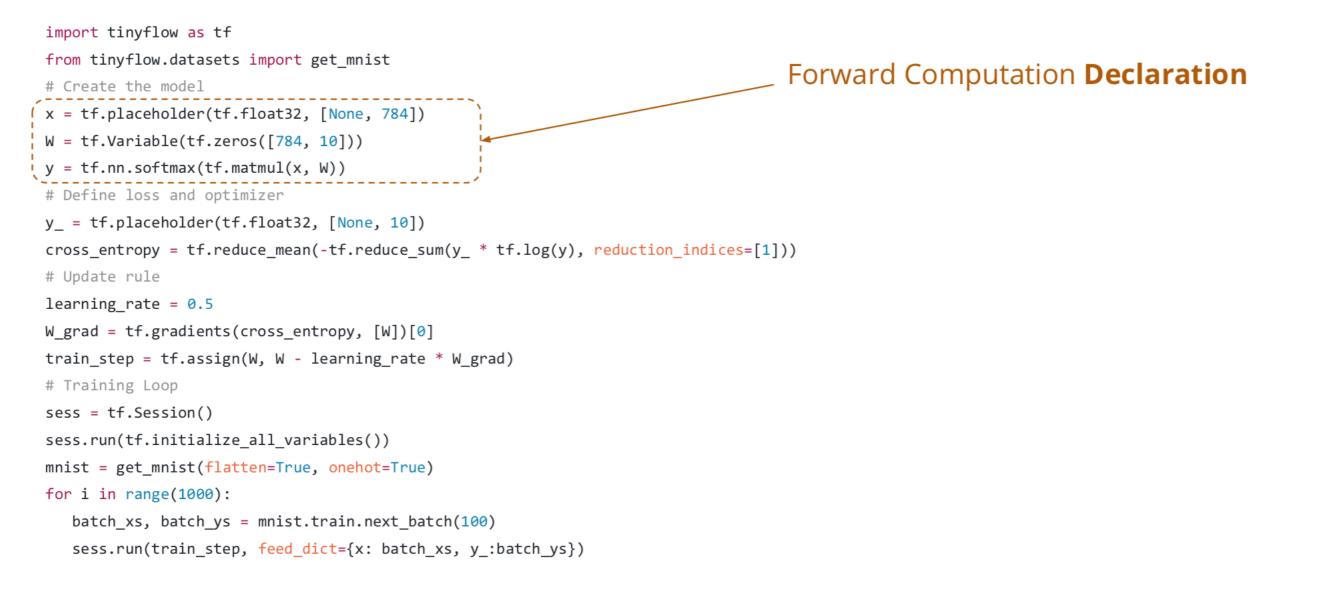
Forward computation: Compute probability of each class y given input

- Matrix multiplication
 - np.dot(batch_xs, W)
- Softmax transform the result
 - o softmax(np.dot(batch_xs, W))

Logistic Regression in Numpy

```
import numpy as np
from tinyflow.datasets import get_mnist
def softmax(x):
   x = x - np.max(x, axis=1, keepdims=True)
   x = np.exp(x)
   x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning_rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
                                                                    Weight Update via SGD
   batch xs, batch ys = mnist.train.next batch(100)
   # forward
                                                                    w \leftarrow w - \eta \nabla_w L(w)
   y = softmax(np.dot(batch_xs, W))
   # backward
  y_grad = y - batch_ys
   W_grad = np.dot(batch_xs.T, y_grad)
   #-update
  W = W - learning_rate * W_grad
```

Logistic Regression in TinyFlow (TensorFlow like API)



```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
                                                                                             Loss function Declaration
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
                                                                                          P(\text{label}_{_{10}}=k)=y_k
# Update rule
learning_rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
                                                                                           L(y) = \sum I(\text{label} = k) \log(y_i)
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
                                                                                                        k=1
sess.run(tf.initialize_all_variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
                                                                                             Automatic Differentiation: Details
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
                                                                                             in next lecture!
train step = tf.assign(W, W - learning_rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed dict={x: batch xs, y :batch ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
                                                                                                  SGD update rule
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get mnist(flatten=True, onehot=True)
                                                                                                Real execution happens here!
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Typical Deep Learning System Stack

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

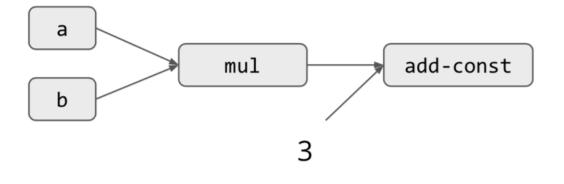
GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

The Declarative Language: Computation Graph

- Nodes represents the computation (operation)
- Edge represents the data dependency between operations

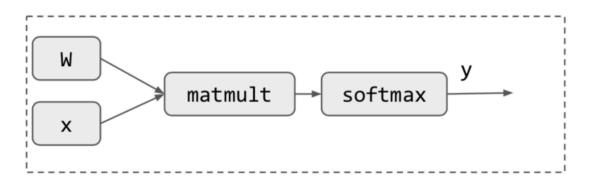
Computational Graph for **a** * **b** +3



x = tf.placeholder(tf.float32, [None, 784])

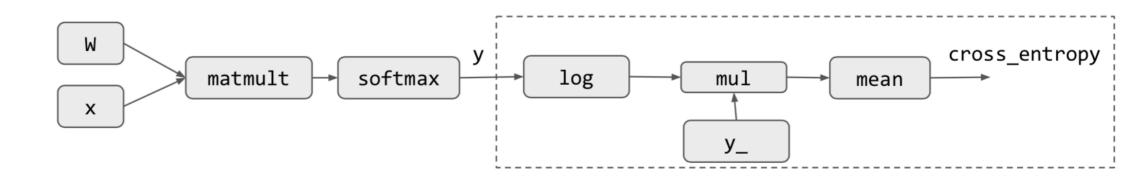
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))



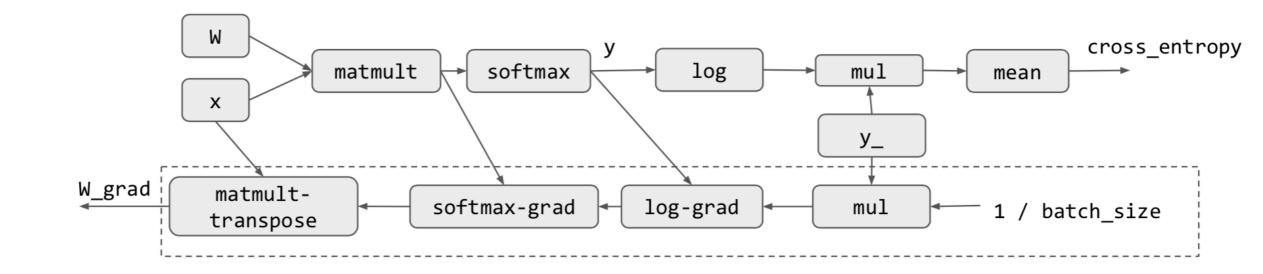
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

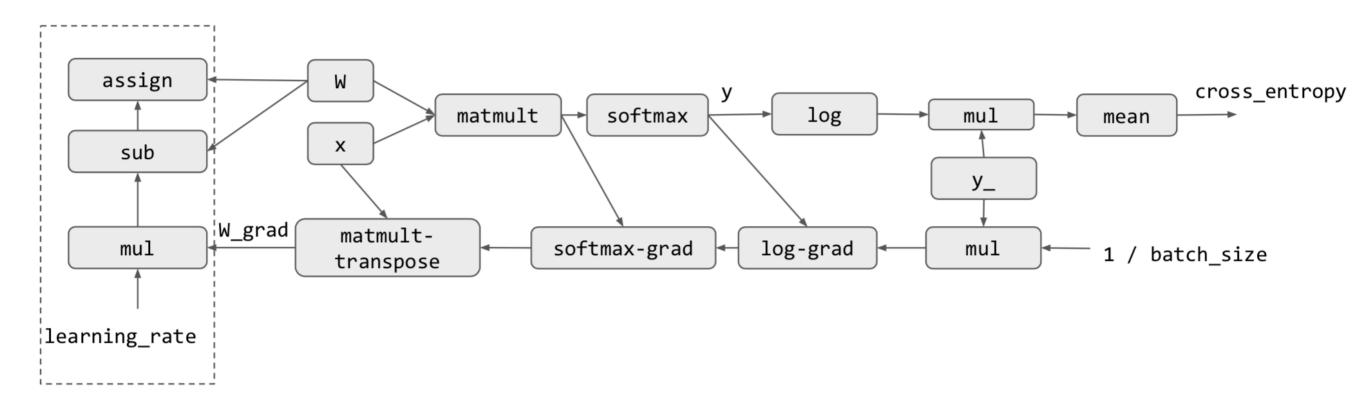


W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, detail in next lecture!

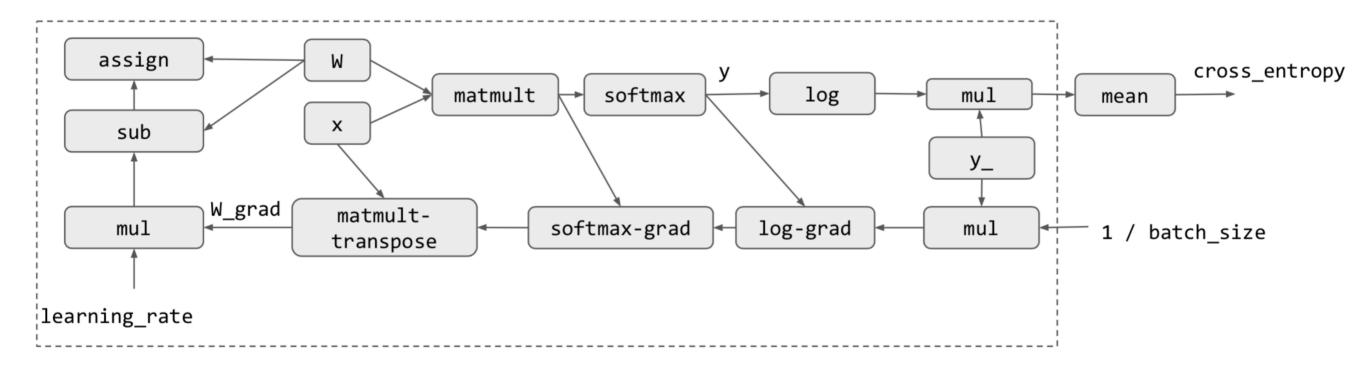


train_step = tf.assign(W, W - learning_rate * W_grad)



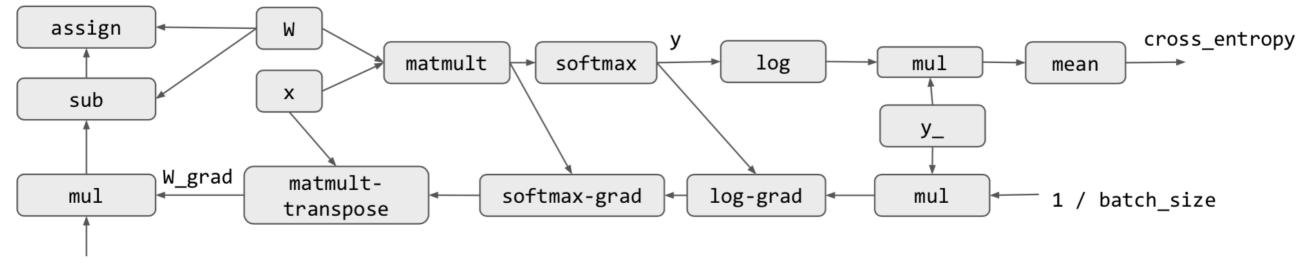
Execution only Touches the Needed Subgraph

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion: Computational Graph

- What is the benefit of computational graph?
- How can we deploy the model to mobile devices?



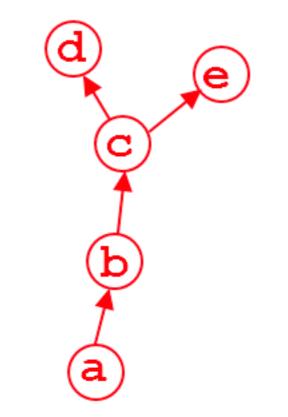
learning_rate

Discussion: Numpy vs TF Program

What is the benefit/drawback of the TF model vs Numpy Model

import numpy as np	import tinyflow as tf								
<pre>from tinyflow.datasets import get_mnist</pre>	from tinyflow.datasets import get_mnist								
<pre>def softmax(x):</pre>	# Create the model								
<pre>x = x - np.max(x, axis=1, keepdims=True)</pre>	x = tf.placeholder(tf.float32, [None, 784])								
x = np.exp(x)	W = tf.Variable(tf.zeros([784, 10]))								
<pre>x = x / np.sum(x, axis=1, keepdims=True)</pre>	y = tf.nn.softmax(tf.matmul(x, W))								
return x	# Define loss and optimizer								
# get the mnist dataset	y_ = tf.placeholder(tf.float32, [None, 10])								
<pre>mnist = get_mnist(flatten=True, onehot=True)</pre>	<pre>cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))</pre>								
<pre>learning_rate = 0.5 / 100</pre>	# Update rule								
W = np.zeros((784, 10))	learning_rate = 0.5								
for i in range(1000):	<pre>W_grad = tf.gradients(cross_entropy, [W])[0]</pre>								
<pre>batch_xs, batch_ys = mnist.train.next_batch(100)</pre>	train_step = tf.assign(W, W - learning_rate * W_grad)								
# forward	# Training Loop								
<pre>y = softmax(np.dot(batch_xs, W))</pre>	sess = tf.Session()								
# backward	<pre>sess.run(tf.initialize_all_variables())</pre>								
y_grad = y - batch_ys	<pre>mnist = get_mnist(flatten=True, onehot=True)</pre>								
W_grad = np.dot(batch_xs.T, y_grad)	for i in range(1000):								
# update	<pre>batch_xs, batch_ys = mnist.train.next_batch(100)</pre>								
W = W - learning_rate * W_grad	<pre>sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})</pre>								

Computational graphs in other frameworks: PyTorch



import torch
from torch.autograd import Variable
a = Variable(torch.rand(1, 4), requires_grad=True)
b = a**2
c = b*2
d = c.mean()
e = c.sum()

Typical Deep Learning System Stack

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

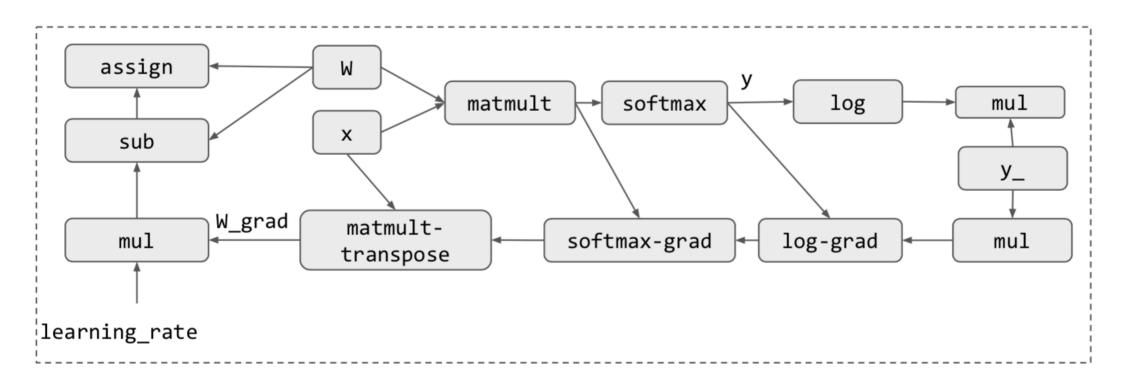
Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

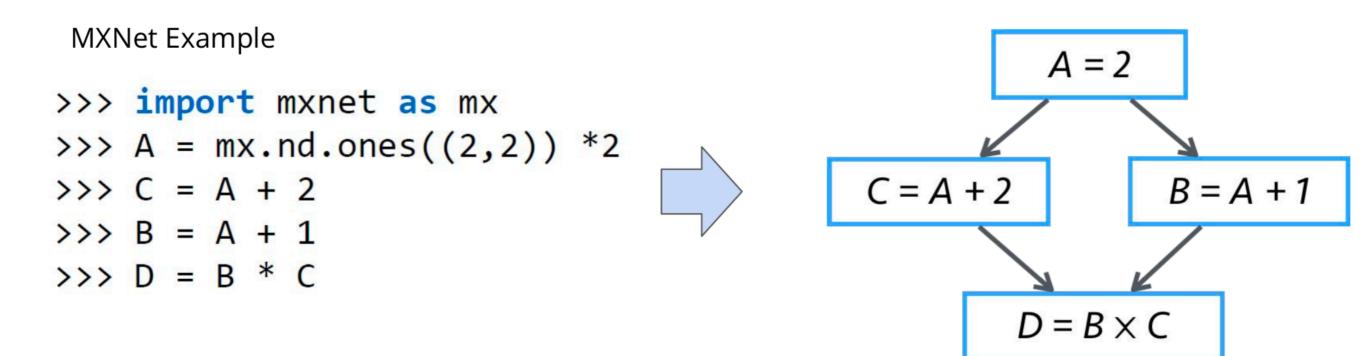
Computation Graph Optimization

- E.g. Deadcode elimination
- Memory planning and optimization
- What other possible optimization can we do given a computational graph?

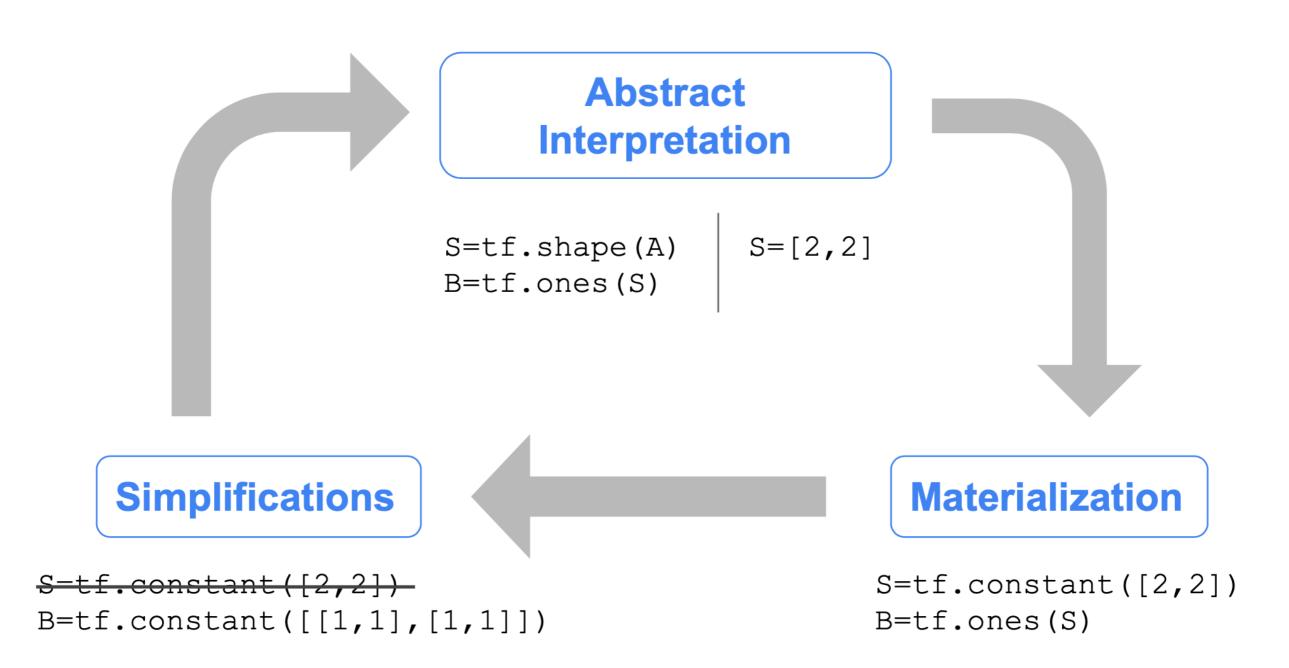


Parallel Scheduling

- Code need to run parallel on multiple devices and worker threads
- Detect and schedule parallelizable patterns
- Detail lecture on later

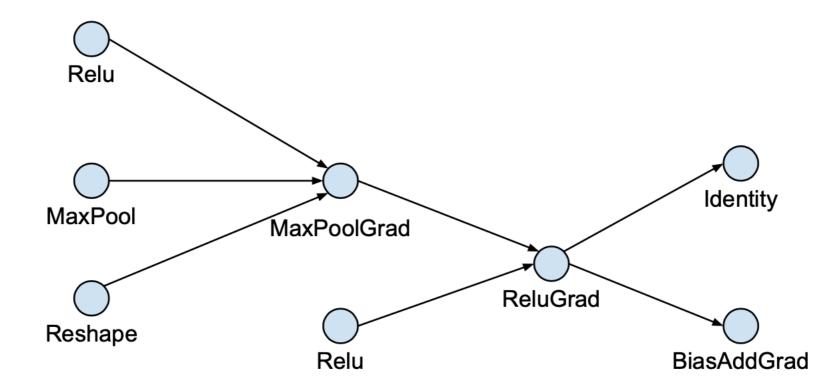


Graph Simplifications

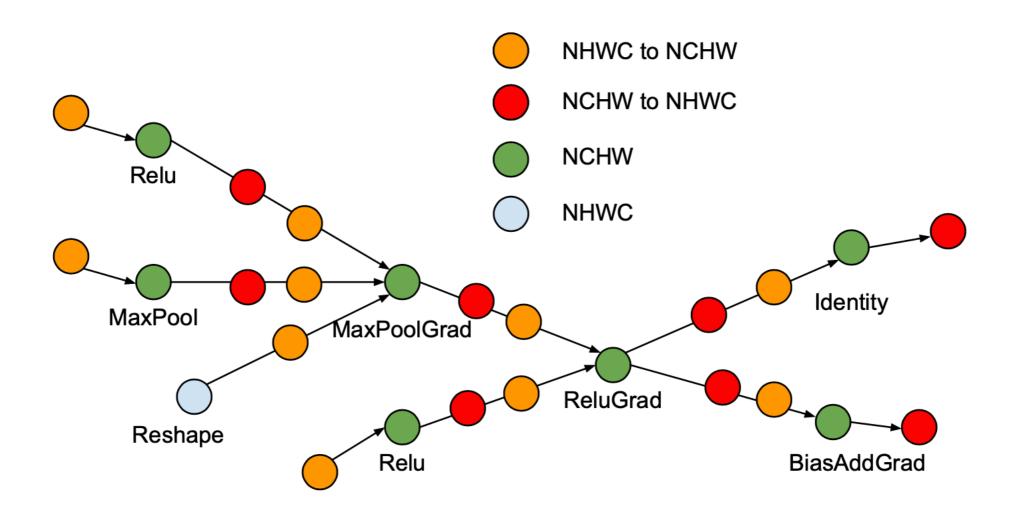




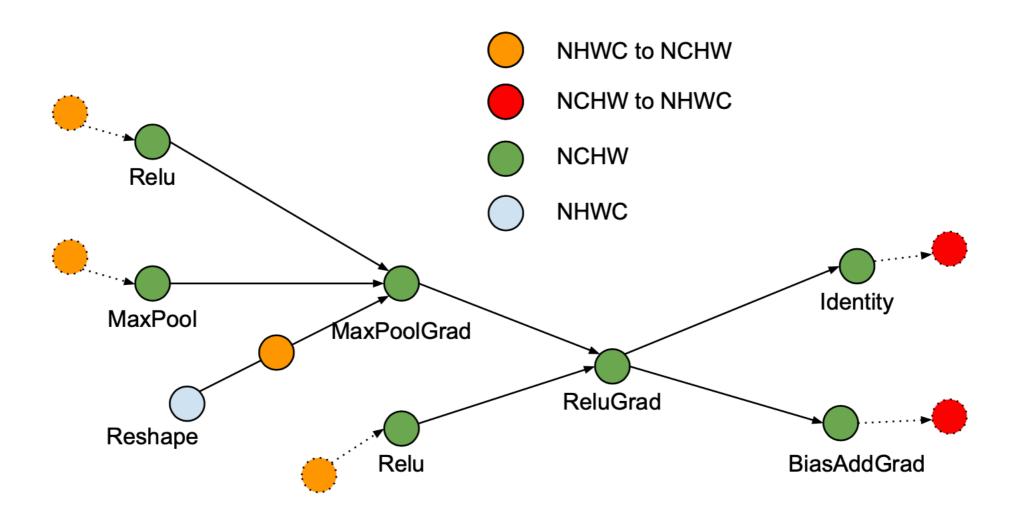
Example: Original graph with all ops in NHWC format



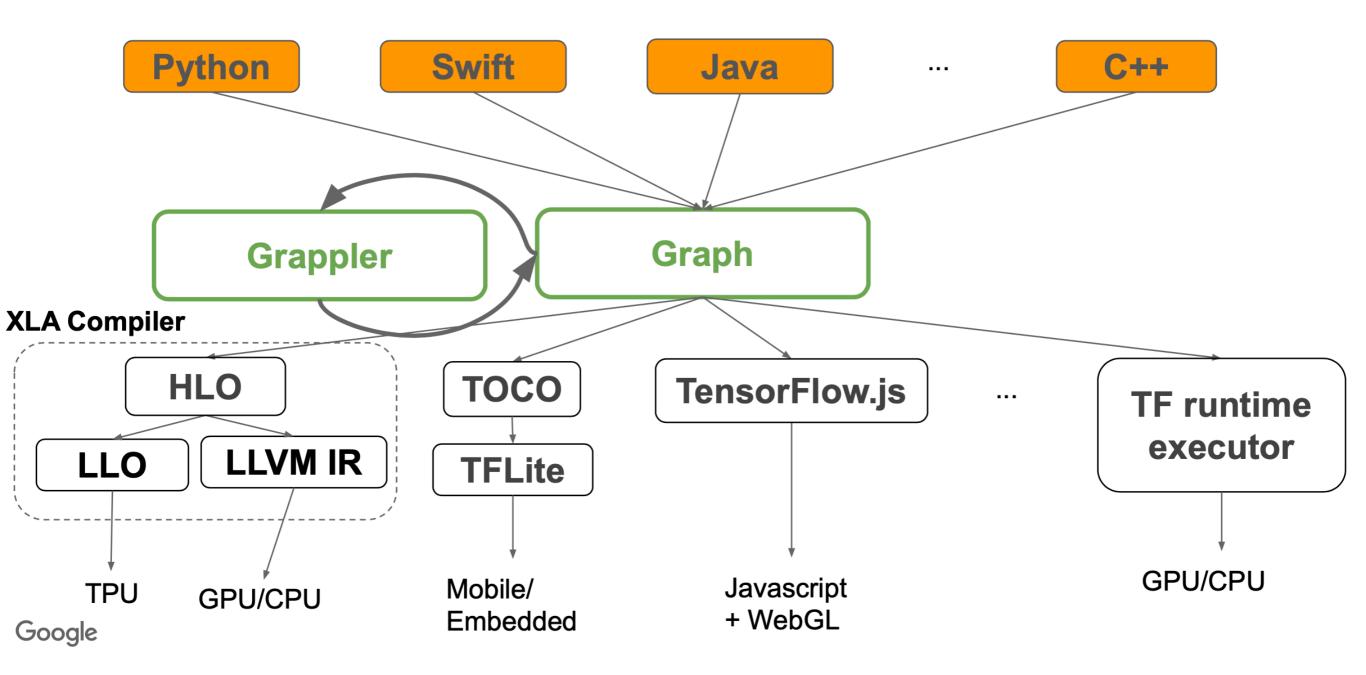
Phase 1: Expand by inserting conversion pairs



Phase 2: Collapse adjacent conversion pairs



Computation Graph Optimization



Typical Deep Learning System Stack

Programming API

Gradient Calculation (Differentiation AP

omputational Graph Optimization and Executio

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

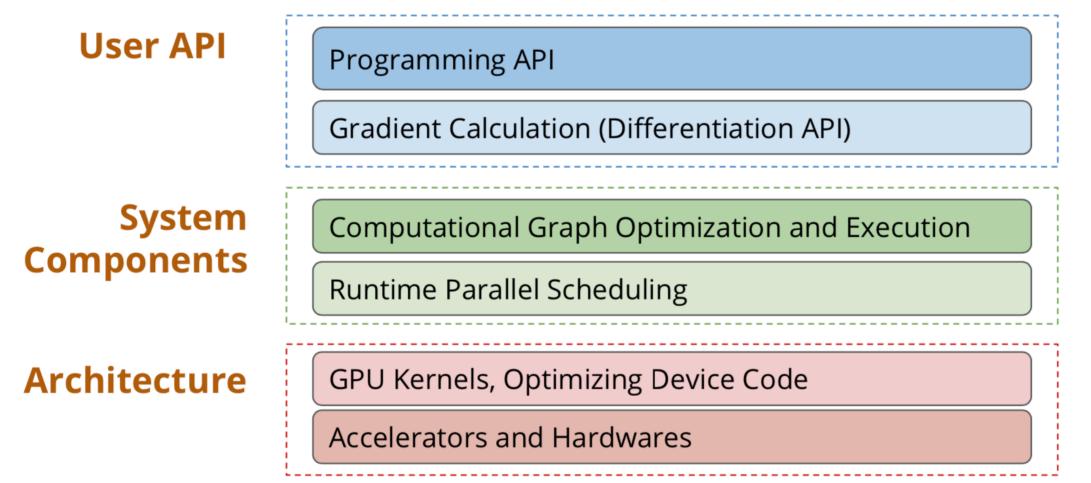
GPU Acceleration

- Most existing deep learning programs runs on GPUs
- Modern GPU have Teraflops of computing power

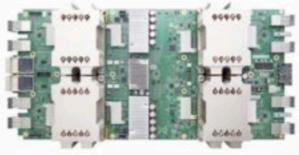
_			_		_		Instructi	on Cache								
Instruction Buffer Warp Scheduler								Instruction Buffer Warp Scheduler								
		Regist	er File (:	32,768 x	32-bit)					Regist	er File (3	32,768 x	32-bit)			
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFL	
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFL	
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFL	
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFL	
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFL	
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP. Unit	Core	Core	DP Unit	LD/ST	SFL	
Core	Core	Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	OP Unit	Core	Core	DP Unit	LD/ST	SFU	
							Toxture /	L1 Cache	y							
Tex					Tex			Tex				Tex				

Typical Deep Learning System Stack

Not a comprehensive list of elements The systems are still rapidly evolving :)



Supporting More Hardware backends



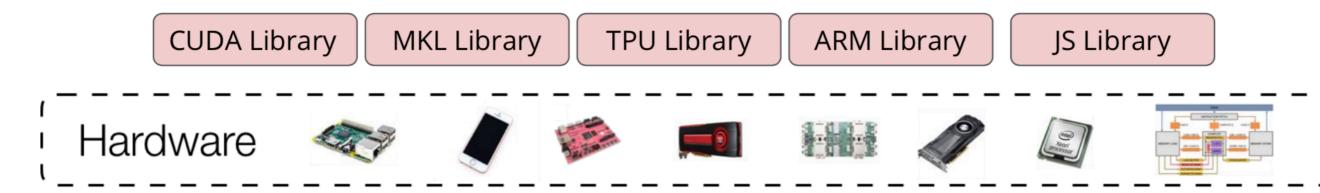
Each Hardware backend requires a software stack

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling



New Trend: Compiler based Approach

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

High level operator description

Tensor Compiler Stack

-	MUTAL VICE	
-		
		ľ