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Reducing Size of
Network Reduces Work
and Storage



Prune Unneeded
Connections
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Train Connectivity
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Pruning of AlexNet
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Prunina of VGG-16
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Pruning Neural Talk and
LSTM
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Pruning Neural Talk and
LSTM

* Original: a basketball player in a white
uniform is playing with a ball

* Pruned 90%: a basketball player in a
white uniform is playing with a basketball

* Original : a brown dog is running through
a grassy field

* Pruned 90%: a brown dog is running
through a grassy area

* Original : a man is riding a surfboard on
a wave

* Pruned 90%: a man in a wetsuit 1s riding
a wave on a beach

* Original : a soccer player in red 1is
running in the field

* Pruned 95%: a man in a red shirt and
black and white black shirt 1s running
through a field




Speedup

Speedup of Pruning on
CPU/GPU

® CPU Dense (Baseline) = CPU Pruned " GPU Dense = GPU Pruned "= mGPU Dense ®mGPU Pruned
100x

1gx n
& & | \
10x w§ 2a§ 14§‘ N { % 1
M ime | . “§ ,
\ : N ' ).5: 'i,i' ' 5 0.5 |
0.1x — . .. | A " . A

Alex-6  Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Figure 9: Compared with the original network, pruned network layer achieved 3 x speedup on CPU,
3.5x on GPU and 4.2 x on mobile GPU on average. Batch size = 1 targeting real time processing.
Performance number normalized to CPU.

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV



History of Pruning

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain
Damage. In Advances in Neural Information Processing Systems,
pages 598—605. Morgan Kaufmann, 1990.

Babak Hassibi, David G Stork, et al. Second order derivatives for
network pruning: Optimal brain surgeon. Advances in neural
information processing systems, pages 164—164, 1993.



Reduce Storage for
Each Remaining Weight



Trained Quantization
(Weight Sharing)

] ) Quantization: less precision
Pruning: less quantity
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Weight Sharing via K-
Means

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
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Trained Quantization
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Accuracy

Bits per Weight
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Accuracy Loss
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Summary of Compression

Table 1: The compression pipeline can save 35X to 49X parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error | Parameters gg::p ress
LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed | 1.58% - 27 KB 40x
LeNet-5 Ref 0.80% - 1720 KB

LeNet-5 Compressed 0.74% - 44 KB 39 X
AlexNet Ref 42.78% 19.73% 240 MB

AlexNet Compressed 42.78% 19.70% 6.9 MB 35 X
VGG-16 Ref 31.50% 11.32% 552 MB

VGG-16 Compressed 31.17% 10.91% 11.3 MB 49 X

Compress neural networks without affecting accuracy by:
1. Pruning the unimportant connections =>

2. Quantizing the network and enforce weight sharing =>
3. Apply Huffman encoding



30x — 50x Compression
Means

e Complex DNNs can be put in mobile applications
(<100MB total):

e 1GB network (250M Weights) become 20-30 MB

e Memory bandwidth reduced by 30-50x:

e Particularly for FC layers in real-time applications with
no reuse

e Memory working set fits in on-chip SRAM
e 5pd/word access vs 640pJ/word



