
Machine Learning Systems
Lecture 4: Designing ML Systems

Pooyan Jamshidi

CSCE 585: Machine Learning Systems | Fall 2022 | https://pooyanjamshidi.github.io/mls/

https://pooyanjamshidi.github.io/mls/


What is missing?
The gap between ML Research and Production



What is missing?
The gap between ML Research and Production



What is missing?
The gap between ML Research and Production



In ML Systems, only a small fraction is comprised of actual ML code



A vast array of surrounding infrastructure and processes is needed to support 
evolution of ML systems



Technical debt that can accumulate in ML systems

• Data dependencies


• Model complexity


• Reproducibility


• Testing


• Monitoring


• Configuration issues


• External changes



Systems issues in ML Systems



System = Software + Middleware + Hardware

CPU Memory

ControllerGPU

Lib APIClients
Devices

Network

Task Scheduler Device Drivers

File System

Compilers

Memory Manager

Process Manager

Frontend

Application
Layer

OS/Kernel
Layer

Hardware
Layer

Deployment

SoC Generic hardware Production Servers



Systems issues in ML Systems



The Building Process of ML Systems 
Continuous Delivery for ML Systems 



A Machine Learning System is more than just a model
Change in ML Systems



Train ML model, integrate it with an application, and deploy into production



ML model behind a web application



Challenges

• Throw over the wall


• Models that only work 
in a lab environment 


• Even if make it to 
production, they 
become stale and 
hard to update


• Reproducible and 
auditable



ML pipeline



Configure ML pipeline: DVC tracks ML models and data sets



Configure ML pipeline: DVC tracks ML models and data sets



Configure ML pipeline: DVC tracks ML models and data sets

• Each run will create a file, that can be committed to version control 


• DVC allows other people to reproduce the entire ML pipeline, by executing 
the dvc repro command.


• Once we find a suitable model, we will treat it as an artifact that needs to be 
versioned and deployed to production. 


• With DVC, we can use the dvc push and dvc pull commands to publish and 
fetch it from external storage.



Configure ML pipeline: DVC tracks ML models and data sets



There are other open source tools for versioning
Pachyderm



There are other open source tools for versioning
MLflow



Model Serving
Abstract level



Model Serving
TF Serving



Model Serving
Web app



Model Serving
Internet of Thing



Model Serving
Stream Processing System



Model Serving
Embedded model

• Simple approach


• You treat the model artifact as a dependency that is built and packaged within 
the consuming application. 


• You can treat the application artifact and version as being a combination of 
the application code and the chosen model.



Model Serving
Model deployed as a separate service

• The model is wrapped in a service that can be deployed independently of the 
consuming applications. 


• This allows updates to the model to be released independently, but it can also 
introduce latency at inference time


• There will be some sort of remote invocation required for each prediction.



Model Serving
Model published as data

• The model is also treated and published independently, 


• But the consuming application will ingest it as data at runtime. 


• We have seen this used in streaming/real-time scenarios where the 
application can subscribe to events that are published whenever a new model 
version is released, and ingest them into memory while continuing to predict 
using the previous version. 


• Software release patterns such as Canary Releases can also be applied in 
this scenario.



Export ML models to production environment
Open Neural Network Exchange



Testing and Quality in Machine Learning

• Regardless of which pattern you decide to use, there is always an implicit 
contract between the model and its consumers. 


• The model will usually expect input data in a certain shape, and if Data 
Scientists change that contract to require new input or add new features, you 
can cause integration issues and break the applications using it. 


• So testing becomes important.







Testing Machine Learning Systems
Validating data

• Tests to validate input data against the expected schema, or to validate our 
assumptions about its valid values: 


• Values fall within expected ranges


• Values are not null


• Unit tests to check features are calculated correctly:


• Numeric features are scaled or normalized, 


• One-hot encoded vectors contain all zeroes and a single 1


• Missing values are replaced appropriately



Testing Machine Learning Systems
Validating component integration

• Test the integration between different services:


• Contract Tests to validate that the expected model interface is compatible 
with the consuming application. 


• Test that the exported model still produces the same results:


• Running the original and the productionized models against the same 
validation dataset, and comparing the results are the same.

https://martinfowler.com/bliki/ContractTest.html


Testing Machine Learning Systems
Validating the model quality

• ML model performance is non-deterministic.


• Collect and monitor metrics to evaluate a model's performance, 


• Error rates, accuracy


• Precision, recall


• AUC, ROC, confusion matrix


• Threshold Tests in our pipeline, to ensure that new models don't degrade 
against a known performance baseline.



Testing Machine Learning Systems
Validating model bias and fairness

• Check how the model performs against baselines for specific data slices:


• Inherent bias in the training data where there are many more data points for 
a given value of a feature (e.g. race, gender, or region) compared to the 
actual distribution in the real world. 


• A tool like Facets can help you visualize those slices and the distribution of 
values across the features in your datasets.



Testing Machine Learning Systems
Integration Test

• When models are distributed or exported to be used by a different 
application, 


• The engineered features are calculated differently between training and 
serving time. 


• Distribute a holdout dataset along with the model artifact, and allow the 
consuming application team to reassess the model's performance against the 
holdout dataset after it is integrated. 


• This would be the equivalent of a broad Integration Test in traditional 
software development.



Governance process for ML Systems
Experiments Tracking

• To capture and display information that will allow humans to decide if and 
which model should be promoted to production. 


• It is common that you will have multiple experiments being tried in parallel, and 
many of them might not ever make it to production.


• The code for many of these experiments will be thrown away, and only a few 
of them will be deemed worthy of making it to production.


• Different Git branches to track the different experiments in source control. 


• Tools such as DVC can fetch and display metrics from experiments running in 
different branches or tags, making it easy to navigate between them.



Governance process for ML Systems
MLflow Tracking web UI



Model Deployment
Multiple models

• More than one model performing the same task. 


• Train a model to predict demand for each product. 


• Deploying the models as a separate service might be better for consuming 
applications to get predictions with a single API call. 


• You can later evolve how many models are needed behind that Published 
Interface.



Model Deployment
Shadow models

• Deploy the new model side-by-side with the current one, as a shadow model


• Send the same production traffic to gather data on how the shadow model 
performs before promoting it into the production.



Model Deployment
Competing models

• Multiple versions of the model in production — like an A/B test


• Infrastructure and routing rules required to ensure the traffic is being 
redirected to the right models.


• To gather enough data to make statistically significant decisions, which can 
take some time. 


• Evaluating multiple competing models is Multi-Armed Bandits, 


• To define a way to calculate and monitor the reward associated with using 
each model.



Model Supervisor

French 
Bulldog 

French 
Bulldog 

French 
Bulldog 

No one 
likes dogs

Replication Isolation/ 
Containment

Supervision/ 
Delegation



Model Deployment
Online learning models

• To use algorithms and techniques that can continuously improve its 
performance with the arrival of new data. 


• Constantly learning in production. 


• Extra complexities, as versioning the model as a static artifact won't yield the 
same results if it is not fed the same data. 


• You will need to version not only the training data, but also the production 
data that will impact the model's performance.



Orchestration in ML Pipelines

• Provisioning of infrastructure and the execution of the ML Pipelines to train 
and capture metrics from multiple model experiments 


• Building, testing, and deploying Data Pipelines


• Testing and validation to decide which models to promote


• Provisioning of infrastructure and deployment of models to production



Continuous Integration and Delivery
GoCD



A Continuous Delivery Scenario for ML

1. Machine Learning Pipeline: 


• To train and evaluate ML models


• To execute threshold test to decide if the model can be promoted or not


• dvc push to publish it as an artifact


2. Application Deployment Pipeline: 


• To build and test the application code


• To fetch the promoted model from the upstream pipeline using dvc pull


• To package a new combined artifact that contains the model and the application as a Docker image 


• To deploy them to a production cluster



Combining Machine Learning Pipeline and Application Deployment Pipeline



ML Model Monitoring
How models perform in production and rollback mechanisms

• Model inputs: 


• What data is being fed to the models, identifying training-serving skew. 


• Model outputs: 


• What predictions and recommendations are the models making from these 
inputs, to understand how the model is performing with real data.



ML Model Monitoring
How models perform in production and rollback mechanisms

• Model interpretability outputs: 


• Metrics such as model coefficients, ELI5, or LIME outputs that allow further 
investigation to understand how the models are making predictions to 
identify potential overfit or bias that was not found during training.



“Why Should I Trust You?”
Explaining the Predictions of Any Classifier



Explaining individual predictions
A model predicts that a patient has the flu, and LIME highlights the symptoms in the patient’s history that led to the prediction



ML Model Monitoring
How models perform in production and rollback mechanisms

• Model outputs and decisions: 


• What predictions our models are making given the production input data, 
and also which decisions are being made with those predictions. 


• Sometimes the application might choose to ignore the model and make a 
decision based on pre-defined rules (or to avoid future bias).



ML Model Monitoring
How models perform in production and rollback mechanisms

• User action and rewards: 


• Based on further user action, we can capture reward metrics to understand 
if the model is having the desired effect. 


• For example, if we display product recommendations, we can track when 
the user decides to purchase the recommended product as a reward.



A pipeline for model monitoring
ELK

• Elasticsearch: an open source search engine. 


• Logstash: an open source data collector for unified logging layer. 


• Kibana: an open source web UI that makes it easy to explore and visualize 
the data indexed by Elasticsearch.



A pipeline for model monitoring
ELK



Logging



A pipeline for model monitoring



An End-to-End ML Building Process



Machine Learning Systems

Next class: Foundations of Neural Networks and Learning

https://pooyanjamshidi.github.io/mls/ | Pooyan Jamshidi



63



64


