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https://pooyanjamshidi.github.io/mls/

What is missing?

The gap between ML Research and Production

@& Chip Huyen @chipro - Jul 19, 2019 v
- Replying to @chipro
Most candidates told me the hardest questions for them are the machine

learning system design questions. They don't know what a good answer to
these questions looks like. Interviewers: any tips?

O 18 T QO 132 T,

_ Ravi Ganti @gmravi2003 - Jul 19, 2019 v

When | ask such guestions, what | am looking for is the following. 1. Can
the candidate break down the open ended problem into simple

components (building blocks) 2. Can the candidate identify which blocks
require ML and which do not.

O () Q 9 T




What is missing?

The gap between ML Research and Production

” . Dmitry Kislyuk @dkislyuk - Jul 19, 2019 v
N Replying to @lishali88 and @chipro

Most candidates know the model classes (linear, decision trees, Istms,
convnets) and memorize the relevant info, so for me the interesting bits in
ML systems interviews are data cleaning, data prep, logging, eval metrics,
scalable inference, feature stores (recommenders/rankers)

9 Tl O 71 T



What is missing?

The gap between ML Research and Production

lllia Polosukhin @ilblackdragon - Jul 20, 2019 v

| think this is the most important question. Can person define problem,
iIdentify relevant metrics, ideate on data sources and possible important
features, understands deeply what ML can do. ML methods change every

year, solving problems stays the same.

O () Q 3 N
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In ML Systems, only a small fraction is comprised of actual ML code

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley,gholt, dgg, edavydov, toddphillips}@google.com
Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, Dan Dennison

{ebner, vchaudhary, mwyoung, jfcrespo, dennison}@google.com
Google, Inc.

Abstract

Machine learning offers a fantastically powerful toolkit for building useful com-
plex prediction systems quickly. This paper argues it 1s dangerous to think of
these quick wins as coming for free. Using the software engineering framework
of technical debt, we find 1t 1S common to incur massive ongoing maintenance
costs in real-world ML systems. We explore several ML-specific risk factors to
account for in system design. These include boundary erosion, entanglement,
hidden feedback loops, undeclared consumers, data dependencies, configuration
issues, changes in the external world, and a variety of system-level anti-patterns.




A vast array of surrounding infrastructure and processes is heeded to support
evolution of ML systems

Machine
Data -
Verification M':ﬁ:g:rrggm Monitoring
Configuration Data Collection Serving
Infrastructure
code Analysis Tools

Feature

: Process
Extraction

Management Tools




Technical debt that can accumulate in ML systems

 Data dependencies
 Model complexity

* Reproducibility

* Jesting

* Monitoring

* Configuration issues

» External changes



Systems issues in ML Systems

Understanding the Nature of System-Related Issues in Machine
Learning Frameworks: An Exploratory Study

Yang Ren Gregory Gay
University of South Carolina Chalmers and the University of Gutenberg
USA Sweden
Christian Kastner Pooyan Jamshidi
Carnegie Mellon University University of South Carolina

USA USA



System = Software + Middleware + Hardware
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r b @ SQLite Frontend
Network
Lib Clients API Application
Devices Layer
Task Scheduler Device Drivers
Compilers Process Manager OS/Kernel
Layer
File System Memory Manager
CPU Memory
Hardware
GPU Controller Layer
',:ir . Deployment
‘. . h
SoC Generic hardware  Production Servers 1




Systems issues in ML Systems

Category (Short Title)

Definition

API Mismatch (API)

Compilation Error (Compl)
Configuration Error (Config)

Connection Error (Conn)

Data Race (Race)

Execution Error (Exec)
Hardware-Architecture
Mismatch (HA)

Memory Allocation (MA)

I/O Slowdown (I/0O)

Memory Leak (ML)

Model Conversion (Conv)
Multi-Threading Error (MT)
Performance Regression (PR)
Slow Synchronization (SYNC)

Unexpected Resource Usage
(RU)

Change to API version or mixed usage of APIs leading to
performance degradation.

Failure to compile the source code.

Configuration settings lead to performance degradation or
error.

Unexpected or wrongly-formatted connection request leads
to error.

Two or more threads access the same memory location con-
currently.

Unexpected error leads to the execution process crashing.
Unfit hardware architecture leads to performance degrada-
tion or compilation error.

Memory allocation leads to performance degradation.
Issues with I/O processes lead to performance degradation.
A failure in a program to release memory.

Performance degradation due to type conversion/cast.
Performance degradation due to thread interaction.
Performance degradation after a change to the system.
Synchronization between components leads to performance
degradation.

Unusual system resource usage or requests leading to error
or performance degradation.



The Building Process of ML Systems

Continuous Delivery for ML Systems

Source and prepare

your data

&

Deploy your trained

model

Code your model

&

Get predictions

from your model

&

Train, evaluate and

tune your model

&

Monitor the ongoing

predictions

&

Manage your models

and versions



A Machine Learning System is more than just a model
Change in ML Systems

105 o0 *

Data Model Code

Schema Algorithms Business Needs
Sampling over Time Mare Training Bug Fixes
Volume Experiments Configuration

martinFowler.com

Continuous Delivery for Machine Learning



Train ML model, integrate it with an application, and deploy into production

—P>

training code Model - 00
Building 00 —>
-
1

model
Deployment s o &
labeled data

Q)

web app code

production

martinFowler.com

Continuous Delivery for Machine Learning



ML model behind a web application

< C (@ localhost:5005
Sales forecast
Date YYYY-MM-DD
Product Milk

A
v

Prediction:




Challenges

e Throw over the wall

ML engineers, developers

 Models that only work

N a lab environment training code M'od.el
I Building
» Even if make it to 1]
production, they labeled data

production

become stale and 4
hard to update

AR web app code
data scientists

data engineers

 Reproducible and
auditable



ML pipeline

o 0 ©

download data.py . : evaluation.py
l ; ,III 3 : 00

OO0

: Training Data : model.pkl
1 . —

Data " splitter.py > I I I “~ decision_tree.py > I I I

Validation Data metrics.json




Configure ML pipeline: DVC tracks ML models and data sets

commit 8d/aaid

767

O Deploy to

'G} production



Configure ML pipeline: DVC tracks ML models and data sets

dvc run -f input.dvc \ @
-d src/download_data.py -o data/raw/store47-2016.csv python src/download_data.py
dvc run -f split.dvc \ @
-d data/raw/store47-2016.csv -d src/splitter.py \
-0 data/splitter/train.csv -o data/splitter/validation.csv python src/splitter.py
dvc run ©
-d data/splitter/train.csv -d data/splitter/validation.csv -d src/decision_tree.py \
-0 data/decision_tree/model.pkl -M results/metrics.json python src/decision_tree.py



Configure ML pipeline: DVC tracks ML models and data sets

« Each run will create a file, that can be committed to version control

 DVC allows other people to reproduce the entire ML pipeline, by executing
the dvc repro command.

e Once we find a suitable model, we will treat it as an artifact that needs to be
versioned and deployed to production.

 With DVC, we can use the dvc push and dvc pull commands to publish and
fetch it from external storage.



Configure ML pipeline: DVC tracks ML models and data sets

Code Data
Github, Gitlab, any Git Server S3, Azure, Google Cloud, SSH

Remote

[\ A 1\
o [l0] ) —e— A

code model.pkl.dvc model.pkl
1KB 500MB



There are other open source tools for versioning
Pachyderm
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There are other open source tools for versioning
MLflow

ml7 /o
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Model Serving

Abstract level

Inception V3
Model File

Model Server

What's in this image?

e_

REST/RPC

—
Panda (0.89)



Model Serving

TF Serving




Model Serving

Web app

r

html

N

= }\J

( button ) -1

( output Jq\

client

A

API
(flask)

\

<

1

J

-/

J

model
(tensorflow)

\

/




Model Serving

Internet of Thing

) Google Cloud Platform
Historical Data
Cloud Storage

Model Training

\/

Prediction Model
Cloud ML Engine

loT Device \ 4

Saved Model
Cloud Storage




Model Serving

Stream Processing System

Input Event Input Event
v 7
> 2 Model Servi
odel Serving
% kafka ﬂ KSQL a KSQL Request TensorFlow Serving
+ >
¢ N
N Response r
] §8
Tensor kClH(O lensor
v V

Prediction Prediction



Model Serving

Embedded model

e Simple approach

* You treat the model artifact as a dependency that is built and packaged within
the consuming application.

* You can treat the application artifact and version as being a combination of
the application code and the chosen model.



Model Serving

Model deployed as a separate service

 The model is wrapped in a service that can be deployed independently of the
consuming applications.

* This allows updates to the model to be released independently, but it can also
introduce latency at inference time

 There will be some sort of remote invocation required for each prediction.



Model Serving

Model published as data

 [he model is also treated and published independently,
 But the consuming application will ingest it as data at runtime.

* We have seen this used in streaming/real-time scenarios where the
application can subscribe to events that are published whenever a new model
version Is released, and ingest them into memory while continuing to predict
using the previous version.

o Software release patterns such as Canary Releases can also be applied in
this scenario.



Export ML models to production environment
Open Neural Network Exchange

Training framework Deployment target
. t~ O PyTorch
Keras ~szzi---—---oooeoo ': : Cognitive
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Testing and Quality in Machine Learning

 Regardless of which pattern you decide to use, there is always an implicit
contract between the model and its consumers.

 The model will usually expect input data in a certain shape, and if Data
Scientists change that contract to require new input or add new features, you
can cause Iintegration issues and break the applications using It.

* So testing becomes important.

Continuous Delivery for Machine Learning
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Gradio powering clinical trials of machine learning models

Model’'s mistakes

collected

0 Interdisciplinary team e Model undergoes
build/improve skin cancer clinical validation at

classification model multiple sites
They deploy it easily

using Gradio




Testing Machine Learning Systems
Validating data

* Jests to validate input data against the expected schema, or to validate our
assumptions about its valid values:

e Values fall within expected ranges
e Values are not null
* Unit tests to check features are calculated correctly:
 Numeric features are scaled or normalized,
* One-hot encoded vectors contain all zeroes and a single 1

 Missing values are replaced appropriately



Testing Machine Learning Systems

Validating component integration

* Jest the Integration between different services:

* Contract Tests to validate that the expected model interface is compatible
with the consuming application.

* Jest that the exported model still produces the same results:

 Running the original and the productionized models against the same
validation dataset, and comparing the results are the same.


https://martinfowler.com/bliki/ContractTest.html

Testing Machine Learning Systems
Validating the model quality

« ML model performance is hon-deterministic.

* Collect and monitor metrics to evaluate a model's performance,
* Error rates, accuracy
 Precision, recall
 AUC, ROC, confusion matrix

 Threshold Tests in our pipeline, to ensure that new models don't degrade
against a known performance baseline.



Testing Machine Learning Systems

Validating model bias and fairness

 Check how the model performs against baselines for specific data slices:

* |Inherent bias in the training data where there are many more data points for
a given value of a feature (e.g. race, gender, or region) compared to the
actual distribution in the real world.

* A tool like Facets can help you visualize those slices and the distribution of
values across the features in your datasets.



Testing Machine Learning Systems

Integration Test

 When models are distributed or exported to be used by a different
application,

* The engineered features are calculated differently between training and
serving time.

» Distribute a holdout dataset along with the model artifact, and allow the
consuming application team to reassess the model's performance against the
holdout dataset after it is integrated.

* This would be the equivalent of a broad Integration Test in traditional
software development.



Governance process for ML Systems

Experiments Tracking

* Jo capture and display information that will allow humans to decide if and
which model should be promoted to production.

e |t is common that you will have multiple experiments being tried in parallel, and
many of them might not ever make it to production.

 The code for many of these experiments will be thrown away, and only a few
of them will be deemed worthy of making it to production.

e Different Git branches to track the different experiments in source control.

* TJools such as DVC can fetch and display metrics from experiments running in
different branches or tags, making it easy to navigate between them.



Governance process for ML Systems

ml//c

Experiments

userz2

useri

MLflow Tracking web Ul

useri

Experiment ID: 1 Artifact Location: gs://cd4ml-mlflow-tracking/1

Search Runs:

Filter Params: Filter Metrics:

1 matching run Delete Download CSV &, = | B8
Date w User Run Name Source Version
2019-04-28 00:03:22 go o Cldecision_tree.py b24402

State:

RParameters

madel

RANDOM_FOREST

n estimators

10

GitHub Docs

Active ~

nwrmsle

0.743

Clear

Metrics

r< scare

0.109



Model Deployment

Multiple models

 More than one model performing the same task.
* Train a model to predict demand for each product.

* Deploying the models as a separate service might be better for consuming
applications to get predictions with a single API call.

* You can later evolve how many models are needed behind that Published
Interface.



Model Deployment

Shadow models

 Deploy the new model side-by-side with the current one, as a shadow model

» Send the same production traffic to gather data on how the shadow model
performs before promoting it into the production.



Model Deployment

Competing models

 Multiple versions of the model in production — like an A/B test

* |nfrastructure and routing rules required to ensure the traffic is being
redirected to the right models.

* Jo gather enough data to make statistically significant decisions, which can
take some time.

* Evaluating multiple competing models is Multi-Armed Bandits,

* Jo define a way to calculate and monitor the reward associated with using
each model.



Model Spervi;sar
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Model Deployment

Online learning models

* Jo use algorithms and technigues that can continuously improve Its
performance with the arrival of new data.

* Constantly learning in production.

 Extra complexities, as versioning the model as a static artifact won't yield the
same results If it is not fed the same data.

* You will need to version not only the training data, but also the production
data that will impact the model's performance.



Orchestration in ML Pipelines

* Provisioning of infrastructure and the execution of the ML Pipelines to train
and capture metrics from multiple model experiments

* Building, testing, and deploying Data Pipelines
* [esting and validation to decide which models to promote

* Provisioning of infrastructure and deployment of models to production




Continuous Integration and Delivery
GoCD

ENV & APP CONFIG

-------------------------------
1!
BUILD 1 ACC1 ; .

il
0
il
TEST ENV
BUILD 2 ACC 2
. F q n
PACKAGE INTEGRATION ‘ TEST ENV ’ STAGING PRODUCTION

TEST ENV

SOURCE CODE

SOURCE CODE
BUILD 3 ACC3
BUILD 4 ACC 4
SOURCE CODE

I I E———————

BUILD TEST & RELEASE




A Continuous Delivery Scenario for ML

1. Machine Learning Pipeline:
* To train and evaluate ML models
* Jo execute threshold test to decide if the model can be promoted or not
* dvc push to publish it as an artifact
2. Application Deployment Pipeline:
* o build and test the application code
* Jo fetch the promoted model from the upstream pipeline using dvc pull
* Jo package a new combined artifact that contains the model and the application as a Docker image

* Jo deploy them to a production cluster martinFowler.com

Continuous Delivery for Machine Learning



Combining Machine Learning Pipeline and Application Deployment Pipeline
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ML Model Monitoring

How models perform in production and rollback mechanisms

 Model inputs:
 What data is being fed to the models, identifying training-serving skew.
 Model outputs:

 What predictions and recommendations are the models making from these
iInputs, to understand how the model is performing with real data.



ML Model Monitoring

How models perform in production and rollback mechanisms

 Model interpretability outputs:

 Metrics such as model coefficients, ELI5, or LIME outputs that allow further
Investigation to understand how the models are making predictions to
identify potential overfit or bias that was not found during training.

hi there, i am here looking for some help. my friend is a interic

graphics software on pc. any suggestion on which software tc
sophisticated software(the more features it has,the better)

y=0 (probability 0.000) top features y=1 (probability 0.100) top features y=2 (probability 0.900) top features

Contribution’? Feature Value | contribution? Feature Value | Contribution? Feature Value
+0.301 <BIAS> 1.000 +0.427 <BIAS> 1.000 +0.289 hue 0.670
+0.064 color_intensity 8.500 +0.033 proline 630.000 +0.272 <BIAS> 1.000
+0.004 malic_acid 4.600 +0.022 0d280/0d315_of_diluted_wines 1.920 +0.095 color_intensity 8.500
-0.018 alcalinity_of_ash 25.000 +0.009 alcalinity_of_ash 25.000 +0.083 flavanoids 0.960
-0.044 total_phenols 1.980 +0.006 total_phenols 1.980 +0.067 proline 630.000
-0.055 flavanoids 0.960 -0.003 proanthocyanins 1.110 +0.056 malic_acid 4.600
-0.100 proline 630.000 -0.010 alcohol 13.400 +0.038 total_phenols 1.980
-0.153 hue 0.670 -0.028 flavanoids 0.960 +0.010 alcohol 13.400
-0.060 malic_acid 4.600 +0.009 alcalinity_of_ash 25.000

-0.137 hue 0.670 +0.003 proant hocyanins 1.110

-0.160 color_intensity 8.500 -0.022 o0d280/od315_of_diluted_wines 1.920




“Why Should | Trust You?”

Explaining the Predictions of Any Classifier

cIampis ¥5 of G True Class: . Atheism instructions { Previous J{ Next

Algorithm 1 Algorithm 2
Words that Al considers important:

Words that A2 considers important: Predicted:

. Atheism

Prediction correct:

GOD Posting

Prediction correct: Host

through Nntp
Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hg.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp

Lines: 8 Lines: 8




Explaining individual predictions

A model predicts that a patient has the flu, and LIME highlights the symptoms In the patient’s history that led to the prediction

/ snecze BEE Explainer SNeb sl
: LIME
o I\;V: ;%I;tch o ( ) headache
\ no fatigue no fatigue
age 7
Model Data and Prediction Explanation Human makes decision



ML Model Monitoring

How models perform in production and rollback mechanisms

 Model outputs and decisions:

 What predictions our models are making given the production input data,
and also which decisions are being made with those predictions.

o Sometimes the application might choose to ignore the model and make a
decision based on pre-defined rules (or to avoid future bias).



ML Model Monitoring

How models perform in production and rollback mechanisms

e User action and rewards:

 Based on further user action, we can capture reward metrics to understand
If the model is having the desired effect.

 For example, if we display product recommendations, we can track when
the user decides to purchase the recommended product as a reward.



A pipeline for model monitoring
ELK

* Elasticsearch: an open source search engine.
 Logstash: an open source data collector for unified logging layer.

» Kibana: an open source web Ul that makes it easy to explore and visualize
the data indexed by Elasticsearch.



A pipeline for model monitoring
ELK




Logging

predict_with_logging.py...
df = pd.DataFrame(data=data, index=['rowl'])
df = decision_tree.encode_categorical_columns(df)
pred = model.predict(df)
logger = sender.FluentSender (TENANT, host=FLUENTD_HOST, port=int(FLUENTD_PORT))
log_payload = {'prediction': pred[0], **data}
logger.emit('prediction’', log_payload)



A pipeline for model monitoring
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An End-to-End ML Building Process
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Machine Learning Systems
Next class: Foundations of Neural Networks and Learning

https://pooyanjamshidi.github.io/mls/ | Pooyan Jamshidi
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Deep Learning Library
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TensorFlow: A System for Large-Scale
Machine Learning

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
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