Machine Learning Systems

Lecture 7: Machine Learning System Stack

Pooyan Jamshidi

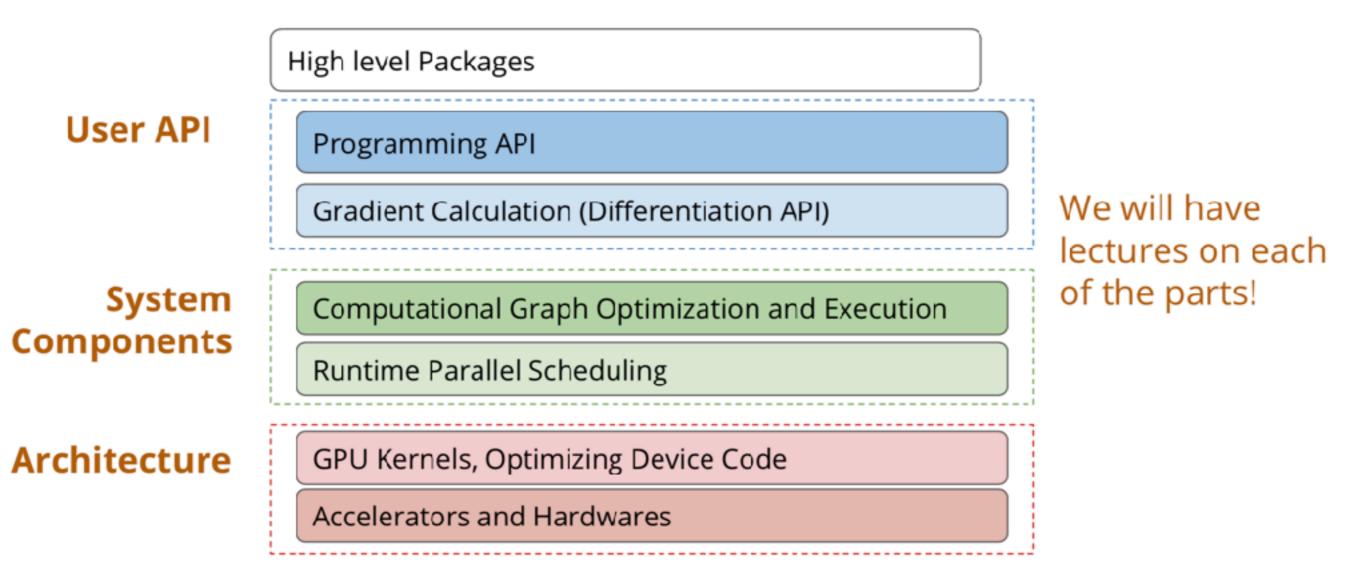
Uof SC. SCE 585: Machine Learning Systems | Fall 2022 |

Machine Learning Systems Juggle

theano

We won't focus on a specific one, but will discuss the common and useful elements of these systems

Typical Machine Learning System Stack



Typical Machine Learning System Stack

User API

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Executior

Runtime Parallel Scheduling

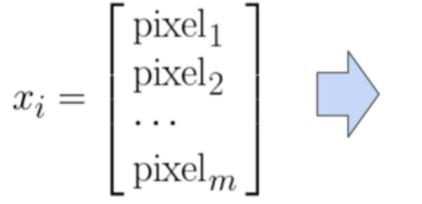
GPU Kernels, Optimizing Device Code

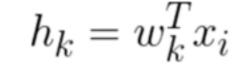
Accelerators and Hardwares

Example: Logistic Regression

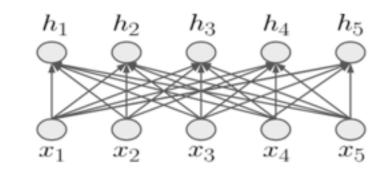
Fully Connected Layer

Softmax





$$P(y_i = k | x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_i)}$$



Logistic Regression in Numpy

```
import numpy as np
from tinyflow.datasets import get_mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
  return x
# get the mnist dataset
mnist = get_mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
  y_grad = y - batch_ys
  W_grad = np.dot(batch_xs.T, y_grad)
  # update
  W = W - learning_rate * W_grad
```

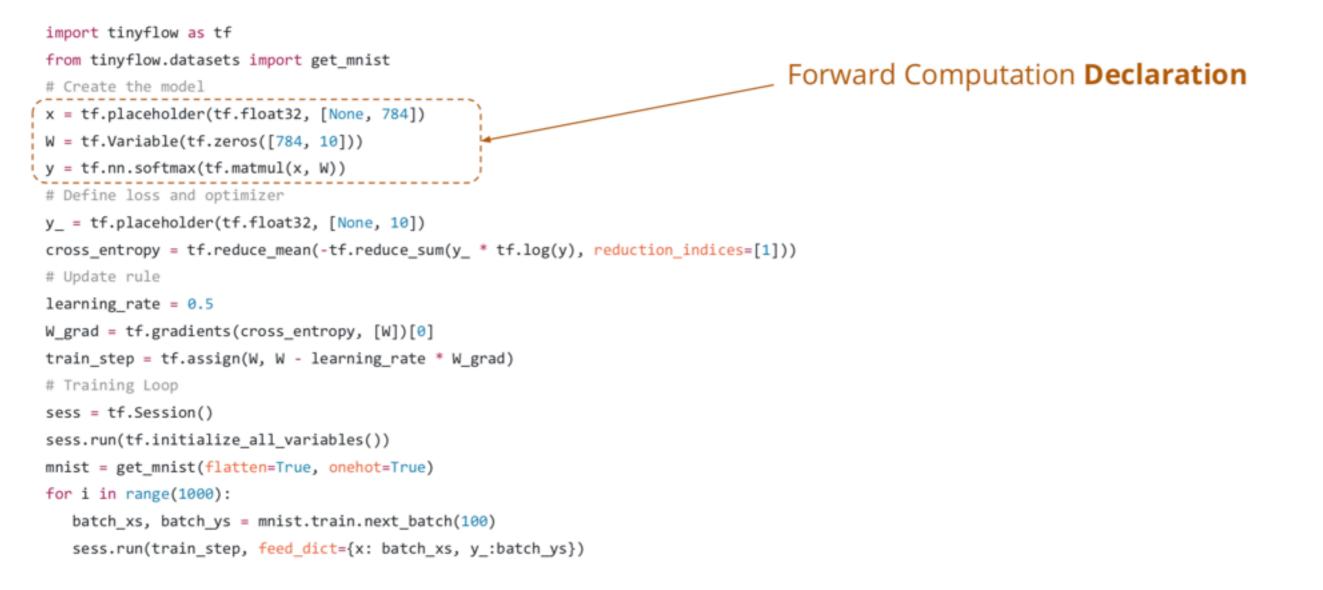
Forward computation: Compute probability of each class y given input

- Matrix multiplication
 - np.dot(batch_xs, W)
- Softmax transform the result
 - softmax(np.dot(batch_xs, W))

Logistic Regression in Numpy

```
import numpy as np
from tinyflow.datasets import get_mnist
def softmax(x):
   x = x - np.max(x, axis=1, keepdims=True)
   x = np.exp(x)
   x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get_mnist(flatten=True, onehot=True)
learning_rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
                                                                    Weight Update via SGD
   batch_xs, batch_ys = mnist.train.next_batch(100)
                                                                    w \leftarrow w - \eta \nabla_w L(w)
   # forward
   y = softmax(np.dot(batch_xs, W))
   # backward
   y_grad = y - batch_ys
   W_grad = np.dot(batch_xs.T, y_grad)
   #_update
   W = W - learning_rate * W_grad
```

Logistic Regression in TinyFlow (TensorFlow like API)



```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
                                                                                                    Loss function Declaration
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
                                                                                                  \begin{split} P(\text{label} &= k) = y_k \\ L(y) &= \sum I(\text{label} = k)\log(y_i) \end{split}
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
                                                                                             Automatic Differentiation: Details
learning_rate = 0.5
                                                                                             in next lecture!
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
                                                                                                 SGD update rule
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
                                                                                                Real execution happens here!
for i in range(1000):
   batch xs, batch ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Typical Deep Learning System Stack

Programming AP

iradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

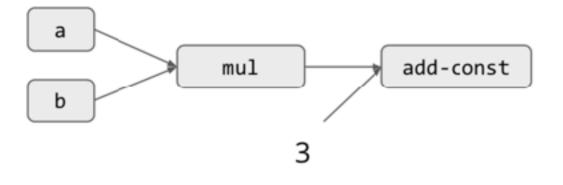
GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

The Declarative Language: Computation Graph

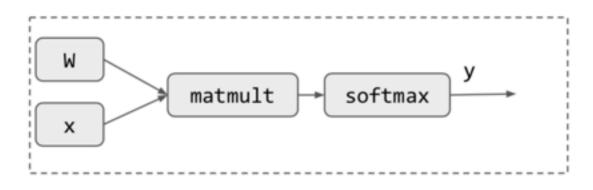
- Nodes represents the computation (operation)
- Edge represents the data dependency between operations

Computational Graph for a * b + 3



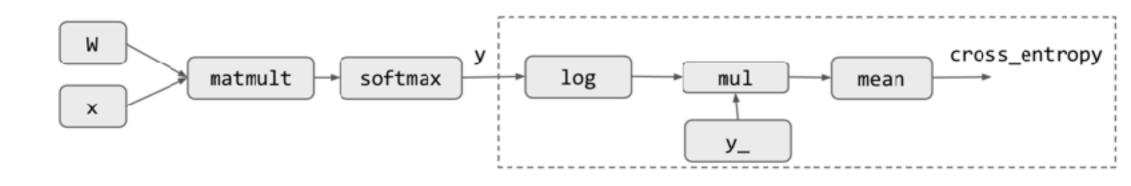
x = tf.placeholder(tf.float32, [None, 784])

- W = tf.Variable(tf.zeros([784, 10]))
- y = tf.nn.softmax(tf.matmul(x, W))



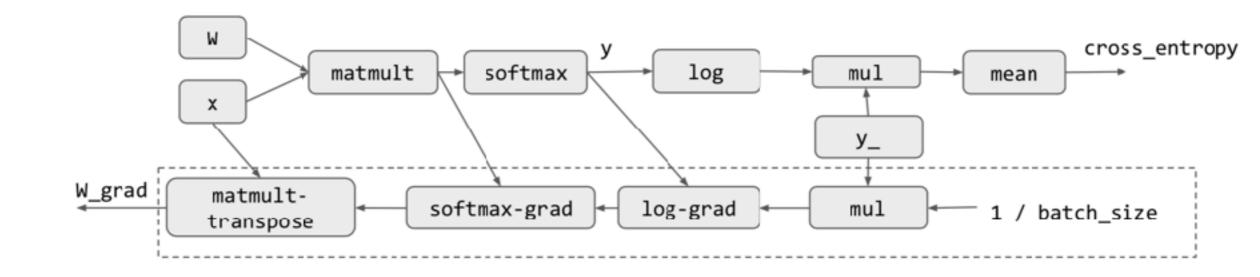
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

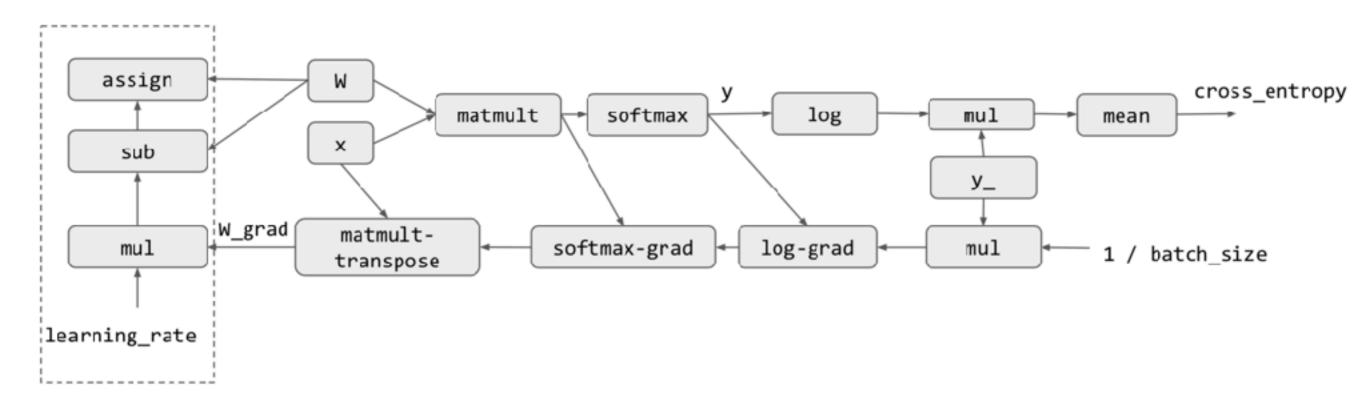


W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, detail in next lecture!

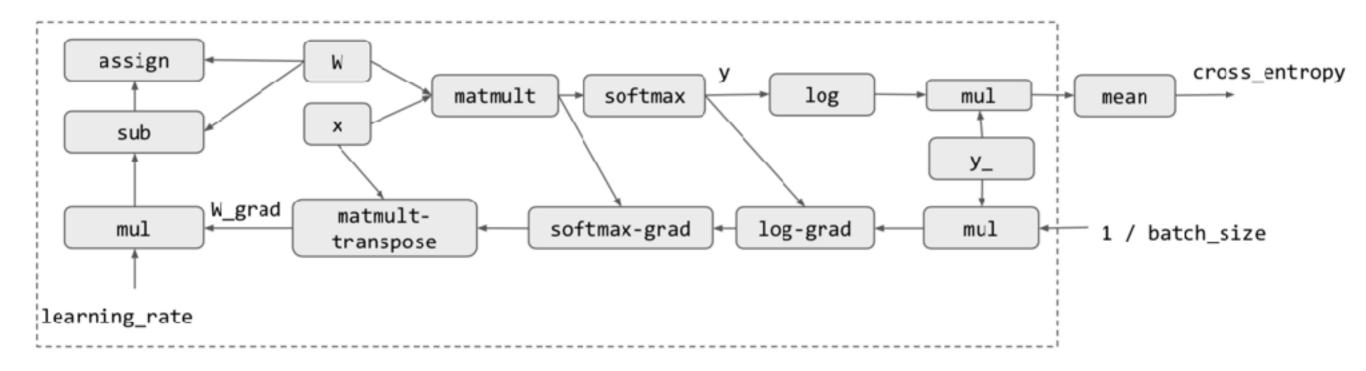


train_step = tf.assign(W, W - learning_rate * W_grad)



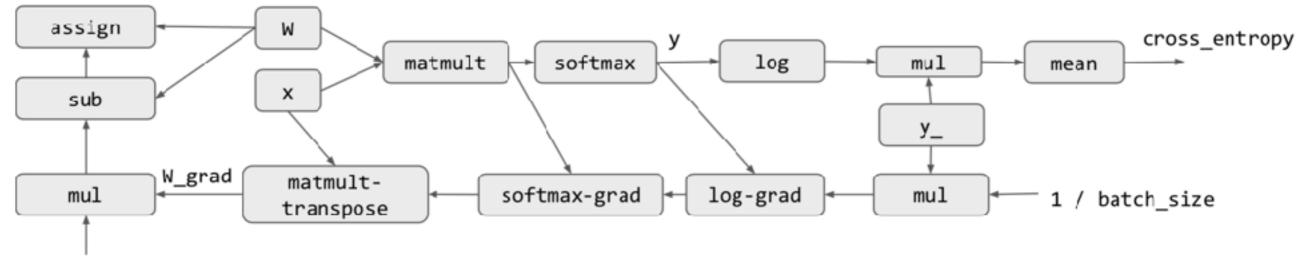
Execution only Touches the Needed Subgraph

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion: Computational Graph

- What is the benefit of computational graph?
- How can we deploy the model to mobile devices?



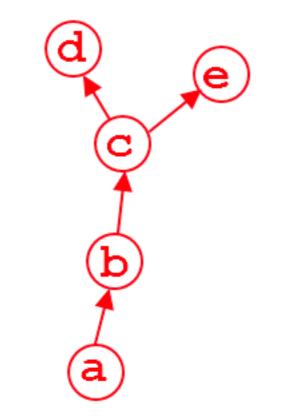
learning_rate

Discussion: Numpy vs TF Program

What is the benefit/drawback of the TF model vs Numpy Model

import numpy as np	import tinyflow as tf							
from tinyflow.datasets import get_mnist	<pre>from tinyflow.datasets import get_mnist</pre>							
<pre>def softmax(x):</pre>	# Create the model							
<pre>x = x - np.max(x, axis=1, keepdims=True)</pre>	<pre>x = tf.placeholder(tf.float32, [None, 784])</pre>							
x = np.exp(x)	<pre>W = tf.Variable(tf.zeros([784, 10]))</pre>							
<pre>x = x / np.sum(x, axis=1, keepdims=True)</pre>	<pre>y = tf.nn.softmax(tf.matmul(x, W))</pre>							
return x	# Define loss and optimizer							
# get the mnist dataset	<pre>y_ = tf.placeholder(tf.float32, [None, 10])</pre>							
<pre>mnist = get_mnist(flatten=True, onehot=True)</pre>	<pre>cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))</pre>							
learning_rate = 0.5 / 100	# Update rule							
W = np.zeros((784, 10))	<pre>learning_rate = 0.5 W_grad = tf.gradients(cross_entropy, [W])[0] train_step = tf.assign(W, W - learning_rate * W_grad)</pre>							
for i in range(1000):								
<pre>batch_xs, batch_ys = mnist.train.next_batch(100)</pre>								
# forward	# Training Loop							
<pre>y = softmax(np.dot(batch_xs, W))</pre>	<pre>sess = tf.Session()</pre>							
* backward	<pre>sess.rum(tf.initialize_all_variables())</pre>							
y_grad = y - batch_ys	<pre>nnist = get_mnist(flatten=True, onehot=True)</pre>							
W_grad = np.dot(batch_xs.T, y_grad)	for i in range(1000):							
# update	<pre>batch_xs, batch_ys = mnist.train.next_batch(100)</pre>							
W = W - learning_rate * W_grad	<pre>sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})</pre>							

Computational graphs in other frameworks: PyTorch



import torch
from torch.autograd import Variable
a = Variable(torch.rand(1, 4), requires_grad=True)
b = a**2
c = b*2
d = c.mean()
e = c.sum()

Typical Deep Learning System Stack

Programming AP

iradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

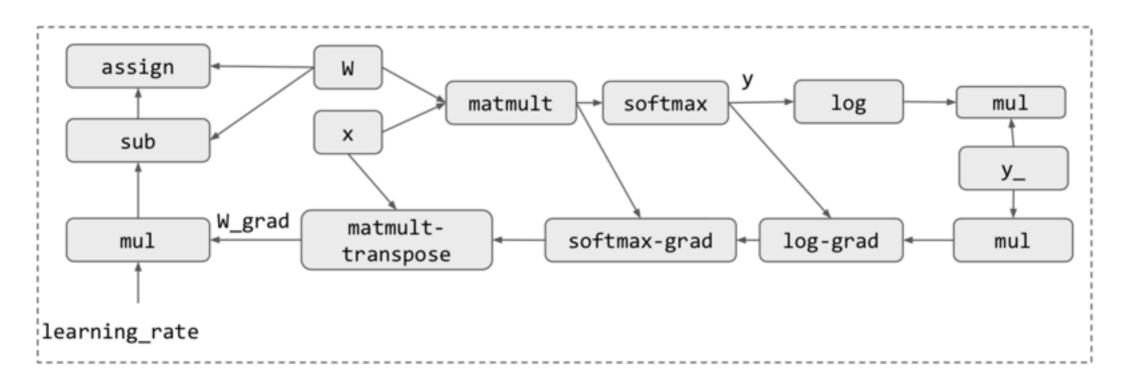
Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

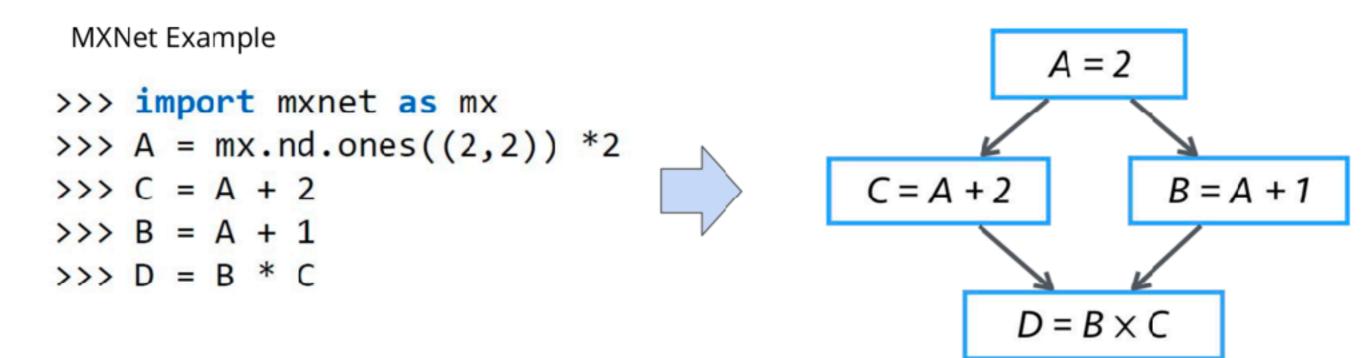
Computation Graph Optimization

- E.g. Deadcode elimination
- Memory planning and optimization
- What other possible optimization can we do given a computational graph?

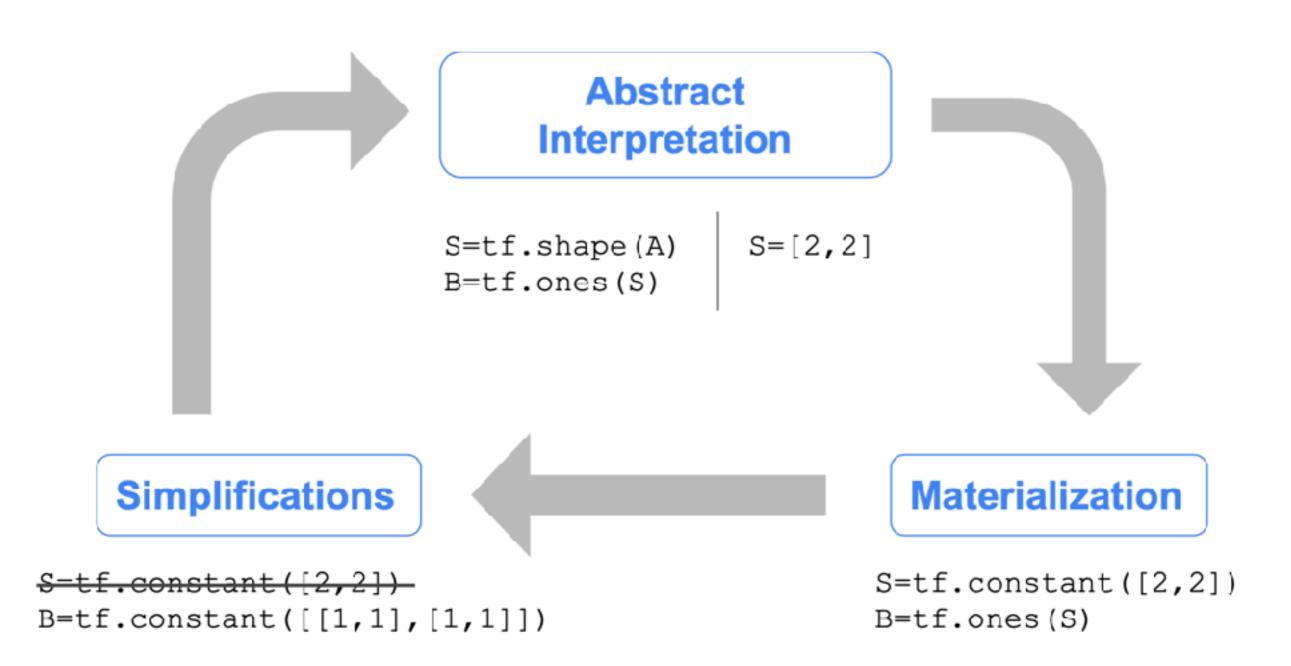


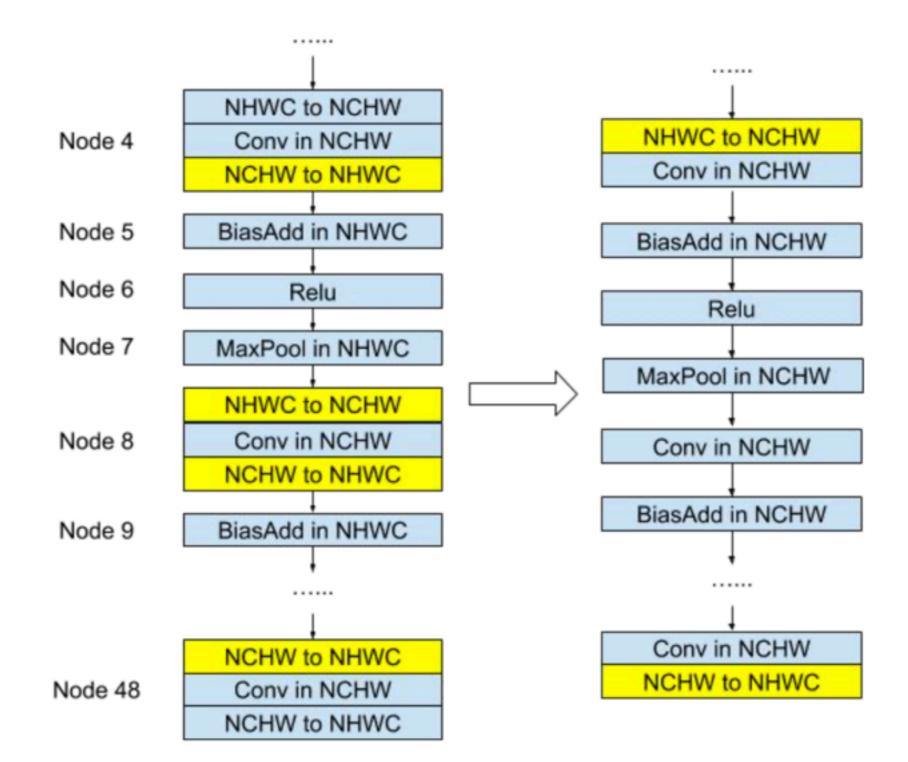
Parallel Scheduling

- Code need to run parallel on multiple devices and worker threads
- Detect and schedule parallelizable patterns
- Detail lecture on later

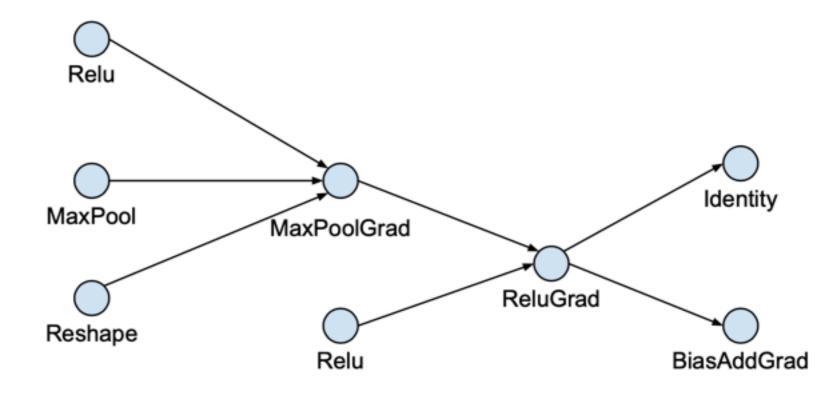


Graph Simplifications

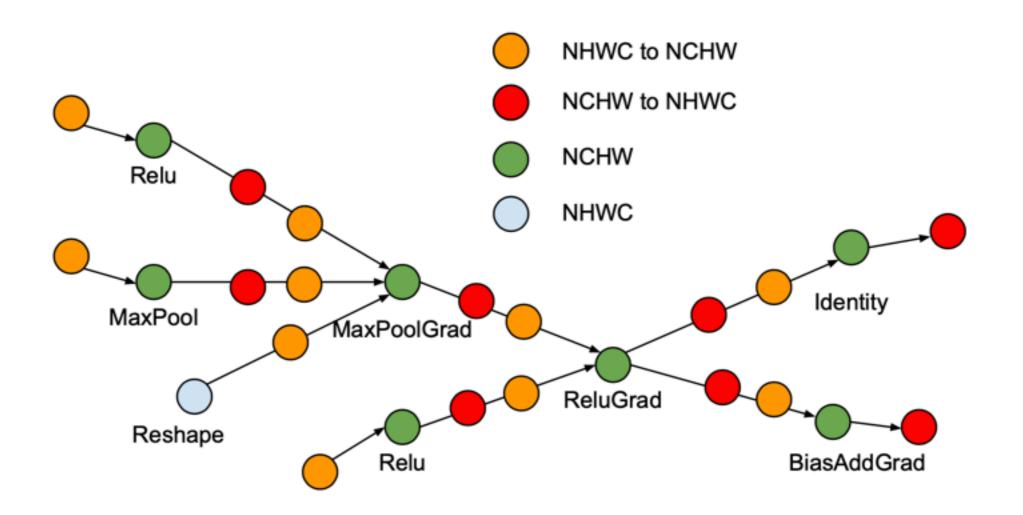




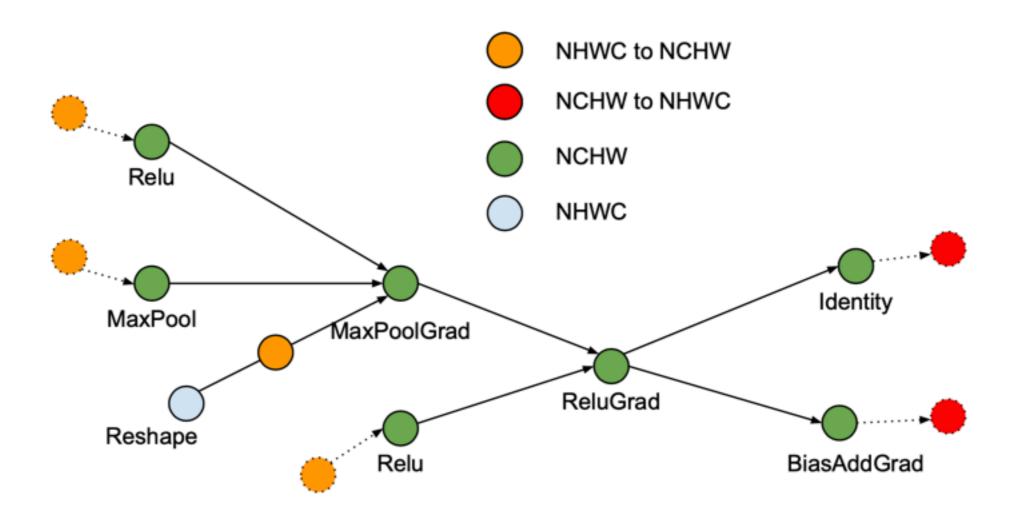
Example: Original graph with all ops in NHWC format



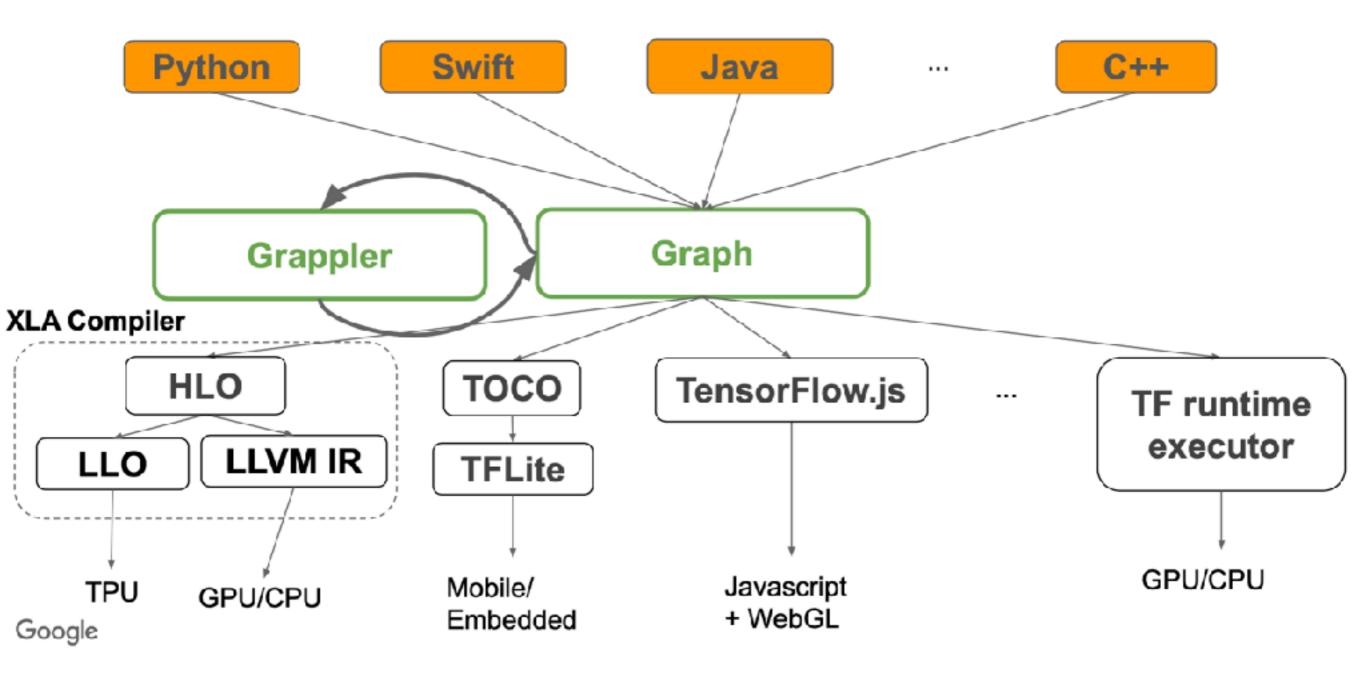
Phase 1: Expand by inserting conversion pairs



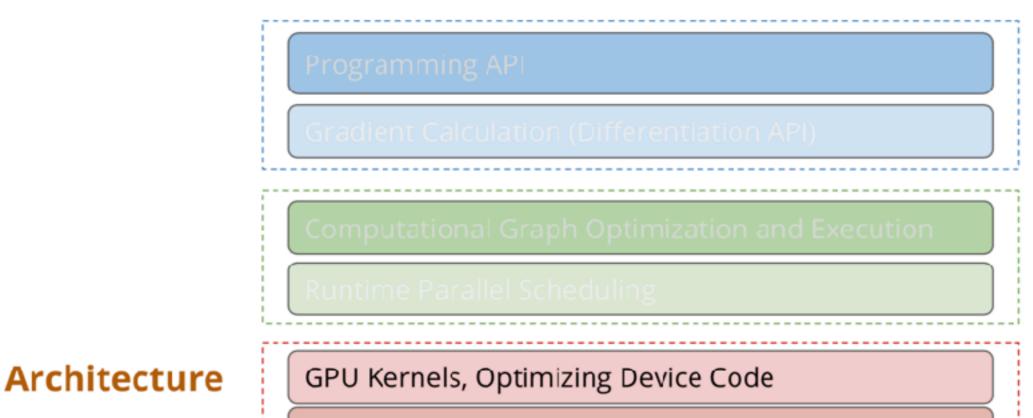
Phase 2: Collapse adjacent conversion pairs



Computation Graph Optimization



Typical Deep Learning System Stack



Accelerators and Hardwares

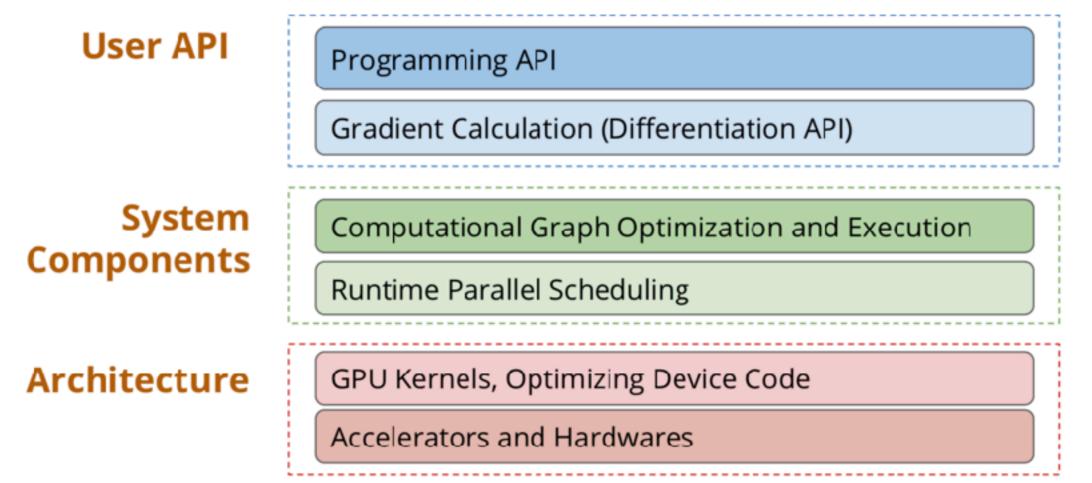
GPU Acceleration

- Most existing deep learning programs runs on GPUs
- Modern GPU have Teraflops of computing power

_	_	_	_	_	_	_	_	on Gache	_	_	_	_	_	_			
Instruction Buffer									Instruction Buffer								
Varp Schaduler Dispetch Jnit Dispetch Unit								Varp Scheduler Dispetch Unit Dispetch Unit									
	Dispate				Dispet	ch Unit			Dispate	ch Unit			Dispa	ch Unit			
Register File (12,768 x 32-bit)								Register File (32,768 x 32-bit)									
Care	Core		Core	Core	DP Unit	LD/ST	570	Core	Core		Core	Core	DP Luce	LDS'	SPU		
Core	Core	DP Unit	Core	Core	0.P Unit	LDIST	SFU	Core	Core	QD Unit	Core	Core	DP Unit	LD:S"	SFU		
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	UP Unit	Core	Core	DP Unit	LDS?	SFU		
Core	Core	Line .	Core	Core	UP Jeat	LD/ST	SFU	Core	Core	UP Lot	Core	Core	DP Unit	LD:S'	SFU		
Core	core	8	core	Core	DP Unit	LOTST	570	core	COIE	2 3	Core	Core	DP Unit	LDIST	SPU		
Core	Core	DP Unit	Core	Corp	DP Unit	1.0/51	SFE	Core	Core	90 Unit	Core	Core	DP Unit	IDS'	SFL		
Core	Core	UP.	Core	Core	UP deat	LD/ST	SFU	Core	Core	UP Land	Core	Core	DP. Lind	LD:S"	SFU		
Core	Core	Unit	Core	Core	UPP UPR	LD/51	sru	Core	Core	Unit	Core	Core	Unit	10.97	SFU		
							Texture /	L1 Cache									
Tex Tex							Te	R K	Tex								

Typical Deep Learning System Stack

Not a comprehensive list of elements The systems are still rapidly evolving :)



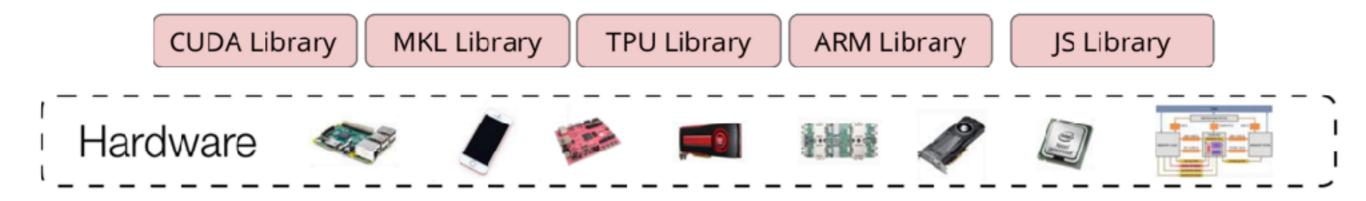
Supporting More Hardware backends

Each Hardware backend requires a software stack

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling



New Trend: Compiler based Approach

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

High level operator description

Tensor Compiler Stack

