
Machine Learning Systems
Lecture 12: Scalable & Distributed Machine Learning

Pooyan Jamshidi

CSCE 585: Machine Learning Systems | Fall 2023 | https://pooyanjamshidi.github.io/mls/

https://pooyanjamshidi.github.io/mls/

Learning goals
• Review gradient descent and its variations

• Understand scalability challenges during training

• Examine computer systems tricks to make gradient
descent scalable to handle large training sets

• Discuss algorithms and architectures to optimize
gradient descent in a parallel and distributed setting

• Case Study: Distributed Model Training at Uber

Acknowledgement
Sebastian Ruder, “An overview of gradient descent optimization algorithms”,
2017

Seb Arnold, “An Introduction to Distributed Deep Learning”, 2016

Dean et al., “Large Scale Distributed Deep Networks”, in NIPS 2012

Li et al., “Scaling Distributed Machine Learning with the Parameter Server”, in OSDI
2014

Langford et al., “Slow learners are fast”. In NIPS 2009

CS231n Convolutional Neural Networks for Visual Recognition

Jain, “A Brief Primer: Stochastic Gradient Descent”, 2017

Blaise Barney, “Introduction to Parallel Computing”

Supervised ML

Supervised machine learning generally consists of three
phases:

• Training (generating a model)

• Validation (determining values of hyper-parameters)

• Inference (making predictions with the trained model)

Key aim of model training

Finding values for a model's parameters, θ, such that two,
often conflicting, goals are met:

• Error on the set of training examples is minimized,

• The model generalizes to new data

Gradient
Descent

The most popular
algorithms to perform
optimization especially
for optimizing neural

networks

What is gradient descent?

• Gradient descent is an algorithm that iteratively tweaks a
model's parameters

• With the goal of minimizing the discrepancy between the
model's predictions and the "true" labels associated with
a set of training examples.

Loss function

J(θ) =
1

2m
Σm

i=1(hθ(x(i)) − y(i))2

Batch gradient descent

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}

Gradient descent in code

for i in range(nb_epochs):
 weights_grad = evaluate_gradient(loss_function, data, params)
 weights += - learning_rate * weights_grad

Initial value of θ may results
in two different local minima

Gradient descent is very
costly

∇θJ(θ) = (
∂

∂θ1
J(θ),

∂
∂θ2

J(θ), . . . ,
∂

∂θn
J(θ))

Each partial derivative involves computing
a sum over every training example

∂
∂θj

J(θ) =
∂

∂θj (1
2m

m

∑
i=1

(hθ(x(i)) − y(i))2)
=

1
m

m

∑
i=1

(hθ(x(i)) − y(i))
∂

∂θj
hθ(x(i))

The key idea in stochastic gradient
descent is to drop the sum

∂
∂θj

J(θ) ≈ (hθ(x(i)) − y(i))
∂

∂θj
hθ(x(i))

Stochastic Gradient
Descent (SGD)

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i); y(i))
}

}

∇J(θ; x(i); y(i)) = (hθ(x(i)) − y(i))∇hθ(x(i))

SGD in code

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 weights_grad = evaluate_gradient(loss_function, example, params)
 weights += - learning_rate * weights_grad

Mini-batch Gradient
Descent

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i:i+n); y(i:i+n))
}

}

Minibatch GD in code

for i in range(nb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data, batch_size=256):
 weights_grad = evaluate_gradient(loss_function, batch, params)
 weights += - learning_rate * weights_grad

What would be the ideal
batch size?

• The size of the mini-batch is a hyper-parameter

• But it is not very common to cross-validate it!

• It is usually based on memory constraints (if any)

• In practice, we use powers of 2 because operations
perform faster when their inputs are sized in powers of 2

• Rule of thumb: between 32-256

Challenges

Unlike in gradient descent, the value of
the cost function does not necessarily

decrease

SGD performs frequent updates with a
high variance that cause the objective

function to fluctuate

Choosing a proper learning
rate can be difficult

• A learning rate that is too small leads to painfully slow
convergence,

• A learning rate that is too large can hinder convergence
and cause the loss function to fluctuate around the
minimum or even to diverge.

Thresholds for adjusting learning
rate should be defined in advance

• Adjusting the learning rate during training by e.g.
annealing, i.e. reducing the learning rate according to a
pre-defined schedule or when the change in objective
between epochs falls below a threshold.

• These schedules and thresholds, however, have to be
defined in advance and are thus unable to adapt to a
dataset's characteristics.

The same learning rate applies
to all parameter updates

• If our data is sparse and our features have very different
frequencies, we might not want to update all of them to
the same extent, but perform a larger update for rarely
occurring features.

Minimizing highly non-convex
functions are challenging

• Another key challenge of minimizing highly non-convex
error functions common for neural networks is avoiding
getting trapped in their numerous suboptimal local
minima.

What computer systems
can offer to resolve the

challenges?

Parallel Computer
Memory Architectures

Shared memory
architectures

• Each CPU can access the same memory space

• Multiple processors can operate independently but share
the same memory resources

• Changes in a memory location effected by one processor
are visible to all other processors.

Uniform Memory Access
(UMA)

• Most commonly represented today by Symmetric
Multiprocessor (SMP) machines

• Identical processors

• Equal access and access times to memory

• CC-UMA - Cache Coherent UMA

Non-Uniform Memory
Access (NUMA)

• Often made by physically linking two or more SMPs

• One SMP can directly access memory of another SMP

• Not all processors have equal access time to all
memories

• Memory access across link is slower

• CC-NUMA - Cache Coherent NUMA

Pros and Cons
• Pros

• Global address space provides a user-friendly programming
perspective to memory

• Data sharing between tasks is both fast and uniform due to the
proximity of memory to CPUs

• Cons

• Lack of scalability between memory and CPUs

• Programmer responsibility for synchronization constructs that
ensure "correct" access of global memory

Distributed Memory
• Distributed memory systems require a communication

network to connect inter-processor memory

• Processors have their own local memory

• Because each processor has its own local memory, it
operates independently

• When a processor needs access to data in another
processor, it is usually the task of the programmer

Pros and Cons
• Pros

• Memory is scalable with the number of processors.

• Each processor can rapidly access its own memory without interference.

• Cost effectiveness: can use commodity, off-the-shelf processors and
networking.

• Cons

• The programmer is responsible for many of the details associated with
data communication between processors.

• It may be difficult to map existing data structures, based on global
memory, to this memory organization.

Hybrid Distributed-Shared
Memory

• The largest and fastest computers in the world today
employ both shared and distributed memory
architectures.

• The distributed memory component is the networking of
multiple shared memory/GPU machines, they only about
their own memory - not the memory on another machine.

Parallel Programming
Models

Shared Memory Model
(without threads)

• In this programming model, processes/tasks share a
common address space, which they read and write to
asynchronously.

• Various mechanisms such as locks / semaphores are
used to control access to the shared memory, resolve
contentions and to prevent race conditions and
deadlocks.

Threads Model

• This programming model is a type of
shared memory programming.

• In the threads model of parallel
programming, a single "heavy
weight" process can have multiple
"light weight", concurrent execution
paths.

Parallel for loop in OpenMP

Distributed Memory /
Message Passing Model

• A set of tasks that use their own local memory during
computation.

• Tasks exchange data through communications by
sending and receiving messages.

• Data transfer usually requires cooperative operations to
be performed by each process.

Data Parallel Model
• Address space is treated globally

• Most of the parallel work focuses on
performing operations on a data set.

• A set of tasks work collectively on
the same data structure, however,
each task works on a different
partition of the same data structure.

• Tasks perform the same operation on
their partition of work, for example,
"add 4 to every array element”.

Hybrid Model

• A hybrid model combines the
previously described
programming models.

Now that we learned about
computer systems approaches for

parallelization, how we can use
them to parallelize SGD?

Lets discuss what are
the core challenges?

When we need to add more
parallelism to our computations?

• When training really deep models (16M parameters)

• On really large datasets (17B Examples)

What has been explored so far
and what is the current trend

• Traditionally: Distributing linear algebra operations on
GPUs,

• Now: How to use multiple machines

Existing parallelizations

We will mainly focus on
data parallelism in the

rest of lecture

Parallel Gradient
Descent

Parallel Gradient Descent

• Gradient computation is usually “embarrassingly parallel”

• Why?

• Consider, for example, empirical risk minimization as a
learning algorithm:

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}

Remp(h) =
1
m

m

∑
i=1

L(h(xi), yi) .

ĥ = arg min
h∈ℋ

Remp(h) .

Parallel Gradient Descent

• Partition the dataset into k subsets S1 , . . . , Sk

• Each machine or CPU computes

• Aggregate local gradients to get the global gradient

Σi∈Si
∇θL(h(xi), yi)

∇θL(⋅) =
1
k

(Σi∈S1
∇θL(h(xi), yi) + ⋯ + Σi∈Sk

∇θL(h(xi), yi))

Parallel Stochastic Gradient

• Computation of only depends on the i-th
sample—usually cannot be parallelized.

• Parallelizing SGD is a not easy.

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i); y(i))
}

}

∇J(θ; x(i); y(i))

Parallel Mini-batch SGD

• Let S = S1 ∪ S2 ∪ · · · ∪ Sk

• Calculate mini-batch updates in parallel

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i:i+n); y(i:i+n))
}

}

Asynchronous SGD (shared
memory)

Each thread repeatedly do these updates: {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i); y(i))
}

}

How using shared memory
architecture?

• Main trick: in shared memory systems, every threads can
access the latest gradient value

• Langford et al., “Slow learners are fast”. In NIPS 2009

• “Hogwild!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent”, NIPS 2011.

Synchronous
Distributed SGD

Synchronous SGD

Pros

• The computation is completely deterministic.

• We can work with fairly large models and large batch
sizes even on memory-limited GPUs.

• It’s very simple to implement, and easy to debug and
analyze.

Cons
• This path to parallelism puts a strong emphasis on HPC,

and the hardware that is in use.

• It will be challenging to obtain a decent speedup unless
you are using industrial hardware.

• And even if you were using such a hardware, the choice
of communication library, reduction algorithm, and other
implementation details (e.g., data loading and
transformation, model size, ...) will have a strong effect on
the kind of performance gain you will encounter.

Asynchronous SGD

Pros

• The advantage of adding asynchrony to our training is
that replicas can work at their own pace,

• without waiting for others to finish computing their
gradients.

Cons

• We have no guarantee that while one replica is computing
the gradients with respect to a set of parameters, the
global parameters will not have been updated by another
one.

• If this happens, the global parameters will be updated
with stale gradients - gradients computed with old
versions of the parameters.

How to solve staleness?

• [Zhang & al.] suggested to divide the gradients by their
staleness. By limiting the impact of very stale gradients,
they are able to obtain convergence almost identical to a
synchronous system.

Zhang, W., Gupta, S., Lian, X., Liu, J.: Staleness-aware async-sgd for distributed deep learning. arXiv preprint arXiv:1511.05950. (2015)

How to solve staleness?

• Each replica executes k optimization steps locally, and
keeps an aggregation of the updates.

• Once those k steps are executed, all replicas synchronize
their aggregated update and apply them to the
parameters before the k steps.

Zhang, S., Choromanska, A.E., LeCun, Y.: Deep learning with elastic averaging sgd. In: Advances in neural information processing systems.
pp. 685–693 (2015)

Implementation

What is the first
decision then?

What is the decision?

• The first decision to make is how to setup the architecture
of the system

What options do we
have?

Parameter server

How using distributed
memory architecture?

Dean et al., “Large Scale Distributed Deep Networks”, in NIPS 2012

Adding more hierarchy

Gupta, et. al, “Model Accuracy and Runtime Tradeoff in Distributed Deep Learning: A Systematic Study”, 2016

Mini-batch SG on
distributed systems

• Can we avoid wasting
communication time?

• Use non-blocking network IO:
Keep computing updates while
aggregating the gradient

Distributed mini-batch

Optimal Mini-Batch Size

Consider type of layers
when parallelizing

• Conv layers parallelize
particularly well given that
they are quite compute heavy
with respect to the number of
parameters they contain.

• This is a desirable property of
the network, since you want
to limit the time spent in
communication

• Convolutions achieve just
that since they re-multiply
feature maps all over the
input.

Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997. (2014)

Tricks

• Device-to-Device Communication

Tricks
• Overlapping Computation

• E.g., synchronizing the gradients of the current layer while
computing the gradients of the next one.

Tricks

• Approximate computing

Christopher De Sa, “High-Accuracy Low-Precision Training”, 2018.

Tricks

• Reduction algorithm

John Langford, “Allreduce for Parallel Learning”, 2017

Other applications?

Summary
• We reviewed 3 variations of gradient descent

• We reviewed common challenges during training

• We examined computer system memory architectures and
parallel programming models

• We discussed approaches to scale up SGD using parallel
computations

• Next: Real-world case study about how Uber uses these
ideas to make their deep learning tasks distributed over
multiple machines to scale up training process

Distributed Machine
Learning
Uber Case Study

Learning goals

• Understand how to build a system that can put the power
of machine learning to use.

• Understand how to incorporate ML-based components
into a larger system.

• Understand the principles that govern these systems,
both as software and as predictive systems.

Main Sources

Any guess how Uber uses deep
learning?

Deep learning across Uber

• Self-driving research

• Trip forecasting

• Fraud prevention

Marketplace forecasting

Let’s begin the story

Uber also uses TensorFlow
Do you know why?

Why Uber adopts
TensorFlow?

• TF is one of the most widely used open source
frameworks for deep learning, which makes it easy to
onboard new users.

Why Uber adopts
TensorFlow?

• TF combines high performance with an ability to tinker
with low-level model details—for instance, we can use
both high-level APIs, such as Keras, and implement our
own custom operators using NVIDIA’s CUDA toolkit.

Why Uber adopts
TensorFlow?

• Additionally, TF has end-to-end support for a wide variety
of deep learning use cases, from conducting exploratory
research to deploying models in production on cloud
servers, mobile apps, and even self-driving vehicles.

Training time increased a
lot!

• Training more and more machine learning models at Uber,

• Their size and data consumption grew significantly.

• In a large portion of cases, the models were still small
enough to fit on one or multiple GPUs within a server, but
as datasets grew, so did the training times, which
sometimes took a week—or longer!—to complete.

Going distributed

Distributed TF

Mapping job names to lists
of network addresses

• w

Specifying distributed
devices in your model

Uber first experience with
Distributed TF

• It was not always clear which code modifications needed
to be made to distribute their model training code.

• The standard distributed TensorFlow package introduces
many new concepts: workers, parameter
servers, tf.Server()

• The challenge of computing at Uber’s scale. After
running a few benchmarks, we found that we could not
get the standard distributed TensorFlow to scale as well
as our services required.

Distributed TF became
inefficient at Uber scale

Models were unable to leverage half of
the resource

They become even more motivated after
observing Google training ResNet-50 in an

hour!

• “Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour,” demonstrating their training of a ResNet-50
network in one hour on 256 GPUs by combining
principles of data parallelism with an innovative learning
rate adjustment technique.

Leveraging a different
type of algorithm

Data parallelism (Facebook)

But wait!

• What other approaches exist for distributing a (deep
Learning) algorithm?

• And why Uber could possibly do Data Parallel approach?
Any insight?

And here is why Uber
started with Data Parallel

• Uber’s models were small enough to fit on a single GPU,
or multiple GPUs in a single server

How data parallel works?
1. Run multiple copies of the training script and each copy:

A. reads a chunk of the data

B. runs it through the model

C. computes model updates (gradients)

2. Average gradients among those multiple copies

3. Update the model Repeat (from Step 1a)

Data parallel vs Model
parallel

• Data Parallel (“Between-Graph Replication”)

• Send exact same model to each device

• Each device operates on its partition of data § ie. Spark

sends same function to many workers

• Each worker operates on their partition of data

• Model Parallel (“In-Graph Replication”)

• Send different partition of model to each device

• Each device operates on all data

While this approach
improved performance, they
encountered two challenges

It was good, but they hit
some challenges

• Identifying the right ratio of worker to parameter servers.

• 1 parameter server

• Multiple parameter server

• Handling increased TensorFlow program complexity

• Every user of distributed TensorFlow had to explicitly start each
worker and PS, pass around service discovery information.

• Users had to ensure that all the operations were placed
appropriately and code is modified to leverage multiple GPUs.

It was good, but they hit
some challenges

• Identifying the right ratio of worker to parameter servers.

• 1 parameter server

• Multiple parameter server

TF Complexity

• Handling increased TensorFlow program complexity

• Every user of distributed TensorFlow had to explicitly
start each worker and PS, pass around service
discovery information.

• Users had to ensure that all the operations were placed
appropriately and code is modified to leverage multiple
GPUs.

Baidu approach to avoid
parameter server

Baidu all reduce is not only network
optimal, but easier to adopt

• Users utilize a Message Passing Interface (MPI)
implementation such as OpenMPI to launch all copies of
the TensorFlow program.

• MPI then transparently sets up the distributed
infrastructure necessary for workers to communicate with
each other.

• All the user needs to do is modify their program to
average gradients using an allreduce() operation.

Horovod = Distributed
deep learning with

TensorFlow

Any similarity?

Hovord was then built upon
Baidu allreduce approach

• A stand-alone Python package called Horovod.

• Distributed TensorFlow processes use Horovod to communicate
with each other.

• At any point in time, various teams at Uber may be using
different releases of TensorFlow. We wanted all teams to be
able to leverage the ring-allreduce algorithm without needing to
upgrade to the latest version of TensorFlow, apply patches to their
versions, or even spend time building out the framework.

• Having a stand-alone package allowed Uber to cut the time
required to install Horovod from about an hour to a few
minutes, depending on the hardware.

From single GPU to Multi-
GPU Multi-Node

• Replaced Baidu ring-allreduce with NCCL.

• NCCL is NVIDIA’s library for collective communication
that provides a highly optimized version of ring-allreduce.

• NCCL 2 introduced the ability to run ring-allreduce across
multiple machines.

The update were included
API improvements

• Several API improvements inspired by feedback Uber
received from a number of initial users.

• A broadcast operation that enforces consistent
initialization of the model on all workers.

• The new API allowed Uber to cut down the number of
operations a user had to introduce to their single GPU
program to four.

Distributing training job with
Horovod

Distributing training job with
Horovod

User can then run several copies of
the program across multiple servers

Horovord also distribute
Keras programs

• Horovod can also distribute Keras programs by following
the same steps.

Now time come to debugging
a distributed systems

Yet another challenge: Tiny
allreduce

• After we analyzed the timelines of a few models, we
noticed that those with a large amount of tensors, such as
ResNet-101, tended to have many tiny allreduce
operations.

• ring-allreduce utilizes the network in an optimal way if the
tensors are large enough, but does not work as efficiently
or quickly if they are very small.

Tensor Fusion

• What if multiple tiny tensors could be fused together
before performing ring-allreduce on them?

Tensor Fusion
1. Determine which tensors are ready to be reduced. Select the first

few tensors that fit in the buffer and have the same data type.

2. Allocate a fusion buffer if it was not previously allocated. Default
fusion buffer size is 64 MB.

3. Copy data of selected tensors into the fusion buffer.

4. Execute the allreduce operation on the fusion buffer.

5. Copy data from the fusion buffer into the output tensors.

6. Repeat until there are no more tensors to reduce in the cycle.

Horovod vs TF

 the training was about twice as fast as
standard distributed TensorFlow.

Benchmarking with RDMA
network cards

VGG-16 model experienced a significant 30 percent
speedup when we leveraged RDMA networking.

Do you know
why that

happened?
Any insight?

Parameters: 138 millionParameters: 25 millionParameters: 25 million

Any thought?

Summary

• We reviewed when ML needs to go distributed.

• We studies some alternative solutions and why Uber
decided to built up their own solution

• We studied extensions that was made by Uber to
accommodate their own requirements.

• We reviewed how Horovod helped Uber to scale up their
training process.

