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Learning goals
• Review gradient descent and its variations


• Understand scalability challenges during training


• Examine computer systems tricks to make gradient 
descent scalable to handle large training sets


• Discuss algorithms and architectures to optimize 
gradient descent in a parallel and distributed setting 


• Case Study: Distributed Model Training at Uber
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Supervised ML

Supervised machine learning generally consists of three 
phases:


• Training (generating a model)


• Validation (determining values of hyper-parameters)


• Inference (making predictions with the trained model) 



Key aim of model training

Finding values for a model's parameters, θ, such that two, 
often conflicting, goals are met: 


• Error on the set of training examples is minimized, 


• The model generalizes to new data



Gradient 
Descent

The most popular 
algorithms to perform 
optimization especially 
for optimizing neural 

networks



What is gradient descent?

• Gradient descent is an algorithm that iteratively tweaks a 
model's parameters


• With the goal of minimizing the discrepancy between the 
model's predictions and the "true" labels associated with 
a set of training examples.



Loss function

J(θ) =
1

2m
Σm

i=1(hθ(x(i)) − y(i))2



Batch gradient descent

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}



Gradient descent in code

for i in range(nb_epochs):
  weights_grad = evaluate_gradient(loss_function, data, params)
  weights += - learning_rate * weights_grad



Initial value of θ may results 
in two different local minima



Gradient descent is very 
costly

∇θJ(θ) = (
∂

∂θ1
J(θ),

∂
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∂
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J(θ))



Each partial derivative involves computing 
a sum over every training example

∂
∂θj
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The key idea in stochastic gradient 
descent is to drop the sum

∂
∂θj

J(θ) ≈ (hθ(x(i)) − y(i))
∂

∂θj
hθ(x(i))



Stochastic Gradient 
Descent (SGD)

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i); y(i))
}

}

∇J(θ; x(i); y(i)) = (hθ(x(i)) − y(i))∇hθ(x(i))



SGD in code

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    weights_grad = evaluate_gradient(loss_function, example, params)
    weights += - learning_rate * weights_grad



Mini-batch Gradient 
Descent

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i:i+n); y(i:i+n))
}

}



Minibatch GD in code

for i in range(nb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data, batch_size=256):
    weights_grad = evaluate_gradient(loss_function, batch, params)
    weights += - learning_rate * weights_grad



What would be the ideal 
batch size?

• The size of the mini-batch is a hyper-parameter


• But it is not very common to cross-validate it!


• It is usually based on memory constraints (if any)


• In practice, we use powers of 2 because operations 
perform faster when their inputs are sized in powers of 2


• Rule of thumb: between 32-256



Challenges



Unlike in gradient descent, the value of 
the cost function does not necessarily 

decrease



SGD performs frequent updates with a 
high variance that cause the objective 

function to fluctuate



Choosing a proper learning 
rate can be difficult

• A learning rate that is too small leads to painfully slow 
convergence, 


• A learning rate that is too large can hinder convergence 
and cause the loss function to fluctuate around the 
minimum or even to diverge.



Thresholds for adjusting learning 
rate should be defined in advance

• Adjusting the learning rate during training by e.g. 
annealing, i.e. reducing the learning rate according to a 
pre-defined schedule or when the change in objective 
between epochs falls below a threshold. 


• These schedules and thresholds, however, have to be 
defined in advance and are thus unable to adapt to a 
dataset's characteristics.



The same learning rate applies 
to all parameter updates

• If our data is sparse and our features have very different 
frequencies, we might not want to update all of them to 
the same extent, but perform a larger update for rarely 
occurring features.



Minimizing highly non-convex 
functions are challenging

• Another key challenge of minimizing highly non-convex 
error functions common for neural networks is avoiding 
getting trapped in their numerous suboptimal local 
minima.



What computer systems 
can offer to resolve the 

challenges?



Parallel Computer 
Memory Architectures



Shared memory 
architectures

• Each CPU can access the same memory space


• Multiple processors can operate independently but share 
the same memory resources


• Changes in a memory location effected by one processor 
are visible to all other processors.



Uniform Memory Access 
(UMA)

• Most commonly represented today by Symmetric 
Multiprocessor (SMP) machines


• Identical processors


• Equal access and access times to memory


• CC-UMA - Cache Coherent UMA



Non-Uniform Memory 
Access (NUMA)

• Often made by physically linking two or more SMPs


• One SMP can directly access memory of another SMP


• Not all processors have equal access time to all 
memories


• Memory access across link is slower


• CC-NUMA - Cache Coherent NUMA



Pros and Cons
• Pros


• Global address space provides a user-friendly programming 
perspective to memory


• Data sharing between tasks is both fast and uniform due to the 
proximity of memory to CPUs


• Cons


• Lack of scalability between memory and CPUs


• Programmer responsibility for synchronization constructs that 
ensure "correct" access of global memory



Distributed Memory
• Distributed memory systems require a communication 

network to connect inter-processor memory


• Processors have their own local memory


• Because each processor has its own local memory, it 
operates independently


• When a processor needs access to data in another 
processor, it is usually the task of the programmer



Pros and Cons
• Pros


• Memory is scalable with the number of processors.


• Each processor can rapidly access its own memory without interference.


• Cost effectiveness: can use commodity, off-the-shelf processors and 
networking.


• Cons


• The programmer is responsible for many of the details associated with 
data communication between processors.


• It may be difficult to map existing data structures, based on global 
memory, to this memory organization.



Hybrid Distributed-Shared 
Memory

• The largest and fastest computers in the world today 
employ both shared and distributed memory 
architectures.


• The distributed memory component is the networking of 
multiple shared memory/GPU machines, they only about 
their own memory - not the memory on another machine.



Parallel Programming 
Models



Shared Memory Model 
(without threads)

• In this programming model, processes/tasks share a 
common address space, which they read and write to 
asynchronously.


• Various mechanisms such as locks / semaphores are 
used to control access to the shared memory, resolve 
contentions and to prevent race conditions and 
deadlocks.



Threads Model

• This programming model is a type of 
shared memory programming.


• In the threads model of parallel 
programming, a single "heavy 
weight" process can have multiple 
"light weight", concurrent execution 
paths.



Parallel for loop in OpenMP



Distributed Memory / 
Message Passing Model

• A set of tasks that use their own local memory during 
computation. 


• Tasks exchange data through communications by 
sending and receiving messages.


• Data transfer usually requires cooperative operations to 
be performed by each process.



Data Parallel Model
• Address space is treated globally


• Most of the parallel work focuses on 
performing operations on a data set.


• A set of tasks work collectively on 
the same data structure, however, 
each task works on a different 
partition of the same data structure.


• Tasks perform the same operation on 
their partition of work, for example, 
"add 4 to every array element”.



Hybrid Model

• A hybrid model combines the 
previously described 
programming models.



Now that we learned about 
computer systems approaches for 

parallelization, how we can use 
them to parallelize SGD?



Lets discuss what are 
the core challenges?



When we need to add more 
parallelism to our computations?

• When training really deep models (16M parameters)


• On really large datasets (17B Examples)



What has been explored so far 
and what is the current trend

• Traditionally: Distributing linear algebra operations on 
GPUs, 


• Now: How to use multiple machines



Existing parallelizations



We will mainly focus on 
data parallelism in the 

rest of lecture



Parallel Gradient 
Descent



Parallel Gradient Descent

• Gradient computation is usually “embarrassingly parallel”


• Why?


• Consider, for example, empirical risk minimization as a 
learning algorithm:

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}

Remp(h) =
1
m

m

∑
i=1

L(h(xi), yi) .

ĥ = arg min
h∈ℋ

Remp(h) .



Parallel Gradient Descent

• Partition the dataset into k subsets S1 , . . . , Sk


• Each machine or CPU computes


• Aggregate local gradients to get the global gradient

Σi∈Si
∇θL(h(xi), yi)

∇θL( ⋅ ) =
1
k

(Σi∈S1
∇θL(h(xi), yi) + ⋯ + Σi∈Sk

∇θL(h(xi), yi))



Parallel Stochastic Gradient

• Computation of                   only depends on the i-th 
sample—usually cannot be parallelized.


• Parallelizing SGD is a not easy.

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i); y(i))
}

}

∇J(θ; x(i); y(i))



Parallel Mini-batch SGD

• Let S = S1 ∪ S2 ∪ · · · ∪ Sk


• Calculate mini-batch updates in parallel

repeat until convergence {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i:i+n); y(i:i+n))
}

}



Asynchronous SGD (shared 
memory)

Each thread repeatedly do these updates: {
for i := 1,2,...,m{

θ ← θ − γ∇J(θ; x(i); y(i))
}

}



How using shared memory 
architecture?

• Main trick: in shared memory systems, every threads can 
access the latest gradient value


• Langford et al., “Slow learners are fast”. In NIPS 2009


• “Hogwild!: A Lock-Free Approach to Parallelizing 
Stochastic Gradient Descent”, NIPS 2011.



Synchronous 
Distributed SGD



Synchronous SGD















Pros

• The computation is completely deterministic. 


• We can work with fairly large models and large batch 
sizes even on memory-limited GPUs. 


• It’s very simple to implement, and easy to debug and 
analyze.



Cons
• This path to parallelism puts a strong emphasis on HPC, 

and the hardware that is in use. 


• It will be challenging to obtain a decent speedup unless 
you are using industrial hardware. 


• And even if you were using such a hardware, the choice 
of communication library, reduction algorithm, and other 
implementation details (e.g., data loading and 
transformation, model size, ...) will have a strong effect on 
the kind of performance gain you will encounter.



Asynchronous SGD













Pros

• The advantage of adding asynchrony to our training is 
that replicas can work at their own pace, 


• without waiting for others to finish computing their 
gradients.



Cons

• We have no guarantee that while one replica is computing 
the gradients with respect to a set of parameters, the 
global parameters will not have been updated by another 
one. 


• If this happens, the global parameters will be updated 
with stale gradients - gradients computed with old 
versions of the parameters.



How to solve staleness?

• [Zhang & al.] suggested to divide the gradients by their 
staleness. By limiting the impact of very stale gradients, 
they are able to obtain convergence almost identical to a 
synchronous system.

Zhang, W., Gupta, S., Lian, X., Liu, J.: Staleness-aware async-sgd for distributed deep learning. arXiv preprint arXiv:1511.05950. (2015)



How to solve staleness?

• Each replica executes k optimization steps locally, and 
keeps an aggregation of the updates. 


• Once those k steps are executed, all replicas synchronize 
their aggregated update and apply them to the 
parameters before the k steps.

Zhang, S., Choromanska, A.E., LeCun, Y.: Deep learning with elastic averaging sgd. In: Advances in neural information processing systems. 
pp. 685–693 (2015)



Implementation



What is the first 
decision then?



What is the decision?

• The first decision to make is how to setup the architecture 
of the system



What options do we 
have?



Parameter server



How using distributed 
memory architecture?

Dean et al., “Large Scale Distributed Deep Networks”, in NIPS 2012



Adding more hierarchy

Gupta, et. al, “Model Accuracy and Runtime Tradeoff in Distributed Deep Learning: A Systematic Study”, 2016



Mini-batch SG on 
distributed systems

• Can we avoid wasting 
communication time? 


• Use non-blocking network IO: 
Keep computing updates while 
aggregating the gradient



Distributed mini-batch



Optimal Mini-Batch Size



Consider type of layers 
when parallelizing

• Conv layers parallelize 
particularly well given that 
they are quite compute heavy 
with respect to the number of 
parameters they contain. 


• This is a desirable property of 
the network, since you want 
to limit the time spent in 
communication


• Convolutions achieve just 
that since they re-multiply 
feature maps all over the 
input.

Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint 
arXiv:1404.5997. (2014)



Tricks

• Device-to-Device Communication



Tricks
• Overlapping Computation


• E.g., synchronizing the gradients of the current layer while 
computing the gradients of the next one.



Tricks

• Approximate computing

Christopher De Sa, “High-Accuracy Low-Precision Training”, 2018.



Tricks

• Reduction algorithm

John Langford, “Allreduce for Parallel Learning”, 2017



Other applications?



Summary
• We reviewed 3 variations of gradient descent


• We reviewed common challenges during training


• We examined computer system memory architectures and 
parallel programming models


• We discussed approaches to scale up SGD using parallel 
computations


• Next: Real-world case study about how Uber uses these 
ideas to make their deep learning tasks distributed over 
multiple machines to scale up training process



Distributed Machine 
Learning
Uber Case Study



Learning goals

• Understand how to build a system that can put the power 
of machine learning to use.


• Understand how to incorporate ML-based components 
into a larger system.


• Understand the principles that govern these systems, 
both as software and as predictive systems.



Main Sources





Any guess how Uber uses deep 
learning?



Deep learning across Uber

• Self-driving research 


• Trip forecasting 


• Fraud prevention



Marketplace forecasting



Let’s begin the story



Uber also uses TensorFlow
Do you know why?



Why Uber adopts 
TensorFlow?

• TF is one of the most widely used open source 
frameworks for deep learning, which makes it easy to 
onboard new users. 



Why Uber adopts 
TensorFlow?

• TF combines high performance with an ability to tinker 
with low-level model details—for instance, we can use 
both high-level APIs, such as Keras, and implement our 
own custom operators using NVIDIA’s CUDA toolkit. 



Why Uber adopts 
TensorFlow?

• Additionally, TF has end-to-end support for a wide variety 
of deep learning use cases, from conducting exploratory 
research to deploying models in production on cloud 
servers, mobile apps, and even self-driving vehicles.





Training time increased a 
lot!

• Training more and more machine learning models at Uber, 


• Their size and data consumption grew significantly. 


• In a large portion of cases, the models were still small 
enough to fit on one or multiple GPUs within a server, but 
as datasets grew, so did the training times, which 
sometimes took a week—or longer!—to complete.



Going distributed



Distributed TF



Mapping job names to lists 
of network addresses

• w



Specifying distributed 
devices in your model



Uber first experience with 
Distributed TF

• It was not always clear which code modifications needed 
to be made to distribute their model training code.


• The standard distributed TensorFlow package introduces 
many new concepts: workers, parameter 
servers, tf.Server()

• The challenge of computing at Uber’s scale. After 
running a few benchmarks, we found that we could not 
get the standard distributed TensorFlow to scale as well 
as our services required.



Distributed TF became 
inefficient at Uber scale

Models were unable to leverage half of 
the resource



They become even more motivated after 
observing Google training ResNet-50 in an 

hour!

• “Accurate, Large Minibatch SGD: Training ImageNet in 1 
Hour,” demonstrating their training of a ResNet-50 
network in one hour on 256 GPUs by combining 
principles of data parallelism with an innovative learning 
rate adjustment technique. 



Leveraging a different 
type of algorithm



Data parallelism (Facebook)



But wait!

• What other approaches exist for distributing a (deep 
Learning) algorithm?


• And why Uber could possibly do Data Parallel approach? 
Any insight?



And here is why Uber 
started with Data Parallel

• Uber’s models were small enough to fit on a single GPU, 
or multiple GPUs in a single server



How data parallel works?
1. Run multiple copies of the training script and each copy:  


A. reads a chunk of the data 


B. runs it through the model 


C. computes model updates (gradients) 


2. Average gradients among those multiple copies 


3. Update the model Repeat (from Step 1a)



Data parallel vs Model 
parallel

• Data Parallel (“Between-Graph Replication”) 


• Send exact same model to each device 

• Each device operates on its partition of data § ie. Spark 

sends same function to many workers 

• Each worker operates on their partition of data 


• Model Parallel (“In-Graph Replication”) 


• Send different partition of model to each device 

• Each device operates on all data



While this approach 
improved performance, they 
encountered two challenges



It was good, but they hit 
some challenges

• Identifying the right ratio of worker to parameter servers.


• 1 parameter server


• Multiple parameter server


• Handling increased TensorFlow program complexity 


• Every user of distributed TensorFlow had to explicitly start each 
worker and PS, pass around service discovery information. 


• Users had to ensure that all the operations were placed 
appropriately and code is modified to leverage multiple GPUs.



It was good, but they hit 
some challenges

• Identifying the right ratio of worker to parameter servers.


• 1 parameter server


• Multiple parameter server



TF Complexity

• Handling increased TensorFlow program complexity 


• Every user of distributed TensorFlow had to explicitly 
start each worker and PS, pass around service 
discovery information. 


• Users had to ensure that all the operations were placed 
appropriately and code is modified to leverage multiple 
GPUs.





Baidu approach to avoid 
parameter server



Baidu all reduce is not only network 
optimal, but easier to adopt

• Users utilize a Message Passing Interface (MPI) 
implementation such as OpenMPI to launch all copies of 
the TensorFlow program. 


• MPI then transparently sets up the distributed 
infrastructure necessary for workers to communicate with 
each other. 


• All the user needs to do is modify their program to 
average gradients using an allreduce() operation.



Horovod = Distributed 
deep learning with 

TensorFlow



Any similarity?



Hovord was then built upon 
Baidu allreduce approach

• A stand-alone Python package called Horovod. 


• Distributed TensorFlow processes use Horovod to communicate 
with each other. 


• At any point in time, various teams at Uber may be using 
different releases of TensorFlow. We wanted all teams to be 
able to leverage the ring-allreduce algorithm without needing to 
upgrade to the latest version of TensorFlow, apply patches to their 
versions, or even spend time building out the framework. 


• Having a stand-alone package allowed Uber to cut the time 
required to install Horovod from about an hour to a few 
minutes, depending on the hardware.



From single GPU to Multi-
GPU Multi-Node

• Replaced Baidu ring-allreduce with NCCL. 


• NCCL is NVIDIA’s library for collective communication 
that provides a highly optimized version of ring-allreduce. 


• NCCL 2 introduced the ability to run ring-allreduce across 
multiple machines.



The update were included 
API improvements

• Several API improvements inspired by feedback Uber 
received from a number of initial users. 


• A broadcast operation that enforces consistent 
initialization of the model on all workers. 


• The new API allowed Uber to cut down the number of 
operations a user had to introduce to their single GPU 
program to four.



Distributing training job with 
Horovod



Distributing training job with 
Horovod



User can then run several copies of 
the program across multiple servers



Horovord also distribute 
Keras programs

• Horovod can also distribute Keras programs by following 
the same steps.



Now time come to debugging 
a distributed systems



Yet another challenge: Tiny 
allreduce

• After we analyzed the timelines of a few models, we 
noticed that those with a large amount of tensors, such as 
ResNet-101, tended to have many tiny allreduce 
operations. 


• ring-allreduce utilizes the network in an optimal way if the 
tensors are large enough, but does not work as efficiently 
or quickly if they are very small. 



Tensor Fusion

• What if multiple tiny tensors could be fused together 
before performing ring-allreduce on them?



Tensor Fusion
1. Determine which tensors are ready to be reduced. Select the first 

few tensors that fit in the buffer and have the same data type. 


2. Allocate a fusion buffer if it was not previously allocated. Default 
fusion buffer size is 64 MB. 


3. Copy data of selected tensors into the fusion buffer. 


4. Execute the allreduce operation on the fusion buffer. 


5. Copy data from the fusion buffer into the output tensors. 


6. Repeat until there are no more tensors to reduce in the cycle.



Horovod vs TF

 the training was about twice as fast as 
standard distributed TensorFlow.



Benchmarking with RDMA 
network cards

VGG-16 model experienced a significant 30 percent 
speedup when we leveraged RDMA networking.



Do you know 
why that 

happened?
Any insight?



Parameters: 138 millionParameters: 25 millionParameters: 25 million

Any thought?



Summary

• We reviewed when ML needs to go distributed.


• We studies some alternative solutions and why Uber 
decided to built up their own solution


• We studied extensions that was made by Uber to 
accommodate their own requirements.


• We reviewed how Horovod helped Uber to scale up their 
training process.


