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Problem: Solutions:
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Let’s start with a (fiction) story

 Zeus is a patient waiting for a heart transplant. On 1 January, he received a
new heart. Five days later, he died.

* Imagine that we can somehow know, that had Zeus not received a heart
transplant on 1 January then he would have been alive five days later.

» All others things in his life being unchanged.
 Now, what do you think was the cause of Zeus’s death?!
 Most people would agree that the transplant caused Zeus’ death.

e The intervention had a causal effect.



Let’s start with a (fiction) story

 Hera, received a heart transplant on 1 January. Five days later she was alive.

* Again, imagine we can somehow know that had Hera not received the heart
on 1 January then she would still have been alive five days later.

» All others things in his life being unchanged.

 The transplant did not have a causal effect on Hera’s five day survival.



Let’s collect some data!

Exposure variable A (1: exposed, 0: unexposed); Outcome variable Y (1: death, O: survival)
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Individual Causal Effect

contrast of the values of counterfactual outcomes, but only one of those values is observed.
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Population Causal Effects

* Pr|Ya = 1]: proportion of subjects that would have developed the outcome Y
had all subjects in the population of interest received exposure value a.

 The exposure has a causal effect in the population if
Pr[Ya=1=1] # Pr[Ya=0=1].

* Unlike individual causal effects, population causal effects can sometimes be
computed—or, more rigorously, consistently estimated.

PriY _,=1]-PrlY,_,=1]1#0



Association is not Causation!

Observed population

Unexposed <> Exposed

Causation Association

O-@ <)




Computing Causal Effects via Randomization

Unlike association measures, effect measures cannot be directly computed because of missing data. However, effect measures
can be computed/estimated in randomized experiments!

* Suppose we have a (near-infinite) population and that we flip a coin for each subject in such
population. We assign the subject to group 1 if the coin turns tails, and to group 2 if it turns heads.

* Next we administer the treatment or exposure of interest (A = 1) to subjects in group 1 and placebo
(A = 0) to those in group 2. Five days later, at the end of the study, we compute the mortality risks in
each group, Pr[Y = 1|A = 1] and Pr[Y = 1|]A = O].

 When subjects are randomly assigned to groups 1 and 2, the proportion of deaths among the
exposed, Pr[Y = 1]A = 1], will be the same whether subjects in group 1 receive the exposure and
subjects In group 2 receive placebo, or vice versa.

 Because group membership is randomised, both groups are “comparable”: which particular group
got the exposure is irrelevant for the value of Pr[Y = 1|A = 1]. (The same reasoning applies to Pr[Y =
11A = 0].)

* Formally, we say that both groups are exchangeable.



Let’s do some math!
PrilY=1|A=1]=Pr[Y=1|A=0] =PrlY, = 1]

PrlY=1|A=ada] = PrlY,=1]

In ideal randomized experiments, Association is Causation!



But not In non-randomized observational studies
Still remember this?

PriY=1|A=1]=7/13

PriY=1|A=0] =3/7

CONTINUING PROFESSIONAL EDUCATION

A definition of causal effect for epidemiological research

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

J Epidemiol Community Health 2004;58:265-271. doi: 10.1136/jech.2002.006361



Limitations!

e We have so far assumed that the counterfactual outcomes Y a exist and are
well defined.

* | oss to follow up

 Non-compliance

* Unblinding



Now, let’s look at
some applications
of Causal Al in
Computer Systems
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Case Study 1
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Challenges
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How can we gain a better performance without
using more resources?

20



Let’s try out different system configurations!



Opportunity: Data processing engines in the
pipeline were all configurable
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Case Study 3
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CoBot experiment: DARPA BRASS
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experiment
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Details: [SEAMS ’'17]

Transfer Learning for Improving Model Predictions
in Highly Configurable Software

Pooyan Jamshidi, Miguel Velez, Christian Kastner
Carnegie Mellon University, USA

Norbert Siegmund

{pjamshid,mvelezce, kaestner } @cs.cmu.edu norbert.siegmund @uni-weimar.de

Abstract—Modern software systems are built to be used in
dynamic environments using configuration capabilities to adapt to
changes and external uncertainties. In a self-adaptation context,
we are often interested in reasoning about the performance of
the systems under different configurations. Usually, we learn
a black-box model based on real measurements to predict
the performance of the system given a specific configuration.
However, as modern systems become more complex, there are
many configuration parameters that may interact and we end up
learning an exponentially large configuration space. Naturally,
this does not scale when relying on real measurements in the
actual changing environment. We propose a different solution:

Data

Simulator (Source)
-

Measurel

@® Source
© Target

..O

Learn Model with
Transfer Learning

Prasad Kawthekar

Bauhaus-University Weimar, Germany Stanford University, USA

pkawthek @stanford.edu

Robot (Target)

Adaptation

b
S

MV
Predictive Model

L

Fig. 1: Transfer learning for performance model learning.



Looking further: When transfer learning goes
wrong

It didn’t
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Key question: Can we develop a theory to explain
when transfer learning works?

Source (Given) | Target (Learn)

Q1: How source and target
are “related”?

Q2: What characteristics
are preserved?

Q3: What are the actionable
insights?

Extract " Reuse ’
Transferable ,
Knowledge



Details: [ASE ’17]

Transter Learning for Performance Modeling ot
Configurable Systems: An Exploratory Analysis

Pooyan Jamshidi
Carnegie Mellon University, USA

Abstract—Modern software systems provide many configura-
tion options which significantly influence their non-functional
properties. To understand and predict the effect of configuration
options, several sampling and learning strategies have been
proposed, albeit often with significant cost to cover the highly
dimensional configuration space. Recently, transfer learning has
been applied to reduce the effort of constructing performance
models by transferring knowledge about performance behavior
across environments. While this line of research is promising to
learn more accurate models at a lower cost, it is unclear why
and when transfer learning works for performance modeling. To
shed light on when it is beneficial to apply transfer learning, we
conducted an empirical study on four popular software systems,
varying software configurations and environmental conditions,
such as hardware, workload, and software versions, to identify
the key knowledge pieces that can be exploited for transfer
learning. Our results show that in small environmental changes
(e.g., homogeneous workload change), by applying a linear
transformation to the performance model, we can understand
the performance behavior of the target environment, while for
severe environmental changes (e.g., drastic workload change) we

Norbert Siegmund
Bauhaus-University Weimar, Germany

Miguel Velez, Christian Késtner
Akshay Patel, Yuvraj Agarwal
Carnegie Mellon University, USA

——mm ==

Extract Reuse
Transferable
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Fig. 1: Transfer learning is a form of machine learning that takes
advantage of transferable knowledge from source to learn an accurate,
reliable, and less costly model for the target environment.




Details: [AAAI Spring Symposium ’19]

MAXIMUM

OCCUPANCY
Transfer Learning for Performance Modeling of Configurable Systems: ASSEMELY 293

A Causal Analysis

Mohammad Ali Javidian, Pooyan Jamshidi, Marco Valtorta
Department of Computer Science and Engineering
University of South Carolina, Columbia, SC, USA
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Abstract

Modern systems (e.g., deep neural networks, hig
data analytics, and compilers) are highly conflig-
urable. which means they expose different perfor-
mance behavior under different configurations. The
fundamental challenge 1s that one cannot simply
measure all configurations due to the sheer size of
the configuration space. Transfer learning has been
used to reduce the measurement eflorls by transler-
ring knowledge about performance behavior of sys-
tems across environments. Previously, research has
shown that statistical models are indeed transferable
across environments. In this work, we investigate
identifiability and transportability ol causal ellects
and staustical relations 1n highly-configurable sys-
tems. Our causal analysis agrees with previous ex-
ploratory analysis (Jamshidi et al. 2017) and con-
firms that the causal eﬁectg of confi 011mt10n ()puong Figure 1: Exploiting causal inference for performance analysis.
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Empirical observations confirm that systems are
becoming increasingly configurable
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[Tianyin Xu, et al., “Too Many Knobs...”, FSE’15]



Empirical observations confirm that systems are
becoming increasingly configurable
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Configurations determine the performance
behavior

void Parrot_setenv(. . . name,. . . value)/{
#ifdef PARROT HAS SETENV s

‘ name_len=strlen(name);

int val len=strlen(value);
char* envs=glob env;
if (envs==NULL) {

return;

}
strcpy(envs,name) ;
strcpy(envs+name len, "=");
{ strcpy(envs+name len + 1,value); |
| putenv(envs); ‘




Challenges of configurations

* Difficulties in knowing which parameters should be set
e Setting the parameters to obtain the intended behavior

* Reasoning about multiple objectives (energy, speed)



The variability space (design space) of
(composed) systems is exponentially increasing
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The goal of our research is...

Understanding the performance behavior of
real-world highly-configurable systems that scale well...

... and enabling developers/users to reason about
qgualities (performance, energy) and to make tradeoffs?



Outline

Problem

Definition

Causal
Reasoning

Approach:

. Unicorn |

Results

O u r ./
{
|

Future
Research

40



A Typical Software Lifecycle

TODAY’S TALK
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Today’s Talk

Software may be deployed
In several environments

Artifact

\.

Embedded Hardware

i

Personal Devices

[eee ]
e

Server

P~=N

Autonomous Vehicles

Challenge

> Each deployment environment
must be configured correctly

> This is challenging and prone to
misconfigurations

J

Deployment Environments
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Today’s Talk

‘2 b ?SQLH:@

Network
Lib Clients API

Devices
Task Scheduler Device Drivers
Compilers Process Manager
File System Memory Manager
CPU Memory

GPU Controller
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SoC Generic hardware  Production Servers 1

Frontend

Application
Layer

OS/Kernel
Layer

Hardware
Layer

Deployment

Problem

> Each deployment environment
must be configured correctly

> This is challenging and prone to
misconfigurations

Why?
> The configuration options lie
across the software stack

> There are several non-trivial
interactions with one another

> The configuration space is
combinatorially large with 100’s
of configuration options
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Default configuration was bad, so was the expert’
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Performance behavior varies iIn different environments

Experiments on
Apache Cassandra:
- & parameters, 1024 configurations
- Average read latency

- 10 wmillions records (cass-10)

- 20 millions records (cass-20)
|- 4| Fe=-=-=-- W+ |- -=-1 | pemeemememe———-—-——
160 = T T . T 70
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120 F 5
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(a) cass-20 (b) cass-10



Why this is an important problem?

Optimal configuration
o 2X-10X faster than the worst
* Noticeably faster than the median

* Default is bad ésooo
* EXxpert’'s is not optimal o
= 2000
Exploring large configuration space < x|
* Exhaustive search Is expensive ;

e Specific to the environment
(hardware/workload/version)
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Misconfiguration and its Effects

e Misconfigurations can elicit unexpected interactions between software and

hardware

e [hese can result in non-functional faults

o Affecting non-functional system properties like
latency, throughput, energy consumption, etc.

The system doesn’t crash or
exhibit an obvious misbehavior

Systems are still operational but with a

| degraded performance, e.g., high latency, low

throughput, high energy consumption, high
heat dissipation, or a combination of several
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Motivating Example

NVIDIA DEVELOPER

CUDA performance issue on tx2

Home > Autonomous Machines > Jetson & Embedded Systems > Jetson TX2

william_ wu

behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation,
we think TX2 will 30% - 40% faster than TX1 at least.

The user is transferring the code
from one hardware to another

Jun ‘17

When we are trying to transplant our CUDA source code from TX1 to TX2, it

The target hardware is faster
than the the source hardware.
User expects the code to run

Unfortunately, most of our code base spent twice the time as TX1, in other words, at least 30-40% faster.

TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs

much slower than TX1 in many cases.

CUDA performance issue on tx2

AT

The code ran 2x slower on the
more powerful hardware

49


https://forums.developer.nvidia.com/t/50477

Motivating Example

william_wu

Any suggestions on how to improve my performance? . . .
June 3 Y S99 PIOVE TV P The user had several misconfigurations
Thanks!
In Software:
AastalLLL © Moderator x Wrong COmpIIatlon ﬂagS
June 4th TX2 is pascal architecture. Please update your CMakeLists: x Wrong SDK version

+ set(CUDA_STATIC_RUNTIME OFF) In Hardware:

X Wrong power mode

:|.-.-gencode=arch=compute_62,code=sm_62 _
X Wrong clock/fan settings

william_wu

We have already tried this. We still have high latency.
Any other suggestions? The discussions took 2 days

June 4th

AastalLLL © Moderator

June 5th Please do the following and let us know if it works

Q How to resolve such issues faster?

1. Install JetPack 3.0
2. Set nvpmodel=MAX-N
3. Run jetson_clock.sh

90



How to resolve these
Issues faster?
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Performance measurement

Dead code removal Loop unrolling

Constant folding Function inlining

. Compiler {

g { Configuration g
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Blackbox

Bitrate | EnableP Cache Throughput
(bits/s) | adding Misses (fps)

C1 1K 1 42m 14

C2 2K 1 32m 22

Cn ok 0 12m 25

Observational Data

elin

Neural Network

Options Options

Throughput = +|2.5 X BatchSize
+|12.3 X Bitrate X BatchSize

Interactions

Polynomial Regression

9



These methods rely on statistical correlations to extract meaningful
iInformation required for performance tasks.



Whitebox Performance Modeling

enltry
11:"{A, C}s
def foo(boolean x)
// Begin region Rj ,l\
if(x) ... // execution: 4s ITp, = 1A + 3AC 12 (/ \‘)
else ... // execution 1s AN
// End region Rj \
def main(List workload) —
7N\
a = getOpt("A"); b — getOpt("B"); 14 (\ ,L,\ enfry
= getOpt("C"); d = getOpt("D"); S T - X
e = getOpt("E"); £ = getOpt("F"); " ‘)’/
g = getOpt("G"); h = getOpt("H"); - (//%
i = getOpt("I"); j = getOpt("J"); e — b P ‘_ \ b
. // execution: 1s | 15:( \ ' H T 1 —|_ 3A —l_ BAB —I_ 3AC
boolean x = false;
// Begin region Ro v oo " T
if (a) // variable depends on option A lﬁ'w \ / BUlld d COmpOSItIOna|
-+ [/ execution: 2s B performance model using
foo(c); // variable depends on option B i
X = true; g, = 2A \/M I local models of each region
// End region Ro 16: ( \] -
// Begin region Rg3 . exit
if(b && x) ... // execution: 3s Ilp, = 3AB
// End region Ry fOO
exit
main

|dentify configuration-dependent regions  Instrumented control flow graph 56



These methods rely on program analysis technigues (static and
dynamic analysis of the code) to extract meaningful information
required for performance tasks.



Performance models suffer from several
shortcomings

* Blackbox performance models could produce incorrect explanations and
unreliable/unstable predictions across environments and in the presence of
measurement noise.

* Whitebox performance models do not scale well to real-world systems (with
many configuration options and large code bases.
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Incorrect explanation

Throughput.
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Incorrect explanation

More Cache Misses should
_ reduce hroughput not
Increase It

i
-

N
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G Increasing Cache Misses
SN——" .
5 20| . Increases | hroughput.
- .
oF I This Is counter-intuitive
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Any statistical models built on this
data will be incorrect.

Cache Misses
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Incorrect explanation
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Segregating data on Cache Policy indicates that within each group
Increase of Cache Misses result in a decrease in Throughput.
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Unstable predictions

Performance influence model in TX2:

Throughput = 2 X Bitrate + 1.9 X BatchSize H1.8 X BufferSize|+]0.5 X EnablePadding|+|5.9 X Bitrate X BufferSize
6.2 X Bitrate X EnablePaddingH-4.1 X Bitrate X BufferSize X EnablePadding

Performance influence model in Xavier:

Throughput = 5.1 X Bitrate + 2.5 X BatchSize +|12.3 X Bitrate X BatchSize

Performance influence models change significantly across
environments, resulting in low accuracy in new environments.
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Causal performance modeling

Configuration options
I

N\ | | I
U2 \4
AFEE - Non-functional
= ggﬁgj Properties
= 2 | Expresses the relationships between |
—
@F
= | X - Interacting variables as a causal graph
%D 10
Q - ]
et
- A
S | - |

100k 200k |

Cache Misses

Direction of
System Events Causality
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Causal performance models produce correct explanations

N\ | | N\ )
N N Cache Policy affects
& - x : & O O | | Throughput via Cache Misses.
::20 . - ::20 = =l '_j -
S S = g /A
@F O i
~ X - % e b N
bSD o %O 10 e Jl© LRU
=~ | 1 o | K M : ~ FIFO |
= = **;ﬁ%% . 7L LIFO
— 1 H Kk MRU |
1OOk| 200k 1OOk| 200k
Cache Misses Cache Misses

Causal performance models capture
correct interactions.
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Causal performance models are transferable across environments

A partial causal performance A partial causal performance
model in Jetson TX2 model in Jetson Xavier

Causal performance models remain
relatively stable across environments.
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UNICORN: Performance Reasoning through the Lens of Causality

1- Specify
Performance Query

2- Learn Causal
Performance Model

Software: DeepStrea
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s £ 5/s

-What is the root-cause
i of observed perf. fault?

5- Update Causal
Performance Model

| | Measure performance
| of the configuration(s)
| | that maximizes

¥ information gain

i*How do | fix the
! misconfig.?

I*How do | understand |

— [+ ETE - Vet -~ |
M,‘"\ %mu\l Baich /anh ]
) Sae . Siza \T‘)t)dng %
—— S— b
@ o
Branch sacte I_ No of '
Ms556s Wisses Cvcles
— - NN -
f [ f Y- 3§
) ) ,
) e@ § o
T v < oA RS e _‘

- __ - Performance
| Debugging

3- Translate Perf. Query
to Causal Queries

P(Th > 40/s | do(Buffersize = 6k))

il

. Performance
. Optimization
Estimate eSS N P

probability of
satisfying QoS . __4
if BufferSize is___

set to 6k i Query Engine ',

| | Budget
{* How can | improve Exhausted?
| throughput without =
| sacrificing accuracy? l
/ n 4- Estimate Causal

Queries

w




UNICORN: Performance Reasoning through the Lens of Causality

1- Specity
Performance Query

2

D Y S Y

Software: DeepStream
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s = 5/s

-What IS the root-cause
i of observed perf. fault?
f*How do | fix the

! misconfig.?

i*How can | improve

| throughput without
sacrificing accuracy?
|How do | understand



UNICORN: Performance Reasoning through the Lens of Causality

1- Specify 2- Learn
Performance Query Causal Perf. Model

C 3 (=) :

ththth

Software: DeepStream A
Middleware: TF, TensorRT |
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s = 5/s

-What s the root-cause
i of observed perf. fault?
i*How do | fix the

! misconfig.?

{*How can | improve

| throughput without

i sacrificing accuracy?
I*How do | understand |



Learning Causal Performance Model

Bitrate
(bits/s)

Enable

Padding

Cache
Misses

. | Through

put (fps)

Batch 3/ Enable \
{ Padding

Af Buffer { {

1- Recovering the { Birate } g0

1K
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Skelton

{ Branch § {

1 0

2K

32m

22

fully connected graph

given constraints (e.g.,
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{ Branch . f
Y\ Misses 7~

Af Buffer \ f
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cps  F— Energy ]
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configuration options)
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orientation rules &
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\ Misses ; % Misses ,

Batch \/ Enable }

\/ Buffer
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| Bitrate }{ PY § ba
J\ Size j Y Size }

% Cycles }
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Causal Relations
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Learning Causal Performance Model

. [ o A | ;Buffer )Batch. \/ Enable'\
_ i Bitrate B} ) ) It o]
Bitrate | Enable | ... | Cache | ... [Through 1- Recovering the L\ S8 J \ Size j\ Feddng,

(bits/s) |Padding| | Misses put (fps) Skelton
* |
C1 1k 1 .| 42m V4 ‘ |

{ Branch ¥
% Misses J

I 3 )’uv‘

C2 2k 1 .| 32m | ... 22 fully connected graph
given constraints (e.g.,
e | 5K 0o | .| 12m | | 25 no connections btw
configuration options)

FPS s Energy ‘



Learning Causal Performance Model

Bitrate
(bits/s)

Enable

Padding

Cache
Misses

. | Through

put (fps)

1- Recovering the { Birate }

1K

42m

2K

32m

22

ok

12m

25

Batch | { Enable
{ Padding

Af Buffer \ f
Size j %\ Size }

Skelton

{ Branch ¥
% Misses J

1 0

fully connected graph
given constraints (e.g.,
no connections btw
configuration options)

cps  F— Energy ]
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\/ Buffer
y, Padding
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J\ Size j Y Size }
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Learning Causal Performance Model

. [ o A | vBuffer \ / Batch \/ Enable\
_ i Bitrate B} ) i3 ) it ]
Bitrate | Enable |...| Cache | ... [Through 1- Recovering the L\ S8 J \ Size j\ Feddng,

(bits/s) |Padding| | Misses put (fps) Skelton
?
C1 1k 1 |...| 42m |...| 7 -

1 0

! Branch ¥ ~ } Y No of 3
Co 2K 1 .| 32m | ... 22 fully connected graph \ Misses j |
given constraints (e.g., -
c 5K 0o | . | 12m | | 25 no connections btw
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independence o4+ - Fruning
tests L. Causal Structure
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UNICORN: Performance Reasoning through the Lens of Causality

1- Specify 2- Learn |
Performance Query Causal Perf. Model wi: < Performance
——— ‘ ————y % | Debugging

3- Translate Performance Query

to Causal Queries
P(Th > 40/s | do(Buffersize = 6k))

Software: DeepStream -

Middleware: TF, TensorRT | Performance

Hardware: Nvidia Xavier mi '
gon;igu;ztior:l:OD/efault Estimate l = Opt|m|zat|on
oo . > \) ags numbearofs“pllﬂérs e B counters

i Observed:Th <30/s+5/s pro.bal:?lllty of

I*What is the root-cause satisfying Q0S ...

| of observed perf. fault? I I?l:ffeGrkS’;zels e

| _ set to < :;

i*How do | fix the ...} Query Englne

| misconfig.?

v N ]

i*How can | improve f

| throughput without e

sacrificing accuracy? .

{*How do | understand 4- Estimate Causal Queries



Diagnosing and Fixing the Faults

e Counterfactual inference asks “what if” questions about changes to the
misconfigurations

Example

@ Given that my current swap memory is 2 Gb, and | have high latency. What IS
the probability of having low latency if swap memory was increased to 4 Gb?

!
4

We are interested in the scenario where:

We hypothetically have low latency;

Conditioned on the following events:

We hypothetically set the new Swap memory to 4 Gb
Swap Memory was initially set to 2 Gb

We observed high latency when Swap was set to 2 Gb
Everything else remains the same
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Diagnosing and Fixing the Faults

Remove incoming

- dges. A
Original Path 2X?e?rs1a| ,?]i,”ur;‘ﬁcr;" Path after proposed change

@ ‘
N\

N

N

Modify to reflect the
hypothetical scenario” @ @

e e
........................................................................................................................
L d L d
S

Use both the models to compute the answer to the counterfactual question

-
-
___——
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Diagnosing and Fixing the Faults

Original Path Path after proposed change

N\ N\
Potential = P( Latency = low Swap =4 Gb, Swap =2 Gb, Latencyswapzwb = high, U)
1 . The Swap was initially 2 Gb . Everything else
We expect a low latency : ; stays the same
The Swap is now 4 Gb The latency was high
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Diagnosing and Fixing the Faults

. N\
Potential = P< outcome = change, outcome- pqnq.. = bad, —change, U)

....................................................................................................................................................

Probability that the outcome is good after a change, conditioned on the past

Control = P< outcome = —ichange, U )

.....................................................................

Probability that the outcome was bad before the change

Individual Treatment Effect = Potential — Outcome

4

.................................................

If this difference is large, then our change is useful
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Diagnosing and Fixing the Faults

Set every configuration

Top K paths _.--= option in the path to all
permitted values

Swap Mem.

5

[
é

Enumerate all
Mem. . ITE(change)

possible changes

GPU

8
\J/

O

Latency

Change with

the largest ITE |

Inferred from observed
data. This is very cheap.
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Diagnosing and Fixing the Faults

Measure
Performance
Change with /Fam o
the largest ITE wed/

Yes

o

Add to observational data
Update causal model
Repeat...
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UNICORN: Our Causal Al for Systems Method

2- Learn
Causal Perf. Model

1- Specify
Performance Query

Performance Data

Branch acto '_ No of '
Ms5Sés Wisses Cvcles
f S s
) J/
‘_I/

Software: DeepStream
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s £ 5/s

' What is the root-cause
| of observed perf. fault?

| 9- Update Causal
{ | Performance Model

| | that maximizes
} | information gain
B *

°How do | fix the
! misconfig.?

| Budget
i*How can | improve Exhausted?
§ throughput without

i sacrificing accuracy?

|*How do | understand |

- (e L EF T - Viaret — \
Bil \ amm\ Baich /F-m!:h 2
1ak | B
/ Sae / Siza \P)l)’Jng .

@ 7

Tirugd il E@ :'
PR P S = R NSNS -

Estimate I ASi W
| | probability of
| | Measure performance satisfying QoS .-
| of the configuration(s) if BufferSizeis o
setto 6k? | A am,

][
i X . Performance

Debugging

3- Translate Performance Query

to Causal Queries
P(Th > 40/s | do(Buffersize = 6k))

Performance
Optimization

latency (ms)

4 - 0 8 v
0 .5 12 unte
fSD/II'[‘erS 6 18 16 TC\jmber of cO!

i Query Engine |
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Active Learnlngfor Updating Causal Performance Model

1- Evaluate Candidate u,

Interventions \ ‘/ ‘l' ~—

*

J Interventions on Hardware, T ’\_’__’ /u_)
j . »a

Workload, and Kernel Options

\ Enable

. Bitrate

{ Branch { f
\, Misses s 1



Active Learnlngfor Updating Causal Performance Model

1- Evaluate Candidate u,

Interventions \ ‘/ ‘l' ~—

*

J Interventions on Hardware, T ’\_’__’ /u_)
j . »a

Workload, and Kernel Options

\ Enable

. Bitrate

{ Branch { f
\, Misses s 1

Expected change in |
belief & KL; Causal *Af‘_*
effects on objectives ¥

2- Determine & Perform
next Perf Measurement



Active Learnlngfor Updating Causal Performance Model

AY Enable

. Bitrate

Interventions
? -~

f Branch
\, Misses j

| Interventions on Hardware,
Workload, and Kernel Options

1- Evaluate Candidate

lote,

s LT

Lok, Tt

Expected change in
belief & KL; Causal *i‘

effects on objectives

\ : / Enable
A Paddlng ’

. Bitrate jJ{

Model averaging
3- Updating
Causal Model

{ Cache . {
. Misses J™ 3

{ Branch Y-
\ Misses j "~ %

Performance
Data

hd,

2- Determine & Perform
next Perf Measurement

Option/Event/Obj | Values
Bitrate 1k
Buffer Size 20k
Batch Size 10
Enable Padding 1
Branch Misses 24m
Cache Misses 42m
No of Cycles 73b
FPS 31/s
Energy 42J
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Results: Case Study

NVIDIA DEVELOPER | The user is transferring the code

from one hardware to another

CUDA performance issue on tx2

Home > Autonomous Machines > Jetson & Embedded Systems > Jetson TX2

william_ wu Jun 17

C
¢ When we are trying to transplant our CUDA source code from TX1 to TX2, it

behaved strange.

The target hardware is faster
We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, than the the source hardware.

we think TX2 will 30% - 40% faster than TX1 at least. ' User expects the code to run
Unfortunately, most of our code base spent twice the time as TX1, in other words, at least 30-40% faster.

TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs
much slower than TX1 in many cases.

The code ran 2x slower on the
more powerful hardware




Results: Case Study

Nvidia TX1

CPU 4 cores, 1.3 GHz 17 E

GPU 128 Cores, 0.9 GHz / pS

LV 0 um. : | Memory 4 Gb’ 25 Gb/s
, L LRI AL
Y — More powerful 4X
Gy = Slower!
Embedded real-time
stereo estimation
Nvidia TX2
AN CPU 6 cores, 2 GHz |
f u} Source code
’ GPU 256 Cores, 1.3 GHz 4 Fps
Memory |8 Gb, 58 Gb/s



https://github.com/dhernandez0/sgm

Results: Case Study

Configuration

UNICO
RN

Decision
Tree

Forum

CPU Cores
CPU Freq.
EMC Freq.
GPU Freq.
Sched. Policy

Sched. Runtime
Sched. Child Proc
Dirty Bg. Ratio
Drop Caches
CUDA_STATIC_RT

Swap Memory

\

RN

v

ST TR T YR N N N N

SRR NI

UNICORN| Decision Tree | Forum
Throughput (on TX2) 26 FPS 20 FPS 23 FPS
Throughput Gain (over TX1) 53 % 21 % 39 %
Time to resolve 24 min. 31/ Hrs. 2 days

Results

">~ The user expected 30-40% gain

X

X X X

Finds the root-causes accurately
No unnecessary changes

Better improvements than forum’s recommendation

Much faster
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Evaluation: Experimental Setup

Hardware

Nvidia TX1

CPU 4 cores, 1.3 GHz

Nvidia TX2

GPU 128 Cores, 0.9 GHz

CPU

6 cores, 2 GHz

Memory |4 Gb, 25 GB/s

GPU

256 Cores, 1.3 GHz

Systems

Xception

Memory

8 Gb, 58 GB/s

DeepSpeech

Image recognition
(50,000 test images)

Voice recognition
(5 sec. audio clip)

Configuration Space

Nvidia Xavier
CPU 8 cores, 2.26 GHz
GPU 512 cores, 1.3 GHz
Memory |32 Gb, 137 GB/s
BERT
1J[: Nt 1]
BERT
G | (o [ = ] - |

Sentlment AnaIyS|s
(10000 IMDDb reviews)

X 30 Configurations

« 10 software
e 10 OS/Kernel
. 10 hardware

X 17 System Events

X264

Video Encoder
(11 Mb, 1080p video)
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Evaluation: Data Collection

e [or each software/hardware
combination create a benchmark
dataset

o Exhaustively set each of configuration
option to all permitted values.

o For continuous options (e.g., GPU memory
Mem.), sample 10 equally spaced values
between [min, max]

e Measure the latency, energy
consumption, and heat dissipation

o Repeat 5x and average

10

&) NS o N
- - - -

Energy Consumption (Joules)

o))
-

- - .

\b
//
) /
3 . ,(‘(
e
----------------------------- 3‘11 209.999,
s
'Q(&
L s 4
Energy
Faults
10 15 20 29 30

Latency (sec)
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Evaluation: Ground Truth

e [or each performance fault:

o Manually investigate the root-cause

o “Fix” the misconfigurations 10

e A“fix” implies the configuration no longer
has tail performance

N
-

o
-

o User defined benchmark (i.e., 10th percentile)
o Or some QoS/SLA benchmark

—
-

e Record the configurations that were
changed

oy
(-

Energy Consumption (Joules)

N
-

Energy
Faults

10

15

Latency (sec)

e —




Experimental Setup: Baselines
Debugging

BugDoc: A System for Debu gging EnCore: Exploiting System Environment and
Computational Pipelines Correlation Information for Misconfiguration Detection
Raoni Lourenco Juliana Freire Dennis Shasha Jiagi Zhang!, Lakshminarayanan Renganarayana®, Xiaolan Zhang®, Niyu Ge",
New York University New York Umversity New York University Vasanth Bala® Tianvin Xu’ Yuanyuan Zhou!
raoni@nyu.edu juliana freire@nyu.edu shasha@courant.nyu.edu | ’ v ‘ ,.
'University ol California San Diego ‘IBM Watson Research Center
{11013, lixu, yyzhou}@cs.ucsd.edu {Irengan, cxzhang, niyuge, vbala}@us.ibm.com

Statistical Debugging for Real-World Performance Problems Iterative Delta Debugging

[.inhai Song  Shanl.u”

University of Wisconsin-Madison Cyl' i]le AI‘ thO

{songlh, shanlu}@cs.wisc.edu

Research Center for Information Security (RCIS), AIST, Tokyo, Japan

Optimization

Sequential Model-Based Optimization for
General Algorithm Configuration
(EXtended VerSion) Daniel Hernandez-Lobato DANIEL.HERNANDEZ @ UAM. LS

Universidad Autonoma de Madrid, Francisco Tomas y Valiente 11, 28049, Madrid. Spain.

Predictive Entropy Search for Multi-objective Bayesian Optimization

José Miguel llernandez-Lobato JIMHL @SEAS.HARVARD.EDU

. Harvard Umiversity, 33 Oxford sueet, Cambridge, MA 02138, USA.
Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown

Amar Shah AS793 @CAM.AC.UK
Cambridge University, Trumpington Strecet, Cambridge CB2 1PZ, United Kingdom.

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada

_ Ryan P. Adams RPA@SFEAS.HARVARD.EDU
{hutter, hoos, kevinlb}@ecs.ubc.ca

Harvard University and Twitter, 33 Oxford street Cambridge, MA 02138, USA.




Results: Efficiency (Debugging; Single objective)

Accuracy

Precision

Recall

Gain

-

3

®
_.'.

UNICORIJ

ENCORE

BucDoc

UNICORN

CBI
DD
ENCORE

BuacDoc

UNICORN

B
DD

ENCORE

BucDoc

UNICORN

CBI

ENCORE

BucDoc

UNICORN

TX2

Latency

DEEPSTREAM
XCEPTION
BERT
DEEPSPEECH
X264

~J]

XAVIER

Energy

DEEPSTREAM
XCEPTION
BERT
DEEPSPEECH
X264

1
I
/
Find root causes
more accurately than

ML-based methods

Better gain

o o ] e e s B Others

) {
|
|
|
|
|

é

Up to 20x

faster o5



Results: Efficiency (Debugging; Multi-objective)

Wallclock time in hours

. Multiple Faults
> In Latency &
Energy usage

Accuracy Precision Recall Gain (Latency) Gain (Energy) Time'

E 4 O E ) G nz: 3 G E &) O E &) O E

O @) @) @) @)
= . 8 8|2 - 8§68 - §3¢|g o §49|g 5 § 9|8 &
Z o zZ o Z @ Z @ Z = z =
5 C & B|5 C & 2|5 © &4 2|5 O & B |5 0 & & |5 O
+ . | XCEPTION 89 76 81 79|77 53 54 62| 8 59 59 4
5 £ | BERT 71 72 73 71 | 77 42 56 63 | 79 59 62 4
, = 5 DEEPSPEECH | 86 69 71 72 | 80 44 53 62 | 81 51 59 4
L M X264 85 73 83 81 |8 50 54 67 | 80 63 62 4
Voo T

[ [
4 4

Better gain across both objectives
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Results: Efficiency (Optimization; Single objective)

(@)
-,

—
-

DO

Min. Latency (Sces.)

- UNICORN

SMAC

0 50 100
[teration

(a) Single Objective Latency

150 200

Min. Energy (J)

Do
o)
-

)
-
-

(-
(@]
-

(-
-
-,

= UNICORN

SMAC

[teration

150 200

(b) Single Objective Energy
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Hypervolume Error

<
o

<
oy

—
N

-= [UNICORN

PESMO

[

l |

100
[teration
(c) Multi-Objective Latency and Energy

150 200

Energy (J)

300

100

Results: Efficiency (Optimization; Multi-objective)

-== UNICORN PESMO

I f f l

1 I l l

10 20 30 40 o0

Latency (Secs.)
(d) Pareto Front
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Results: [ransferability

B UNICORN + 20%™UNICORN + 10% " UNICORN (REUSE)
B SMAC 4 20% SMAC + 10% SMAC (REUSE)

il 1 |UNICORN finds
configuration with higher
. gain when workload
10k 20k

: . B : | |changes.
Workload Size

60 |-

Gain %
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Results: [ransferability

= UNICORN (REUSE) ™ UNICORN + 25 ™ UNICORN (RERUN)
m Bucgboc (REUSE) © BucGbDoc + 25 “' BuGDOC (RERUN)

1 UNICORN quickly fixes the
g bug and achieves higher

bl

60 |-

gain, accuracy, precision
and recall when hardware

G changes

%

Hours.

30 |-

Accuracy Precision Recall (Gain Time
98



Results: Scalability

Time/Fault (in sec.)

|z £
g g T 2 5 5 2| 8 & = | |Discovery time, query evaluation
& = = 'S Z = ° . . .
> O A & & a d|a & = | [time and total time do not increase
SOLITE 32 191 36 exponentially as the number of

configuration options and systems
events are increased

111 2234 1.9
441 22372 1.6

43 497 3.1
219 5008 2.3

DEEPSTREAM
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Results: Scalability

Time/Fault (in sec.)

> 5
o 6 A
2 € § £ ¢ & 5|3 ¢ g
o L — o)
F O @’ A & A &l A & ~
SOLITE 34 19 32 191 9 14 291

242 19 111 2234
242 288 441 22372

DEEPSTREAM 53 19 43 497
53 288 219 5008

> 129 . Causal graphs are
| 111 854 5312 sparse
16 32 1509
97 168 3113
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Summary: Causal Al for Systems

1. Learning a causal
performance model
for different
downstream systems
tasks.

2. The learned causal
model is transferable
across different
environments.

3. The causal
reasoning approach is
scalable to large-
scale systems.

Performance Query

o

s
o 1
A
4

|

-What IS the root-cause
i of observed perf. fault?
i*How do | fix the

I misconfig.?

i*How can | improve

} throughput without
sacrificing accuracy?
|*How do | understand |

1- Specity 2- Learn Causal

Performance Data)

i’ R f

—
@\
)
| 9- Update Causal
|| Performance Model

Software: DeepStream
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s = 5/s

| | Measure performance
| of the configuration(s)
1 | that maximizes

| information gain

Performance Model

Budget | .
Exhausted? > @]

cy (ms)

Estimate - ASe s W
probability of "= i
satisfying QoS ..__J

if BufferSize is
setto6k? | A, ..

} Query Engme ‘ﬁ

|@|

4- Estimate Causal
Queries

3- Translate Perf.

-~ . Performance

Debugging

Query

| to Causal Queries
I\ P(Th > 40/s | do(Buffersize = 6k))

Performance

Optimization
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The variability space of today’s systems is exponentially increasing

Systems are heterogeneous, multiscale, multi-modal, and multi-stream

# Configuration Options

44 14 86 29 36 Alerts
| Video 3 Stream Y Primary - Object __%Secondary
Decoder Muxer Detector Tracker Classifier Analytics
”E@z ONNX L ”E@Z, 1 TensorFlow
A= @ TensorFlow Lite = Visualization
T P e P P ¢
COLLECT . STy é $
Variability Space =
Algorithm Selection +
Configuration Space +
System Architecture +
Deployment Environment
Evaluation: Experimental Setup
Hardware Configuration Space
Nvidia TX1 Nvidia TX2 Nvidia Xavier X 30 Configurations
CPU 4 cores, 1.3 GHz CPU 6 cores, 2 GHz CPU 8 cores, 2.26 GHz . 10 software
GPU 128 Cores, 0.9 GHz GPU 256 Cores, 1.3 GHz GPU 512 cores, 1.3 GHz . 10 OS/Kernel
Memory |4 Gb, 25 GB/s Memory (8 Gb, 58 GB/s Memory |32 Gb, 137 GB/s . 10 hardware
X 17 System Events
Systems
Xception DeepSpeech x264
DD output (K)
0
Dﬁlfe,rs
Image recognition Voice recognition Sentiment Analysis Video Encoder
(50,000 test images) (5 sec. audio clip) (10000 IMDb reviews) (11 Mb, 1080p video)

Causal performance models produce correct explanations

Throughput via Cache Misses.
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Causal performance models capture
correct interactions.
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3- Translate Perf. Query
to Causal Queries

downstream systems _
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Measure performance satisfying QoS .--_.
if BufferSize is

] that maximizes set to 6k? | .
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How to resolve these
Issues faster?



Performance measurement

Dead code removal Loop unrolling

Constant folding Function inlining

. Compiler {

g { Configuration g

Space
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Performance Influence Models

Options Options
Bitrate | Enable | ... [ Cache | ... | Through 7" * *
(bits/s) [Padding Misses put (fps) g
C1 1Kk 1 .| 42m | .. 7 h Throughput +]2.5 X BatchSize
ﬁ - -
C2 2K 1 .| 32m | 22 + |12.3 X Bitrate X BatchSize
Cn Sk 0 .. 12m | ... 25 T

Discovered
Interactions

Observational Data Black-box models Regression Equation
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Performance Influence Models

Options Options
Bitrate | Enable |...| Cache | ... [Through * *
(bits/s) [Padding Misses put (fps)
o 1k 1 .| 42m | ... 7 Throughput+2.5><BatchSiz
— : :
Cn ok 0 L. 12m | ... 25 T
Discovered
Interactions
Observational Data Black-box models Regression Equation

These methods rely on statistical correlations to extract

meaningful information required for performance tasks.
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Performance Influence Models suffer from
several shortcomings

 Performance influence models could produce incorrect explanations
* Performance influence models could produce unreliable predictions.

 Performance influence models could produce unstable predictions across
environments and in the presence of measurement noise.

107



10N

Incorrect Explanat

Performance Influence Models Issue

Throughput.

INCreases
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Performance Influence Models Issue: Incorrect Explanation

More Cache Misses should
_ reduce hroughput not
Increase It

i
-

N
U2
AV :
G Increasing Cache Misses
SN——" .
5 20| . Increases | hroughput.
- .
oF I This Is counter-intuitive
= % - H
oY)
-
®,
o
-
—

o
|
|

100k 200k

Cache Misses

Any ML /statistical models built on this
data will be incorrect.
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Performance Influence Models Issue: Incorrect Explanation

A - A, | MRU N -
2 = ek
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Segregating data on Cache Policy indicates that within each group
Increase of Cache Misses result in a decrease in Throughput.
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Performance Influence Models Issue: Unstable Predictors

Performance influence model in TX2.

Throughput = 2 X Bitrate + 1.9 X BatchSize H1.8 X BufferSize|+|0.5 X EnablePadding|+ p.9 X Bitrate X BufferSize
6.2 X Bitrate X EnablePaddingH-4.1 X Bitrate X BufferSize X EnablePadding

Performance influence model in Xavier.

Throughput = 5.1 X Bitrate + 2.5 X BatchSize +|12.3 X Bitrate X BatchSize

Performance Influence Models change significantly in new
environments resulting in less accuracy.
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Performance Influence Models Issue: Unstable Predictors

Performance influence model in TX2.

Throughput = +11.9 X BatchSize - 1.8 X BufferSize + 0.5 X EnablePadding + 5.9 X Bitrate X BufferSize
D. eP

+6.2 X Bitrate X EnablePadding + 4.1 X Bitrate X BufferSize X EnablePadding

Performance influence model in Xavier.

Throughput 2.5 X BatchSizel + 12.3 X Bitrate X BatchSize

Performance influence are cannot be reliably
used across environments.
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Performance Influence Models Issue: Non-generalizability

Performance influence model in TX2

Throughput = 2 X Bitrate + 1.9 X BatchSize + 1.8 X BufferSize + 0.5 X EnablePadding + 5.9 X Bitrate X BufferSize
+6.2 X Bitrate X EnablePadding + 4.1 X Bitrate X BufferSize X EnablePadding

Performance influence model in Xavier.
Throughput = 5.1 X Bitrate + 2.5 X BatchSize + 12.3 X Bitrate X BatchSize

Performance influence models do not generalize
well across deployment environments.
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Causal Performance Model

Configuration options
I

!
 x N ok Non-functional
ache :
Properties
Policy P

N
=
|

Expresses the relationships between |
_—

| Interacting variables as a causal graph -4

p—
-

Throughput (FPS)

o
|
|

100k 200k |

Cache Misses

Direction of
System Events Causality
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Why Causal Inference? - Produces Correct Explanations

N | | VR )
N N Cache Policy affects
& - x : & O O | | Throughput via Cache Misses.
::20 . - ::20 = =l '_j -
S S = : /jvf';]ﬂ
@F O i
~ X - % e b N
= SR 4| LRU
S | 1 o L ey 4 : ~ FIFO |
= = J?ﬁ%}ﬂ 7L LIFO
— 1L Kk MRU |
1OOk| 200k 1OOk| 200k
Cache Misses Cache Misses

Causal Performance Models recovers
the correct interactions.
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Why Causal Inference? - Minimal Structure Change

A partial causal performance A partial causal performance
model in Jetson TX2 model in Jetson Xavier

Causal models remain
relatively stable
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Outline

| Causal Al
/7| For Systems

Future

Motivation Directions

Results

117



Systems Method

* Build a Causal Performance
Model that capture the interactions
options in the variability space
using the observation performance
data.

UNICORN: Our Causal Al for TR

 |terative causal performance model
evaluation and model update

 Perform downstream performance
tasks such as performance
debugging & optimization using
Causal Reasoning




UNICORN: Our Causal Al for Systems Method
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Software: DeepStrea
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s £ 5/s

-What is the root-cause
i of observed perf. fault?

i*How do | fix the
! misconfig.?

°How can | improve
| throughput without
i sacrificing accuracy?

l*How do | understand “

5- Update Causal
Performance Model

| | Measure performance  satisfying QoS .-
| of the configuration(s) if BufferSize is
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¥ information gain

Debugging

3- Translate Perf. Query
to Causal Queries

P(Th > 40/s | do(Buffersize = 6k))
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UNICORN: Our Causal Al for Systems Method

1- Specity
Performance Query

2

D7 PO P STy Y —s

Software: DeepStream
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s = 5/s

-What IS the root-cause
i of observed perf. fault?
f*How do | fix the

! misconfig.?

i*How can | improve

| throughput without

i sacrificing accuracy?
|How do | understand



UNICORN: Our Causal Al for Systems Method

1- Specify 2- Learn
Performance Query Causal Perf. Model
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Software DeepStream -
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s = 5/s

-What IS the root-cause
i of observed perf. fault?

TY
J

i*How do | fix the

| misconfig.?

{*How can | improve

| throughput without

| sacrificing accuracy?

l*How do | understand |
\perf behavior? — }



Learning Causal Performance Model

Bitrate | Enable | ... | Cache | ... |Through / ’ / t ’ \ 7
(bits/s) [Padding Misses put (fps) 1q- Recovering the { Bitrate uffer § f Batch 1{ \
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! Branch ¥ f "

fully connected graph \ Misses j
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Our setup for performance measurements

defbufert B Ne Seript
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Learning Causal Performance Model

Bitrate | Enable |...| Cache | ... |Through / S N T NS ™

. . . : [ \/ Buffer § { Batch }f Enable ?

(bits/s) [Padding Misses put (frs) 1- Recovering the Bitrate N size J\ size J\ Padding/

C1 1k 1 .| 42m | ... ! Skelton T, LN AP S
) ¢ _

Co 2k 1 Ll 32m | ... 22

{ Branch ¥
% Misses J

1 0

fully connected graph
Cn 5k 0 |[...| 12m |...| 25 given constraints (e.g.,
no connections btw
configuration options)

FPS s Energy ‘



Learning Causal Performance Model
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Learning Causal Performance Model
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Causal Performance Model

Branchmisses = 2 X Bitrate + 8.1 X Buffersize + 4.1 X Bitrate X Buffersize X Cachemisses

=~~~ Decoder e, Muxer

Software Causal
Options Paths

Buffer Enable

Bitrate
| Padding

Size

Perf.
Events

Performance
Obijective

Causal
Interaction

Throughput



UNICORN: Our Causal Al for Systems Method

1- Specify
Performance Query

Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s = 5/s

-What is the root-cause
| of observed perf. fault?

f*How do | fix the

! misconfig.?

°How can | improve

{ throughput without

| sacrificing accuracy?

I*How do | understand

Software DeepStream B 3

2- Learn
Causal Perf. Model

L ® &

[ O- Update Causal
| Performance Model

1y 3
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| of the configuration(s)
| | that maximizes
¥ information gain

| Causal f
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f > FY- :
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Budget
Exhausted?

2 __ - Performance
| Debugging
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3- Translate Performance Query

to Causal Queries
P(Th > 40/s | do(Buffersize = 6k))

Performance
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latency (ms)

Estimate
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satisfying QoS . ._4
if BufferSize is o
setto 6k? | A, ..

Query Engme |
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Causal Debugging

Misconfiguration

/N

g

What is the root-cause

of my fault?
How do | fix my

misconfigurations to
Improve performance?

About 25 sample

configurations .-

(training data)

Observational Data

Build Causal Graph

Extract Causal Paths

update

observational

data

No

X X, X 5 X X Y,
O O O O E— (3 — U
X l l (XDZ )5\5 ',Y_\l
> O O_’O )(3 ;6 ;/2
X4/X5/X6 RS R ¢
X X5 X Y,
OY1 OY2 5 X Xe ¥
Rank Paths
?
Fault - Best Query |@l
N )
Yes Counterfactqal Queries

o

é
What if questions.
E.g., What if the configuration
option X was set to a value ‘x’?

129



Extracting Causal Paths from the Causal Model

Problem

o .
In real world cases, this causal graph can be Sche ler poh C) Qref@‘ DVFS QC f,eq>
very complex

X It may be intractable to reason over the entire

graph directly <compllerarch > qu utlllzatl cache Ioad)
<uda statlc
- \ I Iatency gpu fre he m|sse
Solution

,, \\

v  Exiract paths from the causal graph total energy consumption <\ Sl
v Rank them based on their Average Causal l /
Effect on latency, etc. eatdissipation

v Reason over the top K paths
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Extracting Causal Paths from the Causal Model

Always begins with a Extract paths Always terminates at a
configuration option ' performance objective

]
AN /r T

Or a system
evént
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Ranking Causal Paths from the Causal Model

e They may be too many causal paths

e \We need to select the most useful ones

e (Compute the Average Causal Effect (ACE) of
each pair of neighbors in a path

ACE(GPU Mem ., Swap) =i Z -(GPU Mem . | do(Swap — b)) — —(GPU Mem . | da(Swap — a)>

v
...................................................................................

R P — g ! Expected value of GPU
~+ Mem. when we artificially
intervene by setting Swap to

Average over all permitted
values of Swap memory.

Expected value of GPU If this difference is large, then the value 2
Mem. when we artificially .~ Small changes to Swap Mem.

intervene by setting Swap to will cause large changes to GPU

the value b Mem.
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Ranking Causal Paths from the Causal Model

e Average the ACE of all pairs of adjacent nodes in the path

1
PACE(Z,Y) = E(ACE(Z, X) + ACE(X, Y))

. Sum over all pairs of
nodes in the causal path.

e Rank paths from highest path ACE (PACE) score to the lowest

e Use the top K paths for subsequent analysis
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Diagnosing and Fixing the Faults

Observational Data

update
observational
data
No Fault ~ Best Query |@l
=2 =
Yes Counterfactual Queries

?
I

9 i
What if questions.
E.g., What if the
configuration option X was

t to a value ‘x’?
set to e 134



Diagnosing and Fixing the Faults

e Counterfactual inference asks “what if” questions about changes to the
misconfigurations

Example

@ Given that my current swap memory is 2 Gb, and | have high latency. What IS
the probability of having low latency if swap memory was increased to 4 Gb?

!
4

We are interested in the scenario where:

We hypothetically have low latency;

Conditioned on the following events:

We hypothetically set the new Swap memory to 4 Gb
Swap Memory was initially set to 2 Gb

We observed high latency when Swap was set to 2 Gb
Everything else remains the same
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Diagnosing and Fixing the Faults

Remove incoming

- dges. A
Original Path 2X?e?rs1a| ,?]i,”ur;‘ﬁcr;" Path after proposed change

(Load “
Modify to reflect the .
hypothetical scenario” 2P = * &5 @ @ ____

e e
........................................................................................................................
L d L d
S

Use both the models to compute the answer to the counterfactual question
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Diagnosing and Fixing the Faults

Original Path Path after proposed change

N\ N\
Potential = P( Latency = low Swap =4 Gb, Swap =2 Gb, Latencyswapzwb = high, U)
1 . The Swap was initially 2 Gb . Everything else
We expect a low latency : ; stays the same
The Swap is now 4 Gb The latency was high
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Diagnosing and Fixing the Faults

. N\
Potential = P< outcome = change, outcome- pqnq.. = bad, —change, U)

....................................................................................................................................................

Probability that the outcome is good after a change, conditioned on the past

Control = P< outcome = —ichange, U )

.....................................................................

Probability that the outcome was bad before the change

Individual Treatment Effect = Potential — Outcome

4

.................................................

If this difference is large, then our change is useful
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Diagnosing and Fixing the Faults

Set every configuration

Top K paths _.--= option in the path to all
permitted values

" Enumerate all Change with
@@ . ITE(change) :
possible changes . the largest ITE

O

Latency

_ Inferred from observed
data. This is very cheap.
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Diagnosing and Fixing the Faults

Measure
Performance

Change with /Fam No * Add to observational data
e = wed/ -+ Update causal model

the largest ITE Repeat...

Yes

o
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UNICORN: Our Causal Al for Systems Method

2- Learn
Causal Perf. Model

1- Specify
Performance Query

Performance Data
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f S s
) J/
‘_I/

Software: DeepStream
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

QoS : Th > 40/s
Observed : Th < 30/s £ 5/s
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B *
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Active Learnlngfor Updating Causal Performance Model

1- Evaluate Candidate u,
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Active Learnlngfor Updating Causal Performance Model

1- Evaluate Candidate u,

Interventions \ ‘/ ‘l' ~—
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\ Enable

. Bitrate

{ Branch { f
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Active Learnlngfor Updating Causal Performance Model

AY Enable

. Bitrate

Interventions
? -~

f Branch
\, Misses j

| Interventions on Hardware,
Workload, and Kernel Options

1- Evaluate Candidate

lote,

s LT

Lok, Tt

Expected change in
belief & KL; Causal *i‘

effects on objectives

\ : / Enable
A Paddlng ’

. Bitrate jJ{

Model averaging
3- Updating
Causal Model

{ Cache . {
. Misses J™ 3

{ Branch Y-
\ Misses j "~ %

Performance
Data

hd,

2- Determine & Perform
next Perf Measurement

Option/Event/Obj | Values
Bitrate 1k
Buffer Size 20k
Batch Size 10
Enable Padding 1
Branch Misses 24m
Cache Misses 42m
No of Cycles 73b
FPS 31/s
Energy 42J




Benefits of Causal
Reasoning for
System
Performance
Analysis




There are two fundamental benefits that we get by our “Causal Al for Systems”
methodology

1. We learn one central (causal) performance model from the data across different
performance tasks:

* Performance understanding

 Performance optimization

* Performance debugging and repair

* Performance prediction for different environments (e.g., canary-> production)
2. The causal model is transferable across environments.

* We observed Sparse Mechanism Shift in systems too!

* Alternative non-causal models (e.g., regression-based models for performance tasks)
are not transferable as they rely on 1.i.d. setting.
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Abstract

Modern computer systems are highly configurable, with the
total variability space sometimes larger than the number of
atoms in the universe. Understanding and reasoning about
the performance behavior of highly configurable systems,
over a vast and variable space, is challenging. State-of-the-
art methods for performance modeling and analyses rely on
predictive machine learning models, therefore, they become
(i) unreliable in unseen environments (e.g., different hardware,
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