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ML in research vs. production

Slides are borrowed from Stanford (CS 329S)
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Research Production

Objectives Model performance* Different stakeholders have different 
objectives

“*” It’s actively being worked. See Utility is in the Eye of the User: A Critique of NLP Leaderboards (Ethayarajh and Jurafsky, EMNLP 2020)

ML in research vs. in production

https://arxiv.org/abs/2009.13888
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ML team 
highest accuracy

Stakeholder objectives
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ML team 
highest accuracy

Sales 
sells more ads

Stakeholder objectives
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ML team 
highest accuracy

Sales 
sells more ads

Stakeholder objectives

Product 
fastest inference
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ML team 
highest accuracy

Sales 
sells more ads

Manager 
maximizes profit 
= laying off ML teams

Stakeholder objectives

Product 
fastest inference
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Computational priority

generating predictions



Latency matters

Latency 100 -> 400 ms reduces searches 0.2% - 0.6% (2009) 

30% increase in latency costs 0.5% conversion rate (2019)
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● Latency: time to move a leaf 
● Throughput: how many leaves in 1 sec
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● Real-time: low latency = high throughput 
● Batched: high latency, high throughput
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

ML in research vs. in production
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Data

Research Production
● Clean 
● Static 
● Mostly historical data

● Messy 
● Constantly shifting 
● Historical + streaming data 
● Biased, and you don’t know how biased 
● Privacy + regulatory concerns 
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

ML in research vs. in production
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Fairness
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability* Good to have Important

ML in research vs. in production
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Interpretability

Result from the Zoom poll
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Research Production

Objectives Model performance Different stakeholders have different 
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

ML in research vs. in production



Software 1.0 -> 
Software 2.0 -> 
Software 3.0!



"Map of GitHub"



Software 1.0 vs Software 2.0

• Written in code (C++, ...) 


• Requires domain expertise


1. Decompose the problem


2. Design algorithms 


3. Compose into a system

• Written in terms of a neural 
network model with


• A model architecture


• Weights that are 
determined using 
optimization

https://medium.com/@karpathy/software-2-0-a64152b37c35



Software 1.0 vs Software 2.0

• Input: Algorithms in code


• Compiled to: Machine 
instructions

• Input: Training data


• Compiled to: Learned 
parameters

https://medium.com/@karpathy/software-2-0-a64152b37c35



Software 1.0 vs Software 2.0

• Easier to build and deploy 

• Build products faster 


• Predictable runtimes and 
memory use: easier 
qualification

• A wide range of applications 
from self-driving cars, to 
game, healthcare, robotics, 
space, and social good.


• 1000x Productivity: Google 
shrinks language translation 
code from 500k LoC to 500

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-
automationbetter-jobs/
https://ai.google/social-good/



"Map of GitHub" (Software 1.0)
computer code

HuggingFace Model Atlas
(Software 2.0)

neural network weights



Software 1.0
computer code

programs

computer

became programmable in ~1940s

Software 2.0
weights

programs

neural net

fixed function neural net
e.g. AlexNet: for image recognition (~2012)

Software is changing again
Prompts

LLM

programs

Software 3.0

LLM = Programable Neural Netowrk (~2019)



"Map of GitHub" (Software 1.0)
computer code

(Software 3.0)
LLM prompts, in English

HuggingFace Model Atlas
(Software 2.0)

neural network weights



Example: Sentiment Classification

Software 1.0 Software 2.0

10,000 positive examples
10,000 negative examples

train binary classifier

encoding (e.g. bag of words)

parameters

Software 3.0





A huge amount of Software will be (re-)written.



Opportunities



Partial autonomy apps ⚙
"Copilot" / "Cursor for X"



Example: you could go to an LLM to chat about code...



Example: Anatomy of Cursor
LLM integrationTraditional interface

1. Package state into a context 
window before calling LLM.

2. Orchestrate and call multiple 
models (e.g. embedding models, 
chat models, diff apply models, ...)

3. Application-specific GUI

4. Autonomy slider: Tab → 
Cmd+K → Cmd+L → Cmd+I 
(agent mode)

autonomy slider



1. Package information into a 
context window


2. Orchestrate multiple LLM 
models


3. Application-specific GUI for 
Input/Output UIUX
autonomy slider

Example: Anatomy of Perplexity

search research deep research

(+suggested followup questions)



Adobe photoshop Unreal engine

- Can an LLM "see" all the things the human can?


- Can an LLM "act" in all the ways a human can?


- How can a human supervise and stay in the loop?


- ...

What does all software look like in the partial autonomy world?



Consider the full workflow of partial autonomy UIUX

Generation

Verification
2. Keep AI "on a tight leash" to 
increase the probability of 
successful verification

1. Make this EASY, FAST to win.



Example: Tesla Autopilot

- keep the lane


- keep distance from 
the car ahead


- take forks on highway


- stop for traffic lights 
and signs


- take turns at 
intersections


- ...

autonomy slider



2015 - 2025 was the decade of "driving agents"

Mind the "demo-to-product gap"!

It takes a huge amount of hard 
work across the stack to turn an 
autonomy demo into an autonomy 
product, especially when high 
reliability matters.

demo is a `works.any()`

product is a `works.all()`



Example: keeping agents on the leash



Build for agents 🤖



There is new category of consumer/manipulator of digital information:


1. Humans (GUIs)


2. Computers (APIs)


3. NEW: Agents <- computers... but human-like



robots.txt →



Docs for people



Docs for people LLMs



Actions for people LLMs
"click" -> cURL MCP



GitingestContext builders, e.g.:



Devin DeepWikiContext builders, e.g.:



Partial autonomy LLM apps:


- Package context


- Orchestrate LLM calls


- Custom GUI


- Autonomy slider

Build for 
agents 🤖

speed up the full generation-verification flow



ML production myths



Myth #1: Deploying is hard
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Myth #1: Deploying is hard 

Deploying is easy. Deploying reliably is hard
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Myth #2: You only deploy one or two ML 
models at a time 
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Myth #2: You only deploy one or two ML 
models at a time 

Booking.com: 150+ models, Uber: thousands
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Image from Ville Tuulos (Netflix, Outerbounds)

modern orgs deploy hundreds of micro-models + multiple LLM instances.



Myth #3: You won’t need to update your 
models as much 

55



DevOps: Pace of software delivery is accelerating

● Elite performers deploy 973x more frequently with 6570x faster lead time to 
deploy (Google DevOps Report, 2021)


● DevOps standard (2015)

○ Etsy deployed 50 times/day

○ Netflix 1000s times/day

○ AWS every 11.7 seconds
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https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report


DevOps to MLOps: Slow vs. Fast
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Left image from Algorithmia | Right image: Machine learning with Flink in Weibo (Qian Yu, QCon 2019)


We’ll learn how to do minute-
iteration cycle!

https://www.youtube.com/watch?v=WQ520rWgd9A&ab_channel=FlinkForward


Accelerating ML Delivery
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ML + DevOps =  
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Myth #4: ML can magically transform your 
business overnight
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Myth #4: ML can magically transform your 
business overnight 

Magically: possible

Overnight: no
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Efficiency improves with maturity
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2020 state of enterprise machine learning (Algorithmia, 2020)


https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf


ML engineering is more engineering than ML

MLEs might spend most of their time:


● wrangling data

● understanding data

● setting up infrastructure

● deploying models


instead of training ML models



Myth #5: Most ML engineers don’t need to 
worry about scale 
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Myth #5: Most ML engineers don’t need to 
worry about scale 
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StackOverflow Developer Survey 2019

https://insights.stackoverflow.com/survey/2019

