
CSCE 585: Machine Learning Systems
Lecture 2: Machine Learning Systems in Production

Pooyan Jamshidi

Fall 2024 | Course Website: https://pooyanjamshidi.github.io/mls/

https://pooyanjamshidi.github.io/mls/

ML in research vs. production

Slides are borrowed from Stanford (CS 329S)

3

Research Production

Objectives Model performance* Different stakeholders have different
objectives

“*” It’s actively being worked. See Utility is in the Eye of the User: A Critique of NLP Leaderboards (Ethayarajh and Jurafsky, EMNLP 2020)

ML in research vs. in production

https://arxiv.org/abs/2009.13888

4

ML team
highest accuracy

Stakeholder objectives

5

ML team
highest accuracy

Sales
sells more ads

Stakeholder objectives

6

ML team
highest accuracy

Sales
sells more ads

Stakeholder objectives

Product
fastest inference

7

ML team
highest accuracy

Sales
sells more ads

Manager
maximizes profit
= laying off ML teams

Stakeholder objectives

Product
fastest inference

8

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Computational priority

generating predictions

Latency matters

Latency 100 -> 400 ms reduces searches 0.2% - 0.6% (2009)

30% increase in latency costs 0.5% conversion rate (2019)

9

10

● Latency: time to move a leaf
● Throughput: how many leaves in 1 sec

11

● Real-time: low latency = high throughput
● Batched: high latency, high throughput

12

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

ML in research vs. in production

13

Data

Research Production
● Clean
● Static
● Mostly historical data

● Messy
● Constantly shifting
● Historical + streaming data
● Biased, and you don’t know how biased
● Privacy + regulatory concerns

14

15

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

ML in research vs. in production

16

Fairness

17

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability* Good to have Important

ML in research vs. in production

18

Interpretability

Result from the Zoom poll

19

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

ML in research vs. in production

Software 1.0 ->
Software 2.0 ->
Software 3.0!

"Map of GitHub"

Software 1.0 vs Software 2.0

• Written in code (C++, ...)

• Requires domain expertise

1. Decompose the problem

2. Design algorithms

3. Compose into a system

• Written in terms of a neural
network model with

• A model architecture

• Weights that are
determined using
optimization

https://medium.com/@karpathy/software-2-0-a64152b37c35

Software 1.0 vs Software 2.0

• Input: Algorithms in code

• Compiled to: Machine
instructions

• Input: Training data

• Compiled to: Learned
parameters

https://medium.com/@karpathy/software-2-0-a64152b37c35

Software 1.0 vs Software 2.0

• Easier to build and deploy

• Build products faster

• Predictable runtimes and
memory use: easier
qualification

• A wide range of applications
from self-driving cars, to
game, healthcare, robotics,
space, and social good.

• 1000x Productivity: Google
shrinks language translation
code from 500k LoC to 500

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-
automationbetter-jobs/
https://ai.google/social-good/

"Map of GitHub" (Software 1.0)
computer code

HuggingFace Model Atlas
(Software 2.0)

neural network weights

Software 1.0
computer code

programs

computer

became programmable in ~1940s

Software 2.0
weights

programs

neural net

fixed function neural net
e.g. AlexNet: for image recognition (~2012)

Software is changing again
Prompts

LLM

programs

Software 3.0

LLM = Programable Neural Netowrk (~2019)

"Map of GitHub" (Software 1.0)
computer code

(Software 3.0)
LLM prompts, in English

HuggingFace Model Atlas
(Software 2.0)

neural network weights

Example: Sentiment Classification

Software 1.0 Software 2.0

10,000 positive examples
10,000 negative examples

train binary classifier

encoding (e.g. bag of words)

parameters

Software 3.0

A huge amount of Software will be (re-)written.

Opportunities

Partial autonomy apps ⚙
"Copilot" / "Cursor for X"

Example: you could go to an LLM to chat about code...

Example: Anatomy of Cursor
LLM integrationTraditional interface

1. Package state into a context
window before calling LLM.

2. Orchestrate and call multiple
models (e.g. embedding models,
chat models, diff apply models, ...)

3. Application-specific GUI

4. Autonomy slider: Tab →
Cmd+K → Cmd+L → Cmd+I
(agent mode)

autonomy slider

1. Package information into a
context window

2. Orchestrate multiple LLM
models

3. Application-specific GUI for
Input/Output UIUX
autonomy slider

Example: Anatomy of Perplexity

search research deep research

(+suggested followup questions)

Adobe photoshop Unreal engine

- Can an LLM "see" all the things the human can?

- Can an LLM "act" in all the ways a human can?

- How can a human supervise and stay in the loop?

- ...

What does all software look like in the partial autonomy world?

Consider the full workflow of partial autonomy UIUX

Generation

Verification
2. Keep AI "on a tight leash" to
increase the probability of
successful verification

1. Make this EASY, FAST to win.

Example: Tesla Autopilot

- keep the lane

- keep distance from
the car ahead

- take forks on highway

- stop for traffic lights
and signs

- take turns at
intersections

- ...

autonomy slider

2015 - 2025 was the decade of "driving agents"

Mind the "demo-to-product gap"!

It takes a huge amount of hard
work across the stack to turn an
autonomy demo into an autonomy
product, especially when high
reliability matters.

demo is a `works.any()`

product is a `works.all()`

Example: keeping agents on the leash

Build for agents 🤖

There is new category of consumer/manipulator of digital information:

1. Humans (GUIs)

2. Computers (APIs)

3. NEW: Agents <- computers... but human-like

robots.txt →

Docs for people

Docs for people LLMs

Actions for people LLMs
"click" -> cURL MCP

GitingestContext builders, e.g.:

Devin DeepWikiContext builders, e.g.:

Partial autonomy LLM apps:

- Package context

- Orchestrate LLM calls

- Custom GUI

- Autonomy slider

Build for
agents 🤖

speed up the full generation-verification flow

ML production myths

Myth #1: Deploying is hard

51

Myth #1: Deploying is hard

Deploying is easy. Deploying reliably is hard

52

Myth #2: You only deploy one or two ML
models at a time

53

Myth #2: You only deploy one or two ML
models at a time

Booking.com: 150+ models, Uber: thousands

54
Image from Ville Tuulos (Netflix, Outerbounds)

modern orgs deploy hundreds of micro-models + multiple LLM instances.

Myth #3: You won’t need to update your
models as much

55

DevOps: Pace of software delivery is accelerating

● Elite performers deploy 973x more frequently with 6570x faster lead time to
deploy (Google DevOps Report, 2021)

● DevOps standard (2015)

○ Etsy deployed 50 times/day

○ Netflix 1000s times/day

○ AWS every 11.7 seconds

56

https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report

DevOps to MLOps: Slow vs. Fast

57
Left image from Algorithmia | Right image: Machine learning with Flink in Weibo (Qian Yu, QCon 2019)

We’ll learn how to do minute-
iteration cycle!

https://www.youtube.com/watch?v=WQ520rWgd9A&ab_channel=FlinkForward

Accelerating ML Delivery

58

ML + DevOps =

59

Myth #4: ML can magically transform your
business overnight

60

Myth #4: ML can magically transform your
business overnight

Magically: possible

Overnight: no

61

Efficiency improves with maturity

62
2020 state of enterprise machine learning (Algorithmia, 2020)

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf

ML engineering is more engineering than ML

MLEs might spend most of their time:

● wrangling data

● understanding data

● setting up infrastructure

● deploying models

instead of training ML models

Myth #5: Most ML engineers don’t need to
worry about scale

64

Myth #5: Most ML engineers don’t need to
worry about scale

65
StackOverflow Developer Survey 2019

https://insights.stackoverflow.com/survey/2019

