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LLM Inference Basics



What is LLM inference?

• LLM inference refers to using trained LLMs, such as GPT-4, Llama 4, and 
DeepSeek-V3, to generate meaningful outputs from user inputs, typically 
provided as natural language prompts.


• During inference, the model processes the prompt through its vast set of 
parameters to generate responses like text, code snippets, summaries, and 
translations.



Real-world examples

• Customer support chatbots: Generating personalized, contextually relevant 
replies to customer queries in real-time. 


• Writing assistants: Completing sentences, correcting grammar, or 
summarizing long documents. 


• Developer tools: Converting natural language descriptions into executable 
code. 


• AI agents: Performing complex, multi-step reasoning and decision-making 
processes autonomously.



Why should I care about LLM inference?

• You might think: I’m just using OpenAI’s API. Do I really need to understand 
inference? 

• Serverless APIs like OpenAI, Anthropic, and others make inference look 
simple. You send a prompt, get a response, and pay by the token. 


• The infrastructure, model optimization, and scaling are all hidden from 
view.


• As your application grows, you'll eventually run into limits (e.g., cost, latency, 
customization, or compliance) that serverless APIs can’t fully address. That’s 
when teams start exploring hybrid or self-hosted solutions.



Why should I care about LLM inference?

• If you're a developer: Inference is becoming as fundamental as databases or APIs 
in modern AI application development. Knowing how it works helps you design 
faster, cheaper, and more reliable systems. Poor inference implementation can 
lead to slow response time, high compute costs, and a poor user experience. 


• If you're a technical leader: Inference efficiency directly affects your bottom line. 
A poorly optimized setup can cost 10× more in GPU hours while delivering worse 
performance. Understanding inference helps you evaluate vendors, make build-
vs-buy decisions, and set realistic performance goals for your team. 


• If you're just curious about AI: Inference is where the magic happens. Knowing 
how it works helps you separate AI hype from reality and makes you a more 
informed consumer and contributor to AI discussions.



What is the difference between LLM training and inference?
Training: Building the model’s understanding

• It is about teaching the model how to recognize patterns and make accurate 
predictions. This is done by exposing the model to vast amounts of data and 
adjusting its parameters based on the data it encounters.


• Common techniques used in LLM training include: 


• Supervised learning: Show the model examples of inputs paired with the correct 
outputs. 


• Reinforcement learning: Allow the model to learn by trial and error, optimizing 
based on feedback or rewards.


• Self-supervised learning: Learn by predicting missing or corrupted parts of the 
data, without explicit labels.



What is the difference between LLM training and inference?
Inference: Using the model in real-time

• LLM inference means applying the trained model to new data to make 
predictions.


• Inference compute needs are ongoing and can become very high, especially 
as user interactions and traffic grow.


• While each inference step may be smaller than training in isolation, the 
cumulative demand over time can lead to significant operational expenses.



How does LLM inference work?
What are tokens and tokenization?
• During inference, an LLM generates text one token at a time, using its internal 

attention mechanisms and knowledge of previous context.


• A token is the smallest unit of language that LLMs use to process text.


• It can be a word, subword, or even a character, depending on the tokenizer.


• Each LLM has its own tokenizer, with different tokenization algorithms.


• Tokenization is the process of converting input text (like a sentence or paragraph) 
into tokens.


• The tokenized input is then converted into IDs, which are passed into the model 
during inference.



The two phases of LLM inference
prefill
• When a user sends a query, the LLM's tokenizer converts the prompt into a sequence of tokens. The prefill phase 

begins after tokenization:


1. These tokens (or token IDs) are embedded as numerical vectors that the LLM can understand. 


2. The vectors pass through multiple transformer layers, each containing a self-attention mechanism. Here, query 
(Q), key (K), and value (V) vectors are computed for each token. These vectors determine how tokens attend to 
each other, capturing contextual meaning. 


3. As the model processes the prompt, it builds a KV cache to store the key and value vectors for every token at 
every layer. It acts as an internal memory for faster lookups during decoding.


• LLM can process all tokens simultaneously through highly parallelized matrix operations, particularly in the attention 
computations.



The two phases of LLM inference
Decode
• After prefill, the LLM enters the decode stage where it generates new tokens 

sequentially, one at a time.


• For each new token, the model samples from a probability distribution 
generated based on the prompt and all previously generated tokens. This 
process is autoregressive, meaning tokens T₀ through Tₙ₋₁ are used to 
generate token Tₙ, then T₀ through Tₙ to generate Tₙ₊₁, and so on.



The two phases of LLM inference
Decode
• Each newly generated token is appended to the growing sequence. This 

autoregressive loop continues until:


• A maximum token limit is reached, 


• A stop word is generated, 


• Or a special end-of-sequence token (e.g., <end>) appears.



Compute vs Memory in LLM Inference

• The prefill stage is compute-bound and often saturates GPU utilization. The 
actual utilization depends on factors like sequence length, batch size, and 
hardware specifications.


• Compared with prefill, decode is more memory-bound because it frequently 
reads from the growing KV cache. KV caching stores these key and value 
matrices in memory so that, during subsequent token generation, the LLM only 
needs to compute the keys and values for the new tokens rather than 
recomputing everything from scratch.


• This KV caching mechanism significantly speeds up inference by avoiding 
redundant computation. However, it comes at the cost of increased memory 
consumption, since the cache grows with the length of the generated sequence.



Key performance metrics in LLM inference



Collocating prefill and decode

• Traditional LLM serving systems typically run both the prefill and decode phases on 
the same hardware. 


• However, this setup introduces several challenges: 


• One major issue is the interference between the prefill and decode phases, as they 
cannot run fully in parallel. 


• In production, multiple requests can arrive at once, each with its own prefill and 
decode stages that overlap across different requests. 


• However, only one phase can run at a time. When the GPU is occupied with 
compute-heavy prefill tasks, decode tasks must wait, increasing token latency, 
and vice versa. This makes it difficult to schedule resources for both phases.



Where is LLM inference run?

• When deploying LLMs into production, choosing the right hardware is crucial. 
Different hardware types offer varied levels of performance and cost-efficiency.


• CPUs are widely available and suitable for running small models or serving 
infrequent requests. For production-grade LLM inference, especially with larger 
models or high request volumes, CPUs often fall short in both latency and 
throughput.


• The architecture of GPUs is optimized for matrix multiplication and tensor 
operations, which are core components of transformer-based models.


• TPUs are designed from the ground up for tensor operations — the fundamental 
math behind neural networks.



Choosing the deployment environment

• Cloud: The cloud is the most popular environment for LLM inference today. It 
offers on-demand access to high-performance GPUs and TPUs, along with a 
rich ecosystem of managed services, autoscaling, and monitoring tools. 


• On-Prem: On-premises deployments means running LLM inference on your 
own infrastructure, typically within a private data center. It offers full control over 
data, performance, and compliance, but requires more operational overhead. 


• Edge: In edge deployments, the model runs directly on user devices or local 
edge nodes, closer to where data is generated. This reduces network latency 
and increases data privacy, especially for time-sensitive or offline use cases. 
Edge inference usually uses smaller, optimized models due to limited compute 
resources.



Serverless vs. Self-hosted LLM inference
Serverless LLM inference

• Serverless inference services, provided by companies like OpenAI, Anthropic, and other 
hosted API providers, simplify application development significantly. They manage 
everything for you, letting you pay per use with no infrastructure overhead.


• Ease of use: You can get started quickly with minimal setup — just use an API key and 
a few lines of code. There is no need to manage hardware, software environments, or 
complex scaling logic. 


• Rapid prototyping: It is perfect for testing ideas quickly, building demos, or internal 
tooling without infrastructure overhead. 


• Hardware abstraction: Self-hosting LLMs at scale usually requires high-end GPUs 
(such as NVIDIA A100 or H100). Serverless APIs abstract these hardware complexities, 
allowing you to avoid GPU shortages, quota limits, and provisioning delays.



Serverless vs. Self-hosted LLM inference



Getting Started



Choosing the right model
Base models

• Base models, also called foundation models, are the starting point of most 
LLMs. They are typically trained on a massive corpus of text data through 
unsupervised learning, which does not require labeled data.


• During this initial phase, known as pretraining, the model learns general 
language patterns, such as grammar, syntax, semantics, and context. It 
becomes capable of predicting the next word (or token) and can perform 
simple few-shot learning (handling a task after seeing just a few examples). 
However, it does not yet understand how to follow instructions and is not 
optimized for specific tasks out of the box.



Choosing the right model
Instruction-tuned models

• Instruction-tuned models are built on top of base models. After the initial 
pretraining phase, these models go through a second training stage using 
datasets made up of instructions and their corresponding responses.


• “Summarize this article.” 


• “Explain how LLM inference works.” 


• “List pros and cons of remote work.”



Choosing the right model
Mixture of Experts models

• Mixture of Experts (MoE) models, such as DeepSeek-V3, take a different 
approach from traditional dense models. Instead of using all model 
parameters for every input, they contain multiple specialized sub-networks 
called experts, each focus on different types of data or tasks. 


• During inference, only a subset of these experts is activated based on the 
characteristics of the input. This selection mechanism enables the model to 
route computation more selectively—engaging different experts depending on 
the content or context. As a result, MoE models achieve greater scalability 
and efficiency by distributing workload across a large network while keeping 
per-inference compute costs manageable.



Choosing the right model
Combining LLMs with other models

• Small Language Models (SLMs). Used for lightweight tasks where latency and resource constraints 
matter. They can serve as fallback models or on-device assistants that handle basic interactions without 
relying on a full LLM. 


• Embedding models. They transform inputs (e.g., text, images) into vector representations, making them 
useful for semantic search, RAG pipelines, recommendation systems, and clustering. 


• Image generation models. Models like Stable Diffusion generate images from text prompts. When paired 
with LLMs, they can support more advanced text-to-image workflows such as creative assistants, content 
generators, or multimodal agents. 


• Vision language models (VLMs). Models such as NVLM 1.0 and Qwen2.5-VL combine visual and textual 
understanding, supporting tasks like image captioning, visual Q&A, or reasoning over screenshots and 
diagrams. 


• Text-to-speech (TTS) models. They can convert text into natural-sounding speech. When integrated with 
LLMs, they can be used in voice-based agents, accessible interfaces, or immersive experiences.



LLM fine-tuning

• Fine-tuning is one of the most effective ways to adapt an LLM for a specific 
use case. It continues the training process on a pre-trained model using new, 
task-specific data. This can involve updating the entire model or just 
specific layers.


• A key driver behind fine-tuning is efficiency. Instead of training a model from 
scratch (which is extremely resource-intensive), it's far easier and more cost-
effective to build on top of a base model that has already learned general 
language patterns from massive datasets. Fine-tuning sharpens those broad 
capabilities for your particular task.



LLM fine-tuning
Examples

• Domain expertise: Adapting a model for legal, medical, or programming-
related tasks. 


• Instruction following: Ensuring the model adheres to specific formats, tones, 
or styles in its responses. 


• Safety and alignment: Reinforcing how the model handles sensitive or high-
risk prompts.



Choosing the right inference framework
Inference frameworks and tools

• vLLM. A high-performance inference engine optimized for serving LLMs. It is known for its efficient use 
of GPU resources and fast decoding capabilities. 


• SGLang. A fast serving framework for LLMs and vision language models. It makes your interaction with 
models faster and more controllable by co-designing the backend runtime and frontend language. 


• LMDeploy. An inference backend focusing on delivering high decoding speed and efficient handling of 
concurrent requests. It supports various quantization techniques, making it suitable for deploying large 
models with reduced memory requirements. 


• TensorRT-LLM. An inference backend that leverages NVIDIA's TensorRT, a high-performance deep 
learning inference library. It is optimized for running large models on NVIDIA GPUs, providing fast 
inference and support for advanced optimizations like quantization. 


• Hugging Face TGI. A toolkit for deploying and serving LLMs. It is used in production at Hugging Face 
to power Hugging Chat, the Inference API and Inference Endpoint.



Choosing the right inference framework
Edge inference frameworks

• llama.cpp. A lightweight inference runtime for LLMs, implemented in plain C/C++ with no external 
dependencies. Its primary goal is to make LLM inference fast, portable, and easy to run across a wide 
range of hardware. Despite the name, llama.cpp supports far more than just Llama models. It supports 
many popular architectures like Qwen, DeepSeek, and Mistral. The tool is ideal in low-latency inference 
and performs well on consumer-grade GPUs. 


• MLC-LLM. An ML compiler and high-performance deployment engine for LLMs. It is built on top of 
Apache TVM and requires compilation and weight conversion before serving models. MLC-LLM can be 
used for a wide range of hardware platforms, supporting AMD, NVIDIA, Apple, and Intel GPUs across 
Linux, Windows, macOS, iOS, Android, and web browsers. 


• Ollama. A user-friendly local inference tool built on top of llama.cpp. It’s designed for simplicity and 
ease of use, ideal for running models on your laptop with minimal setup. However, Ollama is mainly 
used for single-request use cases. Unlike runtimes like vLLM or SGLang, it doesn’t support concurrent 
requests. This difference matters since many inference optimizations, such as paged attention, prefix 
caching, and dynamic batching, are only effective when handling multiple requests in parallel.



Tool integration
Function calling



Tool integration
Model Context Protocol

• MCP host: This is where the AI assistant lives. It could be a chat application like 
Claude Desktop, an IDE code assistant, or any other AI-powered application. The host 
can contain one or multiple MCP clients. 


• MCP clients: A client is the low-level implementation inside the host that maintains 
one-to-one links with MCP servers. 


• MCP servers: The connectors that expose different capabilities and data sources. 
Each server can connect to various backends like databases, third-party APIs, GitHub 
repositories, local files, or any other data source. Multiple servers can be running 
simultaneously on your local machine or connected to remotes services. 


• MCP protocol: This is the transport layer that enables communication between the 
host and servers, regardless of how many servers are connected.



Tool integration
Model Context Protocol



Example

1. The MCP host makes a request through the MCP protocol 


2. The appropriate MCP server receives the request 


3. The server connects to the actual data source (database, API, file system, 
etc.) 


4. The server processes the request and returns the data back through the 
protocol 


5. The AI assistant receives the information and can use it in its response



Infrastructure and operations



What is LLM inference infrastructure?

• LLM inference infrastructure encompasses the systems and workflows needed to run LLM 
inference reliably and cost-effectively in production. It includes everything from hardware 
provisioning to software coordination and operational monitoring.


• Hardware provisioning: Access to high-performance compute resources like GPUs and TPUs. 


• Orchestration: Tools that manage resource allocation, scale workloads dynamically, and 
manage model versions across multiple environments. 


• Observability systems: Logging, monitoring, and tracing tools that offer insight into 
performance metrics such as GPU utilization, latency, throughput, and failure rates. 


• Operational procedures: Standardized workflows and automation that enable teams to deploy 
updates, enforce access control, handle failures, and ensure high availability. As inference 
demand scales, having repeatable, efficient operations becomes critical to managing growing 
workloads.



Challenges in building infrastructure for LLM inference
Fast scaling

• That demand is often bursty, hard to predict, and unforgiving of latency or 
downtime.


• This means the system needs to scale up quickly during traffic spikes and 
scale down to zero when idle to save costs. 


• Over-provisioning: Wasted GPU capacity, high idle costs. 


• Under-provisioning: Dropped requests, latency spikes, and poor user 
experience. 


• Inflexible budgets: Rigid spending that doesn't adapt to real usage 
patterns.



The cold start problem

• In the context of deploying LLMs in containers, a cold start occurs when a 
Kubernetes node has never previously run a given deployment. 


• As a result, the container image is not cached locally, and all image layers 
must be pulled and initialized from scratch.



The cold start problem

• Cloud provisioning: This step involves the time it takes for the cloud provider to 
allocate a new instance and attach it to the Kubernetes cluster. Depending on the 
instance type and availability, this can take anywhere from 30 seconds to several 
minutes, or even hours for high-demand GPUs like Nvidia A100 and H100.


• Container image pulling: LLM images are significantly larger and more complex 
than typical Python job images, due to numerous dependencies and custom 
libraries. Despite claims of multi-gigabit bandwidth by cloud providers, actual 
image download speeds are often much slower. As a result, pulling images can 
take three to five minutes.


• Model loading. The time required to load the model depends heavily on its size. 
LLMs introduce significant delays due to their billions of parameters.



Key bottlenecks in model loading

• Slow downloads from model hubs: Platforms like Hugging Face are not 
optimized for high-throughput, multi-part downloads, making the retrieval of 
large model files time-consuming. 


• Sequential data flow: Model files are transferred through multiple hops: 
remote storage → local disk → memory → GPU. This is minimal or no 
parallelization between them. Each step adds latency, particularly for large 
files that are difficult to cache or stream. 


• Lack of on-demand streaming: Model files must be fully downloaded and 
written to disk before inference can begin. This introduces additional I/O 
operations and delays startup.





Inference optimization



Key metrics for LLM inference
Latency

• Time to First Token (TTFT): The time it takes to generate the first token after sending a 
request. It reflects how fast the model can start responding. 


• Time per Output Token (TPOT): Also known as Inter-Token Latency (ITL), TPOT measures the 
time between generating each subsequent token. A lower TPOT means the model can 
produce tokens faster, leading to higher tokens per second. In streaming scenarios where 
users see text appear word-by-word (like ChatGPT's interface), TPOT determines how 
smooth the experience feels. The system should ideally keep up with or exceed human 
reading speed to ensure a smooth experience. 


• Token Generation Time: The time between receiving the first and the final token. This 
measures how long it takes the model to stream out the full response. 


• Total Latency (E2EL): The time from sending the request to receiving the final token on the 
user end.





Understanding mean, median, and P99 latency

• Mean (Average): This is the sum of all values divided by the number of values. Mean 
gives a general sense of average performance, but it can be skewed by extreme values 
(outliers). For example, if the TTFT of one request is unusually slow, it inflates the mean.


• Median: The middle value when all values are sorted. Median shows what a "typical" 
user experience. It’s more stable and resistant to outliers than the mean. If your median 
TTFT is 30 seconds, most users are seeing very slow first responses, which might be 
unacceptable for real-time use cases.


• P99 (99th Percentile): The value below which 99% of requests fall. P99 reveals worst-
case performance for the slowest 1% of requests. This is important when users expect 
consistency, or when your SLAs guarantee fast responses for 99% of cases. If your P99 
TTFT is nearly 100 seconds, it suggests a small but significant portion of users face 
very long waits.



Understanding mean, median, and P99 latency

• Mean helps monitor trends over time. 


• Median reflects the experience of the majority of users. 


• P99 captures tail latency, which can make or break user experience in 
production.



Key metrics for LLM inference
Throughput
Throughput describes how 
much work an LLM can do 
within a given period. High 
throughput is essential 
when serving many users 
simultaneously or 
processing large volumes of 
data.



Key metrics for LLM inference
Throughput
Throughput describes how 
much work an LLM can do 
within a given period. High 
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when serving many users 
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processing large volumes of 
data.



Latency vs. throughput tradeoffs



optimization strategies



Inference optimization
For self-hosting open-source or custom models

• Static, dynamic, and continuous batching


• PagedAttention


• Speculative decoding


• Prefill-decode disaggregation


• Prefix caching


• Prefix-aware routing


• KV cache utilization-aware load balancing


• KV cache offloading


• Data, tensor, pipeline, expert, and hybrid parallelisms


• Offline batch inference



Static, dynamic and continuous batching
Instead of processing each request individually, batching them together allows you to use the same loaded model parameters 
across multiple requests, thus dramatically improving throughput.



Prefill-decode disaggregation



Prefill-decoding interference



Why disaggregation makes sense
The idea of PD disaggregation is simple: separate these two very different tasks so they don’t get in each other’s way.

• Dedicated resource allocation: Prefill and decode can be scheduled and 
scaled independently on different hardware. For example, if your workload has 
lots of prompt overlap (like multi-turn conversations or agentic workflows), it 
means much of your KV cache can be reused. As a result, there’s less compute 
demand on prefill, and you can put more resources on decode. 


• Parallel execution: Prefill and decode phases don’t interfere with each other 
anymore. You can run them more efficiently in parallel, which means better 
concurrency and throughput. 


• Independent tuning: You can implement different optimization techniques (like 
tensor or pipeline parallelism) for prefill and decode to better meet your goals for 
TTFT and ITL.



Runtime System Architecture



Results
Chatbot application with OPT models on the ShareGPT dataset.



Results
Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.



Latency Breakdown
Left: Latency breakdown when serving OPT-175B 
on ShareGPT dataset with DistServe. Right: The CDF function of KV Cache transmission time for three OPT models.



Prefix caching

• Prefix caching (also known as prompt caching or context caching) is one of 
the most effective techniques to reduce latency and cost in LLM inference. 
It's especially useful in production workloads with repeated prompt 
structures, such as chat systems, AI agents, and RAG pipelines.


• The idea is simple: By caching the KV cache of an existing query, a new 
query that shares the same prefix can skip recomputing that part of the 
prompt. Instead, it directly reuses the cached results.



How does prefix caching work?

1. During prefill, the model performs a forward pass over the entire input and 
builds up a key-value (KV) cache for attention computation. 


2. During decode, the model generates output tokens one by one, using the 
cached states from the prefill stage. The attention mechanism computes a 
matrix of token interactions. The resulting KV pairs for each token are stored 
in GPU memory. 


3. For a new request with a matching prefix, you can skip the forward pass for 
the cached part and directly resume from the last token of the prefix.



Example



What is the difference between KV caching and prefix caching?



Prefix-aware routing



KV cache utilization-aware load balancing


