Lecture 5: L -

1 Jamshidi o

mis/

TS

hidi.github.io/

https://pooyanjamshidi.github.io/mls/

What is LLM inference?

 LLM inference refers to using trained LLMs, such as GPT-4, Llama 4, and
DeepSeek-V3, to generate meaningful outputs from user inputs, typically
provided as natural language prompits.

* During inference, the model processes the prompt through its vast set of
parameters to generate responses like text, code snippets, summaries, and
translations.

Real-world examples

 Customer support chatbots: Generating personalized, contextually relevant
replies to customer queries in real-time.

* Writing assistants: Completing sentences, correcting grammar, or
summarizing long documents.

 Developer tools: Converting natural language descriptions into executable
code.

* Al agents: Performing complex, multi-step reasoning and decision-making
processes autonomously.

Why should | care about LLM inference?

* You might think: I'm just using OpenAl’s API. Do | really need to understand
inference?

o Serverless APls like OpenAl, Anthropic, and others make inference look
simple. You send a prompt, get a response, and pay by the token.

 The infrastructure, model optimization, and scaling are all hidden from
View.

* As your application grows, you'll eventually run into limits (e.qg., cost, latency,
customization, or compliance) that serverless APIs can’t fully address. That’s

when teams start exploring hybrid or self-hosted solutions.

Why should | care about LLM inference?

* |f you're a developer: Inference is becoming as fundamental as databases or APIs
IN modern Al application development. Knowing how it works helps you design
faster, cheaper, and more reliable systems. Poor inference implementation can
lead to slow response time, high compute costs, and a poor user experience.

* |f you're a technical leader: Inference efficiency directly affects your bottom line.
A poorly optimized setup can cost 10x more in GPU hours while delivering worse
performance. Understanding inference helps you evaluate vendors, make build-
vs-buy decisions, and set realistic performance goals for your team.

* |f you're just curious about Al: Inference is where the magic happens. Knowing

how it works helps you separate Al hype from reality and makes you a more
informed consumer and contributor to Al discussions.

What is the difference between LLM training and inference?

Training: Building the model’s understanding

* |t is about teaching the model how to recognize patterns and make accurate
predictions. This is done by exposing the model to vast amounts of data and
adjusting its parameters based on the data it encounters.

 Common techniques used in LLM training include;

* Supervised learning: Show the model examples of inputs paired with the correct
outputs.

* Reinforcement learning: Allow the model to learn by trial and error, optimizing
based on feedback or rewards.

» Self-supervised learning: Learn by predicting missing or corrupted parts of the
data, without explicit labels.

What is the difference between LLM training and inference?

Inference: Using the model in real-time

 LLM inference means applying the trained model to new data to make
predictions.

* |Inference compute needs are ongoing and can become very high, especially
as user interactions and traffic grow.

 While each inference step may be smaller than training in isolation, the
cumulative demand over time can lead to significant operational expenses.

How does LLM inference work?

What are tokens and tokenization?

* During inference, an LLM generates text one token at a time, using its internal
attention mechanisms and knowledge of previous context.

* A token is the smallest unit of language that LLMs use to process text.
* |t can be a word, subword, or even a character, depending on the tokenizer.
« Each LLM has its own tokenizer, with different tokenization algorithms.

* Tokenization is the process of converting input text (like a sentence or paragraph)
iInto tokens.

 The tokenized input Is then converted into IDs, which are passed into the model
during inference. BentoML supports custom LLM inference.

Tokens: "B", "ento", "ML", " supports", " custom”, " L", "LM", " inference", "."

Token IDs: [33, 13969, 4123, 17203, 2602, 451, 19641, 91643, 13]

The two phases of LLM inference
prefill

* When a user sends a query, the LLM's tokenizer converts the prompt into a sequence of tokens. The prefill phase
begins after tokenization:

1. These tokens (or token IDs) are embedded as numerical vectors that the LLM can understand.

2. The vectors pass through multiple transformer layers, each containing a self-attention mechanism. Here, query

(Q), key (K), and value (V) vectors are computed for each token. These vectors determine how tokens attend to
each other, capturing contextual meaning.

3. As the model processes the prompt, it builds a KV cache to store the key and value vectors for every token at
every layer. It acts as an internal memory for faster lookups during decoding.

* LLM can process all tokens simultaneously through highly parallelized matrix operations, particularly in the attention
computations.

Decode

L First Output
S n » Tokenization — Prefil —» » Detokenization —» T,k &
© Prompt T0 oken

Time to First Token (TTFT)

The two phases of LLM inference

Decode

» After prefill, the LLM enters the decode stage where it generates new tokens
sequentially, one at a time.

 For each new token, the model samples from a probabillity distribution
generated based on the prompt and all previously generated tokens. This
process Is autoregressive, meaning tokens T, through T, are used to
generate token T,, then T, through T, to generate T,,;, and so on.

T1 T2 T3 T4 T5 T6
BentoML IS a unified inference platform
A

- Used to predict ~

The two phases of LLM inference

Decode

 Each newly generated token is appended to the growing sequence. This
autoregressive loop continues until:

e A maximum token limit is reached,
* A stop word Is generated,

* Or a special end-of-sequence token (e.g., <end>) appears.

T1 T2 T3 T4 T5 T6
BentoML IS a unified inference platform
A

- Used to predict ~

Compute vs Memory in LLM Inference

* The prefill stage is compute-bound and often saturates GPU utilization. The

actual utilization depends on factors like sequence length, batch size, and
hardware specifications.

 Compared with prefill, decode is more memory-bound because it frequently
reads from the growing KV cache. KV caching stores these key and value
matrices in memory so that, during subsequent token generation, the LLM only
needs to compute the keys and values for the new tokens rather than
recomputing everything from scratch.

* This KV caching mechanism significantly speeds up inference by avoiding
redundant computation. However, it comes at the cost of increased memory
consumption, since the cache grows with the length of the generated sequence.

Key performance metrics in LLM inference

Decode
O User At . L First Output
rQ Prompt » Tokenization — Prefill —» —» Detokenization —» Token

Time to First Token (TTFT)

Decode

O User Final Output
ro Promp—bt Tokenization —» Prefil —» };ﬂ__IH —» Detokenization —» Token

Inter Token Latency (ITL)

End-to-End Latency

Note: Detokenization happens after each decode step. Each token (TO, T1, T2) is detokenized and output
sequentially, not just the final one (T3).

Collocating prefill and decode

e Traditional LLM serving systems typically run both the prefill and decode phases on
the same hardware.

« However, this setup introduces several challenges:

 One major issue is the interference between the prefill and decode phases, as they
cannot run fully in parallel.

* |n production, multiple requests can arrive at once, each with its own prefill and
decode stages that overlap across different requests.

 However, only one phase can run at a time. When the GPU is occupied with
compute-heavy prefill tasks, decode tasks must wait, increasing token latency,
and vice versa. This makes it difficult to schedule resources for both phases.

Where is LLM inference run?

 When deploying LLMs into production, choosing the right hardware is crucial.
Different hardware types offer varied levels of performance and cost-efficiency.

 CPUs are widely available and suitable for running small models or serving
infrequent requests. For production-grade LLM inference, especially with larger
models or high request volumes, CPUs often fall short in both latency and
throughput.

* The architecture of GPUs is optimized for matrix multiplication and tensor
operations, which are core components of transformer-based models.

 TPUs are designed from the ground up for tensor operations — the fundamental
math behind neural networks.

Choosing the deployment environment

 Cloud: The cloud is the most popular environment for LLM inference today. It
offers on-demand access to high-performance GPUs and TPUs, along with a
rich ecosystem of managed services, autoscaling, and monitoring tools.

* On-Prem: On-premises deployments means running LLM inference on your
own infrastructure, typically within a private data center. It offers full control over
data, performance, and compliance, but requires more operational overhead.

 Edge: In edge deployments, the model runs directly on user devices or local
edge nodes, closer to where data Is generated. This reduces network latency
and increases data privacy, especially for time-sensitive or offline use cases.
Edge inference usually uses smaller, optimized models due to limited compute
resources.

Serverless vs. Self-hosted LLM inference

Serverless LLM inference

» Serverless inference services, provided by companies like OpenAl, Anthropic, and other
hosted API providers, simplify application development significantly. They manage
everything for you, letting you pay per use with no infrastructure overhead.

 Ease of use: You can get started quickly with minimal setup — just use an API key and
a few lines of code. There is no need to manage hardware, software environments, or

complex scaling logic.

* Rapid prototyping: It is perfect for testing ideas quickly, building demos, or internal
tooling without infrastructure overhead.

 Hardware abstraction: Self-hosting LLMs at scale usually requires high-end GPUs
(such as NVIDIA A100 or H100). Serverless APIs abstract these hardware complexities,

allowing you to avoid GPU shortages, quota limits, and provisioning delays.

Serverless vs. Self-hosted LLM inference

Iltem

Ease of Use

Data Privacy &
Compliance

Customization

Cost at Scale

Hardware

Management

Serverless APls

High (simple API calls)

I Limited

I Limited

. Higher (usage-based, may rise
significantly)

Abstracted away

Self-hosted inference

. Lower (requires LLM deployment and

maintenance)

Full control

Full flexibility

i4 Potentially lower (predictable,
optimized infrastructure)

. Requires GPU setup & maintenance

Choosing the right model

Base models

 Base models, also called foundation models, are the starting point of most
LLMs. They are typically trained on a massive corpus of text data through
unsupervised learning, which does not require labeled data.

* During this Iinitial phase, known as pretraining, the model learns general
language patterns, such as grammar, syntax, semantics, and context. It
becomes capable of predicting the next word (or token) and can perform
simple few-shot learning (handling a task after seeing just a few examples).
However, it does not yet understand how to follow instructions and is not

optimized for specific tasks out of the box.

Choosing the right model

Instruction-tuned models

* |nstruction-tuned models are built on top of base models. After the initial
pretraining phase, these models go through a second training stage using
datasets made up of instructions and their corresponding responses.

e “Summarize this article.”
e “Explain how LLM inference works.”

 “List pros and cons of remote work.”

Choosing the right model

Mixture of Experts models

 Mixture of Experts (MoE) models, such as DeepSeek-V3, take a different
approach from traditional dense models. Instead of using all model
parameters for every input, they contain multiple specialized sub-networks
called experts, each focus on different types of data or tasks.

* During inference, only a subset of these experts Is activated based on the
characteristics of the input. This selection mechanism enables the model to
route computation more selectively —engaging different experts depending on
the content or context. As a result, MoE models achieve greater scalabillity
and efficiency by distributing workload across a large network while keeping
per-inference compute costs manageable.

Choosing the right model

Combining LLMs with other models

 Small Language Models (SLMs). Used for lightweight tasks where latency and resource constraints
matter. They can serve as fallback models or on-device assistants that handle basic interactions without
relying on a full LLM.

* Embedding models. They transform inputs (e.g., text, images) into vector representations, making them
useful for semantic search, RAG pipelines, recommendation systems, and clustering.

* Image generation models. Models like Stable Diffusion generate images from text prompts. When paired
with LLMs, they can support more advanced text-to-image workflows such as creative assistants, content
generators, or multimodal agents.

* Vision language models (VLMs). Models such as NVLM 1.0 and Qwen2.5-VL combine visual and textual
understanding, supporting tasks like image captioning, visual Q&A, or reasoning over screenshots and
diagrams.

* Text-to-speech (TTS) models. They can convert text into natural-sounding speech. When integrated with
LLMSs, they can be used in voice-based agents, accessible interfaces, or immersive experiences.

LLM fine-tuning

* Fine-tuning is one of the most effective ways to adapt an LLM for a specific
use case. It continues the training process on a pre-trained model using new,

task-specific data. This can involve updating the entire model or just
specific layers.

* A key driver behind fine-tuning is efficiency. Instead of training a model from
scratch (which is extremely resource-intensive), it's far easier and more cost-
effective to build on top of a base model that has already learned general
language patterns from massive datasets. Fine-tuning sharpens those broad
capabilities for your particular task.

LLM fine-tuning

Examples

 Domain expertise: Adapting a model for legal, medical, or programming-
related tasks.

* Instruction following: Ensuring the model adheres to specific formats, tones,
or styles in its responses.

» Safety and alignment: Reinforcing how the model handles sensitive or high-
riIsk prompits.

Choosing the right inference framework

Inference frameworks and tools

 vVLLM. A high-performance inference engine optimized for serving LLMSs. It is known for its efficient use
of GPU resources and fast decoding capabilities.

 SGLang. A fast serving framework for LLMs and vision language models. It makes your interaction with
models faster and more controllable by co-designing the backend runtime and frontend language.

 LMDeploy. An inference backend focusing on delivering high decoding speed and efficient handling of
concurrent requests. It supports various quantization techniques, making it suitable for deploying large
models with reduced memory requirements.

 TensorRT-LLM. An inference backend that leverages NVIDIA's TensorRT, a high-performance deep
learning inference library. It is optimized for running large models on NVIDIA GPUs, providing fast
inference and support for advanced optimizations like quantization.

* Hugging Face TGI. A toolkit for deploying and serving LLMs. It is used in production at Hugging Face
to power Hugging Chat, the Inference API and Inference Endpoint.

Choosing the right inference framework

Edge inference frameworks

* llama.cpp. A lightweight inference runtime for LLMs, implemented in plain C/C++ with no external
dependencies. Its primary goal is to make LLM inference fast, portable, and easy to run across a wide
range of hardware. Despite the name, llama.cpp supports far more than just Llama models. It supports
many popular architectures like Qwen, DeepSeek, and Mistral. The tool is ideal in low-latency inference
and performs well on consumer-grade GPUSs.

* MLC-LLM. An ML compiler and high-performance deployment engine for LLMs. It is built on top of
Apache TVM and requires compilation and weight conversion before serving models. MLC-LLM can be
used for a wide range of hardware platforms, supporting AMD, NVIDIA, Apple, and Intel GPUs across
Linux, Windows, macQOS, 10S, Android, and web browsers.

* Ollama. A user-friendly local inference tool built on top of llama.cpp. It’s designed for simplicity and
ease of use, ideal for running models on your laptop with minimal setup. However, Ollama is mainly
used for single-request use cases. Unlike runtimes like vLLM or SGLang, it doesn’t support concurrent
requests. This difference matters since many inference optimizations, such as paged attention, prefix
caching, and dynamic batching, are only effective when handling multiple requests in parallel.

TOOI integ ratiOn Here is a specific example:

FunCtiOn Ca"ing e You ask: "What's the current price of Apple stock?"

 LLM thinks: "l need current stock data, so I'll use my stock price function"

e LLM calls: get_stock_price("AAPL")
e Function returns: "$195.25"

e LLM responds: "The current price of Apple stock is $195.25"

/. Weather AP|

9, User Query«<—s &3 LLM |« Function Call <—> Stock AP|

N

Flight AP

MCP Host

(O MCP Client §& MCP » &S MCP Server -« > & Database

Tool integration

Model Context Protocol

3 MCP Client §& MCP » 3 MCP Server

() Filesystem

3 MCP Client & MCP » B3 MCP Server « » O Cloud Service

* MCP host: This is where the Al assistant lives. It could be a chat application like
Claude Desktop, an IDE code assistant, or any other Al-powered application. The host
can contain one or multiple MCP clients.

» MCP clients: A client is the low-level implementation inside the host that maintains
one-to-one links with MCP servers.

* MCP servers: The connectors that expose different capabilities and data sources.
Each server can connect to various backends like databases, third-party APIls, GitHub
repositories, local files, or any other data source. Multiple servers can be running
simultaneously on your local machine or connected to remotes services.

« MCP protocol: This is the transport layer that enables communication between the
host and servers, regardless of how many servers are connected.

Tool integration

Model Context Protocol

MCP Host

(J MCP Client E MCP » &S MCP Server < » & Database
(J MCP Client § MCP » B3 MCP Server « » [D Filesystem
(J MCP Client £ MCP » B8 MCP Server <« » O Cloud Service

Example

1. The MCP host makes a request through the MCP protocol
2. The appropriate MCP server receives the request

3. The server connects to the actual data source (database, API, file system,
etc.)

4. The server processes the request and returns the data back through the
protocol

5. The Al assistant receives the information and can use it in its response

5

What is LLM inference infrastructure?

LM inference infrastructure encompasses the systems and workflows needed to run LLM
inference reliably and cost-effectively in production. It includes everything from hardware
provisioning to software coordination and operational monitoring.

 Hardware provisioning: Access to high-performance compute resources like GPUs and TPUs.

* Orchestration: Tools that manage resource allocation, scale workloads dynamically, and
manage model versions across multiple environments.

* Observability systems: Logging, monitoring, and tracing tools that offer insight into
performance metrics such as GPU utilization, latency, throughput, and failure rates.

* Operational procedures: Standardized workflows and automation that enable teams to deploy
updates, enforce access control, handle failures, and ensure high availability. As inference
demand scales, having repeatable, efficient operations becomes critical to managing growing
workloads.

Challenges in building infrastructure for LLM inference
Fast scaling

 That demand is often bursty, hard to predict, and unforgiving of latency or
downtime.

* This means the system needs to scale up quickly during traffic spikes and
scale down to zero when idle to save costs.

* Over-provisioning: Wasted GPU capacity, high idle costs.

* Under-provisioning: Dropped requests, latency spikes, and poor user
experience.

* Inflexible budgets: Rigid spending that doesn't adapt to real usage
patterns.

The cold start problem

* |n the context of deploying LLMs in containers, a cold start occurs when a
Kubernetes node has never previously run a given deployment.

* As a result, the container image is not cached locally, and all image layers
must be pulled and initialized from scratch.

The cold start problem

Cold Start

Cloud Provision Container Image Pulling Model Loading

* Cloud provisioning: This step involves the time it takes for the cloud provider to
allocate a new instance and attach it to the Kubernetes cluster. Depending on the
instance type and availability, this can take anywhere from 30 seconds to several
minutes, or even hours for high-demand GPUs like Nvidia A100 and H100.

* Container image pulling: LLM images are significantly larger and more complex
than typical Python job images, due to numerous dependencies and custom
libraries. Despite claims of multi-gigabit bandwidth by cloud providers, actual
Image download speeds are often much slower. As a result, pulling images can
take three to five minutes.

 Model loading. The time required to load the model depends heavily on its size.
LLMs introduce significant delays due to their billions of parameters.

Key bottlenecks in model loading

 Slow downloads from model hubs: Platforms like Hugging Face are not

optimized for high-throughput, multi-part downloads, making the retrieval of
large model files time-consuming.

 Sequential data flow: Model files are transferred through multiple hops:
remote storage — local disk & memory — GPU. This is minimal or no
parallelization between them. Each step adds latency, particularly for large
files that are difficult to cache or stream.

 Lack of on-demand streaming: Model files must be fully downloaded and
written to disk before inference can begin. This introduces additional 1/0O
operations and delays startup.

Write to Disk Load to CPU Memory Load to GPU Memory

Remote

Storage
° Remote Storage — Local Disk —> Main Memory —> GPU Memory

Cluster Streamed Loading with Safetensors

HEE »]
ain Memory

Remote Storage - GPU Memory

v

Disk Cache

Key metrics for LLM inference

Latency

* Time to First Token (TTFT): The time it takes to generate the first token after sending a
request. It reflects how fast the model can start responding.

 Time per Output Token (TPOT): Also known as Inter-Token Latency (ITL), TPOT measures the
time between generating each subsequent token. A lower TPOT means the model can
produce tokens faster, leading to higher tokens per second. In streaming scenarios where
users see text appear word-by-word (like ChatGPT's interface), TPOT determines how
smooth the experience feels. The system should ideally keep up with or exceed human
reading speed to ensure a smooth experience.

* Token Generation Time: The time between receiving the first and the final token. This
measures how long it takes the model to stream out the full response.

* Total Latency (E2EL): The time from sending the request to receiving the final token on the
user end.

Total Latency = TTFT + Token Generation Time

Decode

o First Output
O User » Tokenization —» Prefill —» . —» Detokenization —» Tokenp
TO

QP Prompt

Time to First Token (TTFT)

Decode

Ueor Final Output
r0<7 Prompt » Tokenization —» Prefil —» &m » Detokenization - Tokenp

Inter Token Latency (ITL)

End-to-End Latency

Note: Detokenization happens after each decode step. Each token (T0, T1, T2) is detokenized and output
sequentially, not just the final one (T3).

Understanding mean, median, and P99 latency

* Mean (Average): This is the sum of all values divided by the number of values. Mean
gives a general sense of average performance, but it can be skewed by extreme values
(outliers). For example, if the TTFT of one request is unusually slow, it inflates the mean.

* Median: The middle value when all values are sorted. Median shows what a "typical”
user experience. It’'s more stable and resistant to outliers than the mean. If your median
TTFT is 30 seconds, most users are seeing very slow first responses, which might be
unacceptable for real-time use cases.

P99 (99th Percentile): The value below which 99% of requests fall. P99 reveals worst-
case performance for the slowest 1% of requests. This Iis important when users expect
consistency, or when your SLAs guarantee fast responses for 99% of cases. If your P99
TTFT is nearly 100 seconds, it suggests a small but significant portion of users face

very long waits.

Understanding mean, median, and P99 latency

 Mean helps monitor trends over time.
 Median reflects the experience of the majority of users.

P99 captures tall latency, which can make or break user experience in
production.

Key metrics for LLM inference

Throughput

Throughput describes how
much work an LLM can do
within a given period. High
throughput is essential
when serving many users
simultaneously or
processing large volumes of
data.

» Requests per Second (RPS): This metric captures how many requests the LLM can successfully

complete in one second. It's calculated as:

Requests per second = Total completed requests / (T1 — T2)

(1) NOTE

Here, T1and T2 mark the time window in seconds.

RPS gives a general sense of how well the LLM handles concurrent requests. However, this metric
alone doesn't capture the complexity or size of each request. For example, generating a short greeting
like “Hi there!” is far less demanding than writing a long essay.

Factors that impact RPS:

c Prompt complexity and length
c Model size and hardware specifications
c Optimizations (e.g., batching, caching, inference engines)

¢ Latency per request

Key metrics for LLM inference

Throughput

Throughput describes how
much work an LLM can do
within a given period. High
throughput is essential
when serving many users
simultaneously or
processing large volumes of
data.

» Tokens per Second (TPS): This metric provides a finer-grained view of throughput by measuring how

many tokens are processed every second across all active requests. [t comes in two forms:

o Input TPS: How many input tokens the model processes per second.

o Qutput TPS: How many output tokens the model generates per second.

Understanding both metrics helps you identify performance bottlenecks based on the nature of your
inference workload. For example:

o A summarization request that includes long documents (e.g., 2,000-token inputs) cares more about
input TPS.

o A chatbot that generates long replies from short prompts (e.g., 20-token prompt - 500-token
response) depends heavily on output TPS.

When reviewing benchmarks or evaluating LLM performance, always check whether TPS metrics
refer to input, output, or a combined view. They highlight different strengths and limitations
depending on the use case.

Factors that impact TPS:

o Batch size (larger batches can increase TPS until saturation)
o KV cache efficiency and memory usage
o Prompt length and generation length

o GPU memory bandwidth and compute utilization

Latency vs. throughput tradeoffs

Goal

Maximize
throughput
(TPS/MW)

Minimize latency
(TPS per user)

Balance of both

Implication

Focus on serving as many tokens per watt as possible. This usually means using
larger batch sizes and shared compute resources. However, it can slow down

responses for individual users.

Focus on giving each user a fast response (low TTFT). This often involves small
batches and isolated compute resources, but it means you'll use GPUs less

efficiently.

Some systems aim for a dynamic balance. They tune resource usage in real time
based on warkload, user priority, and app requirements. This is ideal for serving

diverse applications with different SLOs.

Inference optimization

For self-hosting open-source or custom models

e Static, dynamic, and continuous batching

» PagedAttention

* Speculative decoding

* Prefill-decode disaggregation

* Prefix caching

* Prefix-aware routing

* KV cache utilization-aware load balancing

» KV cache offloading

* Data, tensor, pipeline, expert, and hybrid parallelisms

e Offline batch inference

Static, dynamic and continuous batching

Instead of processing each request individually, batching them together allows you to use the same loaded model parameters
across multiple requests, thus dramatically improving throughput.

Static batching

The simplest form of batching is static batching. Here, the server waits until a fixed number of requests
arrive and then processes them together as a single batch.

Static Batching

OB O B R4 Vi
} =

Time

Sy 15§

Generating seven sequences with continuous batching. On the first iteration (left), each

.

seguence generates a token (blue) from its prompt (yellow). Over time (right), sequences

Dynamic Batchin - . .
y J complete at different iterations by emitting an end-of-sequence token (red), at which point new

seguences are inserted. Image source
DO END Ri_ o
} =

|

Time

Prefill-decode disaggregation

» Prefill: Processes the entire sequence in parallel and store key and value vectors from the attention layers
In a KV cache. Because it's handling all the tokens at once, prefill is compute-bound, but not too
demanding on GPU memory.

e Decode: Generates the output tokens, one at a time, by reusing the KV cache built earlier. Different from
prefill, decode requires fast memory access but lower compute.

Decode

User — : Final Output
roo Prompt—’ e " — mm ——» Detokenizaton —» Toker\p

Inter Token Latency (ITL)

End-to-End Latency

Note: Detokenization happens after each decode step. Each token (TO, T1, T2) is detokenized and output
seqguentially, not just the final one (T3).

Prefill-decoding interference

30
—e— decoding-with-one-prefill e
25 decoding-only 195
g 20 g’ 100 prefill slowdown
= >
o 1o W A /z 0 75 \
b b
© 10+ V\ prefill slowdown 9 s0- decoding slowdown
51 decoding slowdown 25 - I}
0 50 100 150 200 250 0 25 50 75 100 125
Batch Size Batch Size

(a) Input length = 128 (b) Input length = 1024

Why disaggregation makes sense

The idea of PD disaggregation is simple: separate these two very different tasks so they don’t get in each other’s way.

 Dedicated resource allocation: Prefill and decode can be scheduled and
scaled independently on different hardware. For example, if your workload has
lots of prompt overlap (like multi-turn conversations or agentic workflows), it
means much of your KV cache can be reused. As a result, there’s less compute
demand on prefill, and you can put more resources on decode.

 Parallel execution: Prefill and decode phases don’t interfere with each other
anymore. You can run them more efficiently in parallel, which means better

concurrency and throughput.

* Independent tuning: You can implement different optimization techniques (like
tensor or pipeline parallelism) for prefill and decode to better meet your goals for

TTFT and ITL.

Runtime System Architecture

Requests

» Controller

=11

Prefill Instance Decoding Instance
LLM Model LLM Model
KV Cache
GPU | | GPU Transfer cpu | | GPU
GPU GPU > GPU GPU
Parallel Runtime Parallel Runtime

Results

Chatbot application with OPT models on the ShareGPT dataset.

—+— VLLM

—+— DeepSpeed-Ml|

DistServe

_

0.05 0.10 0.15 0.20 0.25

1.00

0.75

0.50

0.25

(%) Iuswiulieny O1S

Per-GPU Rate (req/s) Per-GPU Rate (reqg/s)

Per-GPU Rate (reqg/s)

LN
-
()
)
O
—
LN
-
—
.L
_ o
¢ - L0
H“ —
1
o o -
o LN
—
©
—
N
—
O
N
N
_ o
“
|
" O
-
) . oN
o o)
o LN
—
H
................ "
| L~
" O
.
|
" -
m S
_ —
? , A
) SV S e
! .2
9] : i
"
I
_ O
" N
" —
|
o o (-]
O LO)
—

(%) JuswiuIerllY O1S

SLO Scale
(C) OPT-175B

SLO Scale

(b) OPT-66B

SLO Scale

(a) OPT-13B

Results

Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.

R —e— DistServe —+— DeepSpeed-MIl —+— VvLLM
X
— 100+ 100+ 100+ 100 ¢——+—+—
c =TT [T Bl N i B e e N
Q o ForN I | 1 TN
3 R BN a ;
= 50 o 50- R 50- 5 : 501
O] | : L } 1 : : [:
L_,j) O 1 . 1 — : ' O . 11] 1 = O ! i 1 : 1 . 0 i '
05 1.0 1.5 2.0 1.5 1.0 0.5 0.2 0.4 0.6 10 8 6 4 2
Per-GPU Rate (req/s) SLO Scale Per-GPU Rate (req/s) SLO Scale

(a) Code Completion (b) Summarization

Latency Breakdown

Left: Latency breakdown when serving OPT-175B
on ShareGPT dataset with DistServe. Right: The CDF function of KV Cache transmission time for three OPT models.

Prefill Queuing Decoding Queuing
mam Prefill Execution W@ Decoding Execution
Bl Transmission

;\3100 10'

c 0.8-

; 75_

5 0.6-

AV u V.

0 50- I I 0

@ 0.4- —— OPT-13B
c 25 . 09- —— OPT-66B
C .

& —— OPT-175B
O

-0 0.0

0.03 0.09 0.16 022 0.28 0.0 0.1 0.2
Per-GPU Rate (req/s) Transmission Time (s)

Prefix caching

* Prefix caching (also known as prompt caching or context caching) is one of
the most effective technigues to reduce latency and cost in LLM inference.
It's especially useful in production workloads with repeated prompt
structures, such as chat systems, Al agents, and RAG pipelines.

* The idea Is simple: By caching the KV cache of an existing query, a new
query that shares the same prefix can skip recomputing that part of the
prompt. Instead, it directly reuses the cached results.

How does prefix caching work?

1. During prefill, the model performs a forward pass over the entire input and
builds up a key-value (KV) cache for attention computation.

2. During decode, the model generates output tokens one by one, using the
cached states from the prefill stage. The attention mechanism computes a
matrix of token interactions. The resulting KV pairs for each token are stored
in GPU memory.

3. For a new request with a matching prefix, you can skip the forward pass for
the cached part and directly resume from the last token of the prefix.

Example

For example, consider a chatbot with this system prompt:

You are a helpful AI writer. Please write in a professional manner.

This prompt doesn’t change from one conversation to the next. Instead of recalculating it every time, you
store its KV cache once. Then, when new messages come in, you reuse this stored prefix cache, only
processing the new part of the prompt.

What is the difference between KV caching and prefix caching?

KV caching is used to store the intermediate attention states of each token in GPU memory. It was
originally used to describe caching within a single inference request, especially critical for speeding up
the decoding stage.

LLMs work autoregressively during decode as they output the next new token based on the previously
generated tokens (i.e. reusing their KV cache). Without the KV cache, the model needs to recompute
everything for the previous tokens in each decode step (and the context grows with every step), which
would be a huge waste of resources.

When extending this caching concept across multiple requests, it's more accurate to call it prefix caching.
Since the computation of the KV cache only depends on all previous tokens, different requests with
identical prefixes can reuse the same cache of the prefix tokens and avoid recomputing them.

Prefix-aware routing

O O O
Fo Request A o Request B e Request C
{"You are a helpful Al writer... {"You are a helpful Al writer... {"You are a coding assistant...
Help me write an email"} Create a report outline"} Debug this Python project"}

: -J
|

Prefix Cache
Aware Raouter

| | |

CJ worker 1 CJ Worker 2 CJ worker 3

Cached prefixes: Cached prefixes: Cached prefixes:
v "You are a helpful Al writer..." ¥ "You are a helpful Al writer..." v "You are a coding assistant..."
¥ "You are a customer service..." v "You are a data analyst..." v "You are a math tutor..."

KV cache: 70% KV cache: 40% KV cache: 30%

Can reuse "Al writer" prefix Can reuse "Al writer" prefix Can reuse "coding assistant" prefix

KV cache utilization-aware load balancing

O User
rQ Prompt

v

KV Cache Utilization Aware
Load Balancer

; . |

] Worker 1 L] Worker 2] Worker 3

KV cache: 25%

KV cache: 95% KV cache: 60%

Queue: 3 requests

Queue: 0 request

Queue: 8 requests

Overloaded X Moderate load & Idle

