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Case Study 1
LLM Systems



State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models
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State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models

Google’s AlphaCode 2 set state-
of-the-art results in programming 
through a carefully engineered 
system that uses LLMs to 
generate up to 1 million possible 
solutions for a task and then 
filter down the set.
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State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models

AlphaGeometry combines an LLM 
with a traditional symbolic solver 
to tackle Olympiad problems.
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State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models

~60% of LLM 
applications use 
some form of 
retrieval-
augmented 
generation (RAG)
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State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models

…and 30% use multi-step chains.
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State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models

Github Copilot uses carefully 
tuned smaller models and 
various search heuristics to 
provide results.
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State-of-the-art AI results are increasingly obtained by systems 
composed of multiple components, not just monolithic models

Google’s Gemini launch post 
measured its MMLU (Massive Multitask 
Language Understanding) benchmark 
results using a new CoT@32 inference 
strategy that calls the model 32 times.
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The paradigm shift from monolithic to modular-
composed machine learning systems

• Modular-composed ML Systems are a class of modern 
computer systems that tackle AI/ML tasks using: 


• Multiple interacting and interdependent 
components,


• including multiple calls to models, search & retrieval 
algorithms, and external tools. 


• In contrast, Monolithic ML Systems are simply 
traditional ML Systems that call a statistical model at 
the backend. 


• e.g., a Transformer that predicts the next token in 
text.
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This paradigm shift to modular-composed ML systems 
opens up new opportunities for computer systems research

• Design space exploration


• With an SLA of 100 milliseconds for RAG, should 
we budget to spend 20 ms on the retriever and 
80 on the LLM, or the other way around?


• Performance tradeoff and optimization


• Modular-composed systems contain non-
differentiable components. 


• Performance optimization for pipelines of 
pretrained LLMs and other components.

11

LLM

LLM

LLM

LLM



This paradigm shift to modular-composed ML systems 
opens up new opportunities for computer systems research

• This shift to modular-composed systems opens 
many interesting systems questions.


• It is also exciting because it means leading AI 
results can be achieved through clever systems 
ideas, not just scaling up training.
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Case Study 2
SocialSensor



SocialSensor
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Content AnalysisOrchestrator
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Tweets: [5k-20k/min] 

Every 10 min: 
[100k tweets] 

Tweets: [10M] 
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Challenges
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How can we gain a better performance without 
using more resources?
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Let’s try out different system configurations!



Opportunity: Data processing engines in the 
pipeline were all configurable
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More configurations than estimated 
atoms in the universe



Case Study 3
Robotics



CoBot experiment: DARPA BRASS 
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CoBot 
experiment
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Abstract—Modern software systems are built to be used in

dynamic environments using configuration capabilities to adapt to

changes and external uncertainties. In a self-adaptation context,

we are often interested in reasoning about the performance of

the systems under different configurations. Usually, we learn

a black-box model based on real measurements to predict

the performance of the system given a specific configuration.

However, as modern systems become more complex, there are

many configuration parameters that may interact and we end up

learning an exponentially large configuration space. Naturally,

this does not scale when relying on real measurements in the

actual changing environment. We propose a different solution:

Instead of taking the measurements from the real system, we

learn the model using samples from other sources, such as

simulators that approximate performance of the real system at

low cost. We define a cost model that transform the traditional

view of model learning into a multi-objective problem that not

only takes into account model accuracy but also measurements

effort as well. We evaluate our cost-aware transfer learning

solution using real-world configurable software including (i) a

robotic system, (ii) 3 different stream processing applications,

and (iii) a NoSQL database system. The experimental results

demonstrate that our approach can achieve (a) a high prediction

accuracy, as well as (b) a high model reliability.

Index Terms—highly configurable software, machine learning,

model learning, model prediction, transfer learning

I. INTRODUCTION

Most software systems today are configurable, which gives
end users, developers, and administrators the chance to cus-
tomize the system to achieve a different functionality or
tune its performance. In such systems, hundreds or even
thousands of configuration parameters can be tweaked, making
the system highly configurable [35]. The exponentially grow-
ing configuration space, complex interactions, and unknown
constraints among configuration options make it difficult to
understand the performance of the system. As a consequence,
many users rely on default configurations or they change only
individual options in an ad-hoc way.

In this work, we deal with the type of configurable systems
that operate in dynamic and uncertain environments (e.g.,
robotic systems). Therefore, it is desirable to react to environ-
mental changes by tuning the configuration of the system when
we anticipate that the performance will drop to an undesirable
level. To do so, we use black-box performance models that
describe how configuration options and their interactions influ-
ence the performance of a system (e.g., execution time). Black-
box performance models are meant to ease understanding,
debugging, and optimization of configurable systems [35]. For
example, a reasoning algorithm may use the learned model in

Predictive Model

Learn Model with 
Transfer Learning

Measure Measure

Data
Source
Target

Simulator (Source) Robot (Target)

Adaptation

Fig. 1: Transfer learning for performance model learning.

order to identify the best performing configuration for a robot
when it goes from indoor to an outdoor environment.

Typically, we learn a performance model for a given con-
figurable system by measuring from a set of configurations
selected by some sampling strategy. That is, we measure the
performance of a given system multiple times in different
configurations and learn how the configuration options and
their interactions affect performance. However, such a way
of learning from real systems, whether it is a robot or a
software application, is a difficult task for several reasons:
(i) environmental changes (e.g., people wandering around
robots), (ii) high costs or risks of failure (e.g., a crashed robot),
(iii) the large amount of time required for measurements (e.g.,
we have to repeat the measurements several times to get a
reliable value), and (iv) changing system dynamics (e.g., robot
motion). Moreover, it is often not possible to create potentially
important scenarios in the real environment.

In this paper, as depicted in Figure 1, we propose a different
solution: instead of taking the measurements from the real
system, we reuse prior information (that we can get from
other sources at a lower cost) in order to learn a performance
model for the real system faster and cheaper. The concept
of reusing information from other sources is the idea behind
transfer learning [37], [31]. Similar to human beings that can
learn from previous experience and transfer the learning to
accomplish new tasks easier, quicker, and in a better way, in
this work, we use other sources to provide cheaper samples
for accelerating model learning. Instead of taking the mea-
surements from the real system (we refer to as the target), we
measure the system performance using a proxy of the system
(we refer to as the source, e.g., a simulator). We then use
a regression model that automatically learns the relationship
between source and target to learn an accurate and reliable
performance model using only a few samples taken from the
real system, leading to much lower cost and faster learning

Details: [SEAMS ’17]



Looking further: When transfer learning goes 
wrong
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Fig. 6: Prediction accuracy of the model learned with samples
from different sources of different relatedness to the target.
GP is the model without transfer learning.

the incoming stream and it is essentially a CPU intensive
application. RollingSort is a memory intensive system that
performs rolling counts of incoming messages for identifying
trending topics. SOL is a network intensive system, where
the incoming messages will be routed through an multi-
layer network. These are standard benchmarks that are widely
used in the community, e.g., research papers [14] as well as
industry benchmarks [18]. For more details about the internal
architecture of these systems, we refer to the appendix [1].

The notion of source and target set depends on the subject
system. In CoBot, we again simulate the same navigation mis-
sion in the default environment (source) and in a more difficult
noisy environment (target). For the three stream processing
applications, source and target represent different workloads,
such that we transfer measurements from one workload for
learning a model for another workload. More specifically, we
control the workload using the maximum number of messages
which we allow to enter the stream processing architecture. For
the NoSQL application, we analyze two different transfers:
First, we use as source a query on a database with 10 million
records and as target the same query on a database with 20
million records, representing a more expensive environment to
sample from. Second, we use as source a query on 20 million
records on one cluster and as target a query on the same dataset
run on a different cluster, representing hardware changes.
Overall, our subjects cover different kinds of applications
and different kinds of transfer scenarios (changes in the
environment, changes in the workload, changes in the dataset,
and changes in the hardware).

Experimental setup: As independent variables, we sys-
tematically vary the size of the learning sets from both source
and target environment in each subject system. We sample
between 0 and 100 % of all configurations in the source
environment and between 1 and 10 % of all configurations
in the target environment.

As dependent variable, we measure learning time and

TABLE I: Overview of our experimental datasets. “Size”
column indicates the the number of measurements in the
datasets and “Testbed” refer to the infrastructure where the
measurements are taken and their details are in the appendix.

Dataset Parameters Size Testbed

1 CoBot(4D)

1-odom miscalibration,

2-odom noise,

3-num particles,

4-num refinement

56585 C9

2 wc(6D)

1-spouts, 2-max spout,

3-spout wait, 4-splitters,

5-counters, 6-netty min wait

2880 C1

3 sol(6D)

1-spouts, 2-max spout,

3-top level, 4-netty min wait,

5-message size, 6-bolts

2866 C2

4 rs(6D)

1-spouts, 2-max spout,

3-sorters, 4-emit freq,

5-chunk size, 6-message size

3840 C3

5

6

cass-10

cass-20

1-trickle fsync, 2-auto snapshot,

3-con. reads, 4-con. writes

5-file cache size in mb

6-con. compactors

1024 C6x,C6y

prediction accuracy of the learned model. For each subject
system, we measure a large number of random configurations
as the evaluation set, independently from configurations sam-
pled for learning, and compare the predictions of the learned
model f̂ to the actual measurements of the configurations in
the evaluation set Do. We compute the absolute percentage
error (APE) for each configuration x in the evaluation set
|f̂(x)�f(x)|

f(x) ⇥ 100 and report the average to characterize
accuracy of the prediction model. Ideally, we would use the
whole configuration space as evaluation set (Do = X), but the
measurement effort would be prohibitively high for most real-
world systems [20], [31]; hence we use large random samples
(cf. size column in Table I).

The measured and predicted metric depends on the subject
system: For the CoBot system, we measure average CPU usage
during the same mission of navigating along a corridor as in
our case study; we use the average of three simulation runs
for each configuration. For the stream processing and NoSQL
experiments, we measure average response time (latency) over
a window of 8 and 10 minutes respectively. Also, after each
sample collection, the experimental testbed was cleaned which
required several minutes for the Storm measurements and
around 1 hour (for offloading and cleaning the database) for
the Cassandra measurements. We sample the given number of
configurations in source and target randomly and report aver-
age results and standard deviations of accuracy and learning
time over 3 repetitions.

Results: We show results of our experiments in Figure 7.
The 2D plot shows average errors across all subject systems.
The results in which the set of source samples Ds is empty rep-
resents the baseline case without transfer learning. In Figure 8,
we additionally show a specific slice through our accuracy
results, in which we only vary the number of samples from the
source (and only for 4 subject systems to produce a reasonably
clear plot), but keep the number of samples from the target at
a constant 1 %. Although the results differ significantly among
subject systems (not surprising, given different relatedness of
source and target) the overall trends are consistent.

First, our results show that transfer learning can achieve
high prediction accuracy with only few samples from the target

It worked! It didn’t!

Insight: Predictions become 
more accurate when the source 
is more related to the target.

Non-transfer-learning
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Key question: Can we develop a theory to explain 
when transfer learning works?
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II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that
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configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that
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performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
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one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that
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Abstract—Modern software systems provide many configura-
tion options which significantly influence their non-functional
properties. To understand and predict the effect of configuration
options, several sampling and learning strategies have been
proposed, albeit often with significant cost to cover the highly
dimensional configuration space. Recently, transfer learning has
been applied to reduce the effort of constructing performance
models by transferring knowledge about performance behavior
across environments. While this line of research is promising to
learn more accurate models at a lower cost, it is unclear why
and when transfer learning works for performance modeling. To
shed light on when it is beneficial to apply transfer learning, we
conducted an empirical study on four popular software systems,
varying software configurations and environmental conditions,
such as hardware, workload, and software versions, to identify
the key knowledge pieces that can be exploited for transfer
learning. Our results show that in small environmental changes
(e.g., homogeneous workload change), by applying a linear
transformation to the performance model, we can understand
the performance behavior of the target environment, while for
severe environmental changes (e.g., drastic workload change) we
can transfer only knowledge that makes sampling more efficient,
e.g., by reducing the dimensionality of the configuration space.

Index Terms—Performance analysis, transfer learning.

I. INTRODUCTION

Highly configurable software systems, such as mobile apps,
compilers, and big data engines, are increasingly exposed to
end users and developers on a daily basis for varying use cases.
Users are interested not only in the fastest configuration but
also in whether the fastest configuration for their applications
also remains the fastest when the environmental situation has
been changed. For instance, a mobile developer might be
interested to know if the software that she has configured
to consume minimal energy on a testing platform will also
remain energy efficient on the users’ mobile platform; or, in
general, whether the configuration will remain optimal when
the software is used in a different environment (e.g., with a
different workload, on different hardware).

Performance models have been extensively used to learn
and describe the performance behavior of configurable sys-
tems [15], [19], [21], [23], [33], [43]–[45], [54], [61], [63].
However, the exponentially growing configuration space, com-
plex interactions, and unknown constraints among configura-
tion options [56] often make it costly and difficult to learn
an accurate and reliable performance model. Even worse,
existing techniques usually consider only a fixed environment
(e.g., fixed workload, fixed hardware, fixed versions of the
dependent libraries); should that environment change, a new
performance model may need to be learned from scratch.
This strong assumption limits the reusability of performance
models across environments. Reusing performance models or

Fig. 1: Transfer learning is a form of machine learning that takes
advantage of transferable knowledge from source to learn an accurate,
reliable, and less costly model for the target environment.

their byproducts across environments is demanded by many
application scenarios, here we mention two common scenarios:
• Scenario 1: Hardware change: The developers of a soft-

ware system performed a performance benchmarking of the
system in its staging environment and built a performance
model. The model may not be able to provide accurate
predictions for the performance of the system in the actual
production environment though (e.g., due to the instability
of measurements in its staging environment [6], [30], [38]).

• Scenario 2: Workload change: The developers of a database
system built a performance model using a read-heavy
workload, however, the model may not be able to provide
accurate predictions once the workload changes to a write-
heavy one. The reason is that if the workload changes,
different functions of the software might get activated (more
often) and so the non-functional behavior changes, too.
In such scenarios, not every user wants to repeat the costly

process of building a new performance model to find a
suitable configuration for the new environment. Recently, the
use of transfer learning (cf. Figure 1) has been suggested
to decrease the cost of learning by transferring knowledge
about performance behavior across environments [7], [25],
[51]. Similar to humans that learn from previous experience
and transfer the learning to accomplish new tasks easier,
here, knowledge about performance behavior gained in one
environment can be reused effectively to learn models for
the changed environments with a lower cost. Despite its
success, it is unclear why and when transfer learning works
for performance analysis in highly configurable systems.

Details: [ASE ’17]



Details: [AAAI Spring Symposium ’19]
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ABSTRACT
Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental
reason is the ever-increasing complexity of configuration, reflected
by the large number of configuration parameters (“knobs”). With
hundreds of knobs, configuring system software to ensure high re-
liability and performance becomes a daunting, error-prone task.

This paper makes a first step in understanding a fundamental
question of configuration design: “do users really need so many
knobs?” To provide the quantitatively answer, we study the con-
figuration settings of real-world users, including thousands of cus-
tomers of a commercial storage system (Storage-A), and hundreds
of users of two widely-used open-source system software projects.
Our study reveals a series of interesting findings to motivate soft-
ware architects and developers to be more cautious and disciplined
in configuration design. Motivated by these findings, we provide
a few concrete, practical guidelines which can significantly reduce
the configuration space. Take Storage-A as an example, the guide-
lines can remove 51.9% of its parameters and simplify 19.7% of
the remaining ones with little impact on existing users. Also, we
study the existing configuration navigation methods in the context
of “too many knobs” to understand their effectiveness in dealing
with the over-designed configuration, and to provide practices for
building navigation support in system software.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Methodologies

General Terms: Design, Human Factors, Reliability

Keywords: Configuration, Complexity, Simplification, Navigation,
Parameter, Difficulty, Error

1. INTRODUCTION

1.1 Motivation
In recent years, configuration problems have drawn tremendous

attention for their increasing prevalence and severity. For example,
Yin et al. reported that configuration issues accounted for 27% of
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Figure 1: The increasing number of configuration parameters with
software evolution. Storage-A is a commercial storage system from a ma-
jor storage company in the U.S.

all the customer-support cases in a major storage company in the
U.S., and were the most significant contributor (31%) among all
the high-severity cases [74]. Rabkin and Katz reported that config-
uration issues were the dominant source of support cost in Hadoop
clusters (based on data from Cloudera Inc.), in terms of both the
number of support cases and the amount of supporting time [46].

Moreover, configuration errors, the after-effects of configuration
difficulties, have become one of the major causes of system fail-
ures. Barroso and Hölzle reported that configuration errors were the
second major cause of service-level disruptions at one of Google’s
main services [16]. Recently, a number of outages of Internet and
cloud services, including Google, LinkedIn, Microsoft Azure, and
Amazon EC2, were caused by configuration errors [35, 59, 63, 68].

One fundamental reason for today’s prevalent configuration is-
sues is the ever-increasing complexity of configuration, especially
in system software. This is reflected by the large and still increasing
number of configuration parameters (“knobs”), as well as various
configuration constraints and consistency requirements [32, 39, 45,
72] (known as complexity of interaction and tightness of coupling
in human error studies [41,48]). For example, MySQL 5.6 database
server has 461 configuration parameters; 216 of them are not with
simple data types (e.g., Boolean or enumerative) but rather more
complex ones. These parameters control different buffer sizes, time-
outs, resource limits, etc. Setting them correctly requires domain-

[Tianyin Xu, et al., “Too Many Knobs…”, FSE’15]
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ABSTRACT
Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental
reason is the ever-increasing complexity of configuration, reflected
by the large number of configuration parameters (“knobs”). With
hundreds of knobs, configuring system software to ensure high re-
liability and performance becomes a daunting, error-prone task.

This paper makes a first step in understanding a fundamental
question of configuration design: “do users really need so many
knobs?” To provide the quantitatively answer, we study the con-
figuration settings of real-world users, including thousands of cus-
tomers of a commercial storage system (Storage-A), and hundreds
of users of two widely-used open-source system software projects.
Our study reveals a series of interesting findings to motivate soft-
ware architects and developers to be more cautious and disciplined
in configuration design. Motivated by these findings, we provide
a few concrete, practical guidelines which can significantly reduce
the configuration space. Take Storage-A as an example, the guide-
lines can remove 51.9% of its parameters and simplify 19.7% of
the remaining ones with little impact on existing users. Also, we
study the existing configuration navigation methods in the context
of “too many knobs” to understand their effectiveness in dealing
with the over-designed configuration, and to provide practices for
building navigation support in system software.
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1. INTRODUCTION

1.1 Motivation
In recent years, configuration problems have drawn tremendous

attention for their increasing prevalence and severity. For example,
Yin et al. reported that configuration issues accounted for 27% of
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Figure 1: The increasing number of configuration parameters with
software evolution. Storage-A is a commercial storage system from a ma-
jor storage company in the U.S.

all the customer-support cases in a major storage company in the
U.S., and were the most significant contributor (31%) among all
the high-severity cases [74]. Rabkin and Katz reported that config-
uration issues were the dominant source of support cost in Hadoop
clusters (based on data from Cloudera Inc.), in terms of both the
number of support cases and the amount of supporting time [46].

Moreover, configuration errors, the after-effects of configuration
difficulties, have become one of the major causes of system fail-
ures. Barroso and Hölzle reported that configuration errors were the
second major cause of service-level disruptions at one of Google’s
main services [16]. Recently, a number of outages of Internet and
cloud services, including Google, LinkedIn, Microsoft Azure, and
Amazon EC2, were caused by configuration errors [35, 59, 63, 68].

One fundamental reason for today’s prevalent configuration is-
sues is the ever-increasing complexity of configuration, especially
in system software. This is reflected by the large and still increasing
number of configuration parameters (“knobs”), as well as various
configuration constraints and consistency requirements [32, 39, 45,
72] (known as complexity of interaction and tightness of coupling
in human error studies [41,48]). For example, MySQL 5.6 database
server has 461 configuration parameters; 216 of them are not with
simple data types (e.g., Boolean or enumerative) but rather more
complex ones. These parameters control different buffer sizes, time-
outs, resource limits, etc. Setting them correctly requires domain-

[Tianyin Xu, et al., “Too Many Knobs…”, FSE’15]



Configurations determine the performance 
behavior
void Parrot_setenv(. . . name,. . . value){
#ifdef PARROT_HAS_SETENV
  my_setenv(name, value, 1);
#else
  int name_len=strlen(name);
  int val_len=strlen(value);
  char* envs=glob_env;
  if(envs==NULL){
    return;
  }
  strcpy(envs,name);
  strcpy(envs+name_len,"=");
  strcpy(envs+name_len + 1,value);
  putenv(envs);
#endif
}

#ifdef LINUX
extern int Parrot_signbit(double x){
    union{
        double d;
        int i[2];
    } u;
    u.d = x;
#  ifdef BIG_ENDIAN
    return u.i[0] < 0;
#  else
    return u.i[1] < 0;
#  endif
}
#endif

endif

else

PARROT_HAS_SETENV

endif

endif

LINUX

else

BIG_ENDIAN

Speed

Energy



Challenges of configurations

• Difficulties in knowing which parameters should be set


• Setting the parameters to obtain the intended behavior


• Reasoning about multiple objectives (energy, speed)



Performance goals are competing and users 
have preferences over these goals

The variability space (design space) of 
(composed) systems is exponentially increasing

Systems operate in uncertain environments 
with imperfect and incomplete knowledge

Goal: Enabling users to find the right quality 
tradeoff

Lander Testbed (NASA) Turtlebot 3 (UofSC)

Husky UGV (UofSC)CoBot (CMU)



Understanding the performance behavior of 
real-world highly-configurable systems that scale well…

… and enabling developers/users to reason about 
qualities (performance, energy) and to make tradeoffs?

The goal of our research is…
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MisconfigurationsMisconfigurations

Diagnosing and fixing 
misconfigurations with 

causal inference
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Today’s Talk

Deploy

Artifact

Challenge
▷ Each deployment environment 

must be configured correctly
▷ This is challenging and prone to 

misconfigurations

Software may be deployed 
in several environments

Server

Personal Devices

Embedded Hardware

Autonomous Vehicles

Deployment Environments
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Today’s Talk

Problem
▷ Each deployment environment 

must be configured correctly
▷ This is challenging and prone to 

misconfigurations

Why?
▷ The configuration options lie 

across the software stack
▷ There are several non-trivial 

interactions with one another
▷ The configuration space is 

combinatorially large with 100’s 
of configuration options
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Performance behavior varies in different environments
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Why this is an important problem?
Optimal configuration

• 2X-10X faster than the worst
• Noticeably faster than the median
• Default is bad
• Expert’s is not optimal

Exploring large configuration space
• Exhaustive search is expensive
• Specific to the environment 

(hardware/workload/version)



Misconfiguration and its Effects
● Misconfigurations can elicit unexpected interactions between software and 

hardware

● These can result in non-functional faults
○ Affecting non-functional system properties like

latency, throughput, energy consumption, etc.
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The system doesn’t crash or 
exhibit an obvious misbehavior

Systems are still operational but with a 
degraded performance, e.g., high latency, low 
throughput, high energy consumption,  high 
heat dissipation, or a combination of several



45CUDA performance issue on tx2

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

The user is transferring the code
from one hardware to another

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

The target hardware is faster 
than the the source hardware.
User expects the code to run 
at least 30-40% faster.

Motivating Example

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

The code ran 2x slower on the 
more powerful hardware

https://forums.developer.nvidia.com/t/50477


Motivating Example
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June 3rd

We have already tried this. We still have high latency.

Any other suggestions?
June 4th

Please do the following and let us know if it works

1. Install JetPack 3.0
2. Set nvpmodel=MAX-N
3. Run jetson_clock.sh

June 5th

June 4th TX2 is pascal architecture. Please update your CMakeLists:

+ set(CUDA_STATIC_RUNTIME OFF)
...
+ -gencode=arch=compute_62,code=sm_62

The user had several misconfigurations
In Software: 
✖ Wrong compilation flags
✖ Wrong SDK version

In Hardware: 
✖ Wrong power mode 
✖ Wrong clock/fan settings

The discussions took 2 days

Any suggestions on how to improve my performance?

Thanks!

How to resolve such issues faster??
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How to resolve these 
issues faster?



Outline
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Performance measurement
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ℂ = O1 × O2 × ⋯ × O19 × O20

Dead code removal

Configuration 
Space

Constant folding

Loop unrolling

Function inlining

c1 = 0 × 0 × ⋯ × 0 × 1c1 ∈ ℂ

fc(c1) = 11.1msCompile 
time

Execution 
time

Energy

Compiler 
(e.f., SaC, LLVM)

Program Compiled 
Code

Instrumented 
Binary

Hardware

Compile Deploy

Configure

fe(c1) = 110.3ms
fen(c1) = 100mwh

Non-functional
measurable/quantifiable 

aspect



Blackbox Performance Modeling
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These methods rely on statistical correlations to extract meaningful 
information required for performance tasks.



Whitebox Performance Modeling

52Instrumented control flow graphIdentify configuration-dependent regions

Build a compositional 
performance model using 

local models of each region



These methods rely on program analysis techniques (static and 
dynamic analysis of the code) to extract meaningful information 

required for performance tasks.
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• Blackbox performance models could produce incorrect explanations and 
unreliable/unstable predictions across environments and in the presence of 
measurement noise. 


• Whitebox performance models do not scale well to real-world systems (with 
many configuration options and large code bases. 

Performance models suffer from several 
shortcomings
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Increasing Cache Misses 

increases Throughput.
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Increasing Cache Misses 

increases Throughput.

More Cache Misses should

reduce Throughput not 


increase it 

Any statistical models built on this 
data will be incorrect.

This is counter-intuitive

Incorrect explanation
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Cache Misses
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Segregating data on Cache Policy indicates that within each group 
Increase of Cache Misses result in a decrease in Throughput.

FIFO

LIFO

MRU

LRU

Incorrect explanation
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Performance influence models change significantly across 
environments, resulting in low accuracy in new environments. 

Performance influence model in TX2: 

Performance influence model in Xavier: 
Throughput = 5.1 × Bitrate + 2.5 × BatchSize + 12.3 × Bitrate × BatchSize

Throughput = 2 × Bitrate + 1.9 × BatchSize + 1.8 × BufferSize + 0.5 × EnablePadding + 5.9 × Bitrate × BufferSize
+6.2 × Bitrate × EnablePadding + 4.1 × Bitrate × BufferSize × EnablePadding

Unstable predictions
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Causal performance modeling

Expresses the relationships between 

Configuration options

System Events

Non-functional 

Properties

Cache Misses
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Causal performance models produce correct explanations

60

Cache Misses

T
h
ro
u
gh

p
u
t
(F

P
S
)

20

10

0

100k 200k

Cache Misses
T
h
ro
u
gh

p
u
t
(F

P
S
)

LRU

FIFO

LIFO

MRU

20

10

0

100k 200k

Cache Policy affects 
Throughput via Cache Misses.

Causal performance models capture  
correct interactions.

Cache  
Policy

Cache  
Misses

Through 
put



61

Causal performance models remain  
relatively stable across environments.

A partial causal performance 

model in Jetson Xavier

A partial causal performance 

model in Jetson TX2

Bitrate Buffer 
Size

Batch 
Size

Enable 
Padding

Branch 
Misses

Cache 
Misses Cycles

FPS Energy

Bitrate Buffer 
Size

Batch 
Size

Enable 
Padding

Branch 
Misses

Cache 
Misses Cycles

FPS Energy

Causal performance models are transferable across environments
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UNICORN: Performance Reasoning through the Lens of Causality

Software: DeepStream 
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default
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Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s
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UNICORN: Performance Reasoning through the Lens of Causality
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UNICORN: Performance Reasoning through the Lens of Causality



Diagnosing and Fixing the Faults
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● Counterfactual inference asks “what if” questions about changes to the 
misconfigurations

We are interested in the scenario where: 

• We hypothetically have low latency; 

Conditioned on the following events:

• We hypothetically set the new Swap memory to 4 Gb
• Swap Memory was initially set to 2 Gb
• We observed high latency when Swap was set to 2 Gb
• Everything else remains the same

  Example 
  Given that my current swap memory is 2 Gb, and I have high latency. What is 
  the probability of having low latency if swap memory was increased to 4 Gb?



Low?

Load

GPU Mem. LatencySwap = 4 Gb

Diagnosing and Fixing the Faults
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GPU Mem. LatencySwap

Original Path

Load

GPU Mem. LatencySwap = 4 Gb

Path after proposed change

Load

Remove incoming 
edges. Assume no 
external influence.

Modify to reflect the 
hypothetical scenario

Low?

Load

GPU Mem. LatencySwap = 4 Gb

Low?

Use both the models to compute the answer to the counterfactual question



Diagnosing and Fixing the Faults
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GPU Mem. LatencySwap

Original Path

Load

GPU Mem. LatencySwap = 4 Gb

Path after proposed change

Load

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑃(  ^𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑙𝑜𝑤 . . ^𝑆𝑤𝑎𝑝 = 4 𝐺𝑏,   . 𝑆𝑤𝑎𝑝 = 2 𝐺𝑏,  𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑠𝑤𝑎𝑝=2𝐺𝑏 = h𝑖𝑔h,  𝑈 )

We expect a low latency

The latency was highThe Swap is now 4 Gb

The Swap was initially 2 Gb Everything else 
stays the same



Diagnosing and Fixing the Faults
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Potential = 𝑃(  ^𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑔𝑜𝑜𝑑~ ~𝑐h𝑎𝑛𝑔𝑒, ~ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒¬𝑐h𝑎𝑛𝑔𝑒 = 𝑏𝑎𝑑, ~¬𝑐h𝑎𝑛𝑔𝑒,  𝑈 )

Probability that the outcome is good after a change, conditioned on the past

If this difference is large, then our change is useful

Individual Treatment Effect  =  Potential   −  Outcome

Control = 𝑃(  ^𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑏𝑎𝑑~ ~¬𝑐h𝑎𝑛𝑔𝑒,  𝑈 )

Probability that the outcome was bad before the change
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GPU Mem.

Latency

Swap Mem.

Top K paths

⋮ Enumerate all 
possible changes

𝐼𝑇𝐸(𝑐h𝑎𝑛𝑔𝑒)
Change with 
the largest ITE

Set every configuration 
option in the path to all
permitted values

Inferred from observed 
data. This is very cheap. !
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Change with 
the largest ITE

Fault 
fixed?

Yes

No • Add to observational data
• Update causal model
• Repeat…

Measure 
Performance
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Observed : Th < 30/s ± 5/s

UNICORN: Our Causal AI for Systems Method 
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Results: Case Study
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When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

When we are trying to transplant our CUDA source code from TX1 to TX2, it 
behaved strange.

We noticed that TX2 has twice computing-ability as TX1 in GPU, as expectation, 
we think TX2 will 30% - 40% faster than TX1 at least.

Unfortunately, most of our code base spent twice the time as TX1, in other words, 
TX2 only has 1/2 speed as TX1, mostly. We believe that TX2’s CUDA API runs 
much slower than TX1 in many cases.

The user is transferring the code
from one hardware to another

The target hardware is faster 
than the the source hardware.
User expects the code to run 
at least 30-40% faster.

The code ran 2x slower on the 
more powerful hardware



More powerful

Results: Case Study

83

Nvidia TX1
CPU 4 cores, 1.3 GHz

GPU 128 Cores, 0.9 GHz

Memory 4 Gb, 25 Gb/s

Nvidia TX2
CPU 6 cores, 2 GHz

GPU 256 Cores, 1.3 GHz

Memory 8 Gb, 58 Gb/s

Embedded real-time 
stereo estimation

Source code

17 Fps

4 Fps

4
Slower!

×

https://github.com/dhernandez0/sgm


Results: Case Study
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Configuration UNICO
RN

Decision 
Tree

Forum

CPU Cores ✓ ✓ ✓
CPU Freq. ✓ ✓ ✓
EMC Freq. ✓ ✓ ✓
GPU Freq. ✓ ✓ ✓
Sched. Policy ✓
Sched. Runtime ✓
Sched. Child Proc ✓
Dirty Bg. Ratio ✓
Drop Caches ✓
CUDA_STATIC_RT ✓ ✓ ✓
Swap Memory ✓

UNICORN Decision Tree Forum
Throughput (on TX2) 26 FPS 20 FPS 23 FPS
Throughput Gain (over TX1) 53 % 21 % 39 %

Time to resolve 24 min. 31/2  Hrs. 2 days

X Finds the root-causes accurately
X No unnecessary changes
X Better improvements than forum’s recommendation
X Much faster

Results

The user expected 30-40% gain



Evaluation: Experimental Setup

Nvidia TX1
CPU 4 cores, 1.3 GHz

GPU 128 Cores, 0.9 GHz

Memory 4 Gb, 25 GB/s

Nvidia TX2
CPU 6 cores, 2 GHz

GPU 256 Cores, 1.3 GHz

Memory 8 Gb, 58 GB/s

Nvidia Xavier
CPU 8 cores, 2.26 GHz

GPU 512 cores, 1.3 GHz

Memory 32 Gb, 137 GB/s

Hardware

Systems

Xception

Image recognition
(50,000 test images)

DeepSpeech

Voice recognition
(5 sec. audio clip)

BERT

Sentiment Analysis
(10000 IMDb reviews)

x264

Video Encoder
(11 Mb, 1080p video)

Configuration Space
X 30 Configurations

X 17 System Events

• 10 software 
• 10 OS/Kernel  
• 10 hardware

85



Evaluation: Data Collection
● For each software/hardware 

combination create a benchmark 
dataset

○ Exhaustively set each of configuration 
option to all permitted values.

○ For continuous options (e.g., GPU memory 
Mem.), sample 10 equally spaced values 
between [min, max] 

● Measure the latency, energy 
consumption, and heat dissipation

○ Repeat 5x and average

86

Multiple 
Faults!

Latency 
Faults!

Energy 
Faults!



Evaluation: Ground Truth
● For each performance fault:
○ Manually investigate the root-cause 
○ “Fix” the misconfigurations

● A “fix” implies the configuration no longer 
has tail performance

○ User defined benchmark (i.e., 10th percentile) 

○ Or some QoS/SLA benchmark

● Record the configurations that were 
changed

87

Multiple 
Faults!

Latency 
Faults!

Energy 
Faults!



Experimental Setup: Baselines
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Optimization

Debugging
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Results: Efficiency (Debugging; Single objective)

Find root causes 
more accurately than
ML-based methods

Better gain

Up to 20x 
faster
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Multiple Faults
in Latency & 
Energy usage

Better gain across both objectives

Results: Efficiency (Debugging; Multi-objective)



Results: Efficiency (Optimization; Single objective)
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Results: Efficiency (Optimization; Multi-objective)
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Results: Transferability
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10k 20k 50k
0

30

60

90

Workload Size

G
ai
n
%

Unicorn + 20% Unicorn + 10% Unicorn (Reuse)
Smac + 20% Smac + 10% Smac (Reuse)

UNICORN finds 
configuration with higher 
gain when workload 
changes. 



Results: Transferability
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Accuracy Precision Recall Gain

30

60

90

%

Unicorn (Reuse) Unicorn + 25 Unicorn (Rerun)
Bugdoc (Reuse) Bugdoc + 25 Bugdoc (Rerun)

Time

0

2

4

H
o
u
r
s
.

UNICORN quickly fixes the 
bug and achieves higher 
gain, accuracy, precision 
and recall when hardware 
changes



Results: Scalability
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Discovery time, query evaluation 
time and total time do not increase 
exponentially as the number of 
configuration options and systems 
events are increased



Results: Scalability
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Causal graphs are 
sparse



Summary: Causal AI for Systems
1. Learning a causal 
performance model 
for different 
downstream systems 
tasks.


2. The learned causal 
model is transferable 
across different 
environments.


3. The causal 
reasoning approach is 
scalable to large-
scale systems.
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Software: DeepStream 
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

number of counters
number of splitters

lat
en

cy
 (m

s)

100

150

1

200

250

2

300

Cubic Interpolation Over Finer Grid

2
43

6
84 10

125 14
166 18

Budget 
Exhausted?

Yes
No

5- Update Causal 
Performance Model

Query Engine

4- Estimate Causal 
Queries

Estimate 
probability of 
satisfying QoS 
if BufferSize is 
set to 6k?

2- Learn Causal 
Performance  Model Performance

Debugging

Performance
Optimization

3- Translate Perf. Query 
to Causal Queries

•What is the root-cause 
of observed perf. fault?

•How do I fix the 
misconfig.?

•How can I improve 
throughput without 
sacrificing accuracy?

•How do I understand 
perf behavior?

Measure performance 
of the configuration(s) 
that maximizes 
information gain

Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s



The variability space of today’s systems is exponentially increasing
Systems are heterogeneous, multiscale, multi-modal, and multi-stream

 X

Variability Space =  
Algorithm Selection +

Configuration Space + 

System Architecture + 

Deployment Environment 

Video  
Decoder

Stream 
Muxer

Primary 
Detector

Object 
Tracker

Secondary 
Classifier

# Configuration Options

55861444 86

Causal performance models produce correct explanations

 X

Cache Misses
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P
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)

LRU

FIFO

LIFO

MRU
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10
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100k 200k

Cache Policy affects 
Throughput via Cache Misses.

Causal performance models capture  
correct interactions.

Cache  
Policy

Cache  
Misses

Through 
put

Summary: Causal AI for Systems
1. Learning a causal 
performance model 
for different 
downstream systems 
tasks.


2. The learned causal 
model is transferable 
across different 
environments.


3. The causal 
reasoning approach is 
scalable to large-
scale systems.

 X

Software: DeepStream 
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

number of counters
number of splitters

lat
en

cy
 (m

s)

100

150

1

200

250

2

300

Cubic Interpolation Over Finer Grid

2
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Budget 
Exhausted?

Yes
No

5- Update Causal 
Performance Model

Query Engine

4- Estimate Causal 
Queries

Estimate 
probability of 
satisfying QoS 
if BufferSize is 
set to 6k?

2- Learn Causal 
Performance  Model Performance

Debugging

Performance
Optimization

3- Translate Perf. Query 
to Causal Queries

•What is the root-cause 
of observed perf. fault?
•How do I fix the 
misconfig.?
•How can I improve 
throughput without 
sacrificing accuracy?
•How do I understand 
perf behavior?

Measure performance 
of the configuration(s) 
that maximizes 
information gain

Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s

Evaluation: Experimental Setup

Nvidia TX1
CPU 4 cores, 1.3 GHz

GPU 128 Cores, 0.9 GHz

Memory 4 Gb, 25 GB/s

Nvidia TX2
CPU 6 cores, 2 GHz

GPU 256 Cores, 1.3 GHz

Memory 8 Gb, 58 GB/s

Nvidia Xavier
CPU 8 cores, 2.26 GHz

GPU 512 cores, 1.3 GHz

Memory 32 Gb, 137 GB/s

Hardware

Systems

Xception

Image recognition
(50,000 test images)

DeepSpeech

Voice recognition
(5 sec. audio clip)

BERT

Sentiment Analysis
(10000 IMDb reviews)

x264

Video Encoder
(11 Mb, 1080p video)

Configuration Space
X 30 Configurations

X 17 System Events

• 10 software 
• 10 OS/Kernel  
• 10 hardware

 X
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How to resolve these 
issues faster?



Performance measurement
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ℂ = O1 × O2 × ⋯ × O19 × O20

Dead code removal

Configuration 
Space

Constant folding

Loop unrolling

Function inlining

c1 = 0 × 0 × ⋯ × 0 × 1c1 ∈ ℂ

fc(c1) = 11.1msCompile 
time

Execution 
time

Energy

Compiler 
(e.f., SaC, LLVM)

Program Compiled 
Code

Instrumented 
Binary

Hardware

Compile Deploy

Configure

fe(c1) = 110.3ms
fen(c1) = 100mwh

Non-functional
measurable/quantifiable 

aspect
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Performance Influence Models
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Observational Data Black-box models Regression Equation

Throughput = 5.1 × Bitrate + 2.5 × BatchSize
+ 12.3 × Bitrate × BatchSize

Discovered 

Interactions

Options Options
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These methods rely on statistical correlations to extract 
meaningful information required for performance tasks.

Performance Influence Models
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Discovered 
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• Performance influence models could produce incorrect explanations


• Performance influence models could produce unreliable predictions.


• Performance influence models could produce unstable predictions across 
environments and in the presence of measurement noise. 

Performance Influence Models suffer from 
several shortcomings



Performance Influence Models Issue: Incorrect Explanation

Cache Misses
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100k 200k
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Increasing Cache Misses 

increases Throughput.



Cache Misses
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Increasing Cache Misses 

increases Throughput.

More Cache Misses should

reduce Throughput not 


increase it 

Any ML/statistical models built on this 
data will be incorrect.

This is counter-intuitive

Performance Influence Models Issue: Incorrect Explanation
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Cache Misses
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Segregating data on Cache Policy indicates that within each group 
Increase of Cache Misses result in a decrease in Throughput.

FIFO

LIFO

MRU

LRU

Performance Influence Models Issue: Incorrect Explanation
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Performance Influence Models change significantly in new 
environments resulting in less accuracy. 

Performance influence model in TX2. 

Performance influence model in Xavier. 
Throughput = 5.1 × Bitrate + 2.5 × BatchSize + 12.3 × Bitrate × BatchSize

Throughput = 2 × Bitrate + 1.9 × BatchSize + 1.8 × BufferSize + 0.5 × EnablePadding + 5.9 × Bitrate × BufferSize
+6.2 × Bitrate × EnablePadding + 4.1 × Bitrate × BufferSize × EnablePadding

Performance Influence Models Issue: Unstable Predictors
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Performance influence are cannot be reliably 
used across environments. 

Performance influence model in TX2. 

Performance influence model in Xavier. 
Throughput = 5.1 × Bitrate + 2.5 × BatchSize + 12.3 × Bitrate × BatchSize

Throughput = 2 × Bitrate + 1.9 × BatchSize + 1.8 × BufferSize + 0.5 × EnablePadding + 5.9 × Bitrate × BufferSize
+6.2 × Bitrate × EnablePadding + 4.1 × Bitrate × BufferSize × EnablePadding

Performance Influence Models Issue: Unstable Predictors
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Performance influence models do not generalize  
well across deployment environments. 

Performance influence model in TX2 

Performance influence model in Xavier.
Throughput = 5.1 × Bitrate + 2.5 × BatchSize + 12.3 × Bitrate × BatchSize

Throughput = 2 × Bitrate + 1.9 × BatchSize + 1.8 × BufferSize + 0.5 × EnablePadding + 5.9 × Bitrate × BufferSize
+6.2 × Bitrate × EnablePadding + 4.1 × Bitrate × BufferSize × EnablePadding

Performance Influence Models Issue: Non-generalizability
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Causal Performance Model

Expresses the relationships between 

Configuration options

System Events

Non-functional 

Properties

Cache Misses

T
h
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u
gh

p
u
t
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S
)

20

10

0

100k 200k

interacting variables as a causal graph

Direction of

Causality

Cache  
Policy

Cache  
Misses

Through 
put



Why Causal Inference? - Produces Correct Explanations
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Cache Misses
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Cache Policy affects 
Throughput via Cache Misses.

Causal Performance Models recovers  
the correct interactions.
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Why Causal Inference? - Minimal Structure Change
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Causal models remain  
relatively stable

A partial causal performance 

model in Jetson Xavier

A partial causal performance 

model in Jetson TX2

Bitrate Buffer 
Size

Batch 
Size

Enable 
Padding

Branch 
Misses

Cache 
Misses Cycles

FPS Energy

Bitrate Buffer 
Size

Batch 
Size

Enable 
Padding

Branch 
Misses

Cache 
Misses Cycles

FPS Energy
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Motivation

Causal AI
For Systems

Results

Future
DirectionsUNICORN



• Build a Causal Performance 
Model that capture the interactions 
options in the variability space 
using the observation performance 
data.


• Iterative causal performance model 
evaluation and model update 

• Perform downstream performance 
tasks such as performance 
debugging & optimization using 
Causal Reasoning

UNICORN: Our Causal AI for 
Systems Method 



UNICORN: Our Causal AI for Systems Method 

Software: DeepStream 
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default
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Debugging
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3- Translate Perf. Query 
to Causal Queries

•What is the root-cause 
of observed perf. fault?

•How do I fix the 
misconfig.?

•How can I improve 
throughput without 
sacrificing accuracy?

•How do I understand 
perf behavior?

Measure performance 
of the configuration(s) 
that maximizes 
information gain

Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s



Software: DeepStream 
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Measure performance 
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Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s

UNICORN: Our Causal AI for Systems Method 
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UNICORN: Our Causal AI for Systems Method 
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Our setup for performance measurements
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•How do I fix the 
misconfig.?

•How can I improve 
throughput without 
sacrificing accuracy?

•How do I understand 
perf behavior?

Measure performance 
of the configuration(s) 
that maximizes 
information gain

Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s

UNICORN: Our Causal AI for Systems Method 
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Causal Debugging

• What is the root-cause 
of my fault?

• How do I fix my 
misconfigurations to 
improve performance?

Misconfiguration

Fault 
fixed?

Observational Data Build Causal Graph Extract Causal Paths

Best Query

Yes

No

update
observational
data

Counterfactual Queries

Rank Paths

What if questions.
E.g., What if the configuration 
option X was set to a value ‘x’?

About 25 sample 
configurations  
(training data)



Extracting Causal Paths from the Causal Model

Problem
✕ In real world cases, this causal graph can be 

very complex 
✕ It may be intractable to reason over the entire 

graph directly
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Solution
✓ Extract paths from the causal graph

✓ Rank them based on their Average Causal 
Effect on latency, etc.

✓ Reason over the top K paths



Extracting Causal Paths from the Causal Model

127

GPU Mem. LatencySwap Mem.

Extract pathsAlways begins with a 
configuration option

Or a system 
event

Always terminates at a 
performance objective

Load

GPU Mem. LatencySwap Mem.

Swap Mem. LatencyLoad GPU Mem.



Ranking Causal Paths from the Causal Model
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● They may be too many causal paths
● We need to select the most useful ones
● Compute the Average Causal Effect (ACE) of 

each pair of neighbors in a path

GPU Mem.Swap Mem. Latency

𝐴𝐶𝐸(GPU Mem . ,  Swap) =
1
𝑁 ∑

𝑎,𝑏∈𝑍

  𝔼(GPU Mem .    𝑑𝑜(Swap = 𝑏))  −  𝔼(GPU Mem .    𝑑𝑜(Swap = 𝑎))

Expected value of GPU 
Mem. when we artificially 
intervene by setting Swap to 
the value b

Expected value of GPU 
Mem. when we artificially 
intervene by setting Swap to 
the value aIf this difference is large, then 

small changes to Swap Mem. 
will cause large changes to GPU 
Mem.

Average over all permitted 
values of Swap memory.



Ranking Causal Paths from the Causal Model
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● Average the ACE of all pairs of adjacent nodes in the path

● Rank paths from highest path ACE (PACE) score to the lowest
● Use the top K paths for subsequent analysis

𝑃𝐴𝐶𝐸(𝑍, 𝑌 ) =
1
2

(𝐴𝐶𝐸(𝑍,  𝑋) + 𝐴𝐶𝐸(𝑋,  𝑌 ))

X YZ

Sum over all pairs of 
nodes in the causal path.

GPU Mem. LatencySwap Mem.



Best Query

Counterfactual Queries

Rank Paths

What if questions.
E.g., What if the 
configuration option X was 
set to a value ‘x’?

Extract Causal Paths

130

Diagnosing and Fixing the Faults

• What is the root-cause 
of my fault?

• How do I fix my 
misconfigurations to 
improve performance?

Misconfiguration

Fault 
fixed?

Observational Data Build Causal Graph

Yes

No

update
observational
data

About 25 sample 
configurations  
(training data)



Diagnosing and Fixing the Faults
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● Counterfactual inference asks “what if” questions about changes to the 
misconfigurations

We are interested in the scenario where: 

• We hypothetically have low latency; 

Conditioned on the following events:

• We hypothetically set the new Swap memory to 4 Gb
• Swap Memory was initially set to 2 Gb
• We observed high latency when Swap was set to 2 Gb
• Everything else remains the same

  Example 
  Given that my current swap memory is 2 Gb, and I have high latency. What is 
  the probability of having low latency if swap memory was increased to 4 Gb?



Low?

Load

GPU Mem. LatencySwap = 4 Gb

Diagnosing and Fixing the Faults
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GPU Mem. LatencySwap

Original Path

Load

GPU Mem. LatencySwap = 4 Gb

Path after proposed change

Load

Remove incoming 
edges. Assume no 
external influence.

Modify to reflect the 
hypothetical scenario

Low?

Load

GPU Mem. LatencySwap = 4 Gb

Low?

Use both the models to compute the answer to the counterfactual question



Diagnosing and Fixing the Faults
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GPU Mem. LatencySwap

Original Path

Load

GPU Mem. LatencySwap = 4 Gb

Path after proposed change

Load

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑃(  ^𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑙𝑜𝑤 . . ^𝑆𝑤𝑎𝑝 = 4 𝐺𝑏,   . 𝑆𝑤𝑎𝑝 = 2 𝐺𝑏,  𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑠𝑤𝑎𝑝=2𝐺𝑏 = h𝑖𝑔h,  𝑈 )

We expect a low latency

The latency was highThe Swap is now 4 Gb

The Swap was initially 2 Gb Everything else 
stays the same



Diagnosing and Fixing the Faults
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Potential = 𝑃(  ^𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑔𝑜𝑜𝑑~ ~𝑐h𝑎𝑛𝑔𝑒, ~ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒¬𝑐h𝑎𝑛𝑔𝑒 = 𝑏𝑎𝑑, ~¬𝑐h𝑎𝑛𝑔𝑒,  𝑈 )

Probability that the outcome is good after a change, conditioned on the past

If this difference is large, then our change is useful

Individual Treatment Effect  =  Potential   −  Outcome

Control = 𝑃(  ^𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑏𝑎𝑑~ ~¬𝑐h𝑎𝑛𝑔𝑒,  𝑈 )

Probability that the outcome was bad before the change



Diagnosing and Fixing the Faults
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GPU Mem.

Latency

Swap Mem.

Top K paths

⋮ Enumerate all 
possible changes

𝐼𝑇𝐸(𝑐h𝑎𝑛𝑔𝑒)
Change with 
the largest ITE

Set every configuration 
option in the path to all
permitted values

Inferred from observed 
data. This is very cheap. !



Diagnosing and Fixing the Faults
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Change with 
the largest ITE

Fault 
fixed?

Yes

No • Add to observational data
• Update causal model
• Repeat…

Measure 
Performance



Software: DeepStream 
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

number of counters
number of splitters

lat
en

cy
 (m

s)

100

150

1

200

250

2

300

Cubic Interpolation Over Finer Grid

2
43

6
84 10
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Budget 
Exhausted?

Yes
No

5- Update Causal 
Performance Model

Query Engine

4- Estimate Causal Queries

Estimate 
probability of 
satisfying QoS 
if BufferSize is 
set to 6k?

2- Learn 
Causal Perf. Model Performance

Debugging

Performance
Optimization

3- Translate Performance Query 
to Causal Queries

•What is the root-cause 
of observed perf. fault?

•How do I fix the 
misconfig.?

•How can I improve 
throughput without 
sacrificing accuracy?

•How do I understand 
perf behavior?

Measure performance 
of the configuration(s) 
that maximizes 
information gain

Performance Data Causal Model

P(Th > 40/s |do(Buffersize = 6k))

1- Specify 
Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s

UNICORN: Our Causal AI for Systems Method 
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3- Updating 
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Workload, and Kernel Options

Active Learning for Updating Causal Performance Model
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Benefits of Causal 
Reasoning for 
System 
Performance 
Analysis



There are two fundamental benefits that we get by our “Causal AI for Systems” 
methodology

1. We learn one central (causal) performance model from the data across different 
performance tasks: 


• Performance understanding


• Performance optimization 


• Performance debugging and repair 


• Performance prediction for different environments (e.g., canary-> production)


2. The causal model is transferable across environments.


• We observed Sparse Mechanism Shift in systems too!


• Alternative non-causal models (e.g., regression-based models for performance tasks) 
are not transferable as they rely on i.i.d. setting. 
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