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So what this talk is 
about?

The Security of 

Machine Learning

Deep
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A quick recap about 
Supervised Machine Learning 
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Linear Classifiers

S
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f3
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w2

w3
>0?activationw(x) = ∑

i

wi ⋅ fi(x) = w ⋅ f(x)
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How to get probabilistic decisions?
• Activation: 


• If z very positive -> want probability going to 1


• If z very negative -> want probability going to 0

z = w ⋅ f(x)
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Multiclass Logistic Regression
• Multi-class linear classification


• A weight vector for each class:


• Score (activation) of a class y:


• Prediction w/highest score wins:


• How to make the scores into probabilities?

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

wy

wy ⋅ f(x)

y = argmaxywy ⋅ f(x)
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Best w?
• Maximum likelihood estimation:


• With:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)
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P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))



How do we solve the optimization problem?

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)
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Gradient Ascent
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Neural Networks
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Multi-class Logistic Regression is a special case 
of neural network
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Deep Neural Network = Also learn the features!

• 1
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Training the deep neural network is just like 
logistic regression

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

à just run gradient ascent
+     stop when log likelihood of hold-out data starts to decrease 
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ML developed a rich 
theory to guide us 

here
(and this was its 

only goal)
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Machine Learning: The Success Story
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Deep neural networks can be easily fooled
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Neural networks can be tricked

Adversarial 
Perturbation

89% tabby cat 98% guacamole
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Yes, neural networks can be tricked that easily
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Adversarial Examples

[Engstrom, Tran, Tsipras, Schmidt, Madry 2018]:  
Rotation + Translation can fool classifiers

[Athalye, Engstrom, Ilyas, Kwok 2017]:  
3D-printed model classified as rifle from most viewpoints

[Goodfellow et al. 2014]: Imperceptible noise  
can fool DNN classifiers

22



Adversarial Examples (Security)

[Sharif et al. 2016]: Glasses the fool face classifiers [Carlini et al. 2016]: Voice commands that  
are imperceptible by humans
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Adversarial Examples (RL, NLP)

[Huang et al. 2017]: Small input changes  
can decrease RL performance

[Jia Liang 2017]: Irrelevant sentences confused  
reading comprehension systems
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Should we be worried?
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Probably not here! But we should be worried here!

[Pei et al. 2017]: DeepXplore: Automated Whitebox  
Testing of Deep Learning Systems

[Tian et al. 2017]: DeepTest: Automated Testing of  
Deep-Neural-Network-driven Autonomous Cars

[Athalye, Engstrom, Ilyas, Kwok 2017]:  
3D-printed model classified as rifle from most viewpoints



Should we be worried?

Source: [Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami, 2016] 26



Should we be worried?

Source: [Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami, 2016] 27



Where Do Adversarial Examples Come From?

Distribution D

θ

Orange

Chimpanzee

Palm tree fθ

fθ1
(x, y) = palm tree 

fθ2
(x, y) = orange

, Orange(x, y) =

Find θ* such that 
𝔼(x,y)∼Dℒ(θ*, x, y) Is small

Goal of ML:
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Where Do Adversarial Examples Come From?

minθℒ(θ, x, y)

maxδℒ(θ, x+δ, y)

| |δ | |p ≤ ϵ

Gradient Descent  
to find good parameters

θ

29
[Ilyas et al. 2019]: Adversarial Examples  

Are Not Bugs, They Are Features

“Adversarial vulnerability is a direct result of our models’ 
sensitivity to well-generalizing features in the data.”



ATHENA:
A Framework for Defending 
Machine Learning Systems 
Against Adversarial Attacks
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Key idea behind our approach:  
Input transformation

(7, 0.9) (9, 0.56) (7, 0.4)

+δ Rotate 180
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CW_ l2 OnePixel MIM

Insights

- Effectiveness of WDs varies

- WDs complement each other


-> A defense based on ensemble of 
WDs can be independent of 
particular type of adversarial attack


WD: Weak Defense



Quality and quantity of weak defenses matter

Number of weak defenses

Te
st

 a
cc

ur
ac

y

0.00

0.20

0.40

0.60

0.80

1.00

10 20 30 40 50 60 70
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Diversity of weak defenses matters
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Adversarial Attack: One-Pixel 
Error Rate Undefended: 0.5588

PGD-ADT: Adversarial Training

Diverse 
Ensemble

Baseline 
Defense

Homogeneous 
Ensemble



Diversity of weak defenses matters
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Adversarial Attack: BIM_l2

Error Rate Undefended: 0.92

Adversarial Attack: MIM

Error Rate Undefended: 0.94

Adversarial Attack: PGD

Error Rate Undefended: 0.96



Diversity of weak defenses matters
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Each weak defense is essentially a model trained 
on a particular type of transformation
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Train a classifier

Ti ft ix

Transform x 
for all x in D

Train a weak defense

xt i



ATHENA produces the final output based on agreement 
between weak defenses at deployment time

Ensem ble of n Weak Defenses

ft1

Predict x by WDs Ensemble 
strategy

x y

yt1

T1

Ti

Tn

xt1

xt i

x tn

yt i

y tn

ft i

f tn

7

7

9

7

38



Train a substitue classifier

fsub

fens

Collect training data set

2

1

Craft adversarial examples 
for  the substitute classifier3

Dbb

x

x'

{ x|x in D}

Attack  the ensemble model4

Evaluation

39



Threat model: What we can assume about the 
knowledge of the adversary and its strength
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Knows the parameters of

Blackbox

Greybox

Zero-knowledge

Target

Classifier

Weak

Defenses

Ensemble

Strategy

Existence of

Defense

Whitebox



Although the effectiveness of each weak defense varies, 
ATHENA is able to decrease the error rate effectively
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Adversarial Attack: FGSM

Model: 28×10 Wide ResNet

Dataset: CIFAR100

ATHENA (ensemble strategy):

- MV: Majority Voting

- T2MV: Top-2 MV

- AVEO: Average of Output

- RD: Random Defense


Baseline Defense:

PGD-ADT: Adversarial Training

RS: Randomized Smoothing

ATHENA Baseline 
Defenses

Undefended  
Model

Tradeoff on 
benign samples



Although the effectiveness of each weak defense varies, 
ATHENA is able to decrease the error rate effectively
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FGSM BIM_l2 BIM_linf

CW_l2 JSMA PGD

Model: 28×10 Wide ResNet

Dataset: CIFAR100



Threat model
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Knows the parameters of

Blackbox
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Blackbox attack: The transferability-based 
approach
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Train a substitue classifier

fsub

fens

Collect training data set

2

1

Craft adversarial examples 
for  the substitute classifier3

Dbb

x

x'

{ x|x in D}

Attack  the ensemble model4



ATHENA lowered the “transferability” of adversarial 
examples from the surrogate model to the target model
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Adversarial Attack: BIM_linf

Model: 28×10 Wide ResNet

Dataset: CIFAR100
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ATHENA lowered the transferability of adversarial 
examples from the surrogate model to the target model
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ATHENA forces the “optimization-based” blackbox attack 
to generate adversarial examples with larger perturbation
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Adversarial Attack: HopSkipJump

Model: 28×10 Wide ResNet

Dataset: CIFAR100

Undefended 
Model

ATHENA



Threat model
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Greedy White-box Attack
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A strong adaptive white-box adversary may be 
able to successfully bypass the defense

50

ATHENA Weak 
Defenses

Undefended  
Model



However, it becomes very easy to “detect” such 
attacks, so a defense+detection would be robust

Detection + MV ensMV ensDetector

Max Normalized Dissimilarity
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Also, it comes with a high cost

52Dissimilarity
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An Adaptive Adversary for ATHENA
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EOT (Expectation Over Transformation) Extending EOT for Ensembles

maxδℒ(θ, x+δ, y)
| |δ | |p ≤ ϵ

Standard Adversarial Attack



As the adaptive attacker knows more about 
ATHENA, it can launch more successful attacks
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ATHENA Weak 
Defenses

Undefended  
Model

Percentage of weak defenses being accessed by the attacker 



Is ATHENA  
a general defense?

Will it work with different types 
of machine learning models?
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ATHENA performs similarly well with other types 
of machine learning models (DNNs, SVMs, RF)
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Adversarial Attack: FGSM

Model: ResNet Shake-Shake reg 

Dataset: CIFAR100



ATHENA is effective similarly with other types of 
models 

57
Model: ResNet Shake-Shake reg. 

Dataset: CIFAR100

FGSM BIM_l2

BIM_linf CW_l2

JSMA PGD



However, the effectiveness of defense may vary 
depending on the type of models
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Adversarial Attack: FGSM

Model: SVM

Dataset: MNIST

Adversarial Attack: CW_l2

Model: SVM

Dataset: MNIST



What is the 
overhead of 
ATHENA?

- Memory

- Inference Time
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The memory overhead of ATHENA is linear with number 
of WDs, the inference time is on par with model inference
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ATHENA is:
- Flexible

- Extensible

- General

- Moderate overhead
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https://softsys4ai.github.io/athena/
30GB experimental data Website

https://softsys4ai.github.io/athena/

