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How each lecture looks 
like?

• We study ML systems in real world


• We discuss challenges for ML systems in real world


• We review solutions thats scale



Outline

• Motivations behind creating an ML system


• Outline its backend architecture 


• Showcase how such system has led to increased 
customer satisfaction in Uber





What is an ML system?



Machine learning systems comprise software/hardware 
components capable of learning from data and making 

predictions about the future.



Customer Obsession Ticket 
Assistant (COTA) is an ML system 

• Assists Uber agents to resolve issues


• Hundreds of thousands issues daily


• 400+ cities worldwide



Have you ever wonder how Uber 
quickly resolve your issues?



Looks familiar?



So what is the challenge?

• Although this provides important context 


• Not all of the information needed for solving an issue is 
obtainable through this process, particularly given the 
wide variety of possible solutions available. 


• Moreover, the diversity of ways a customer can 
describe an issue associated with a ticket further 
complicates the ticket resolution process.



The main challenge is 
showing up at scale

• As Uber continues to grow at scale, support agents must 
be able to handle an ever-increasing volume and 
diversity of support tickets, from technical errors to fare 
adjustments. 


• In fact, when an agent opens a ticket, the first thing they 
need to do is determine the issue type out of thousands 
of possibilities—no easy task! 


• Reducing the amount of time agents spend identifying 
tickets is important because it also decreases the time it 
takes to resolve issues for users.



Choosing resolution at 
scale

• Once an issue type is chosen, 


• The next step is to identify the right resolution, 


• with each ticket type possessing a different set of 
protocols and solutions. 


• With thousands of possible resolutions to choose from, 
identifying the proper fix to each issue is also a time-
intensive process.



COTA: Customer Obsession 
Ticket Assistant



COTA composes/built on 
top of two subsystems

• Built on top of customer support platform, 


• Michelangelo-powered models suggest the three most 
likely issue types and solutions based on ticket content 
and trip context.



Is COTA an 
ML system?



COTA Architecture
1. Once a new ticket enters the customer support platform 

(CSP), the back-end service collects all relevant features 
of the ticket.


2. The back-end service then sends these features to the 
machine learning model in Michelangelo.



Wait, what is a feature?

• A feature is an individual measurable property or 
characteristic of a phenomenon being observed.



What are the important features 
in each of these domains?



How features will be used in 
training and testing?



COTA Architecture
3. The model predicts scores for each possible solution.


4. The back-end service receives the predictions and 
scores, and saves them to our Schema-less data store. 



COTA Architecture
5. Once an agent opens a given ticket, the front-end service 

triggers the back-end service to check if there are any 
updates to the ticket. If there are no updates, the back-end 
service will retrieve the saved predictions; if there are 
updates, it will fetch the updated features and go through 
steps 2-4 again.



COTA Architecture
6. The back-end service returns the list of solutions 

ranked by the predicted score to the frontend. 


7. The top three ranked solutions are suggested to agents; 
from there, agents make a selection and resolve the 
support ticket.



So what?

• Results are promising; 


• COTA can reduce ticket resolution time by over 10 
percent 


• While delivering service with similar or higher levels of 
customer satisfaction



Let’s have a look at the 
backend

• To accomplish the goal, machine learning model 
leverages features extracted from 


• customer support messages, 


• trip information, 


• and customer selections in the ticket issue submission 
hierarchy outlined earlier.



Any guess what is the most 
important feature of the 

ticket you submit to Uber?



Any guess what is the most important 
feature of the ticket you submit to Uber?

• The most valuable feature for identifying issue type is the 
message customers send to agents about their issue. 


• Uber built a NLP pipeline to transform text across 
several different languages into useful features.



The NLP pipeline



What NLP pipeline does?
• NLP models can be built to translate and interpret different 

elements of text, including phonology, morphology, grammar, 
syntax, and semantics. 


• Depending on the building units, NLP can also register character-
level, word-level, phrase-level, or sentence/document-level 
language modeling. 


• Traditional NLP models are built by leveraging human expertise in 
linguistics to engineer handcrafted features. With the recent upsurge 
in end-to-end training for deep learning models, researchers have 
even begun to develop models that can decipher full chunks of text 
without having to explicitly parse out relationships between different 
words within a sentence, instead using raw text directly.



What NLP pipeline does?

• Uber analyzes text at the word-level to better understand 
the semantics of text data. 


• One popular approach to NLP is topic modeling, which 
aims to understand the meaning of sentences using the 
counting statistics of the words. 


• Although topic modeling does not take into account word 
ordering, it has been proven very powerful for tasks such 
as information retrieval and document classification.



Preprocessing
• Cleaning the text by removing HTML tags. 


• Tokenizing the message’s sentences and remove 
stopwords. 


• Conducting lemmatization to convert words in different 
inflected forms into the same base form. 


• Finally, converting the documents into a collection of 
words (a so-called bag of words) and build a dictionary of 
those words.



Topic modeling

TF-IDF and LSA to extract topics from rich text data in customer support tickets processed by our customer support platform.

Topic Modeling: TF-IDF and LSA 
to extract topics from rich text 

data in customer support tickets 
processed by our customer 

support platform.

Feature Engineering: All the 
solutions and tickets are mapped 

to the topic vector space, and 
cosine similarity between solution 

and ticket pairs are computed.



TF-IDF?

Tf - Term Frequency


Idf - Inverse document frequency 



Quiz!

Would you weight common words higher , or rare 
words? 



TF-IDF, ha?



LSA?

• Latent Semantic Analysis



LSA, ha?



Feature engineering

• Topic modeling enables us to directly use the topic 
vectors as features to perform downstream 
classifications for issue type identification and solution 
selection.



Do you guess what could 
possibly go wrong?



Training becomes 
challenging at scale

• This direct approach suffers from a sparsity of topic 
vectors; 


• In order to form a meaningful representation of these 
topics, we typically need to keep hundreds or even 
thousands of dimensions of topic vectors with many 
dimensions having values close to zero. 


• With a very high-dimensional feature space and large 
amount of data to process, training these models 
becomes quite challenging.



How Uber solved the 
challenge?

• Performing further feature engineering by computing 
cosine similarity features. 


• Using solution selection as an example, we collect the 
historical tickets of each solution and form the bag-of-
word representation of such a solution.



Cosine similarity, ha?

A ⋅ B = A B cos θ



Cosine similarity, ha?

similarity = cos(θ) =
A ⋅ B

∥A∥∥B∥
=

n
∑
i=1

AiBi

n
∑
i=1

A2
i

n
∑
i=1

B2
i

,



Pointwise ranking

• Combined cosine similarity features together with other 
ticket and trip features that matches tickets to solutions



Do you guess what is 
the challenge now?



Solution space becomes 
large

• With over 1,000 possible solutions 


• For 100s of ticket types, 


• Solution space becomes a challenge for the ranking 
algorithm of distinguishing the fine differences between 
these solutions.



How Uber solved the 
challenge?

• Learning to rank!



How Uber solved the 
challenge?

• Label the correct match between solution and ticket pair 
as positive


• Sample a random subset of solutions that do not match 
with the ticket and label the pairs negative


• Using the cosine similarity as well as ticket and trip 
features, they built a binary classification algorithm that 
leverages the random forest technique to classify 
whether or not each solution-ticket combination matches.



Random forest, ha?



Results
• 25 percent relative improvement in accuracy


• Speeds up the training process by 70 percent



Easier and faster ticket solving = 
better customer support



But wait, how they actually 
measured they were successful 
for handling customer issues?



Uber performed A/B tests
• To measure COTA’s impact on customer support experience, Uber 

conducted several controlled A/B test experiments online on English 
language tickets.


• Included thousands of agents and randomly assigned them into 
either control or treatment groups.


• Agents in the control group were exposed to the original workflow, 
while agents in the treatment group were shown a modified user 
interface containing suggestions on issue types and solutions.


• We collected tickets solved solely by either agents in the control or 
treatment group, and measured a few key metrics, including model 
accuracy, average handle time, and customer satisfaction score.



Summary of results
• Measured the online model performance for both groups and 

compared them with offline performance. The model 
performance is consistent from offline to online. 


• Measured customer satisfaction scores and compared them 
across control and treatment groups. Customer satisfaction 
often increased by a few percentage points. This finding 
indicates that COTA delivers the same or slightly higher quality 
of customer service. 


• To determine how much COTA affected ticket resolution speed, 
we compared the average ticket handling time between the 
control and treatment groups. On average, this new feature 
reduced ticket handling time by about 10 percent.



Next?  
Moving to COTA v2 with deep learning



Moving to COTA V2

• Building a Spark-based deep learning Pipeline to 
productize the second generation of COTA (COTA v2)


• Given that model performance decays over time, we also 
built a model management pipeline to automatically 
retrain and retire models to keep them up-to-date.



Challenges of COTA V1

• COTA v1 conducted negative sampling in an overly 
complex way that made it difficult to train our models.


• Original implementation was not extensible enough to be 
used by future NLP models by other teams.



Why Deep learning?

• Serving more than 600 cities worldwide, 


• supporting multiple languages, 


• facilitating over five communication channels, 


• Uber’s customer support reaches customers across 
businesses including ridesharing, Uber Eats, bikesharing, 
and Uber Freight.



Why Deep Learning?
• Deep learning models have already outperformed humans 

on some image classification and recognition tasks. 


• For the task of using retina photographs to detect 
diabetic eye disease, Google has shown that deep 
learning algorithms perform on-par with ophthalmologists. 


• The recent success of AlphaGo demonstrates that deep 
learning algorithms combined with reinforcement learning 
can even beat the world’s best human Go players in what 
is often considered humankind’s most complicated board 
game.



COTA V1 vs V2



Moving to COTA v2 with 
deep learning

• NLP Pipeline was built to process incoming ticket 
messages. 


• Topic modeling was used to extract feature representation 
from the text feature. 


• Additional feature engineering was used to generate 
cosine-similarity. 


• Once each feature was engineered, all the features were 
fed into a binary point-wise ranking algorithm to predict 
the Contact Type and Reply responses.



Moving to COTA v2 with 
deep learning

• The text feature goes through typical NLP preprocessing 
such as text cleaning and tokenization, and each word in 
the ticket is encoded using an embedding layer (not 
shown) to convert the word to a dense representation that 
further runs through convolution layers to encode the 
entire text corpus.


• Categorical features are encoded using an embedding 
layer to capture the closeness between different 
categories. Numerical features are batch normalized to 
stabilize the training process.



Embeddings learned by 
deep learning models



Results

• Deep learning can improve the solution’s top-1 prediction 
accuracy by 16 percent (from 49 percent to 65 percent) 
for the Contact Type model, and 8 percent (from 47 
percent to 55 percent) for the Reply model compared to 
COTA v1. 


• This shows improvement of the customer support 
experience.



Challenges with COTA V2
• To leverage Spark for the NLP transformations in a 

distributed fashion. 


• Spark computations are typically done using CPU 
clusters. 


• On the other hand, deep learning training runs more 
efficiently on a GPU-based infrastructure. 


• To address this duality, use both Spark transformations 
and GPU training, as well as build a unified Pipeline for 
training and serving the deep learning model.



Challenges with COTA V2

• Determining how to maintain model freshness given the 
dynamic nature of Uber’s business. 


• In light of this, a pipeline was needed to frequently 
retrain and redeploy models.



Solution to Challenges
• Deep learning Spark Pipeline (DLSP) to leverage both Spark 

for NLP transformations and GPUs for deep learning 
training. 


• Integrated an internal job scheduling tool and built a model 
life-cycle management Pipeline (MLMP) on top of the DLSP, 
allowing us to schedule and run each job at the frequency 
required. 


• These two pipelines enabled us not only to train and deploy 
deep learning models into Uber’s production system, but 
also retrain and refresh the models to keep them at peak 
performance.



Deep Learning Spark Pipeline



COTA v2’s deep learning 
Spark Pipeline

• The pipeline used for serving runs on a Java Virtual 
Machine (JVM). The performance we see while serving has 
a latency of p95 < 10ms, which demonstrates the 
advantage of low latency when using an existing JVM 
serving infrastructure for deep learning models. 


• By extending Spark Pipelines to encapsulate deep learning 
models, we were able to leverage the best of both CPU 
and GPU-driven worlds: 1) the distributed computation of 
Spark transformations and low-latency serving of Spark 
Pipelines using CPUs and 2) the acceleration of deep 
learning model training using GPUs.



Overall test strategy to compare the 
COTA v1 and COTA v2 systems.



Given enough training data our COTA v2 deep 
learning models can significantly outperform 

the classical COTA v1 machine learning models



Summary
• We went through a ML system with traditional NLP pipeline 

that scale to Uber.


• We also discussed challenges that Uber faced and how they 
came up with a solution that scales well.


• We discussed transition to a deep learning pipeline that 
identifies features via ConvNets automatically without feature 
engineering.


• In addition to improving the customer support experience, 
COTA v2 will also save the company millions of dollars every 
year by streamlining the support ticket resolution process.



Summary
So now we have a much better understand of how a 
machine learning system looks like and what are the 
building blocks of such systems.


