
Introduction to
Machine Learning Systems

Pooyan Jamshidi

UofSC

How each lecture looks
like?

• We study ML systems in real world

• We discuss challenges for ML systems in real world

• We review solutions thats scale

Outline

• Motivations behind creating an ML system

• Outline its backend architecture

• Showcase how such system has led to increased
customer satisfaction in Uber

What is an ML system?

Machine learning systems comprise software/hardware
components capable of learning from data and making

predictions about the future.

Customer Obsession Ticket
Assistant (COTA) is an ML system

• Assists Uber agents to resolve issues

• Hundreds of thousands issues daily

• 400+ cities worldwide

Have you ever wonder how Uber
quickly resolve your issues?

Looks familiar?

So what is the challenge?

• Although this provides important context

• Not all of the information needed for solving an issue is
obtainable through this process, particularly given the
wide variety of possible solutions available.

• Moreover, the diversity of ways a customer can
describe an issue associated with a ticket further
complicates the ticket resolution process.

The main challenge is
showing up at scale

• As Uber continues to grow at scale, support agents must
be able to handle an ever-increasing volume and
diversity of support tickets, from technical errors to fare
adjustments.

• In fact, when an agent opens a ticket, the first thing they
need to do is determine the issue type out of thousands
of possibilities—no easy task!

• Reducing the amount of time agents spend identifying
tickets is important because it also decreases the time it
takes to resolve issues for users.

Choosing resolution at
scale

• Once an issue type is chosen,

• The next step is to identify the right resolution,

• with each ticket type possessing a different set of
protocols and solutions.

• With thousands of possible resolutions to choose from,
identifying the proper fix to each issue is also a time-
intensive process.

COTA: Customer Obsession
Ticket Assistant

COTA composes/built on
top of two subsystems

• Built on top of customer support platform,

• Michelangelo-powered models suggest the three most
likely issue types and solutions based on ticket content
and trip context.

Is COTA an
ML system?

COTA Architecture
1. Once a new ticket enters the customer support platform

(CSP), the back-end service collects all relevant features
of the ticket.

2. The back-end service then sends these features to the
machine learning model in Michelangelo.

Wait, what is a feature?

• A feature is an individual measurable property or
characteristic of a phenomenon being observed.

What are the important features
in each of these domains?

How features will be used in
training and testing?

COTA Architecture
3. The model predicts scores for each possible solution.

4. The back-end service receives the predictions and
scores, and saves them to our Schema-less data store.

COTA Architecture
5. Once an agent opens a given ticket, the front-end service

triggers the back-end service to check if there are any
updates to the ticket. If there are no updates, the back-end
service will retrieve the saved predictions; if there are
updates, it will fetch the updated features and go through
steps 2-4 again.

COTA Architecture
6. The back-end service returns the list of solutions

ranked by the predicted score to the frontend.

7. The top three ranked solutions are suggested to agents;
from there, agents make a selection and resolve the
support ticket.

So what?

• Results are promising;

• COTA can reduce ticket resolution time by over 10
percent

• While delivering service with similar or higher levels of
customer satisfaction

Let’s have a look at the
backend

• To accomplish the goal, machine learning model
leverages features extracted from

• customer support messages,

• trip information,

• and customer selections in the ticket issue submission
hierarchy outlined earlier.

Any guess what is the most
important feature of the

ticket you submit to Uber?

Any guess what is the most important
feature of the ticket you submit to Uber?

• The most valuable feature for identifying issue type is the
message customers send to agents about their issue.

• Uber built a NLP pipeline to transform text across
several different languages into useful features.

The NLP pipeline

What NLP pipeline does?
• NLP models can be built to translate and interpret different

elements of text, including phonology, morphology, grammar,
syntax, and semantics.

• Depending on the building units, NLP can also register character-
level, word-level, phrase-level, or sentence/document-level
language modeling.

• Traditional NLP models are built by leveraging human expertise in
linguistics to engineer handcrafted features. With the recent upsurge
in end-to-end training for deep learning models, researchers have
even begun to develop models that can decipher full chunks of text
without having to explicitly parse out relationships between different
words within a sentence, instead using raw text directly.

What NLP pipeline does?

• Uber analyzes text at the word-level to better understand
the semantics of text data.

• One popular approach to NLP is topic modeling, which
aims to understand the meaning of sentences using the
counting statistics of the words.

• Although topic modeling does not take into account word
ordering, it has been proven very powerful for tasks such
as information retrieval and document classification.

Preprocessing
• Cleaning the text by removing HTML tags.

• Tokenizing the message’s sentences and remove
stopwords.

• Conducting lemmatization to convert words in different
inflected forms into the same base form.

• Finally, converting the documents into a collection of
words (a so-called bag of words) and build a dictionary of
those words.

Topic modeling

TF-IDF and LSA to extract topics from rich text data in customer support tickets processed by our customer support platform.

Topic Modeling: TF-IDF and LSA
to extract topics from rich text

data in customer support tickets
processed by our customer

support platform.

Feature Engineering: All the
solutions and tickets are mapped

to the topic vector space, and
cosine similarity between solution

and ticket pairs are computed.

TF-IDF?

Tf - Term Frequency

Idf - Inverse document frequency

Quiz!

Would you weight common words higher , or rare
words?

TF-IDF, ha?

LSA?

• Latent Semantic Analysis

LSA, ha?

Feature engineering

• Topic modeling enables us to directly use the topic
vectors as features to perform downstream
classifications for issue type identification and solution
selection.

Do you guess what could
possibly go wrong?

Training becomes
challenging at scale

• This direct approach suffers from a sparsity of topic
vectors;

• In order to form a meaningful representation of these
topics, we typically need to keep hundreds or even
thousands of dimensions of topic vectors with many
dimensions having values close to zero.

• With a very high-dimensional feature space and large
amount of data to process, training these models
becomes quite challenging.

How Uber solved the
challenge?

• Performing further feature engineering by computing
cosine similarity features.

• Using solution selection as an example, we collect the
historical tickets of each solution and form the bag-of-
word representation of such a solution.

Cosine similarity, ha?

A ⋅ B = A B cos θ

Cosine similarity, ha?

similarity = cos(θ) =
A ⋅ B

∥A∥∥B∥
=

n
∑
i=1

AiBi

n
∑
i=1

A2
i

n
∑
i=1

B2
i

,

Pointwise ranking

• Combined cosine similarity features together with other
ticket and trip features that matches tickets to solutions

Do you guess what is
the challenge now?

Solution space becomes
large

• With over 1,000 possible solutions

• For 100s of ticket types,

• Solution space becomes a challenge for the ranking
algorithm of distinguishing the fine differences between
these solutions.

How Uber solved the
challenge?

• Learning to rank!

How Uber solved the
challenge?

• Label the correct match between solution and ticket pair
as positive

• Sample a random subset of solutions that do not match
with the ticket and label the pairs negative

• Using the cosine similarity as well as ticket and trip
features, they built a binary classification algorithm that
leverages the random forest technique to classify
whether or not each solution-ticket combination matches.

Random forest, ha?

Results
• 25 percent relative improvement in accuracy

• Speeds up the training process by 70 percent

Easier and faster ticket solving =
better customer support

But wait, how they actually
measured they were successful
for handling customer issues?

Uber performed A/B tests
• To measure COTA’s impact on customer support experience, Uber

conducted several controlled A/B test experiments online on English
language tickets.

• Included thousands of agents and randomly assigned them into
either control or treatment groups.

• Agents in the control group were exposed to the original workflow,
while agents in the treatment group were shown a modified user
interface containing suggestions on issue types and solutions.

• We collected tickets solved solely by either agents in the control or
treatment group, and measured a few key metrics, including model
accuracy, average handle time, and customer satisfaction score.

Summary of results
• Measured the online model performance for both groups and

compared them with offline performance. The model
performance is consistent from offline to online.

• Measured customer satisfaction scores and compared them
across control and treatment groups. Customer satisfaction
often increased by a few percentage points. This finding
indicates that COTA delivers the same or slightly higher quality
of customer service.

• To determine how much COTA affected ticket resolution speed,
we compared the average ticket handling time between the
control and treatment groups. On average, this new feature
reduced ticket handling time by about 10 percent.

Next?
Moving to COTA v2 with deep learning

Moving to COTA V2

• Building a Spark-based deep learning Pipeline to
productize the second generation of COTA (COTA v2)

• Given that model performance decays over time, we also
built a model management pipeline to automatically
retrain and retire models to keep them up-to-date.

Challenges of COTA V1

• COTA v1 conducted negative sampling in an overly
complex way that made it difficult to train our models.

• Original implementation was not extensible enough to be
used by future NLP models by other teams.

Why Deep learning?

• Serving more than 600 cities worldwide,

• supporting multiple languages,

• facilitating over five communication channels,

• Uber’s customer support reaches customers across
businesses including ridesharing, Uber Eats, bikesharing,
and Uber Freight.

Why Deep Learning?
• Deep learning models have already outperformed humans

on some image classification and recognition tasks.

• For the task of using retina photographs to detect
diabetic eye disease, Google has shown that deep
learning algorithms perform on-par with ophthalmologists.

• The recent success of AlphaGo demonstrates that deep
learning algorithms combined with reinforcement learning
can even beat the world’s best human Go players in what
is often considered humankind’s most complicated board
game.

COTA V1 vs V2

Moving to COTA v2 with
deep learning

• NLP Pipeline was built to process incoming ticket
messages.

• Topic modeling was used to extract feature representation
from the text feature.

• Additional feature engineering was used to generate
cosine-similarity.

• Once each feature was engineered, all the features were
fed into a binary point-wise ranking algorithm to predict
the Contact Type and Reply responses.

Moving to COTA v2 with
deep learning

• The text feature goes through typical NLP preprocessing
such as text cleaning and tokenization, and each word in
the ticket is encoded using an embedding layer (not
shown) to convert the word to a dense representation that
further runs through convolution layers to encode the
entire text corpus.

• Categorical features are encoded using an embedding
layer to capture the closeness between different
categories. Numerical features are batch normalized to
stabilize the training process.

Embeddings learned by
deep learning models

Results

• Deep learning can improve the solution’s top-1 prediction
accuracy by 16 percent (from 49 percent to 65 percent)
for the Contact Type model, and 8 percent (from 47
percent to 55 percent) for the Reply model compared to
COTA v1.

• This shows improvement of the customer support
experience.

Challenges with COTA V2
• To leverage Spark for the NLP transformations in a

distributed fashion.

• Spark computations are typically done using CPU
clusters.

• On the other hand, deep learning training runs more
efficiently on a GPU-based infrastructure.

• To address this duality, use both Spark transformations
and GPU training, as well as build a unified Pipeline for
training and serving the deep learning model.

Challenges with COTA V2

• Determining how to maintain model freshness given the
dynamic nature of Uber’s business.

• In light of this, a pipeline was needed to frequently
retrain and redeploy models.

Solution to Challenges
• Deep learning Spark Pipeline (DLSP) to leverage both Spark

for NLP transformations and GPUs for deep learning
training.

• Integrated an internal job scheduling tool and built a model
life-cycle management Pipeline (MLMP) on top of the DLSP,
allowing us to schedule and run each job at the frequency
required.

• These two pipelines enabled us not only to train and deploy
deep learning models into Uber’s production system, but
also retrain and refresh the models to keep them at peak
performance.

Deep Learning Spark Pipeline

COTA v2’s deep learning
Spark Pipeline

• The pipeline used for serving runs on a Java Virtual
Machine (JVM). The performance we see while serving has
a latency of p95 < 10ms, which demonstrates the
advantage of low latency when using an existing JVM
serving infrastructure for deep learning models.

• By extending Spark Pipelines to encapsulate deep learning
models, we were able to leverage the best of both CPU
and GPU-driven worlds: 1) the distributed computation of
Spark transformations and low-latency serving of Spark
Pipelines using CPUs and 2) the acceleration of deep
learning model training using GPUs.

Overall test strategy to compare the
COTA v1 and COTA v2 systems.

Given enough training data our COTA v2 deep
learning models can significantly outperform

the classical COTA v1 machine learning models

Summary
• We went through a ML system with traditional NLP pipeline

that scale to Uber.

• We also discussed challenges that Uber faced and how they
came up with a solution that scales well.

• We discussed transition to a deep learning pipeline that
identifies features via ConvNets automatically without feature
engineering.

• In addition to improving the customer support experience,
COTA v2 will also save the company millions of dollars every
year by streamlining the support ticket resolution process.

Summary
So now we have a much better understand of how a
machine learning system looks like and what are the
building blocks of such systems.

