
Reactive
Machine Learning

Pooyan Jamshidi
USC

Learning Goals

Understand how to build a system that can
put the power of machine learning to use.

Understand how to incorporate ML-based
components into a larger system.

Understand the principles that govern
these systems, both as software and as
predictive systems.

Learning Goals

Understand challenges of building
ML systems.

Understand strategies of making ML
systems reactive.

ML Systems

Machine
Learning

Computer
Systems

So
ft
w
ar

e
E
ng

in
ee

ri
ng

Acknowledgement
I borrowed materials
from:

Jeff Smith’s book ->

Spark Documents

MIT course Intro
to Deep Learning

TF document

Reactive ML

Reactive ML = using strategies for
building Reactive Systems + to solve
unique challenges of ML systems

But wait, how
a reactive

systems looks
like?

ResponsiveResponsive

Resilient
Resilient

ElasticElastic

Message-driven
Message-Driven

Case study

A startup that tries to build a
machine learning system from the
ground up and finds it very, very
hard!

Sniffable

Sniffable is the Instagram for dogs.

Dog owners post pictures of their
dogs,

and other dog owners (sniffers!)
like, share, and comment on those
pictures.

A New Feature for
Sniffable

Sniffers want to promote their
specific dog

Sniffers want their dogs to become a
celebrity!

So, they want a new tool to make
their pupdates, more viral.

Pooch Predictor

A new feature to figure out which
picture would get the biggest
response on Sniffable

A new feature to predict the number
of likes a given pupdate might get,
based on the hashtags used.

Why did the startup come
up with Pooch Predictor?

It would engage the dog owners,

help them create viral content,

and grow the Sniffable network as a
whole

Pooch Predictor 1.0
Architecture

What kind of architectural style is this?

How does pipes and
filters style look like?

Pipes and filters

Pipes and filters

Filter: component that transforms data

Filters can be executed concurrently

Pipe: Takes output data from one
filter to the input of another filter

Properties: buffer size, data format,
interaction protocol

Benefits of pipes
and filters?

Each component is decoupled from
one another and can be maintained
independently.

Each component can also be tested in
isolation.

You can re-use components to create
different chains.

What happened at the
organizational level

Data
Scientist

Software
Engineer

Prototype

Something seems
wrong!

Issue: Predictions weren’t changing
much over a period of time despite
adding more data to the system

Misunderstanding
between stakeholders

What is the
retraining What??

Data
Scientist

Software
Engineer

Pooch Predictor 1.1
Architecture

System issues
appeared

Pooch Predictor wasn’t very reliable

Change in the database -> the queries
would fail

High load on the server -> the modeling
job would fail

More and more as the size of the social
network increased

Failures were hard
to detect

Failures were hard to detect without
building up more sophisticated
monitoring infrastructure.

There wasn’t much that could be
done other than restarting the job.

Modeling issues

Data scientist realized that some of
the features weren’t being correctly
extracted from the raw data.

It was also really hard to
understand how a change to the
features would impact modeling
performance.

A major issue
happened

For a couple of weeks, their interaction
rates steadily trended down.

For users outside of the US, Pooch
Predictor would always predict a
negative number of likes!!

It was a problem with the modeling
system’s location-based features.

How they fix it?

Data scientist started implementing
more feature-extraction functionality
in an attempt to improve modeling
performance.

To do that, she got the engineer’s help
to send more data from the user app
back to the application database.

Things went from
bad to worse!

The app slowed down dramatically.

What was the
reason?

Sending the data from the app back to server
took way too long to maintain reasonable
responsiveness.

The server would throw an exception any time
the prediction functionality saw any of the
new features.

The prediction functionality within the server
that supported the app didn’t handle the new
features properly.

Pooch Predictor 1.1
Architecture

So what they did??

After understanding where things
had gone wrong, the team quickly
rolled back all of the new
functionality and restored the app
to a normal operational state.

They held a retrospective to build a
better system…

Building a better
system (operation)
Sniffle must remain responsive, regardless
of any problems with the predictive system.

The predictive component needs to be less
tightly coupled to the rest of the systems.

The predictive system needs to behave
predictably regardless of high load or
errors in the system itself.

Building a better
system (development)

It should be easier for different
developers to make changes to the
predictive system.

The code needs to use different
programming idioms that ensure
better performance.

Building a better
system (ML)

The predictive system must measure its modeling
performance better.

The predictive system should support evolution
and change.

The predictive system should support online
experimentation.

Easy for developers to supervise the predictive
system and rapidly correct any rogue behavior.  

Sniffable team missed
something big, right?
They built what initially looked like a useful ML
system that added value to their core product.

Production issues with their ML system
frequently pulled the team away from work on
improvements to the capability of the system.

Even though they had a bunch of smart people
to develop model to predict the dynamics of
dog-based social networking, their system
repeatedly failed at its mission.

Building ML
systems is hard!

The data scientist knew how to do ML.

Pooch Predictor totally worked on his
laptop.

But the data scientist was not thinking
of ML as a system - but as a technique!

Pooch Predictor was a failure both as a
predictive system and as a software.

To build it right:
Reactive ML

Reactive ML = ML as a system

ML Pipeline

Starting from the
beginning

A ML system must collect data from the
outside world.

In the Pooch Predictor example, the team
was trying to skip this concern by using the
data that their application already had.

Obviously, this approach was quick, but it
tightly couples the Sniffable application data
model to the Pooch Predictor data model.

Derived representations of
the raw data = instances

What is “feature”?

Features are meaningful data points
derived from raw data related to
the entity being predicted on.

A Sniffable example of a “feature”
would be ??

What is the feature
vector?

The feature values for a given
instance are collectively called
a feature vector.

What is a concept?

A concept is the thing that the system is
trying to predict.

In the context of Pooch Predictor, a
concept would be the number of likes a
given post receives.

When a concept is discrete (i.e. not
continuous), it can be called a class label.

Types of learning

Supervised: given data, predict label

Unsupervised: given data, learn about
that data

RL: given data, choose action to
maximize expected long-term reward

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Types of Deep Learning

[81, 165]

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning Reinforcement

Learning

What is a “model”?

A program that maps from features to
predicted concepts.

For the Pooch Predictor, a program
that takes as input the feature
representation of the hashtag data and
returns the predicted number of likes
that a given pupdate might receive.

What is model
publishing?

Model publishing means making the
model program available outside of
the context it was learned in,

so that it can make predictions on
data it hasn’t seen before.

making the model program
available outside of the
context it was learned in

Remember any issue
regarding model publishing

in sniffable?
Sniffable team largely skipped it in their
original implementation.

They didn’t even set up their system to
retrain the model on a regular basis.

Their next approach at implementing
model retraining also ran into difficulty,
causing their models to be out of sync
with their feature extractors.

ML systems are different
from transactional systems

Some of the pooch predictor system problems
stemmed from treating their predictive system
like a transaction business application.

An approach that relies upon strong
consistency guarantees just doesn’t work for
modern distributed systems,

It is out of sync with the pervasive and
intrinsic uncertainty in a machine learning
system.

ML apps are
dynamic systems

Other problems the Sniffable team
experienced had to do with not
thinking about their system in
dynamic terms.

ML systems must evolve, and they
must support parallel tracks for that
evolution through experimentation.

ML Quality Attributes
for Reactive ML Systems

@jeffksmithjr @xdotai#Devoxx

Reactive Systems

Responsive

Resilient Elastic

Message-Driven

[Most of these figures are taken from Jeff Smith’s slides and book]

ResponsiveResponsive

Responsive

If a system doesn’t respond to its
users, then it’s useless.

Think of the Sniffable team causing
a massive slowdown in the Sniffable
app due to the responsiveness of
their ML system.

Resilient
Resilient

Resilient

Whether the cause is hardware, human
error, or design flaws, software always
breaks.

Providing some sort of acceptable
response even when things don’t go as
planned is a key part of ensuring that
users view a system as being responsive.

ElasticElastic

Elastic

Elastic systems should respond to
increases or decreases in load.

The Sniffable team saw this when
their traffic ramped up and the
Pooch Predictor system couldn’t
keep up with the load.

Message-driven
Message-Driven

Message-driven

A loosely coupled system organized
around message passing can make it easier
to detect failure or issues with load.

Moreover, a design with this trait helps
contain any of the effects of errors
isolated, rather than flaming production
issues that needed to be immediately
addressed, as they were in Pooch Predictor.

Wait, how do you build a
system that actually has

these qualities?

Tactics

Replication

Data, whether at rest or in motion, should
be redundantly stored or processed.

In the Sniffable example, there was a time
when the server that ran the model-
learning job failed, and no model was
learned.

two or more model-learning jobs

An Example:
Spark Architecture

Rather than requiring
you to always have
two pipelines
executing, Spark
gives you automatic,
fine-grained
replication so that
the system can
recover from failure.

Containment
Prevent the failure of any single component
of the system from affecting any other
component.

Docker or rkt? no, this strategy isn’t about any
one implementation. Containment can be
implemented using many different systems.

The point is to prevent the sort of cascading
failure we saw in Pooch Predictor, and to do
so at a structural level.

A Contained Model-
Serving Architecture

Remember the model and the
features were out of sync, resulting
in exceptions during model
serving??

Supervision

Identify the components that could
fail and some other component is
responsible for their lifecycles.

A Supervisory Architecture

The published models are observed by
the model supervisor. Should their
behavior ever deviate from acceptable
bounds, the supervisor would stop
sending them messages requesting
predictions.

Model Supervisor

French
Bulldog

French
Bulldog

French
Bulldog

No one
likes dogs

Replication Isolation/
Containment

Supervision/
Delegation

Supervisory architecture
allows self-healing

The model supervisor could even
completely destroy a model it
knows to be bad, allowing the
system to be self-healing.

Why Turning ML
systems to reactive

Ultimately, a reactive ML system
gives you the ability to deliver value
through ever better predictions.

Strategies to make
ML reactive

Infinite Data
Ideally, with its new ML capabilities, Sniffable
is going to take off and see tons of traffic.

Some posts would have big dogs, others
small ones.

Some posts would use filters, and others
would be more natural.

Some would be rich in hashtags, and some
wouldn’t have any annotations.

Strategy 1: Laziness

Delay of execution, to separate the
composition of functions to execute
from their actual execution.

Conceive of the data flow in terms
of infinite streams instead of finite
batches.

Lazy Evaluation in
Spark

The execution will not start until an
action is triggered

Strategy 2: Pure
functions

Evaluating the function must not
result in some sort of side effect,
such as changing the state of some
variable or performing some I/O.

Functions can be passed to other
functions as arguments -> Higher
Order Functions

Uncertainty

Even before making a prediction, a ML
system must deal with the uncertainty of
the real world outside of the ML system.

For example, do sniffers using the
hashtag #adorabull mean the same thing
as sniffers using the hashtag #adorable,
or should those be viewed as different
features?

Strategy 3:
Immutable facts

Data that can simply be written once and never
modified

The use of immutable facts will allow us to
reason about uncertain views of the world at
specific points in time.

Having a complete record of all facts that
occurred over the lifetime of the system will also
enable important machine learning, like model
experimentation and automatic model validation.

Strategy 4: Possible
Worlds

Summary
ML offers a powerful toolkit for building
useful prediction systems.

Building an ML model is only part of a
larger system development process.

We went through practices in distributed
systems and software engineering in a
pragmatic approach to building real-world
ML systems.

Summary

ML can be viewed as an application, and
not just as a technique.

We learned how to incorporate ML-based
components into a larger complex system.

Reactive is a way to build sophisticated
systems, and some ML systems don’t need
to be sophisticated.

Resources

Reading assignment: Reactive ML
book, Chapter 1

Project

Project3: How you can decrease
latency of model serving (TF
serving) by changing some of
parameters like caching, remote
procedure call protocol, etc.

Model serving

Model serving

