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Learning Goals

Understand how to build a system that can 
put the power of machine learning to use. 

Understand how to incorporate ML-based 
components into a larger system. 

Understand the principles that govern 
these systems, both as software and as 
predictive systems.



Learning Goals

Understand challenges of building 
ML systems. 

Understand strategies of making ML 
systems reactive.
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Reactive ML

Reactive ML = using strategies for 
building Reactive Systems + to solve 
unique challenges of ML systems



But wait, how 
a reactive 

systems looks 
like? 



ResponsiveResponsive



Resilient
Resilient



ElasticElastic



Message-driven
Message-Driven



Case study

A startup that tries to build a 
machine learning system from the 
ground up and finds it very, very 
hard!



Sniffable

Sniffable is the Instagram for dogs. 

Dog owners post pictures of their 
dogs,  

and other dog owners (sniffers!) 
like, share, and comment on those 
pictures.



A New Feature for 
Sniffable

Sniffers want to promote their 
specific dog 

Sniffers want their dogs to become a 
celebrity! 

So, they want a new tool to make 
their pupdates, more viral.



Pooch Predictor

A new feature to figure out which 
picture would get the biggest 
response on Sniffable 

A new feature to predict the number 
of likes a given pupdate might get, 
based on the hashtags used.



Why did the startup come 
up with Pooch Predictor?

It would engage the dog owners,  

help them create viral content,  

and grow the Sniffable network as a 
whole



Pooch Predictor 1.0 
Architecture 

What kind of architectural style is this?



How does pipes and 
filters style look like?



Pipes and filters



Pipes and filters

Filter: component that transforms data  

Filters can be executed concurrently  

Pipe: Takes output data from one 
filter to the input of another filter  

Properties: buffer size, data format, 
interaction protocol



Benefits of pipes 
and filters?

Each component is decoupled from 
one another and can be maintained 
independently.  

Each component can also be tested in 
isolation.  

You can re-use components to create 
different chains.



What happened at the 
organizational level

Data 
Scientist

Software 
Engineer

Prototype



Something seems 
wrong!

Issue: Predictions weren’t changing 
much over a period of time despite 
adding more data to the system



Misunderstanding 
between stakeholders 

What is the 
retraining What??

Data 
Scientist

Software 
Engineer



Pooch Predictor 1.1 
Architecture 



System issues 
appeared

Pooch Predictor wasn’t very reliable 

Change in the database -> the queries 
would fail 

High load on the server -> the modeling 
job would fail 

More and more as the size of the social 
network increased



Failures were hard 
to detect

Failures were hard to detect without 
building up more sophisticated 
monitoring infrastructure. 

There wasn’t much that could be 
done other than restarting the job.



Modeling issues

Data scientist realized that some of 
the features weren’t being correctly 
extracted from the raw data.  

It was also really hard to 
understand how a change to the 
features would impact modeling 
performance.



A major issue 
happened

For a couple of weeks, their interaction 
rates steadily trended down. 

For users outside of the US, Pooch 
Predictor would always predict a 
negative number of likes!! 

It was a problem with the modeling 
system’s location-based features.



How they fix it?

Data scientist started implementing 
more feature-extraction functionality 
in an attempt to improve modeling 
performance.  

To do that, she got the engineer’s help 
to send more data from the user app 
back to the application database. 



Things went from 
bad to worse!

The app slowed down dramatically.



What was the 
reason?

Sending the data from the app back to server 
took way too long to maintain reasonable 
responsiveness. 

The server would throw an exception any time 
the prediction functionality saw any of the 
new features. 

The prediction functionality within the server 
that supported the app didn’t handle the new 
features properly.



Pooch Predictor 1.1 
Architecture 



So what they did??

After understanding where things 
had gone wrong, the team quickly 
rolled back all of the new 
functionality and restored the app 
to a normal operational state. 

They held a retrospective to build a 
better system…



Building a better 
system (operation)
Sniffle must remain responsive, regardless 
of any problems with the predictive system. 

The predictive component needs to be less 
tightly coupled to the rest of the systems. 

The predictive system needs to behave 
predictably regardless of high load or 
errors in the system itself.



Building a better 
system (development)

It should be easier for different 
developers to make changes to the 
predictive system. 

The code needs to use different 
programming idioms that ensure 
better performance.



Building a better 
system (ML)

The predictive system must measure its modeling 
performance better. 

The predictive system should support evolution 
and change. 

The predictive system should support online 
experimentation. 

Easy for developers to supervise the predictive 
system and rapidly correct any rogue behavior.  



Sniffable team missed 
something big, right?
They built what initially looked like a useful ML 
system that added value to their core product.  

Production issues with their ML system 
frequently pulled the team away from work on 
improvements to the capability of the system.  

Even though they had a bunch of smart people 
to develop model to predict the dynamics of 
dog-based social networking, their system 
repeatedly failed at its mission.



Building ML 
systems is hard!

The data scientist knew how to do ML.  

Pooch Predictor totally worked on his 
laptop. 

But the data scientist was not thinking 
of ML as a system - but as a technique!  

Pooch Predictor was a failure both as a 
predictive system and as a software.



To build it right: 
Reactive ML

Reactive ML = ML as a system



ML Pipeline



Starting from the 
beginning

A ML system must collect data from the 
outside world. 

In the Pooch Predictor example, the team 
was trying to skip this concern by using the 
data that their application already had. 

Obviously, this approach was quick, but it 
tightly couples the Sniffable application data 
model to the Pooch Predictor data model.



Derived representations of 
the raw data = instances



What is “feature”?

Features are meaningful data points 
derived from raw data related to 
the entity being predicted on. 

A Sniffable example of a “feature” 
would be ??



What is the feature 
vector?

The feature values for a given 
instance are collectively called 
a feature vector.



What is a concept?

A concept is the thing that the system is 
trying to predict.  

In the context of Pooch Predictor, a 
concept would be the number of likes a 
given post receives.  

When a concept is discrete (i.e. not 
continuous), it can be called a class label.



Types of learning

Supervised: given data, predict label 

Unsupervised: given data, learn about 
that data 

RL: given data, choose action to 
maximize expected long-term reward

Lex Fridman:
fridman@mit.edu

January
2018
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Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Types of Deep Learning

[81, 165]

Supervised 
Learning

Unsupervised 
Learning

Semi-Supervised
Learning Reinforcement

Learning



What is a “model”?

A program that maps from features to 
predicted concepts. 

For the Pooch Predictor, a program 
that takes as input the feature 
representation of the hashtag data and 
returns the predicted number of likes 
that a given pupdate might receive.



What is model 
publishing?

Model publishing means making the 
model program available outside of 
the context it was learned in,  

so that it can make predictions on 
data it hasn’t seen before.



making the model program 
available outside of the 
context it was learned in



Remember any issue 
regarding model publishing 

in sniffable?
Sniffable team largely skipped it in their 
original implementation.  

They didn’t even set up their system to 
retrain the model on a regular basis.  

Their next approach at implementing 
model retraining also ran into difficulty, 
causing their models to be out of sync 
with their feature extractors.



ML systems are different 
from transactional systems

Some of the pooch predictor system problems 
stemmed from treating their predictive system 
like a transaction business application. 

An approach that relies upon strong 
consistency guarantees just doesn’t work for 
modern distributed systems,  

It is out of sync with the pervasive and 
intrinsic uncertainty in a machine learning 
system.



ML apps are 
dynamic systems

Other problems the Sniffable team 
experienced had to do with not 
thinking about their system in 
dynamic terms.  

ML systems must evolve, and they 
must support parallel tracks for that 
evolution through experimentation.



ML Quality Attributes 
for Reactive ML Systems

@jeffksmithjr @xdotai#Devoxx

Reactive Systems

Responsive

Resilient Elastic

Message-Driven

[Most of these figures are taken from Jeff Smith’s slides and book]



ResponsiveResponsive



Responsive

If a system doesn’t respond to its 
users, then it’s useless.  

Think of the Sniffable team causing 
a massive slowdown in the Sniffable 
app due to the responsiveness of 
their ML system.



Resilient
Resilient



Resilient

Whether the cause is hardware, human 
error, or design flaws, software always 
breaks.  

Providing some sort of acceptable 
response even when things don’t go as 
planned is a key part of ensuring that 
users view a system as being responsive.



ElasticElastic



Elastic

Elastic systems should respond to 
increases or decreases in load.  

The Sniffable team saw this when 
their traffic ramped up and the 
Pooch Predictor system couldn’t 
keep up with the load.



Message-driven
Message-Driven



Message-driven

A loosely coupled system organized 
around message passing can make it easier 
to detect failure or issues with load.  

Moreover, a design with this trait helps 
contain any of the effects of errors 
isolated, rather than flaming production 
issues that needed to be immediately 
addressed, as they were in Pooch Predictor.



Wait, how do you build a 
system that actually has 

these qualities?

Tactics



Replication

Data, whether at rest or in motion, should 
be redundantly stored or processed. 

In the Sniffable example, there was a time 
when the server that ran the model-
learning job failed, and no model was 
learned.  

two or more model-learning jobs



An Example:  
Spark Architecture

Rather than requiring 
you to always have 
two pipelines 
executing, Spark 
gives you automatic, 
fine-grained 
replication so that 
the system can 
recover from failure.



Containment
Prevent the failure of any single component 
of the system from affecting any other 
component. 

Docker or rkt? no, this strategy isn’t about any 
one implementation. Containment can be 
implemented using many different systems.  

The point is to prevent the sort of cascading 
failure we saw in Pooch Predictor, and to do 
so at a structural level.



A Contained Model-
Serving Architecture

Remember the model and the 
features were out of sync, resulting 
in exceptions during model 
serving?? 



Supervision

Identify the components that could 
fail and some other component is 
responsible for their lifecycles.



A Supervisory Architecture 

The published models are observed by 
the model supervisor. Should their 
behavior ever deviate from acceptable 
bounds, the supervisor would stop 
sending them messages requesting 
predictions. 



Model Supervisor

French 
Bulldog 

French 
Bulldog 

French 
Bulldog 

No one 
likes dogs

Replication Isolation/ 
Containment

Supervision/ 
Delegation



Supervisory architecture 
allows self-healing

The model supervisor could even 
completely destroy a model it 
knows to be bad, allowing the 
system to be self-healing.



Why Turning ML 
systems to reactive

Ultimately, a reactive ML system 
gives you the ability to deliver value 
through ever better predictions.



Strategies to make 
ML reactive



Infinite Data
Ideally, with its new ML capabilities, Sniffable 
is going to take off and see tons of traffic. 

Some posts would have big dogs, others 
small ones.  

Some posts would use filters, and others 
would be more natural.  

Some would be rich in hashtags, and some 
wouldn’t have any annotations. 



Strategy 1: Laziness

Delay of execution, to separate the 
composition of functions to execute 
from their actual execution. 

Conceive of the data flow in terms 
of infinite streams instead of finite 
batches.



Lazy Evaluation in 
Spark

The execution will not start until an 
action is triggered



Strategy 2: Pure 
functions

Evaluating the function must not 
result in some sort of side effect, 
such as changing the state of some 
variable or performing some I/O. 

Functions can be passed to other 
functions as arguments -> Higher 
Order Functions



Uncertainty

Even before making a prediction, a ML 
system must deal with the uncertainty of 
the real world outside of the ML system.  

For example, do sniffers using the 
hashtag #adorabull mean the same thing 
as sniffers using the hashtag #adorable, 
or should those be viewed as different 
features?



Strategy 3: 
Immutable facts

Data that can simply be written once and never 
modified 

The use of immutable facts will allow us to 
reason about uncertain views of the world at 
specific points in time. 

Having a complete record of all facts that 
occurred over the lifetime of the system will also 
enable important machine learning, like model 
experimentation and automatic model validation.



Strategy 4: Possible 
Worlds



Summary
ML offers a powerful toolkit for building 
useful prediction systems. 

Building an ML model is only part of a 
larger system development process. 

We went through practices in distributed 
systems and software engineering in a 
pragmatic approach to building real-world 
ML systems.



Summary

ML can be viewed as an application, and 
not just as a technique. 

We learned how to incorporate ML-based 
components into a larger complex system. 

Reactive is a way to build sophisticated 
systems, and some ML systems don’t need 
to be sophisticated. 



Resources

Reading assignment: Reactive ML 
book, Chapter 1



Project

Project3: How you can decrease 
latency of model serving (TF 
serving) by changing some of 
parameters like caching, remote 
procedure call protocol, etc.



Model serving



Model serving


