Machine Learning
Platforms

Pooyan Jamshidi
USC

Learning goals

Review principal components of an ML platform.

|dentify key challenges of scaling an ML pipeline to a
large number of heterogeneous models.

Define solutions that scale model training and serving.

Characterize system properties and how to build a
production-ready ML pipeline that guarantee reliability,
resiliency, responsiveness, and elasticity.

Main sources

[| ETYITIT:

UBER Engineering

THE NETFLIX
TECH BLOG

@ Spotify' Labs

Designs that scale

Jeff Smith

Foreword by Sean Owen

Meet Michelangelo: Uber’'s Machine Learning
Platform

September 5, 2017

v o Ji o fin e < @ Cotegorics

REQUEST POOL

Enable engineers and data scientists across the company to
easily build and deploy machine learning solutions at scale.

How Uber uses ML?

In what business activities?

ML at Uber

Uber Eats

ETAs
Autonomous Cars
Customer Support
Dispatch
Personalization
Demand Modeling

Dynamic Pricing

ML at Uber

Forecasting

Maps

Fraud

Destination Predictions
Anomaly Detection
Capacity Planning

And many more...

ML at Uber - ETAS

«111 T-Mobile & 6:19 PM Q) 7 r-18% ot

ETAs are core to customer experience and
used by many internal systems

ETA are generated by route-based algorithms

It is often incorrect - but it’s incorrect in
predictable ways

ML model predicts the error
Use the predicted error to correct the ETA

ETAs now dramatically more accurate

EN A

1silod

DT='Tom \Waddell P!

® | Meet at 1456 Market St
th §

rell St

g Connecting you to nearby drivers

ML at Uber - Eats

e Models used for

* Ranking of restaurants
and dishes

e Delivery times
e Search ranking

e 100s of ML models
called to render Eats
homepage

w!! T-Mobile = 6:36 PM

ASAP - 74 Banks St ()

More Restaurants

4505 Burgers & BBQ

45

35-45 MIN

! T-Mobile & 6:37 PM

7 3% 15% s

Q Seafl CANCEL

Seafood

Seafood Noodle
Fried Seafood Basket
Seafood Fried
Seafood Curry

Search for "Seaf"

ML at Uber - Autonomous
Cars

Self-Driving Car

Train Metrics | Train Metrics | Train Metrics

I pregpe—_—
S BN _ _

Radar

e Optimize matching of rider and driver

* Predict if open rider app will make trip
request

ML at Uber - Destination

il T-Mokije & 6:13 AM 7 % 96% .
2 3 161
0 =—. ;? ® A L] 17th

17% off your next ride 10+ days

= Where t0?

- Work

0 24th St Mission BART Station

g CEBChavez eV
3 © EIR O'P
o,
r //’7<-
\tSpPark « o
@ S %,
v i/
DAve / 3
C O [5] > o\ © /?,,
\nC %
(7]
S oogle m
© 1548} 1

53]

E

Save this destination

Prediction

wil T-Mobile & 6:15 AM 7 3 95% mm)
« a, For Jeremy Vv
Home
. +
' Work
Y% Saved Places >
) 24th St Mission BART Station
) San Francisco International Airport (SFO)
) 1455 Market St

555 Market St

QIWIERJTIYJULI JO}P

AJSIDIFJGIH]J]K]L

4 Z X CVBNM &
28 i O space

wll T-Mobile & 6:15 AM 7 % 95%)

&« “, For Jeremy v
Home
= Stone)+
® Stonestown Galleria
® Stones Throw
® Stonestown Family YMCA
® Stone Bowl +
® Mollie Stone's Markets
(@] Cat laratinn An Man
qgqwer tyui op

alsldiflaglhljik]!

S

123 | @ ¢ space

zZIxXxlcivibinim B

ML at Uber -
Spatiotemporal Forecasting

* Supply

e Available Drivers
e Demand

 Open Apps
e Other

* Request Times

e Arrival Times

e Airport Demand

ML at Uber - Customer
Support

S customer-agent

communication channels [—7 3
Sug;é)stions ﬁ

Hundreds of thousands of COTA System

CSP

tickets surfacing daily on the Foens
platform across 400+ cities v |°
NLP models classify tickets and |

suggest response templates pata Store

Reduce ticket resolution time by
10%+ with same or higher
CSAT

Why build an ML
platform?

Motivation behind
Michelangelo

* Early challenges with machine learning
e Limited scale with Python and R
e Pipelines not reliable or reproducible
* Many one-off production systems for serving
e Goals of platform
e Standardize workflows and tools
* Provide scalable support for end-to-end ML workflow

* Democratize and accelerate machine learning through ease of use

ML Pipeline
Adting —> Collecting

Data
/! N
Publishing (enerating
Models Features
- |
X /

Cvaluatin Learnin
Models Ve — Modelsg

Key Platform
Components

Key Components:
Feature Store & Feature
Engineering

Feature Store (aka Palette)

* Problem
e Hardest part of ML is finding good features
* Same features are often used by different models built by different teams

e Solution

Centralized feature store for collecting and sharing features

Platform team curates core set of widely applicable features

Modelers contribute more features as part of ongoing model building

Meta-data for each feature to track ownership, how computed, where used, etc

Modelers select features by name & join key. Offline & online pipelines auto-
configured

Functionality of feature
store

e |t allows users to easily add features they have built into a
shared feature store.

 They are very easy to consume, both online and offline,
by referencing a feature’s simple canonical name in the
model configuration.

Pipeline for offline training
with Feature Store

HIVE
DATA LAKE

HIVE
FEATURE STORE

RAW DATA

BASIS
FEATURES
SPARKorSQL ———* FEATUREDSL

FEATURE STORE
FEATURES

TRANSFORMED
FEATURES
| TRAINING ALGO

Pipeline for online serving
with Feature Store

Options for computing
online-served features

e Batch precompute:

e To conduct bulk precomputing and loading historical features from
HDFS into Cassandra on a regular basis.

* ‘restaurant’s average meal preparation time over the last seven days.

* Near-real-time compute:

* Publish relevant metrics to Kafka and then run Samza-based
streaming compute jobs to generate aggregate features at low
latency. These features are then written directly to Cassandra for

serving and logged back to HDFS for future training jobs.

* ‘restaurant’s average meal preparation time over the last one hour.’

Apache Kafka? Apache
Samza?

Samza

K Pl

Domain specific language for
feature selection and transformation

e Often the features generated by data pipelines or sent from a
client service are not in the proper format for the model, and
they may be missing values that need to be filled.

 Moreover, the model may only need a subset of features
provided.

e |In some cases, it may be more useful for the model to
transform a timestamp into an hour-of-day or day-of-week
to better capture seasonal patterns.

* |n other cases, feature values may need to be normalized
(e.g., subtract the mean and divide by standard deviation).

Domain specific language for
feature selection and transformation

e TJo select, transform, and combine the features that are
sent to the model at training and prediction times.

e The DSL is implemented as sub-set of Scala.

e |tis a pure functional language with a complete set of
commonly used functions.

* |t has the ability for customer teams to add their own
user-defined functions.

* @palette:store:orders:prep_time_avg_1week:rs_uuid

Key Components:
Scalable Model Training

Distributed training of non-
DL models

e Large-scale distributed training (billions of samples)

Decision trees

Linear and logistic models

Unsupervised learning

Time series forecasting

Hyperparameter search for all model types
e Smart pipeline management to balance speed and reliability
e Fuse operators into single job for speed

e Break operators into separate jobs to reliability

Distributed training of deep

learning models with Horovod

Data-parallelism works best ____
when model is small enough
to fit on each GPU

Ring-allreduce is more

. . Training P;oce s

efficient than parameter

servers for averaging weights | '

Faster training and better

GPU utilization o ﬂ m
2'°°g;g_r?|m _mel

eeeeeee

Much simpler training scripts

M Distributed TensorFlow ™ Horovod DOldeal

Key Components:
Partitioned Models

Partitioned models

* Problem

e Often want to train a model per city or per product

e Hard to train and deploy 100s or 1000s of individual models
e Solution

* Let users define hierarchical partitioning scheme

e Automatically train model per partition

e Manage and deploy as single logical model

Define partition scheme

Make train / test split

Keep same split and
partition for each level

Train model for every node

Prune bad models

At serving time, route to
best model for each node

Key Components:
Model Visualization

Evaluate models

e Problem
e [t takes many iterations to produce a good model
e Keeping track of how a model was built is important
e Evaluating and comparing models is hard

» With every trained model, we capture standard metadata and reports

Full model configuration, including train and test datasets

Training job metrics

Model accuracy metrics

Performance of model after deployment

Model visualization -
regression model

/4

2017-06-01-20-04-30-626-UTC

PERFORMANCE MODEL VIS FEATURES

Test Data Performance

Fitted V/S Residual Test&Train Error Percentiles Test&Train Absolute Error Percentiles

549.2

407.2

2779704 2068710

Model visualization -
classification model

017-08-19-06-29-22-855-

/4

PERFORMANCE MODEL VIS FEATURES

Test Data Performance

)584 0.288

Precision-Recall ROC Confusion Matrix

0.7936 095 \& Recal: 069

Precision: 0.54

FPR 0.252

TPR C.09

)
0.21
04 Sampl)l
. FP ™
PR 0.18 052

0C ampl 44549 Samples

reliability The reliability diagram shows how reliable (or "well-calibrated”)
1.0 . the model's probability estimates are when evaluated on the
‘ test data. For example, A well calibrated (binatry) model should
8 . classify the samples such that among the samples to which it
0.7 ." » gives a probability close to 0.8 of belonging to the positive
0.6 o class, approximately 80% of those samples actually belong to
04907 05 | ¢ ¥ o the positive class. More Inf
04 & po
e ¥
0.2 o A Perfectly Calibrated Model

/ | This Model (Before Calibration)
— ~ == This Model (After Calibration)

eeeeeeeee

eeeeeeeeee

eeeeeeeee

eeeeeeeeee

United States

876.99

Model visualization -
decision tree

Model visualization -
feature report

2017-06-02-12-35-47-065-UTC

PERFORMANCE MODEL VIS FEATURES

Features Overview
feature_31 feature_36
0.2362 0.1774
85.28 0.449
0 0 Feature interaction
0 - 0 —_—
2756 5353
235045 240.4 X Axis: feature_31
547.6 147 Y Axis: feature_36
2360 1224
VoL AR0000
1008 30>
1200
feature_12 feature_15 1000.09 I
0.1501 0.05788 l
158 0
9.206e+4 7
9.045¢e+4 —_—
2761
4.362e+5

-10 27 oo
?did - - -) hﬂw

Key Components:
Sharded Deployment and
Serving

Online prediction service

¢ Prediction Service

Thrift service container for one or more models

Scale out in Docker on Mesos

Single or multi-tenant deployments

Connection management and batched / parallelized queries to Cassandra

Monitoring & alerting
e Deployment
 Model & DSL packaged as JAR file
* One click deploy across DCs via standard Uber deployment infrastructure

e Health checks and rollback

Online prediction service

Client
Service

Routing
Infra

Realtime Predict Service

N

Model Manager

Deployed Model

¥

DSL

Model

Cassandra Feature Store

Online prediction service

e Typical p95 latency from client service
e ~5ms when all features from client service

* ~10ms when joining pre-computed features from
Cassandra

 Peak prediction volume across current online
deployments

e 600k+ QPS

Sharded deployment

e Problem

* Prediction service can serve as many models as will fit into memory

e Easy to run out of memory with large deployments of complex models
e Solution

e Organize serving cluster into number of physical shards

Introduce client facing concept of ‘virtual shard’ that is specified at deploy time

Virtual shards are mapped by system to physical shards

Models are loaded by service instances in the correct physical shard(s)

Gateway service routes to correct physical shard based on request header

Unsharded deployment

Client
Service

Sharded deploymen

Predict Service
(Shard 1)

A B C
>

Client

Service
Gateway

Routing Table

Predict Service
(Shard 2)

e || ¢

€ H ’ [

Key Components:
Deployment Labels

Deployment labels

e Problem

Multiple models per container (entirely different or multiple versions of same)

Support experimentation

Support automated retrain / redeploy

Cumbersome to have client service manage routing
e Solution
 Models deployed to ‘label’
e |abels can be used for experimentation or different use cases
* Predict service routes request to most recent model w/ specified label

e |Labels have schema so deploys won't break

Key Components: Live
Model Performance
Monitoring

Monitor predictions

e Problem

 Models trained and evaluated against
historical data

e Need to ensure deployed model is
making good predictions going forward

e Solution

e L og predictions & join to actual
outcomes

e Publish metrics feature and prediction
distributions over time

e Dashboards and alerts

System Architecture

Data preparation

GET DATA TRAIN MODELS EVAL MODELS DEPLOY, PREDICT & MONITOR

I | I |

Cassandra
Feature Store

Engine

ONLINE

Hive
Feature Store

Data Prep Job

Spark /
Data Lake EQL <

Outcomes
(Training Set)

OFFLINE

Model training & evaluation

GET DATA TRAIN MODELS EVAL MODELS DEPLOY, PREDICT & MONITOR

I | |

Cassandra
Feature Store

Engine

ONLINE
Batch Training Job
Trfi;ning Cassandra
fo}
- 7 g Model Repo
Data Prep Job Feature Store
Spark /
Data Lake gQL '<

Outcomes
(Training Set)

OFFLINE

Mesos Architecture

ZooKeeper
quorum

Standby
master

Hadoop MPI
scheduler scheduler
P ’|_ _____ | AR
Mesos « Standby |
Mesos Agent Mesos Agent Mesos Agent
Hadoop MPI Hadoop || MPI
executor executor executor||executor

task |

task \

task task

Example of resource offer

Framework 1 Framework 2
Job 1 Job 2 Job 1 Job 2
FW Scheduler FW Scheduler
<task1, s1, 2cpu, 1gb, ... >
<s1, 4cpu, 4gb, ... > (2 @ <task2, s1, 1cpu, 2gb, ... >]
x = -
Allocation Mesos
module master
P—
<s1, 4cpu, 4gb, ... > (1 <fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >
\ Agent 2
Executor

Task Task

Apache Hadoop YARN

MapReduce Status ———»

Job Submission ------ >
Node Status =S5 >
Resource Request ------.-.. >

DEPLOY, PREDICT & MONITOR

Model deployment

EVAL MODELS

TRAIN MODELS
l I

Realtime Predict

GET DATA
|
Service
Stream Trained
Kafka . : Cassandra
- Engine Feature Store Mode!
A
ONLINE ;
/
7
Batch Training Job
Training Cassandra <7’ Deploy
. 7 Algo Model Repo N
Hive s
Data Prep Job Feature Store R
Spark / Batch Pkedict Job
Data Lake sSQL '< (Spiark)
Outcomes Trained
(Training Set) Model

OFFLINE

Model serving

GET DATA

.

ONLINE

Data Lake

OFFLINE

Stream
Engine

Data Prep Job

<

Spark /

SQL

TRAIN MODELS

I

EVAL MODELS

|

DEPLOY, PREDICT & MONITOR

Realtime Predict

Cassandra
Feature—Si)g

Hive
Feature Store

Outcomes

(Training Set)

Batch Training Job

Cassandra

Training
Algo

Model Repo

Service
Trained << Features Client
Model Prediction >>| Service
A
I
1
I
II
!
/
7
: Deploy
Batch Pkedict Job
(Sp‘,ark)
Trained Predictions To Hive
———— Model & Kafka

Monitoring

GET DATA

.

ONLINE

Data Lake

OFFLINE

Stream
Engine

Cassandra

TRAIN MODELS

I I

EVAL MODELS

DEPLOY, PREDICT & MONITOR

Realtime Predict

Feature—SD

Data Prep Job

Spark /

SQL

%

Hive
Feature Store

\ Outcomes
(Training Set)
_,/

>

Sampled
Predictions)
\—/

Batch Training Job

Training

Cassandra

Algo

Model Repo

Service
Trained << Features Client
Model Prediction >>| Service
A
Deploy
Batch Pkedict Job
(Sp‘@rk)
Trained Predictions T4 Hive
Model & Kafka
Z
Performance Metrics To Monit
Monitor Job os S?:r'nor
(Spark) 4

Big picture of the ML
platform

Monitor

REALTIME

Python / Java

BATCH Management

Summary

We went through the key components of Michelangelo
We reviewed challenges of building an ML pipeline
We discussed solutions that scale

We reviewed how an ML platform can facilitate building a
pipeline.

