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Learning goals

Review principal components of an ML platform.

|dentify key challenges of scaling an ML pipeline to a
large number of heterogeneous models.

Define solutions that scale model training and serving.

Characterize system properties and how to build a
production-ready ML pipeline that guarantee reliability,
resiliency, responsiveness, and elasticity.
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Meet Michelangelo: Uber’'s Machine Learning
Platform
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REQUEST POOL

Enable engineers and data scientists across the company to
easily build and deploy machine learning solutions at scale.



How Uber uses ML?

In what business activities?



ML at Uber

Uber Eats

ETAs
Autonomous Cars
Customer Support
Dispatch
Personalization
Demand Modeling

Dynamic Pricing



ML at Uber

Forecasting

Maps

Fraud

Destination Predictions
Anomaly Detection
Capacity Planning

And many more...



ML at Uber - ETAS
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ML at Uber - Eats

e Models used for

* Ranking of restaurants
and dishes

e Delivery times
e Search ranking

e 100s of ML models
called to render Eats
homepage
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ML at Uber - Autonomous
Cars

Self-Driving Car

Train Metrics | Train Metrics | Train Metrics
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e Optimize matching of rider and driver

* Predict if open rider app will make trip
request




ML at Uber - Destination
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ML at Uber -
Spatiotemporal Forecasting

* Supply

e Available Drivers
e Demand

 Open Apps
e Other

* Request Times

e Arrival Times

e Airport Demand



ML at Uber - Customer
Support

S customer-agent

communication channels [—7 3
Sug;é)stions ﬁ

Hundreds of thousands of COTA System

CSP

tickets surfacing daily on the Foens
platform across 400+ cities v |°
NLP models classify tickets and |

suggest response templates pata Store

Reduce ticket resolution time by
10%+ with same or higher
CSAT



Why build an ML
platform?



Motivation behind
Michelangelo

* Early challenges with machine learning
e Limited scale with Python and R
e Pipelines not reliable or reproducible
* Many one-off production systems for serving
e Goals of platform
e Standardize workflows and tools
* Provide scalable support for end-to-end ML workflow

* Democratize and accelerate machine learning through ease of use
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Key Platform
Components



Key Components:
Feature Store & Feature
Engineering



Feature Store (aka Palette)

* Problem
e Hardest part of ML is finding good features
* Same features are often used by different models built by different teams

e Solution

Centralized feature store for collecting and sharing features

Platform team curates core set of widely applicable features

Modelers contribute more features as part of ongoing model building

Meta-data for each feature to track ownership, how computed, where used, etc

Modelers select features by name & join key. Offline & online pipelines auto-
configured



Functionality of feature
store

e |t allows users to easily add features they have built into a
shared feature store.

 They are very easy to consume, both online and offline,
by referencing a feature’s simple canonical name in the
model configuration.



Pipeline for offline training
with Feature Store
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Pipeline for online serving
with Feature Store




Options for computing
online-served features

e Batch precompute:

e To conduct bulk precomputing and loading historical features from
HDFS into Cassandra on a regular basis.

* ‘restaurant’s average meal preparation time over the last seven days.

* Near-real-time compute:

* Publish relevant metrics to Kafka and then run Samza-based
streaming compute jobs to generate aggregate features at low
latency. These features are then written directly to Cassandra for

serving and logged back to HDFS for future training jobs.

* ‘restaurant’s average meal preparation time over the last one hour.’



Apache Kafka? Apache
Samza?

Samza

K Pl




Domain specific language for
feature selection and transformation

e Often the features generated by data pipelines or sent from a
client service are not in the proper format for the model, and
they may be missing values that need to be filled.

 Moreover, the model may only need a subset of features
provided.

e |In some cases, it may be more useful for the model to
transform a timestamp into an hour-of-day or day-of-week
to better capture seasonal patterns.

* |n other cases, feature values may need to be normalized
(e.g., subtract the mean and divide by standard deviation).



Domain specific language for
feature selection and transformation

e TJo select, transform, and combine the features that are
sent to the model at training and prediction times.

e The DSL is implemented as sub-set of Scala.

e |tis a pure functional language with a complete set of
commonly used functions.

* |t has the ability for customer teams to add their own
user-defined functions.

* @palette:store:orders:prep_time_avg_1week:rs_uuid



Key Components:
Scalable Model Training



Distributed training of non-
DL models

e Large-scale distributed training (billions of samples)

Decision trees

Linear and logistic models

Unsupervised learning

Time series forecasting

Hyperparameter search for all model types
e Smart pipeline management to balance speed and reliability
e Fuse operators into single job for speed

e Break operators into separate jobs to reliability



Distributed training of deep

learning models with Horovod
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Key Components:
Partitioned Models



Partitioned models

* Problem

e Often want to train a model per city or per product

e Hard to train and deploy 100s or 1000s of individual models
e Solution

* Let users define hierarchical partitioning scheme

e Automatically train model per partition

e Manage and deploy as single logical model



Define partition scheme




Make train / test split




Keep same split and
partition for each level




Train model for every node




Prune bad models




At serving time, route to
best model for each node




Key Components:
Model Visualization




Evaluate models

e Problem
e [t takes many iterations to produce a good model
e Keeping track of how a model was built is important
e Evaluating and comparing models is hard

» With every trained model, we capture standard metadata and reports

Full model configuration, including train and test datasets

Training job metrics

Model accuracy metrics

Performance of model after deployment



Model visualization -
regression model
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Model visualization -
classification model
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Model visualization -
decision tree




Model visualization -
feature report
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Key Components:
Sharded Deployment and
Serving



Online prediction service

¢ Prediction Service

Thrift service container for one or more models

Scale out in Docker on Mesos

Single or multi-tenant deployments

Connection management and batched / parallelized queries to Cassandra

Monitoring & alerting
e Deployment
 Model & DSL packaged as JAR file
* One click deploy across DCs via standard Uber deployment infrastructure

e Health checks and rollback



Online prediction service

Client
Service

Routing
Infra

Realtime Predict Service

N

Model Manager

Deployed Model

¥

DSL

Model

Cassandra Feature Store




Online prediction service

e Typical p95 latency from client service
e ~5ms when all features from client service

* ~10ms when joining pre-computed features from
Cassandra

 Peak prediction volume across current online
deployments

e 600k+ QPS



Sharded deployment

e Problem

* Prediction service can serve as many models as will fit into memory

e Easy to run out of memory with large deployments of complex models
e Solution

e Organize serving cluster into number of physical shards

Introduce client facing concept of ‘virtual shard’ that is specified at deploy time

Virtual shards are mapped by system to physical shards

Models are loaded by service instances in the correct physical shard(s)

Gateway service routes to correct physical shard based on request header



Unsharded deployment

Client
Service
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Key Components:
Deployment Labels



Deployment labels

e Problem

Multiple models per container (entirely different or multiple versions of same)

Support experimentation

Support automated retrain / redeploy

Cumbersome to have client service manage routing
e Solution
 Models deployed to ‘label’
e |abels can be used for experimentation or different use cases
* Predict service routes request to most recent model w/ specified label

e |Labels have schema so deploys won't break



Key Components: Live
Model Performance
Monitoring



Monitor predictions

e Problem

 Models trained and evaluated against
historical data

e Need to ensure deployed model is
making good predictions going forward

e Solution

e L og predictions & join to actual
outcomes

e Publish metrics feature and prediction
distributions over time

e Dashboards and alerts



System Architecture



Data preparation
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Model training & evaluation
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Mesos Architecture

ZooKeeper
quorum

Standby
master

Hadoop MPI
scheduler scheduler
P ’|_ _____ | AR
Mesos « Standby |
Mesos Agent Mesos Agent Mesos Agent
Hadoop MPI Hadoop || MPI
executor executor executor||executor

task |
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Example of resource offer

Framework 1 Framework 2
Job 1 Job 2 Job 1 Job 2
FW Scheduler FW Scheduler
<task1, s1, 2cpu, 1gb, ... >
<s1, 4cpu, 4gb, ... > ( 2 @ <task2, s1, 1cpu, 2gb, ... > ]
x = -
Allocation Mesos
module master
P—
<s1, 4cpu, 4gb, ... > ( 1 <fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >
\ Agent 2
Executor

Task Task




Apache Hadoop YARN

MapReduce Status ———»

Job Submission ------ >
Node Status =S5 >
Resource Request ------.-.. >



DEPLOY, PREDICT & MONITOR

Model deployment
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Model serving
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Monitoring
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Big picture of the ML
platform

Monitor

REALTIME

Python / Java

BATCH Management




Summary

We went through the key components of Michelangelo
We reviewed challenges of building an ML pipeline
We discussed solutions that scale

We reviewed how an ML platform can facilitate building a
pipeline.



