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Learning goals

• Review principal components of an ML platform.


• Identify key challenges of scaling an ML pipeline to a 
large number of heterogeneous models.


• Define solutions that scale model training and serving.


• Characterize system properties and how to build a 
production-ready ML pipeline that guarantee reliability, 
resiliency, responsiveness, and elasticity.



Main sources





Mission
Enable engineers and data scientists across the company to 
easily build and deploy machine learning solutions at scale.



How Uber uses ML?
In what business activities?



ML at Uber
• Uber Eats


• ETAs 


• Autonomous Cars 


• Customer Support 


• Dispatch 


• Personalization 


• Demand Modeling 


• Dynamic Pricing 



ML at Uber
• Forecasting 


• Maps 


• Fraud 


• Destination Predictions 


• Anomaly Detection 


• Capacity Planning 


• And many more...



ML at Uber - ETAs
• ETAs are core to customer experience and 

used by many internal systems 


• ETA are generated by route-based algorithms 


• It is often incorrect - but it’s incorrect in 
predictable ways 


• ML model predicts the error 


• Use the predicted error to correct the ETA 


• ETAs now dramatically more accurate



ML at Uber - Eats
• Models used for 


• Ranking of restaurants 
and dishes 


• Delivery times 


• Search ranking 


• 100s of ML models 
called to render Eats 
homepage



ML at Uber - Autonomous 
Cars



ML at Uber - Dispatch

• Optimize matching of rider and driver 


• Predict if open rider app will make trip 
request



ML at Uber - Destination 
Prediction



ML at Uber - 
Spatiotemporal Forecasting
• Supply


• Available Drivers 


• Demand 


• Open Apps 


• Other 


• Request Times 


• Arrival Times 


• Airport Demand



ML at Uber - Customer 
Support

• 5 customer-agent 
communication channels 


• Hundreds of thousands of 
tickets surfacing daily on the 
platform across 400+ cities 


• NLP models classify tickets and 
suggest response templates 


• Reduce ticket resolution time by 
10%+ with same or higher 
CSAT



 Why build an ML 
platform?



Motivation behind 
Michelangelo

• Early challenges with machine learning 


• Limited scale with Python and R 


• Pipelines not reliable or reproducible 


• Many one-off production systems for serving 


• Goals of platform  

• Standardize workflows and tools 


• Provide scalable support for end-to-end ML workflow 


• Democratize and accelerate machine learning through ease of use



ML Pipeline



Key Platform 
Components



Key Components: 
Feature Store & Feature 

Engineering



Feature Store (aka Palette)
• Problem 


• Hardest part of ML is finding good features 


• Same features are often used by different models built by different teams


• Solution 


• Centralized feature store for collecting and sharing features 


• Platform team curates core set of widely applicable features 


• Modelers contribute more features as part of ongoing model building 


• Meta-data for each feature to track ownership, how computed, where used, etc 


• Modelers select features by name & join key. Offline & online pipelines auto-
configured



Functionality of feature 
store

• It allows users to easily add features they have built into a 
shared feature store. 


• They are very easy to consume, both online and offline, 
by referencing a feature’s simple canonical name in the 
model configuration.



Pipeline for offline training 
with Feature Store



Pipeline for online serving 
with Feature Store



Options for computing 
online-served features

• Batch precompute: 


• To conduct bulk precomputing and loading historical features from 
HDFS into Cassandra on a regular basis. 


• ‘restaurant’s average meal preparation time over the last seven days.’ 


• Near-real-time compute: 


• Publish relevant metrics to Kafka and then run Samza-based 
streaming compute jobs to generate aggregate features at low 
latency. These features are then written directly to Cassandra for 
serving and logged back to HDFS for future training jobs. 


• ‘restaurant’s average meal preparation time over the last one hour.’



Apache Kafka? Apache 
Samza?



Domain specific language for 
feature selection and transformation
• Often the features generated by data pipelines or sent from a 

client service are not in the proper format for the model, and 
they may be missing values that need to be filled. 


• Moreover, the model may only need a subset of features 
provided. 


• In some cases, it may be more useful for the model to 
transform a timestamp into an hour-of-day or day-of-week 
to better capture seasonal patterns. 


• In other cases, feature values may need to be normalized 
(e.g., subtract the mean and divide by standard deviation).



Domain specific language for 
feature selection and transformation

• To select, transform, and combine the features that are 
sent to the model at training and prediction times. 


• The DSL is implemented as sub-set of Scala. 


• It is a pure functional language with a complete set of 
commonly used functions. 


• It has the ability for customer teams to add their own 
user-defined functions. 


• @palette:store:orders:prep_time_avg_1week:rs_uuid



Key Components: 
Scalable Model Training



Distributed training of non-
DL models

• Large-scale distributed training (billions of samples) 


• Decision trees 


• Linear and logistic models 


• Unsupervised learning 


• Time series forecasting 


• Hyperparameter search for all model types


• Smart pipeline management to balance speed and reliability 


• Fuse operators into single job for speed 


• Break operators into separate jobs to reliability



Distributed training of deep 
learning models with Horovod
• Data-parallelism works best 

when model is small enough 
to fit on each GPU 


• Ring-allreduce is more 
efficient than parameter 
servers for averaging weights 


• Faster training and better 
GPU utilization 


• Much simpler training scripts



Key Components: 
Partitioned Models



Partitioned models
• Problem 


• Often want to train a model per city or per product 


• Hard to train and deploy 100s or 1000s of individual models


• Solution 


• Let users define hierarchical partitioning scheme 


• Automatically train model per partition 


• Manage and deploy as single logical model



Define partition scheme



Make train / test split



Keep same split and 
partition for each level



Train model for every node



Prune bad models



At serving time, route to 
best model for each node



Key Components: 
Model Visualization



Evaluate models
• Problem 


• It takes many iterations to produce a good model 


• Keeping track of how a model was built is important 


• Evaluating and comparing models is hard


• With every trained model, we capture standard metadata and reports 


• Full model configuration, including train and test datasets 


• Training job metrics 


• Model accuracy metrics 


• Performance of model after deployment



Model visualization - 
regression model



Model visualization - 
classification model



Model visualization - 
decision tree



Model visualization -  
feature report



Key Components: 
Sharded Deployment and 

Serving



Online prediction service
• Prediction Service 


• Thrift service container for one or more models 


• Scale out in Docker on Mesos 


• Single or multi-tenant deployments 


• Connection management and batched / parallelized queries to Cassandra 


• Monitoring & alerting


• Deployment 


• Model & DSL packaged as JAR file


• One click deploy across DCs via standard Uber deployment infrastructure 


• Health checks and rollback



Online prediction service



Online prediction service

• Typical p95 latency from client service 


• ~5ms when all features from client service 


• ~10ms when joining pre-computed features from 
Cassandra


• Peak prediction volume across current online 
deployments 


• 600k+ QPS



Sharded deployment
• Problem 


• Prediction service can serve as many models as will fit into memory 


• Easy to run out of memory with large deployments of complex models


• Solution 


• Organize serving cluster into number of physical shards 


• Introduce client facing concept of ‘virtual shard’ that is specified at deploy time 


• Virtual shards are mapped by system to physical shards 


• Models are loaded by service instances in the correct physical shard(s) 


• Gateway service routes to correct physical shard based on request header



Unsharded deployment



Sharded deployment



Key Components: 
Deployment Labels



Deployment labels
• Problem 


• Multiple models per container (entirely different or multiple versions of same) 


• Support experimentation 


• Support automated retrain / redeploy 


• Cumbersome to have client service manage routing


• Solution 


• Models deployed to 'label' 


• Labels can be used for experimentation or different use cases 


• Predict service routes request to most recent model w/ specified label 


• Labels have schema so deploys won't break



Key Components: Live 
Model Performance 

Monitoring



Monitor predictions
• Problem 


• Models trained and evaluated against 
historical data 


• Need to ensure deployed model is 
making good predictions going forward 


• Solution 


• Log predictions & join to actual 
outcomes


• Publish metrics feature and prediction 
distributions over time 


• Dashboards and alerts



System Architecture



Data preparation



Model training & evaluation



Mesos Architecture



Example of resource offer



Apache Hadoop YARN



Model deployment



Model serving



Monitoring



Big picture of the ML 
platform



Summary

• We went through the key components of Michelangelo


• We reviewed challenges of building an ML pipeline


• We discussed solutions that scale 


• We reviewed how an ML platform can facilitate building a 
pipeline.


