Distributed Machine
Learning

Pooyan Jamshidi
USC



Learning goals

 Understand how to build a system that can put the power
of machine learning to use.

e Understand how to incorporate ML-based components
iInto a larger system.

* Understand the principles that govern these systems,
both as software and as predictive systems.



Main Sources

[ | ETYITIT:

UBER Engineering

THE NETFLIX
TECH BLOG

@ Spotify Labs

Designs that scale

Jeff Smith

Foreword by Sean Owen




Meet Horovod: Uber’'s Open
Source Distributed Deep Learning
Framework for TensorFlow

By Alex Sergeev and Mike Del Balso

October 17, 2017




Any guess how Uber uses deep
learning?



Deep learning across Uber

e Self-driving research
e Trip forecasting

 Fraud prevention



Marketplace forecasting




Let’s begin the story



Uber also uses TensorFlow

Do you know why?



Why Uber adopts
TensorFlow?

 TF is one of the most widely used open source
frameworks for deep learning, which makes it easy to
onboard new users.

Companies using TensorFlow

(Q) airbnb AMDZ1 <ANVIDIA
w (' DeepMind <5 Dropbox
eb Go g|€ {}} intel)

él(‘gf\ > m QUALCOMWW ’




Why Uber adopts
TensorFlow?

* TF combines high performance with an ability to tinker
with low-level model details—for instance, we can use
both high-level APls, such as Keras, and implement our
own custom operators using NVIDIA’'s CUDA toolkit.

Stakeholder community

GO 8[6 supports | Developers ‘ | Integrators ‘
i I Researchers | | Companies ‘ ; )
T Jenkins
&
IContributes @ =
uses XS 4\
Dependencies Continuous
. \ integration
requires r
provides GitHub
Executes on

|visualizes
Tensorboard Platforms

E -
» G
NULTIPLE CORES THOUSANDS OF CORES




~

—————————————

Cluster Scheduler

Server !

—————————————

~

\ 4

Why Uber adopts
TensorFlow?

* Additionally, TF has end-to-end support for a wide variety
of deep learning use cases, from conducting exploratory
research to deploying models in production on cloud
servers, mobile apps, and even self-driving vehicles.

Vs

'Vl M Cluster of EC2 instances

Ve

Training Neural Network #1

-

~

J

Vs

-

Training Neural Network #2

~

J

N

-

Training Neural Network #3

~

J

Model Storage



Architecture
TensorFlow Model

TensorFlow Lite
Converter

TensorFlow
Lite Model File
(.tflite)

Android App

e e

Android Neural
Networks API




Training time Iincreased a
lot!

* Training more and more machine learning models at Uber,
* Their size and data consumption grew significantly.

* In a large portion of cases, the models were still small
enough to fit on one or multiple GPUs within a server, but
as datasets grew, so did the training times, which
sometimes took a week—or longer! —to complete.



Going distributed



Distributed TF

( Parameter Device(s) h

AP

— S \

Device A Device B Device C

@) | Jao) | Jeo

4

Client |—

Synchronous Data Parallelism

(" Parameter Device(s) )

Cient 5}~ < © R

Client 2 |-—=>|Update |- . \

Client 1 Update)<+2P

*ma"f A § modD;ée B % modDeelvéce C
Jao) | o) | Jo

Asynchronous Data Parallelism

i

(°

f




Mapping job names to lists
of network addresses

tf.train.ClusterSpec construction Available tasks
tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]}) /job:local/task:0
/job:local/task:1
tf.train.ClusterSpec({ /job:worker/task:0
"worker": | /job:worker/task:1
"worker@.example.com:2222", /job:worker/task:2
"worker1.example.com:2222", /job:ps/task:0
"worker2.example.com:2222" /job:ps/task:1
1,
"ps": |

"psO.example.com:2222",
"ps1.example.com:2222"

1})



Specifying distributed
devices in your model

with tf.device("/job:ps/task:0"):
weights_1 = tf.Variable(...)
biases_1 = tf.Variable(...)

with tf.device("/job:ps/task:1"):
weights_2 = tf.Variable(...)
biases_2 = tf.Variable(...)

with tf.device("/job:worker/task:7"):
input, labels = ...
layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
o
train_op = ...

with tf.Session("grpc://worker7.example.com:2222") as sess:
for _ in range(10000) :
sess.run(train_op)



Uber first experience with
Distributed TF

e |t was not always clear which code modifications needed
to be made to distribute their model training code.

* The standard distributed TensorFlow package introduces
many new concepts: workers, parameter
servers, tf.Server ()

* The challenge of computing at Uber’s scale. After
running a few benchmarks, we found that we could not
get the standard distributed TensorFlow to scale as well
as our services required.



Distributed TF became
Inefficient at Uber scale

Training with synthetic data on NVIDIA® Pascal™ GPUs

1 __ch

128 1
Inception V3 ResNet-101
Number of GPUs and model name

18,000.0
16,000.0
14,000.0

o 12,000.0
A
< 10,000.0
Q

& 8,000.0
£
= 6,000.0
4,000.0
0.0 1
8 16 32 64

1

128

M Distributed TensorFlow Oldeal

Models were unable to leverage half of
the resource



They become even more motivated after
observing Google training ResNet-50 in an
hour!

e “Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour,” demonstrating their training of a ResNet-50
network in one hour on 256 GPUs by combining
principles of data parallelism with an innovative learning
rate adjustment technique.



Leveraging a different
type of algorithm



Data parallelism (Facebook)

Data Store

Training Process

Y

Averaged |
Gradients

Gradients

Training Process

Y

Averaged |

1. Read Data

Gradients |—

Gradients

Training Process

Averaged |
Gradients

Gradients

2. Compute Model 3. Average Gradients 4, Updaie Model
Updates (Gradients)



But wait!

 What other approaches exist for distributing a (deep
Learning) algorithm?

 And why Uber could possibly do Data Parallel approach?
Any insight?



And here is why Uber
started with Data Parallel

e Uber’s models were small enough to fit on a single GPU,

or multiple GPUs in a single server



How data parallel works?

1. Run multiple copies of the training script and each copy:
A. reads a chunk of the data
B. runs it through the model
C. computes model updates (gradients)

2. Average gradients among those multiple copies

3. Update the model Repeat (from Step 1a)



Data parallel vs Model
parallel

 Data Parallel (“Between-Graph Replication”)

e Send exact same model to each device
e Each device operates on its partition of data § ie. Spark
sends same function to many workers

 Each worker operates on their partition of data
e Model Parallel (“In-Graph Replication”)

e Send different partition of model to each device
 Each device operates on all data



While this approach
Improved performance, they
encountered two challenges



It was good, but they hit
some challenges

* |dentifying the right ratio of worker to parameter servers.
e 1 parameter server
e Multiple parameter server

e Handling increased TensorFlow program complexity

e Every user of distributed TensorFlow had to explicitly start each
worker and PS, pass around service discovery information.

e Users had to ensure that all the operations were placed
appropriately and code is modified to leverage multiple GPUs.



It was good, but they hit
some challenges

e |dentifying the right ratio of worker to parameter servers.
1 parameter server

 Multiple parameter server

Averages All the Gradients Each Averages Portion of the Gradients
-~ . - - S RRLEUN
Parameter Parameter Parameter Parameter
Server 0 r' Server A Server B Server C

‘ Worker A \ ‘ Worker B \ ‘ Worker C \ ‘ Worker A \ ‘ Worker B \ ‘ Worker C \




TF Complexity

 Handling increased TensorFlow program complexity

 Every user of distributed TensorFlow had to explicitly
start each worker and PS, pass around service
discovery information.

e Users had to ensure that all the operations were placed
appropriately and code is modified to leverage multiple
GPUs.



On

ps@.example.com:

python trainer.py \

On

--ps_hosts=ps@.example.com:2222,ps1.example.com
--worker_hosts=worker@.example.com:2222,worker1
--job_name=ps --task_index=0

ps1.example.com:

python trainer.py \

On

--ps_hosts=ps@.example.com:2222,ps1.example.com
--worker_hosts=worker@.example.com:2222,worker1
--job_name=ps --task_index=1
worker@.example.com:

python trainer.py \

On

--ps_hosts=ps0@.example.com:2222,ps1.example.com
--worker_hosts=worker@.example.com:2222,worker
--job_name=worker --task_index=0
worker1.example.com:

python trainer.py \

--ps_hosts=ps0O.example.com:2222,ps1.example.com
--worker_hosts=worker@.example.com:2222,worker1.
--job_name=worker --task_index=1

12222\
.example

12222 '\
.example

12222 '\
.example

12222 '\

example

.com

.com

.com

.com

12222\

12222\

12222\

12222\



Baidu approach to avoid
parameter server




Baidu all reduce is not only network
optimal, but easier to adopt

e Users utilize a Message Passing Interface (MPI)
implementation such as OpenMPI to launch all copies of

the TensorFlow program.

* MPI then transparently sets up the distributed
infrastructure necessary for workers to communicate with
each other.

e All the user needs to do is modify their program to
average gradients using an allreduce() operation.



Horovod = Distributed
deep learning with
TensorFlow



Any similarity?

Data Parallelism

Parameter Servers p”=p’+Ap

S

Model
Replicas

00
00
00

J

Data

(O0)
09)
@




Hovord was then built upon
Baidu allreduce approach

A stand-alone Python package called Horovod.

Distributed TensorFlow processes use Horovod to communicate
with each other.

At any point in time, various teams at Uber may be using
different releases of TensorFlow. \We wanted all teams to be
able to leverage the ring-allreduce algorithm without needing to
upgrade to the latest version of TensorFlow, apply patches to their
versions, or even spend time building out the framework.

Having a stand-alone package allowed Uber to cut the time
required to install Horovod from about an hour to a few
minutes, depending on the hardware.



From single GPU to Multi-
GPU Multi-Node

* Replaced Baidu ring-allreduce with NCCL.

e NCCL is NVIDIA’s library for collective communication
that provides a highly optimized version of ring-allreduce.

e NCCL 2 introduced the ability to run ring-allreduce across
multiple machines.

NCCL 2 _Se=—=

NCCL 1 =
HE s =

Multi-GPU

GPU Multi-GPU MUl rode



The update were included
APl improvements

* Several APl improvements inspired by feedback Uber
received from a number of initial users.

* A broadcast operation that enforces consistent
Initialization of the model on all workers.

* The new API allowed Uber to cut down the number of
operations a user had to introduce to their single GPU
program to four.



Distributing training job with
Horovod

Import tensorflow as tf
iImport horovod.tensorflow asS hvd

# Initialize Horovod
hvd.init ()

# Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()

config.gpu options.visible device list = str(hvd.local rank())

# Build model...

loss =..

opt = tf.train.AdagradOptimizer(0.01)

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer (opt)



Distributing training job with
Horovod

# Add hook to broadcast variables from rank O to all other processes during
# initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

# Make training operation

train op = opt.minimize(loss)

# The MonitoredTrainingSession takes care of session initialization,

# restoring from a checkpoint, saving to a checkpoint, and closing when done

# Or an error occurs.

with

tf.train.MonitoredTrainingSession(checkpoint dir=*/tmp/train logs”,
config=configqg,
hooks=hooks) dS mon_ sess:

while not mon sess.should stop():

# Perform synchronous training.

mon sess.run(train_op)



User can then run several copies of
the program across multiple servers

$ mpirun -np 16 -x LD LIBRARY PATH -H

serverl:4,server2:4,server3:4,server4:4 python train.py



Horovord also distribute
Keras programs

* Horovod can also distribute Keras programs by following

the same steps.



Now time come to debugging
distributed systems

Record = Save = Load test.json IView Options + H I - [ - HT“TI
|18,500 ms 118,600 ms 118,700 ms |18,800 ms |18,900 m
CPU usage m o
=1
w13
+ (]

v DistributedGradientDescentOptimizer_Allreduce/HorovodAllreduce_gradients_AddN_0O (pid 1) | | 7

v

indu)

1

~ DistributedGradientDescentOptimizer_Allreduce/HorovodAllreduce_gradients_AddN_1_0 (pid 2)

v

8zIS 9|14

~ DistributedGradientDescentOptimizer_Allreduce/HorovodAllreduce_gradients_AddN_2_0 (pid 3)

v

ALLREDUCE

SOUlBN

~ DistributedGradientDescentOptimizer_Allreduce/HorovodAllreduce_gradients_AddN_3_0 (pid 4)

v

~ DistributedGradientDescentOptimizer_Allreduce/HorovodAllreduce_gradients_AddN_4_0 (pid 5) %
- w
1 item selected. Slice (1)

Title ALLREDUCE

User Friendly Category  other

Start 18,663.501

ms

Wall Duration 184.063 ms

Self Time 5.996 ms
vArgs

dtype "float"

shape [2048]



Yet another challenge: Tiny
allreduce

e After we analyzed the timelines of a few models, we
noticed that those with a large amount of tensors, such as

ResNet-101, tended to have many tiny allreduce
operations.

* ring-allreduce utilizes the network in an optimal way if the
tensors are large enough, but does not work as efficiently
or quickly if they are very small.



Tensor Fusion

 What if multiple tiny tensors could be fused together
before performing ring-allreduce on them?



Tensor Fusion

. Determine which tensors are ready to be reduced. Select the first
few tensors that fit in the buffer and have the same data type.

. Allocate a fusion buffer if it was not previously allocated. Default
fusion buffer size is 64 MB.

. Copy data of selected tensors into the fusion buffer.
. Execute the allreduce operation on the fusion buffer.
. Copy data from the fusion buffer into the output tensors.

. Repeat until there are no more tensors to reduce in the cycle.



Horovod vs TF

Training with synthetic data on NVIDIA® Pascal™ GPUs

18,000.0
16,000.0
14,000.0
o 12,000.0
2
E 10,000.0
& 8,000.0
£
= 6,000.0
4,000.0 i
20000 i
oo — ] —
1 8 16 32 64 128 1 8 16 32 64 128

Inception V3 ResNet-101
Number of GPUs and model name

M Distributed TensorFlow ™ Horovod Oldeal

the training was about twice as fast as
standard distributed TensorFlow.



Benchmarking with RDMA
network cards

Training with synthetic data on NVIDIA® Pascal™ GPUs
18,000.0
16,000.0
14,000.0
o 12,000.0
< 10,000.0

8,000.0
6,000.0
4,000.0 i
. rm i _ rm i _ rm i

128

e

Images

Inception V3 ResNet-101 VGG-16
Number of GPUs and model name

¥ Horovod (TCP) M Horovod (RDMA) Oldeal

VGG-16 model experienced a significant 30 percent
speedup when we leveraged RDMA networking.



Do you know
why that
happened?

Any insight?

Client

Server

Registered Memory
A

CPU

CPU




Any thought?

Filter
concatenation

ﬂv

1x1 convolutions

3x3 convolutions

5x5 convolutions 1x1 convolutions

)

1x1 convolutions

1x1 convolutions 3x3 max pooling

_——

Previous layer

Parameters: 25 million

Size:56

532019 [0]5/>

Size:28

sy201q [1]8>

Size:14

sy001q [¢]8f

Size:7 [ )

sy201q [¢]8>

P

e

Size:112 \

L

7X7 conv, 64/2 :\
max pool[2
1x1conv, 64

3x3 conv, 64
1x1 conv, 256

| —

1x1 conv, 64
3x3 conv, 64
1x1 conv, 256

| —

1x1 conv, 64
3x3 conv, 64
1x1 conv, 256

1x1 conv, 128/2
3x3 conv, 128
1x1 conv, 512

1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

T
—
h

¥
1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

1x1 conv, 256/2
3x3 conv, 256
1x1 conv, 1024

1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024
P —
¥
1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024

1x1 conv, 512/2
3x3 conv, 512
1x1 conv, 2048

1x1 conv, 512
3x3 conv, 512
1x1 conv, 2048
*:7/
*4'
1x1 conv, 512
3x3 conv, 512
1x1 conv, 2048

J

avg pool/2
‘ DY
fc ,1000 J

s4afiv] 76T

%k}
8o

8o

[€°9¢°8°¢]

stafiv] 101

[8°cT'vEl

saafiv] oG

[€9F°€]

Parameters: 25 million

Size: 224 3x3 conv, 64

3x3 cony, 64

Size: 56 3x3 conv, 256

!

3x3 conv, 256

.

3x3 conv, 256

pool/2
v

3x3 conv, 512

I

3x3 conv, 512

i

[ 3x3 cony, 512

—
—

‘)
—/

—
—

Size: 28

N
—

—
—

Size: 14 |

Size: 7 fc 4096

fc 4096

fc 4096

Parameters: 138 million



Summary

We reviewed when ML needs to go distributed.

We studies some alternative solutions and why Uber
decided to built up their own solution

We studied extensions that was made by Uber to
accommodate their own requirements.

We reviewed how Horovod helped Uber to scale up their
training process.



