
Distributed Machine 
Learning

Pooyan Jamshidi

USC



Learning goals

• Understand how to build a system that can put the power 
of machine learning to use.


• Understand how to incorporate ML-based components 
into a larger system.


• Understand the principles that govern these systems, 
both as software and as predictive systems.



Main Sources





Any guess how Uber uses deep 
learning?



Deep learning across Uber

• Self-driving research 


• Trip forecasting 


• Fraud prevention



Marketplace forecasting



Let’s begin the story



Uber also uses TensorFlow
Do you know why?



Why Uber adopts 
TensorFlow?

• TF is one of the most widely used open source 
frameworks for deep learning, which makes it easy to 
onboard new users. 



Why Uber adopts 
TensorFlow?

• TF combines high performance with an ability to tinker 
with low-level model details—for instance, we can use 
both high-level APIs, such as Keras, and implement our 
own custom operators using NVIDIA’s CUDA toolkit. 



Why Uber adopts 
TensorFlow?

• Additionally, TF has end-to-end support for a wide variety 
of deep learning use cases, from conducting exploratory 
research to deploying models in production on cloud 
servers, mobile apps, and even self-driving vehicles.





Training time increased a 
lot!

• Training more and more machine learning models at Uber, 


• Their size and data consumption grew significantly. 


• In a large portion of cases, the models were still small 
enough to fit on one or multiple GPUs within a server, but 
as datasets grew, so did the training times, which 
sometimes took a week—or longer!—to complete.



Going distributed



Distributed TF



Mapping job names to lists 
of network addresses



Specifying distributed 
devices in your model



Uber first experience with 
Distributed TF

• It was not always clear which code modifications needed 
to be made to distribute their model training code.


• The standard distributed TensorFlow package introduces 
many new concepts: workers, parameter 
servers, tf.Server()

• The challenge of computing at Uber’s scale. After 
running a few benchmarks, we found that we could not 
get the standard distributed TensorFlow to scale as well 
as our services required.



Distributed TF became 
inefficient at Uber scale

Models were unable to leverage half of 
the resource



They become even more motivated after 
observing Google training ResNet-50 in an 

hour!

• “Accurate, Large Minibatch SGD: Training ImageNet in 1 
Hour,” demonstrating their training of a ResNet-50 
network in one hour on 256 GPUs by combining 
principles of data parallelism with an innovative learning 
rate adjustment technique. 



Leveraging a different 
type of algorithm



Data parallelism (Facebook)



But wait!

• What other approaches exist for distributing a (deep 
Learning) algorithm?


• And why Uber could possibly do Data Parallel approach? 
Any insight?



And here is why Uber 
started with Data Parallel

• Uber’s models were small enough to fit on a single GPU, 
or multiple GPUs in a single server



How data parallel works?
1. Run multiple copies of the training script and each copy:  


A. reads a chunk of the data 


B. runs it through the model 


C. computes model updates (gradients) 


2. Average gradients among those multiple copies 


3. Update the model Repeat (from Step 1a)



Data parallel vs Model 
parallel

• Data Parallel (“Between-Graph Replication”) 


• Send exact same model to each device 

• Each device operates on its partition of data § ie. Spark 

sends same function to many workers 

• Each worker operates on their partition of data 


• Model Parallel (“In-Graph Replication”) 


• Send different partition of model to each device 

• Each device operates on all data



While this approach 
improved performance, they 
encountered two challenges



It was good, but they hit 
some challenges

• Identifying the right ratio of worker to parameter servers.


• 1 parameter server


• Multiple parameter server


• Handling increased TensorFlow program complexity 


• Every user of distributed TensorFlow had to explicitly start each 
worker and PS, pass around service discovery information. 


• Users had to ensure that all the operations were placed 
appropriately and code is modified to leverage multiple GPUs.



It was good, but they hit 
some challenges

• Identifying the right ratio of worker to parameter servers.


• 1 parameter server


• Multiple parameter server



TF Complexity

• Handling increased TensorFlow program complexity 


• Every user of distributed TensorFlow had to explicitly 
start each worker and PS, pass around service 
discovery information. 


• Users had to ensure that all the operations were placed 
appropriately and code is modified to leverage multiple 
GPUs.





Baidu approach to avoid 
parameter server



Baidu all reduce is not only network 
optimal, but easier to adopt

• Users utilize a Message Passing Interface (MPI) 
implementation such as OpenMPI to launch all copies of 
the TensorFlow program. 


• MPI then transparently sets up the distributed 
infrastructure necessary for workers to communicate with 
each other. 


• All the user needs to do is modify their program to 
average gradients using an allreduce() operation.



Horovod = Distributed 
deep learning with 

TensorFlow



Any similarity?



Hovord was then built upon 
Baidu allreduce approach

• A stand-alone Python package called Horovod. 


• Distributed TensorFlow processes use Horovod to communicate 
with each other. 


• At any point in time, various teams at Uber may be using 
different releases of TensorFlow. We wanted all teams to be 
able to leverage the ring-allreduce algorithm without needing to 
upgrade to the latest version of TensorFlow, apply patches to their 
versions, or even spend time building out the framework. 


• Having a stand-alone package allowed Uber to cut the time 
required to install Horovod from about an hour to a few 
minutes, depending on the hardware.



From single GPU to Multi-
GPU Multi-Node

• Replaced Baidu ring-allreduce with NCCL. 


• NCCL is NVIDIA’s library for collective communication 
that provides a highly optimized version of ring-allreduce. 


• NCCL 2 introduced the ability to run ring-allreduce across 
multiple machines.



The update were included 
API improvements

• Several API improvements inspired by feedback Uber 
received from a number of initial users. 


• A broadcast operation that enforces consistent 
initialization of the model on all workers. 


• The new API allowed Uber to cut down the number of 
operations a user had to introduce to their single GPU 
program to four.



Distributing training job with 
Horovod



Distributing training job with 
Horovod



User can then run several copies of 
the program across multiple servers



Horovord also distribute 
Keras programs

• Horovod can also distribute Keras programs by following 
the same steps.



Now time come to debugging 
a distributed systems



Yet another challenge: Tiny 
allreduce

• After we analyzed the timelines of a few models, we 
noticed that those with a large amount of tensors, such as 
ResNet-101, tended to have many tiny allreduce 
operations. 


• ring-allreduce utilizes the network in an optimal way if the 
tensors are large enough, but does not work as efficiently 
or quickly if they are very small. 



Tensor Fusion

• What if multiple tiny tensors could be fused together 
before performing ring-allreduce on them?



Tensor Fusion
1. Determine which tensors are ready to be reduced. Select the first 

few tensors that fit in the buffer and have the same data type. 


2. Allocate a fusion buffer if it was not previously allocated. Default 
fusion buffer size is 64 MB. 


3. Copy data of selected tensors into the fusion buffer. 


4. Execute the allreduce operation on the fusion buffer. 


5. Copy data from the fusion buffer into the output tensors. 


6. Repeat until there are no more tensors to reduce in the cycle.



Horovod vs TF

 the training was about twice as fast as 
standard distributed TensorFlow.



Benchmarking with RDMA 
network cards

VGG-16 model experienced a significant 30 percent 
speedup when we leveraged RDMA networking.



Do you know 
why that 

happened?
Any insight?



Parameters: 138 millionParameters: 25 millionParameters: 25 million

Any thought?



Summary

• We reviewed when ML needs to go distributed.


• We studies some alternative solutions and why Uber 
decided to built up their own solution


• We studied extensions that was made by Uber to 
accommodate their own requirements.


• We reviewed how Horovod helped Uber to scale up their 
training process.


