
Intrinsic Dimension



Learning goals

• Understand the notion of intrinsic dimension of objective 
functions


• Illustrate how intrinsic dimension quantify the complexity 
of a deep neural network architecture


• Measure intrinsic dimension using random projections


• Discuss the implications of measuring the intrinsic 
dimension and how this is related to model compression



Which one is more difficult 
to solve?

• MNIST vs CIFAR-10?



Which one is more difficult 
to solve?





Gradient descent

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}



Evaluating the gradient of a loss with 
respect to parameters and taking steps 

directly in the space of θ(D)

θ(D)

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}



Lets instead define θ(D) in 
the following way

θ(D) = θ(D)
0 + Pθ(d)

D × d

ℝd

randomly generated                 projection matrix 

is a parameter vector in a generally smaller space

are randomly 
generated and frozen 
(not trained), so the 
system has only d 

degrees of freedom



Start of training

• We initialize θ(d) to a vector of all zeros, 


• So initially θ(D) = θ(D)
0



It allows the network to 
start off well-conditioned 

• This convention serves an important purpose for neural 
network training: it allows the network to benefit from 
beginning in a region of parameter space designed by any 
number of good initialization schemes, see (Glorot & 
Bengio, 2010; He et al., 2015) to be well-conditioned, 


• Such that gradient descent via commonly used optimizers 
will tend to work well.



Training procedure
• Training proceeds by computing gradients with respect to 

θ(d) and taking steps in that space. 


• Columns of P are normalized to unit length, so steps of 
unit length in θ(d) chart out unit length motions of θ(D). 


• Columns of P may also be orthogonalized if desired. 


• By this construction P forms an approximately 
orthonormal basis for a randomly oriented d dimensional 
subspace of RD, with the origin of the new coordinate 
system at θ_0(D).



Illustration of parameter 
vectors



Let’s review few 
properties of this 

approach



How about d = D and P 
is a large identity matrix?



When d = D and P is a large 
identity matrix

• If d = D and P is a large identity matrix, we recover exactly 
the direct optimization problem.



How about If d = D but P is 
instead a random orthonormal 

basis for all of RD (just a random 
rotation matrix)?



How about If d = D but P is instead 
a random orthonormal basis

• We recover a rotated version of the direct problem.



Do we need to change the way how 
we optimize DNN architectures?

• Note that for some “rotation-invariant” optimizers, such 
as SGD and SGD with momentum, rotating the basis will 
not change the steps taken nor the solution found, 


• But for optimizers with axis-aligned assumptions, such as 
RMSProp and Adam, the path taken through θ(D) space 
by an optimizer will depend on the rotation chosen.



Choosing a heuristic to 
compare performance

• Choose a heuristic for classifying points on the objective 
landscape as solutions vs. non-solutions. 


• The heuristic we choose is to threshold network performance at 
some level relative to a baseline model, where generally we take 
as baseline the best directly trained model. 


• In supervised classification settings, validation accuracy is used 
as the measure of performance, and in reinforcement learning 
scenarios, the total reward is used. 


• Accuracy and reward are preferred to loss to ensure results are 
grounded to real-world performance and to allow comparison 
across models with differing scales.



Selecting baseline
• We define           as the intrinsic dimension of the “100%” 

solution: solutions whose performance is statistically 
indistinguishable from baseline solutions. 


• However, when attempting to measure         , we 
observed it to vary widely: it can be very high — nearly as 
high as D — when the task requires matching a very well-
tuned baseline model, 


• but can drop significantly when the regularization effect of 
restricting parameters to a subspace boosts performance 
by tiny amounts.

dint100

dint100



Selecting baseline

• Thus, we found it more practical and useful to define and 
measure          as the intrinsic dimension of the “90%” 
solution: solutions with performance at least 90% of the 
baseline.

dint90



Performance (validation accuracy) 
vs. subspace dimension d



Results

• We begin by analyzing a fully connected (FC) classifier 
trained on MNIST. 


• We choose a network with layer sizes 784–200–200–10,; 


• This results in a total number of parameters D = 199, 210. 



Fully-connected (FC) 
network (D = 199,210)



a convolutional network, 
LeNet (D = 44,426)



Some networks are very 
compressible

• A salient initial conclusion is that 750 is quite low. 


• At that subspace dimension, only 750 degrees of freedom 
(0.4%) are being used and 198,460 (99.6%) unused to 
obtain 90% of the performance of the direct baseline 
model.



So what? What can 
we do with that?



Practical application: 
Network compression

• New way of creating and training compressed networks, 


• Particularly networks for applications in which the 
absolute best performance is not critical.



More details? What 
we need to store?



We only need to store

• The random seed to generate the frozen


• The random seed to generate P


• The 750 floating point numbers in

θ(D)
0

θ(D)
*



Compression rate

• It leads to compression(assuming 32-bit floats) by a factor 
of 260× from 793kB to only 3.2kB, 


• Or 0.4% of the full parameter size.



So what? In what 
scenarios this might be 

useful?



Application of the model 
compression

• Such compression could be very useful for scenarios 
where storage or bandwidth are limited, 


• E.g. including neural networks in downloaded mobile 
apps or on web pages.



Contrasts to other existing 
model compression approaches
• Post-hoc vs once during training


• Layerwise compression models vs entire parameter space, 
which could work better or worse


• Simple vs difficult approaches that put hierarchical priors on 
the weights


• reduces the number of degrees of freedom, not the number 
of bits required to store each degree of freedom, 
complimentary to weight quantization


• Training vs inference



Robustness of intrinsic 
dimension



Performance vs. number of 
trainable parameters



Results using the policy-based ES algorithm to train 
agents on (left column) InvertedPendulum−v1, (middle 

column) Humanoid−v1, and (right column) Pong−v0



Summary
• We understood the intrinsic dimension of objective 

landscapes and shown a simple method — random 
subspace training — of approximating it for neural network 
modeling problems. 


• We are now able to use this approach to compare problem 
difficulty within and across domains. 


• We saw examples that the intrinsic dimension is much lower 
than the direct parameter dimension, and hence enable 
network compression, and in other cases the intrinsic 
dimension is similar to that of the best tuned models.


