
Intrinsic Dimension

Learning goals

• Understand the notion of intrinsic dimension of objective
functions

• Illustrate how intrinsic dimension quantify the complexity
of a deep neural network architecture

• Measure intrinsic dimension using random projections

• Discuss the implications of measuring the intrinsic
dimension and how this is related to model compression

Which one is more difficult
to solve?

• MNIST vs CIFAR-10?

Which one is more difficult
to solve?

Gradient descent

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}

Evaluating the gradient of a loss with
respect to parameters and taking steps

directly in the space of θ(D)

θ(D)

repeat until convergence {
θ ← θ − γ∇θJ(θ)

}

Lets instead define θ(D) in
the following way

θ(D) = θ(D)
0 + Pθ(d)

D × d

ℝd

randomly generated projection matrix

is a parameter vector in a generally smaller space

are randomly
generated and frozen
(not trained), so the
system has only d

degrees of freedom

Start of training

• We initialize θ(d) to a vector of all zeros,

• So initially θ(D) = θ(D)
0

It allows the network to
start off well-conditioned

• This convention serves an important purpose for neural
network training: it allows the network to benefit from
beginning in a region of parameter space designed by any
number of good initialization schemes, see (Glorot &
Bengio, 2010; He et al., 2015) to be well-conditioned,

• Such that gradient descent via commonly used optimizers
will tend to work well.

Training procedure
• Training proceeds by computing gradients with respect to

θ(d) and taking steps in that space.

• Columns of P are normalized to unit length, so steps of
unit length in θ(d) chart out unit length motions of θ(D).

• Columns of P may also be orthogonalized if desired.

• By this construction P forms an approximately
orthonormal basis for a randomly oriented d dimensional
subspace of RD, with the origin of the new coordinate
system at θ_0(D).

Illustration of parameter
vectors

Let’s review few
properties of this

approach

How about d = D and P
is a large identity matrix?

When d = D and P is a large
identity matrix

• If d = D and P is a large identity matrix, we recover exactly
the direct optimization problem.

How about If d = D but P is
instead a random orthonormal

basis for all of RD (just a random
rotation matrix)?

How about If d = D but P is instead
a random orthonormal basis

• We recover a rotated version of the direct problem.

Do we need to change the way how
we optimize DNN architectures?

• Note that for some “rotation-invariant” optimizers, such
as SGD and SGD with momentum, rotating the basis will
not change the steps taken nor the solution found,

• But for optimizers with axis-aligned assumptions, such as
RMSProp and Adam, the path taken through θ(D) space
by an optimizer will depend on the rotation chosen.

Choosing a heuristic to
compare performance

• Choose a heuristic for classifying points on the objective
landscape as solutions vs. non-solutions.

• The heuristic we choose is to threshold network performance at
some level relative to a baseline model, where generally we take
as baseline the best directly trained model.

• In supervised classification settings, validation accuracy is used
as the measure of performance, and in reinforcement learning
scenarios, the total reward is used.

• Accuracy and reward are preferred to loss to ensure results are
grounded to real-world performance and to allow comparison
across models with differing scales.

Selecting baseline
• We define as the intrinsic dimension of the “100%”

solution: solutions whose performance is statistically
indistinguishable from baseline solutions.

• However, when attempting to measure , we
observed it to vary widely: it can be very high — nearly as
high as D — when the task requires matching a very well-
tuned baseline model,

• but can drop significantly when the regularization effect of
restricting parameters to a subspace boosts performance
by tiny amounts.

dint100

dint100

Selecting baseline

• Thus, we found it more practical and useful to define and
measure as the intrinsic dimension of the “90%”
solution: solutions with performance at least 90% of the
baseline.

dint90

Performance (validation accuracy)
vs. subspace dimension d

Results

• We begin by analyzing a fully connected (FC) classifier
trained on MNIST.

• We choose a network with layer sizes 784–200–200–10,;

• This results in a total number of parameters D = 199, 210.

Fully-connected (FC)
network (D = 199,210)

a convolutional network,
LeNet (D = 44,426)

Some networks are very
compressible

• A salient initial conclusion is that 750 is quite low.

• At that subspace dimension, only 750 degrees of freedom
(0.4%) are being used and 198,460 (99.6%) unused to
obtain 90% of the performance of the direct baseline
model.

So what? What can
we do with that?

Practical application:
Network compression

• New way of creating and training compressed networks,

• Particularly networks for applications in which the
absolute best performance is not critical.

More details? What
we need to store?

We only need to store

• The random seed to generate the frozen

• The random seed to generate P

• The 750 floating point numbers in

θ(D)
0

θ(D)
*

Compression rate

• It leads to compression(assuming 32-bit floats) by a factor
of 260× from 793kB to only 3.2kB,

• Or 0.4% of the full parameter size.

So what? In what
scenarios this might be

useful?

Application of the model
compression

• Such compression could be very useful for scenarios
where storage or bandwidth are limited,

• E.g. including neural networks in downloaded mobile
apps or on web pages.

Contrasts to other existing
model compression approaches
• Post-hoc vs once during training

• Layerwise compression models vs entire parameter space,
which could work better or worse

• Simple vs difficult approaches that put hierarchical priors on
the weights

• reduces the number of degrees of freedom, not the number
of bits required to store each degree of freedom,
complimentary to weight quantization

• Training vs inference

Robustness of intrinsic
dimension

Performance vs. number of
trainable parameters

Results using the policy-based ES algorithm to train
agents on (left column) InvertedPendulum−v1, (middle

column) Humanoid−v1, and (right column) Pong−v0

Summary
• We understood the intrinsic dimension of objective

landscapes and shown a simple method — random
subspace training — of approximating it for neural network
modeling problems.

• We are now able to use this approach to compare problem
difficulty within and across domains.

• We saw examples that the intrinsic dimension is much lower
than the direct parameter dimension, and hence enable
network compression, and in other cases the intrinsic
dimension is similar to that of the best tuned models.

