# Transfer Learning for Performance Analysis of Machine Learning Systems

Pooyan Jamshidi University of South Carolina









### *built* Today's most popular systems are configurable

| 102   |                                                                                    | 🚺 🛞 — 💷 rqt_reconfigureParam | jure_Param - rqt |  |
|-------|------------------------------------------------------------------------------------|------------------------------|------------------|--|
| 103   | drpc.port: 3772                                                                    | Dynamic Reconfigure          |                  |  |
| 104   | drpc.worker.threads: 64                                                            |                              | -                |  |
| 105   | drpc.max_buffer_size: 1048576                                                      | Filter key:                  |                  |  |
| 106   | drpc.queue.size: 128                                                               |                              | 1                |  |
| 107   | drpc.invocations.port: 3773                                                        | Collapse all Expand all      | acc_lim_x        |  |
| 108   | drpc.invocations.threads: 64                                                       |                              | acc_lim_y        |  |
| 109   | drpc.request.timeout.secs: 600                                                     | * move_base                  | acc lim theta    |  |
| 110   | drpc.childopts: "-Xmx768m"                                                         |                              | max vel x        |  |
| 111   | drpc.http.port: 3774                                                               | ▶ local costmap              | IIIdx_vet_x      |  |
| 112   | drpc.https.port: -1                                                                |                              | min_vel_x        |  |
| 113   | drpc.https.keystore.password: ""                                                   |                              | max_vel_thet     |  |
| 114   | drpc.https.keystore.type: "JKS"                                                    |                              | min vel theta    |  |
| 115   | drpc.http.creds.plugin: org.apache.storm.security.auth.DefaultHttpCredentialsPlugi |                              |                  |  |
| 116   | drpc.authorizer.acl.filename: "drpc-auth-acl.yaml"                                 | <b>K</b> (1)                 | mm_m_place_      |  |
| 117   | drpc.authorizer.acl.strict: false                                                  |                              | sim_time         |  |
| 118   |                                                                                    |                              | sim_granulari    |  |
| 119   | transactional.zookeeper.root: "/transactional"                                     |                              | angular sim o    |  |
| 120   | transactional.zookeeper.servers: null                                              |                              | adiat acala      |  |
| 121   | transactional.zookeeper.port: null                                                 |                              | pdist_scale      |  |
| 122   |                                                                                    | 1 E                          | gdist_scale      |  |
| 123   | ## blobstore configs                                                               |                              | occdist_scale    |  |
| 124   | supervisor.blobstore.class: "org.apache.storm.blobstore.NimbusBlobStore"           |                              | oscillation re-  |  |
| 125   | supervisor.blobstore.download.thread.count: 5                                      |                              | oscillation_re   |  |
| , 126 | supervisor.blobstore.download.max_retries: 3                                       |                              | escape_reset     |  |
| 127   | supervisor.localizer.cache.target.size.mb: 10240                                   |                              | escape_reset     |  |
| 128   | supervisor.localizer.cleanup.interval.ms: 600000                                   |                              | wy camples       |  |
| 179   |                                                                                    | <b>8</b>                     |                  |  |





|               | /move_base/Trajectory | PlannerROS    | 3             |
|---------------|-----------------------|---------------|---------------|
|               | 0.0 -                 | 20.0          | 1.5           |
|               | 0.0                   | 20.0          | 0.0           |
| eta           | 0.0 -                 | 20.0          | 1.2           |
|               | 0.0                   | 20.0          | 0.15          |
|               | 0.0                   | 20.0          | 0.1           |
| heta          | 0.0                   | 20.0          | 1.0           |
| neta          | -20.0                 | 0.0           | -1.0          |
| ice_vel_theta | 0.0                   | 20.0          | 0.4           |
|               | 0.0 -                 | 10.0          | 1.0           |
| larity        | 0.0                   | 5.0           | 0.05          |
| m_granularity | 0.0                   | 1.57079632679 | 0.1           |
| 2             | 0.0 -                 | 5.0           | 0.5           |
| 2             | 0.0                   | 5.0           | 0.8           |
| ale           | 0.0                   | 5.0           | 0.05          |
| _reset_dist   | 0.0                   | 5.0           | 0.05          |
| set_dist      | 0.0                   | 5.0           | 0.1           |
| set_theta     | 0.0                   | 5.0           | 1.57079632679 |
| c             | 1 -                   | 300           | 14            |



. . .





```
102
103
      drpc.port: 3772
104
     drpc.worker.threads: 64
    drpc.max buffer size: 1048576
105
     drpc.queue.size: 128
106
     drpc.invocations.port: 3773
107
     drpc.invocations.threads: 64
108
     drpc.request.timeout.secs: 600
109
     drpc.childopts: "-Xmx768m"
110
     drpc.http.port: 3774
111
     drpc.https.port: -1
112
     drpc.https.keystore.password:
113
     drpc.https.keystore.type: "JKS"
114
115
     drpc.authorizer.acl.filename: "drpc-auth-acl.yaml"
116
      drpc.authorizer.acl.strict: false
117
118
      transactional.zookeeper.root: "/transactional"
119
      transactional.zookeeper.servers: null
120
      transactional.zookeeper.port: null
121
122
123
     ## blobstore configs
     supervisor.blobstore.class: "org.apache.storm.blobstore.NimbusBlobStore"
124
125 supervisor.blobstore.download.thread.count: 5
     supervisor.blobstore.download.max_retries: 3
126
     supervisor.localizer.cache.target.size.mb: 10240
127
     supervisor.localizer.cleanup.interval.ms: 600000
128
129
```

drpc.http.creds.plugin: org.apache.storm.security.auth.DefaultHttpCredentialsPlugi



# Empirical observations confirm that systems are becoming increasingly configurable



[Tianyin Xu, et al., "Too Many Knobs...", FSE'15]

### Empirical observations confirm that systems are becoming increasingly configurable



# Configurations determine the performance behavior

```
void Parrot setenv(. . . name, . . . value){
#ifdef PARROT HAS SETENV
 my_setenv(name, value, 1);
#else
  int name len=strlen(name);
  int val_len=strlen(value);
  char* envs=glob env;
  if(envs==NULL){
    return;
  strcpy(envs,name);
  strcpy(envs+name_len,"=");
  strcpy(envs+name_len + 1,value);
  putenv(envs);
```

#endif



How do we understand performance behavior of real-world highly-configurable systems that scale well...

... and enable developers/users to reason about qualities (performance, energy) and to make tradeoff?



## SocialSensor

- Identifying trending topics
- Identifying user defined topics
- Social media search

## SocialSensor



Internet

Crawled items









# Challenges



Internet

Crawled items

**10X** 





### **100X**





using more resources?

# How can we gain a better performance without

Let's try out different system configurations!

# Opportunity: Data processing engines in the pipeline were all configurable





## STORM

> 100



 $2^{300}$ 



### Default configuration was bad, so was the expert'







### The default configuration is typically bad and the optimal configuration is noticeably better than median **Default Configuration** better 5000 r



- 2X-10X faster than worst
- Noticeably faster than median



# What did happen at the end?

- Achieved the objectives (100X user, same experience)
- Saved money by reducing cloud resources up to 20%
- Our tool was able to identify configurations that was consistently better than expert recommendation





A typical approach for understanding the performance behavior is sensitivity analysis  $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$  $C_{1} \quad 0 \times 0 \times \dots \times 0 \times 1$   $C_{2} \quad 0 \times 0 \times \dots \times 1 \times 0$   $C_{3} \quad 0 \times 0 \times \dots \times 1 \times 1$  $y_1 = f(c_1)$  $y_2 = f(c_2)$  $y_3 = f(c_3)$  $f \sim f(\cdot)$ Learn Training/Sample  $\begin{array}{c} 1 \times 1 \times \cdots \times 1 \times 0 \\ c_n 1 \times 1 \times \cdots \times 1 \times 1 \end{array} \quad y_n = f(c_n) \end{array}$ 

### Performance model could be in any appropriate form of black-box models

 $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$  $y_1 = f(c_1)$  $C_1 0 \times 0 \times \cdots \times 0 \times 1$  $C_2 0 \times 0 \times \cdots \times 1 \times 0$  $y_2 = f(c_2)$  $C_3 0 \times 0 \times \cdots \times 1 \times 1$  $y_3 = f(c_3)$ Training/Sample  $f(\cdot)$  $\begin{array}{c} 1 \times 1 \times \cdots \times 1 \times 0 \\ c_n \ 1 \times 1 \times \cdots \times 1 \times 1 \end{array} \quad y_n = f(c_n) \end{array}$ 





# Evaluating a performance model





### A performance model contain useful information about influential options and interactions

## $f: \mathbb{C} \to \mathbb{R}$ $f(\cdot) = 1.2 + 3o_1 + 5o_3 + 0.9o_7 + 0.8o_3o_7 + 4o_1o_3o_7$

### Performance model can then be used to reason about qualities

```
void Parrot setenv(. . . name, . . . value){
#ifdef PARROT HAS SETENV
 my_setenv(name, value, 1);
#else
  int name_len=strlen(name);
  int val_len=strlen(value);
  char* envs=glob env;
  if(envs==NULL){
    return;
  strcpy(envs,name);
  strcpy(envs+name_len,"=");
  strcpy(envs+name_len + 1,value);
  putenv(envs);
#endif
```



### Insight: Performance measurements of the real system is "similar" to the ones from the simulators



# We developed methods to make learning cheaper via transfer learning

# **Goal:** Gain strength by transferring information across environments



# What is transfer learning?





# What is transfer learning?



Transfer learning is a machine learning technique, where knowledge gain during training in one type of problem is used to train in other similar type of problem







## What is the advantage of transfer learning?

- During learning you may need thousands of rotten and fresh potato and hours of training to learn.
- But now using the same knowledge of rotten features you can identify rotten tomato with **less samples and training time**.
- You may have learned during daytime with enough light and exposure; but your present tomato identification job is at night.
- You may have learned sitting very close, just beside the box of potato; but now for tomato identification you are in the other side of the glass.

## A simple transfer learning via model shift

### Machine twice as fast







[Pavel Valov, et al. "Transferring performance prediction models...", ICPE'17]







[P. Jamshidi, et al., "Transfer learning for improving model predictions ....", SEAMS'17]









# Gaussian Processes enables reasoning about performance

Step 1: Fit GP to the data seen so far

Step 2: Explore the model for regions of most variance

Step 3: Sample that region

Step 4: Repeat


### The intuition behind our transfer learning approach

**Intuition:** Observations on the source(s) can affect predictions on the target

**Example:** Learning the chess game make learning the Go game a lot easier!



## **CoBot experiment: DARPA BRASS**



## Result: CoBot experiment



2500

## Results: Other configurable systems



## Details: [SEAMS '17]

### Transfer Learning for Improving Model Predictions in Highly Configurable Software

Pooyan Jamshidi, Miguel Velez, Christian KästnerNorbert SiegmundCarnegie Mellon University, USABauhaus-University Weimar, Germany{pjamshid,mvelezce,kaestner}@cs.cmu.edunorbert.siegmund@uni-weimar.de

Abstract—Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Prasad Kawthekar Stanford University, USA pkawthek@stanford.edu





### Looking further: When transfer learning goes wrong Non-transfer-learning

### **Insight:** Predictions become more accurate when the source is more related to the target.







### Key question: Can we develop a theory to explain when transfer learning works?



**Q1:** How source and target are "related"?

**Q2:** What characteristics are preserved?

Q3: What are the actionable insights?

### Mathematical Framework of configuration optimization

sinle casla ьg a <u>6</u> 6 a;  $sin^2 d + cos^2 d = 1;$  $\frac{sin d}{cos d} = \frac{1}{2} \frac{sin d}{sin d}$ · d = <u>T</u> 180 d d \$ 180°=TL; sind cscd=1; 4=as Cosd = cbg d **△** >0  $tg \varphi = \pm a^2 (\frac{3}{2})^{\frac{3}{2}};$ 

### We define configuration optimization as a multi-objective optimization problem with unknown feasibility constraints

# $x^* = argmin_{c \in \mathscr{C}} f(x)$

 $\phi_i(\mathbf{c}) \leq b_i, i = 1, ..., q$ 

### Configuration space may include real, ordinal, and categorical configuration options

- The variables defining the configuration space can be ordinal (real, integer), and categorical.
- Ordinal parameters have a domain of a finite set of values which are either integer and/or real values.
- Ordinal values must have an ordering by the less-than operator.
- Categorical parameters (Boolean) also have domains of a finite set of values but have no ordering requirement.

### We assume the derivative of the optimization function is not available

- We assume that the **derivative** of f is **not available**.
- And that bounds, such as Lipschitz constants, for the derivative of f is also unavailable.
- Evaluating feasibility is often in the same order of expense as evaluating the objective function f.
- As for the objective function, **no particular assumptions** are made on the constraint functions.

### We induce partial ordering between configurations in the configuration space



### $\mathbb{R}^d: y \prec y' \iff \forall i \in [d] y_i \leq y'_i \& \exists j y_i < y'_i$

 $\mathscr{C}: \mathbf{c} \prec \mathbf{c}' \iff f(\mathbf{c}) \prec f(\mathbf{c}')$ 

### Based on the induced ordering of configurations we can define the Pareto optimal set of configurations

 $\Gamma = \{\mathbf{c} \in \mathscr{C} : \nexists \mathbf{c}' < \mathbf{c}\}$ 

### Applying these constraints gives the constrained Pareto-optimal set

### $\Gamma = \{ \mathbf{c} \in \mathscr{C} : \nexists \mathbf{c}' < \mathbf{c} \And \phi_i(\mathbf{c}') \leq b_i \}$

### The multi-objective function maps each point in the 3-dimensional configuration space on the left to the optimization space on the right



### We hypothesized that we can exploit similarities across environments to learn "cheaper" performance models

**Source Environment** (Execution time of Program X)  $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$ 

$$C_{1} \quad 0 \times 0 \times \dots \times 0 \times 1 \quad y_{s1} = f_{s}(c_{1})$$

$$C_{2} \quad 0 \times 0 \times \dots \times 1 \times 0 \quad y_{s2} = f_{s}(c_{2})$$

$$C_{3} \quad 0 \times 0 \times \dots \times 1 \times 1 \quad y_{s3} = f_{s}(c_{3})$$

$$\dots$$

$$1 \times 1 \times \dots \times 1 \times 0 \quad y_{sn} = f_{s}(c_{n})$$

[P. Jamshidi, et al., "Transfer learning for performance modeling of configurable systems....", ASE'17]

**Target Environment** (Execution time of Program Y)  $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$ 



Similarity

### Our empirical study: We looked at different highlyconfigurable systems to gain insights

### $(A \vee B) \wedge (\neg A \vee \neg B \vee \neg C) \wedge (\neg A \vee B \vee C)$





**SPEAR (SAT Solver) Analysis time** 

14 options

X264 (video encoder) **SQLite (DB engine) Encoding time** Query time 14 options

16 options

[P. Jamshidi, et al., "Transfer learning for performance modeling of configurable systems....", ASE'17]



SaC (Compiler) **Execution time** 50 options

# Linear shift happens only in limited environmental changes

| Soft        | Environmental change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sever                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SPEAR       | NUC/2 -> NUC/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Small                   |
|             | Amazon_nano -> NUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Large                   |
|             | Hardware/workload/version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V Lar                   |
|             | and the second state and the second state second state second state second state and the second state second state second state second states and the second states |                         |
| v964        | Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Large                   |
| <b>x264</b> | Version<br>Workload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Large<br>Mediu          |
| x264        | Version<br>Workload<br>write-seq -> write-batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Large<br>Mediu<br>Small |

Implication: Simple transfer learning is limited to hardware changes in practice



### Target

Source

### Influential options and interactions are preserved across environments

| Soft        | Environmental change     | Severity |
|-------------|--------------------------|----------|
| <b>x264</b> | Version                  | Large    |
|             | Hardware/workload/ver    | V Large  |
| SQLite      | write-seq -> write-batch | V Large  |
|             | read-rand -> read-seq    | Medium   |
| SaC         | Workload                 | V Large  |

Implication: Avoid wasting budget on non-informative part of configuration space and focusing where it matters.



We only need to explore part of the space: = 0.00000000058

### Transfer learning across environment

Source (Execution time of Program X)  $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$ 

$$C_{1} \quad 0 \times 0 \times \dots \times 0 \times 1 \qquad y_{s1} = f_{s}(c_{1})$$

$$C_{2} \quad 0 \times 0 \times \dots \times 1 \times 0 \qquad y_{s2} = f_{s}(c_{2})$$

$$C_{3} \quad 0 \times 0 \times \dots \times 1 \times 1 \qquad y_{s3} = f_{s}(c_{3}) \qquad \text{perf}$$

$$\dots$$

$$1 \times 1 \times \dots \times 1 \times 0 \qquad y_{sn} = f_{s}(c_{n})$$



 $\hat{f}_{S} \sim f_{S}(\cdot)$ 

## and interactions degree between options are not high

## $\mathbb{C} = O_1 \times O_2 \times O_3 \times O_4 \times O_5 \times O_6 \times O_7 \times O_8 \times O_9 \times O_{10}$ $\hat{f}_{s}(\cdot) = 1.2 + 3o_{1} + 5o_{3} + 0.9o_{7} + 0.8o_{3}o_{7} + 4o_{1}o_{3}o_{7}$

**Observation 1: Not all options and interactions are influential** 



# Observation 2: Influential options and interactions are preserved across environments

$$\hat{f}_s(\cdot) = 1.2 + 3o_1 + 5o_1$$

$$\hat{f}_t(\cdot) = 10.4 - 2.1o_1 + 1.2o_3$$



### Transfer Learning for Performance Modeling of Configurable Systems: An Exploratory Analysis

Pooyan Jamshidi Carnegie Mellon University, USA

Norbert Siegmund Bauhaus-University Weimar, Germany

Abstract—Modern software systems provide many configuration options which significantly influence their non-functional properties. To understand and predict the effect of configuration options, several sampling and learning strategies have been proposed, albeit often with significant cost to cover the highly dimensional configuration space. Recently, transfer learning has been applied to reduce the effort of constructing performance models by transferring knowledge about performance behavior across environments. While this line of research is promising to learn more accurate models at a lower cost, it is unclear why and when transfer learning works for performance modeling. To shed light on when it is beneficial to apply transfer learning, we conducted an empirical study on four popular software systems, varying software configurations and environmental conditions, such as hardware, workload, and software versions, to identify the key knowledge pieces that can be exploited for transfer learning. Our results show that in small environmental changes (e.g., homogeneous workload change), by applying a linear transformation to the performance model, we can understand the performance behavior of the target environment, while for severe environmental changes (e.g., drastic workload change) we

## Details: [ASE '17]

Miguel Velez, Christian Kästner Akshay Patel, Yuvraj Agarwal Carnegie Mellon University, USA



reliable, and less costly model for the target environment.



How to sample the configuration space to learn a "better" performance behavior? How to select the most informative configurations?



## The similarity across environment is a rich source of knowledge for exploration of the configuration space

 $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$  $\begin{array}{c} c_1 \\ 0 \times 0 \times \cdots \times 0 \times 1 \\ c_2 \\ 0 \times 0 \times \cdots \times 1 \times 0 \\ c_3 \\ 0 \times 0 \times \cdots \times 1 \times 1 \end{array}$  $1 \times 1 \times \cdots \times 1 \times 0$   $C_n 1 \times 1 \times \cdots \times 1 \times 1$ 

- We therefore end up blindly explore the configuration space
- That is essentially the key reason why "most" work in this area consider random sampling.

When we treat the system as black boxes, we cannot typically distinguish between different configurations



 $f_s(\cdot) = 1.2 + 3o_1 + 5o_3 + 0.9o_7 + 0.8o_3o_7 + 4o_1o_3o_7$  $\times 1 \times 0 \times 0 \times 0 \times 1 \times 0 \times 1 \times 0 \qquad \hat{f}_s(c_3) = 14.9$ 



Without knowing this knowledge, many blind/ random samples may not provide any additional information about performance of the system





# In higher dimensional spaces, the blind samples even become less informative/effective



## Learning to Sample (L2S)

### Extracting the knowledge about influential options and interactions: Step-wise linear regression

Source (Execution time of Program X)  $O_1 \times O_2 \times \cdots \times O_{19} \times O_{20}$ 

 $C_{1} \quad 0 \times 0 \times \dots \times 0 \times 1 \quad y_{s1} = f_{s}(c_{1})$   $C_{2} \quad 0 \times 0 \times \dots \times 1 \times 0 \quad y_{s2} = f_{s}(c_{2})$   $C_{3} \quad 0 \times 0 \times \dots \times 1 \times 1 \quad y_{s3} = f_{s}(c_{3})$  $\times 1 \times \cdots \times 1$  $C_n \quad 1 \times 1 \times \dots \times 1 \times 1 \quad y_{sn} = f_s(c_n)$ 

- 1. Fit an **initial model**
- 2. Forward selection: Add terms iteratively
- Learn performance model  $\hat{f}_{s} \sim f_{s}(\cdot)$
- 3. Backward elimination: **Removes terms iteratively**
- 4. Terminate: When neither (2) or (3) improve the model

### Build a performance distribution using kernel density estimation using the source data


### L2S extracts the knowledge about influential options and interactions via performance models

## $\hat{f}_{s}(\cdot) = 1.2 + 3o_1 + 5o_3 + 0.9o_7 + 0.8o_3o_7 + 4o_1o_3o_7$





 $\hat{f}_{s}(\cdot) = 1.2 + 3o_{1} + 5o_{3} + 0.9o_{7} + 0.8o_{3}o_{7} + 4o_{1}o_{3}o_{7}$  $\hat{f}_t(\cdot) = 10.4 - 2.1o_1 + 1.2o_3 + 2.2o_7 + 0.1o_1o_3 - 2.1o_3o_7 + 14o_1o_3o_7$  $\hat{f}_t(c_1) = 10.4$  $\hat{f}_t(c_2) = 8.1$  $\hat{f}_t(c_3) = 11.6$  $\hat{f}_t(c_4) = 12.6$  $\hat{f}_t(c_5) = 11.7$  $C_6 1 \times 0 \times 1 \times 0 \times 0 \times 0 \times 1 \times 0 \times 0 \times 0 = 23.7$ 



### **Exploration vs** Exploitation

We also explore the configuration space using pseudo-random sampling to detect missing interactions



### For capturing options and interactions that only appears in the target, L2S relies on exploration (random sampling)



### L2S transfers knowledge about the structure of performance models from the source to guide the sampling in the target environment



# **Evaluation:** also exists

Other transfer learning approaches

### "Model shift" builds a model in the source and uses the shifted model "directly" for predicting the target

### Machine twice as fast







[Pavel Valov, et al. "Transferring performance prediction models...", ICPE'17]





### "Data reuse" combines the data collected in the source with the ones in the target in a "multi-task" setting to predict the target



[P. Jamshidi, et al., "Transfer learning for improving model predictions ....", SEAMS'17]



# "Data reuse" with guided sampling





### Simulator (Gazebo)







# Evaluation: Learning performance behavior of Machine Learning Systems

ML system: <u>https://pooyanjamshidi.github.io/mls</u>

### Configurations of deep neural networks affect accuracy and energy consumption



Deep neural network as a highly configurable system





### **DNN measurements** are costly Each sample cost ~1h

4000 \* 1h ~= 6 months



### L2S enables learning a more accurate model with less samples exploiting the knowledge from the source



**Convolutional Neural Network** 

### L2S may also help data-reuse approach to learn faster



### XGBoost

# **Evaluation:** Learning performance behavior of **Big Data Systems**

### Some environments the similarities across environments may be too low and this results in "negative transfer"



### Why performance models using L2S sample are more accurate?



# The samples generated by L2S contains more information... "entropy <-> information gain"



# Limitations

- Limited number of systems and environmental changes
  - Synthetic models
    - <u>https://github.com/pooyanjamshidi/GenPerf</u>
- Binary options
  - Non-binary options -> binary
- Negative transfer

### Learning to Sample: Exploiting Similarities across Environments to Learn Performance Models for Configurable Systems

Pooyan Jamshidi University of South Carolina USA

### ABSTRACT

Most software systems provide options that allow users to tailor the system in terms of functionality and qualities. The increased flexibility raises challenges for understanding the configuration space and the effects of options and their interactions on performance and other non-functional properties. To identify how options and interactions affect the performance of a system, several sampling and learning strategies have been recently proposed. However, existing approaches usually assume a fixed environment (hardware, workload, software release) such that learning has to be repeated once the environment changes. Repeating learning and measurement for each environment is expensive and often practically infeasible. Instead, we pursue a strategy that transfers knowledge across environments but sidesteps heavyweight and expensive transfer-

# Details: [FSE '18]





# What will the software systems of the future look like?



### VISION Software 2.0

### Increasingly customized and configurable

| namic Reconfigure                                    |                                                                                                                                                       |                           |                                                                              |                                                                 | D? - 0   |             |    |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|-------------|----|
| er key:                                              |                                                                                                                                                       | /move_base/TrajectoryPlar | nnerROS                                                                      |                                                                 | <b>x</b> |             | 11 |
| acc<br>acc<br>acc<br>acc<br>acc<br>acc<br>acc<br>acc | cc_lim_x<br>cc_lim_y<br>cc_lim_theta<br>ax_vel_x<br>in_vel_x<br>ax_vel_theta<br>in_vel_theta<br>in_in_place_vel_theta<br>m_time                       | 0.0                       | 20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0                 | 1.5<br>0.0<br>1.2<br>0.15<br>0.1<br>1.0<br>-1.0<br>0.4<br>1.0   |          | BN-Reby-Con |    |
| sir<br>an<br>pd<br>gd<br>oc<br>os<br>es<br>es        | m_granularity<br>ngular_sim_granularity<br>dist_scale<br>dist_scale<br>ccdist_scale<br>scillation_reset_dist<br>scape_reset_dist<br>scape_reset_theta | 0.0                       | 5.0<br>1.57079632679<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0 | 0.05<br>0.1<br>0.5<br>0.8<br>0.05<br>0.05<br>0.1<br>1.570796326 | 79       |             |    |

Increasingly competing objectives

Energy Model size



- Inference speed
  - **Training speed** 
    - Accuracy

Deep neural network as a highly configurable system





# We found many configuration with the same accuracy while having drastically different energy demand





### Deep architecture design level variations

| NAME               | DESCRIPTION            | ΤΥΡΕ | MIN   | MAX   |
|--------------------|------------------------|------|-------|-------|
| batch_size         | SGD parameter          | int  | 8     | 32    |
| conv_1_filter_size | Architecture parameter | int  | 2     | 10    |
| conv_1_num_filters | Architecture parameter | int  | 32    | 256   |
| conv_2_filter_size | Architecture parameter | int  | 2     | 10    |
| conv_2_num_filters | Architecture parameter | int  | 32    | 256   |
| conv_3_filter_size | Architecture parameter | int  | 2     | 10    |
| conv_3_num_filters | Architecture parameter | int  | 32    | 256   |
| log_beta_1         | Adam SGD parameter     | real | -4.6  | -0.7  |
| log_beta_2         | Adam SGD parameter     | real | -13.8 | -0.7  |
| log_decay          | Adam SGD parameter     | real | -23   | -2.3  |
| log_epsilon        | Adam SGD parameter     | real | -23   | -13.8 |
| log_lr             | Adam SGD parameter     | real | -23   | 0     |

### Deep architecture deployment variations















### **Deep architecture hardware-level variations**





### **NVIDIA Xavier**

### Exploring the design space of deep networks





### **Optimal Architecture** (Yesterday)

### **New Fraud Pattern**



**Optimal Architecture** (Today)









### **Configuration options and interactions influence** performance of DNNs



# Insight: Learn a model on a cheaper workload to explore the expensive workload faster









# Configuration errors are prevalent










# Configuration errors are common





# Configuration complexity and dependencies between options is a major source of configuration errors



rpc.port: 3772 drpc.worker.threads: 64 drpc.queue.size: 128







## **Operational context II**



**Operational context III** 







# Configuration complexity and dependencies between options is a major source of configuration errors

drpc.port: 3772 drpc.worker.threads: 64 drpc.max\_buffer\_size: 1048576 drpc.queue.size: 128 drpc.invocations.port: 3773 drpc.invocations.threads: 64 drpc.request.timeout.secs: 600

## **Configuration Options**



### **Apache Hadoop Architecture**

Configurations are software too

# We can find the repair patches faster with a lighter workload

- [localization]: Using transfer learning to derive the most likely configurations that manifest the bugs
- [repair]: Automatically prepare patches to fix the configuration bug

# built Many systems are now configurable

|                                                                        | 😸 — 🗇 rqt_reconfigure_Param - rqt                             |                           |
|------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------|
|                                                                        | Dynamic Reconfigure                                           |                           |
|                                                                        | Filter key:                                                   |                           |
|                                                                        | <u>C</u> ollapse all <u>E</u> xpan                            | d all acc_lim_x           |
| ▼ move_base<br>TrajectoryPlanne<br>▶ global_costmap<br>▶ local_costmap | ▼ move_base                                                   | acc_um_y<br>acc_lim_theta |
|                                                                        | <ul> <li>▶ global_costmap</li> <li>▶ local_costmap</li> </ul> | max_vel_x                 |





Trained Network

Given the ever growing configurable systems, how can we enable learning practical models that scale well and provide reliable predictions for exploring the configuration space?







# Challenges Crawled



### Our empirical study: We looked at different highlyconfigurable systems to gain insights





### Exploring the design space of deep networks

