
Transfer Learning for
Performance Analysis of

Machine Learning Systems

Pooyan Jamshidi

University of South Carolina

pooyanjamshidi

https://twitter.com/pooyanjamshidi

Goal: Enable developers/users
to find the right quality tradeoff

Today’s most popular systems are configurable
built

Empirical observations confirm that systems are
becoming increasingly configurable

Hey, You Have Given Me Too Many Knobs!

Understanding and Dealing with Over-Designed Configuration in System Software

Tianyin Xu*, Long Jin*, Xuepeng Fan*‡, Yuanyuan Zhou*,
Shankar Pasupathy† and Rukma Talwadker†

*University of California San Diego, ‡Huazhong Univ. of Science & Technology, †NetApp, Inc
{tixu, longjin, xuf001, yyzhou}@cs.ucsd.edu

{Shankar.Pasupathy, Rukma.Talwadker}@netapp.com

ABSTRACT
Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental
reason is the ever-increasing complexity of configuration, reflected
by the large number of configuration parameters (“knobs”). With
hundreds of knobs, configuring system software to ensure high re-
liability and performance becomes a daunting, error-prone task.

This paper makes a first step in understanding a fundamental
question of configuration design: “do users really need so many
knobs?” To provide the quantitatively answer, we study the con-
figuration settings of real-world users, including thousands of cus-
tomers of a commercial storage system (Storage-A), and hundreds
of users of two widely-used open-source system software projects.
Our study reveals a series of interesting findings to motivate soft-
ware architects and developers to be more cautious and disciplined
in configuration design. Motivated by these findings, we provide
a few concrete, practical guidelines which can significantly reduce
the configuration space. Take Storage-A as an example, the guide-
lines can remove 51.9% of its parameters and simplify 19.7% of
the remaining ones with little impact on existing users. Also, we
study the existing configuration navigation methods in the context
of “too many knobs” to understand their effectiveness in dealing
with the over-designed configuration, and to provide practices for
building navigation support in system software.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Methodologies

General Terms: Design, Human Factors, Reliability

Keywords: Configuration, Complexity, Simplification, Navigation,
Parameter, Difficulty, Error

1. INTRODUCTION

1.1 Motivation
In recent years, configuration problems have drawn tremendous

attention for their increasing prevalence and severity. For example,
Yin et al. reported that configuration issues accounted for 27% of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy.
Copyright 2015 ACM 978-1-4503-3675-8/15/08 ...$15.00
DOI: http://dx.doi.org/10.1145/2786805.2786852 .

7/2006 7/2008 7/2010 7/2012 7/2014
0

100

200

300

400

500

600

700

Storage-A�

N
u
m

b
er

�o
f�

p
ar

am
et

er
s

Release�time

�

1/1999 1/2003 1/2007 1/2011
0

100

200

300

400

500

5.6.2

5.5.0

5.0.16

5.1.3

4.1.0

4.0.12
3.23.0

1/2014�

MySQL�

N
u
m

b
er

�o
f�

p
ar

am
et

er
s

Release�time

1/1998 1/2002 1/2006 1/2010 1/2014
0

100

200

300

400

500

600

1.3.14

2.2.14

2.3.4

2.0.35

1.3.24

N
u

m
b

er
�o

f�
p

ar
am

et
er

s

Release�time

Apache�

�

1/2006 1/2008 1/2010 1/2012 1/2014
0

40

80

120

160

200

2.0.0

1.0.0

0.19.0

0.1.0

Hadoop�

N
u
m

b
er

�o
f�

p
ar

am
et

er
s

Release�time

�MapReduce

�HDFS

Figure 1: The increasing number of configuration parameters with
software evolution. Storage-A is a commercial storage system from a ma-
jor storage company in the U.S.

all the customer-support cases in a major storage company in the
U.S., and were the most significant contributor (31%) among all
the high-severity cases [74]. Rabkin and Katz reported that config-
uration issues were the dominant source of support cost in Hadoop
clusters (based on data from Cloudera Inc.), in terms of both the
number of support cases and the amount of supporting time [46].

Moreover, configuration errors, the after-effects of configuration
difficulties, have become one of the major causes of system fail-
ures. Barroso and Hölzle reported that configuration errors were the
second major cause of service-level disruptions at one of Google’s
main services [16]. Recently, a number of outages of Internet and
cloud services, including Google, LinkedIn, Microsoft Azure, and
Amazon EC2, were caused by configuration errors [35, 59, 63, 68].

One fundamental reason for today’s prevalent configuration is-
sues is the ever-increasing complexity of configuration, especially
in system software. This is reflected by the large and still increasing
number of configuration parameters (“knobs”), as well as various
configuration constraints and consistency requirements [32, 39, 45,
72] (known as complexity of interaction and tightness of coupling
in human error studies [41,48]). For example, MySQL 5.6 database
server has 461 configuration parameters; 216 of them are not with
simple data types (e.g., Boolean or enumerative) but rather more
complex ones. These parameters control different buffer sizes, time-
outs, resource limits, etc. Setting them correctly requires domain-

[Tianyin Xu, et al., “Too Many Knobs…”, FSE’15]

Empirical observations confirm that systems are
becoming increasingly configurable

Hey, You Have Given Me Too Many Knobs!

Understanding and Dealing with Over-Designed Configuration in System Software

Tianyin Xu*, Long Jin*, Xuepeng Fan*‡, Yuanyuan Zhou*,
Shankar Pasupathy† and Rukma Talwadker†

*University of California San Diego, ‡Huazhong Univ. of Science & Technology, †NetApp, Inc
{tixu, longjin, xuf001, yyzhou}@cs.ucsd.edu

{Shankar.Pasupathy, Rukma.Talwadker}@netapp.com

ABSTRACT
Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental
reason is the ever-increasing complexity of configuration, reflected
by the large number of configuration parameters (“knobs”). With
hundreds of knobs, configuring system software to ensure high re-
liability and performance becomes a daunting, error-prone task.

This paper makes a first step in understanding a fundamental
question of configuration design: “do users really need so many
knobs?” To provide the quantitatively answer, we study the con-
figuration settings of real-world users, including thousands of cus-
tomers of a commercial storage system (Storage-A), and hundreds
of users of two widely-used open-source system software projects.
Our study reveals a series of interesting findings to motivate soft-
ware architects and developers to be more cautious and disciplined
in configuration design. Motivated by these findings, we provide
a few concrete, practical guidelines which can significantly reduce
the configuration space. Take Storage-A as an example, the guide-
lines can remove 51.9% of its parameters and simplify 19.7% of
the remaining ones with little impact on existing users. Also, we
study the existing configuration navigation methods in the context
of “too many knobs” to understand their effectiveness in dealing
with the over-designed configuration, and to provide practices for
building navigation support in system software.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Methodologies

General Terms: Design, Human Factors, Reliability

Keywords: Configuration, Complexity, Simplification, Navigation,
Parameter, Difficulty, Error

1. INTRODUCTION

1.1 Motivation
In recent years, configuration problems have drawn tremendous

attention for their increasing prevalence and severity. For example,
Yin et al. reported that configuration issues accounted for 27% of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy.
Copyright 2015 ACM 978-1-4503-3675-8/15/08 ...$15.00
DOI: http://dx.doi.org/10.1145/2786805.2786852 .

7/2006 7/2008 7/2010 7/2012 7/2014
0

100

200

300

400

500

600

700

Storage-A�

N
u
m

b
er

�o
f�

p
ar

am
et

er
s

Release�time

�

1/1999 1/2003 1/2007 1/2011
0

100

200

300

400

500

5.6.2

5.5.0

5.0.16

5.1.3

4.1.0

4.0.12
3.23.0

1/2014�

MySQL�

N
u
m

b
er

�o
f�

p
ar

am
et

er
s

Release�time

1/1998 1/2002 1/2006 1/2010 1/2014
0

100

200

300

400

500

600

1.3.14

2.2.14

2.3.4

2.0.35

1.3.24

N
u

m
b

er
�o

f�
p

ar
am

et
er

s

Release�time

Apache�

�

1/2006 1/2008 1/2010 1/2012 1/2014
0

40

80

120

160

200

2.0.0

1.0.0

0.19.0

0.1.0

Hadoop�

N
u
m

b
er

�o
f�

p
ar

am
et

er
s

Release�time

�MapReduce

�HDFS

Figure 1: The increasing number of configuration parameters with
software evolution. Storage-A is a commercial storage system from a ma-
jor storage company in the U.S.

all the customer-support cases in a major storage company in the
U.S., and were the most significant contributor (31%) among all
the high-severity cases [74]. Rabkin and Katz reported that config-
uration issues were the dominant source of support cost in Hadoop
clusters (based on data from Cloudera Inc.), in terms of both the
number of support cases and the amount of supporting time [46].

Moreover, configuration errors, the after-effects of configuration
difficulties, have become one of the major causes of system fail-
ures. Barroso and Hölzle reported that configuration errors were the
second major cause of service-level disruptions at one of Google’s
main services [16]. Recently, a number of outages of Internet and
cloud services, including Google, LinkedIn, Microsoft Azure, and
Amazon EC2, were caused by configuration errors [35, 59, 63, 68].

One fundamental reason for today’s prevalent configuration is-
sues is the ever-increasing complexity of configuration, especially
in system software. This is reflected by the large and still increasing
number of configuration parameters (“knobs”), as well as various
configuration constraints and consistency requirements [32, 39, 45,
72] (known as complexity of interaction and tightness of coupling
in human error studies [41,48]). For example, MySQL 5.6 database
server has 461 configuration parameters; 216 of them are not with
simple data types (e.g., Boolean or enumerative) but rather more
complex ones. These parameters control different buffer sizes, time-
outs, resource limits, etc. Setting them correctly requires domain-

[Tianyin Xu, et al., “Too Many Knobs…”, FSE’15]

Configurations determine the performance
behavior
void Parrot_setenv(. . . name,. . . value){
#ifdef PARROT_HAS_SETENV
 my_setenv(name, value, 1);
#else
 int name_len=strlen(name);
 int val_len=strlen(value);
 char* envs=glob_env;
 if(envs==NULL){
 return;
 }
 strcpy(envs,name);
 strcpy(envs+name_len,"=");
 strcpy(envs+name_len + 1,value);
 putenv(envs);
#endif
}

#ifdef LINUX
extern int Parrot_signbit(double x){
 union{
 double d;
 int i[2];
 } u;
 u.d = x;
ifdef BIG_ENDIAN
 return u.i[0] < 0;
else
 return u.i[1] < 0;
endif
}
#endif

endif

else

PARROT_HAS_SETENV

endif

endif

LINUX

else

BIG_ENDIAN

Speed

Energy

How do we understand performance behavior of
real-world highly-configurable systems that scale well…

… and enable developers/users to reason about
qualities (performance, energy) and to make tradeoff?

Outline

Case
Study

Transfer
Learning

Theory
Building

Guided
Sampling

Current
Research

[SEAMS’17]

[ASE’17]

[FSE’18]

SocialSensor

• Identifying trending topics

• Identifying user defined topics

•Social media search

SocialSensor

Content AnalysisOrchestrator

Crawling

Search and Integration

Tweets: [5k-20k/min]

Every 10 min:
[100k tweets]

Tweets: [10M]

Fetch

Store

Push

Store

Crawled
items

FetchInternet

Challenges

Content AnalysisOrchestrator

Crawling

Search and Integration

Tweets: [5k-20k/min]

Every 10 min:
[100k tweets]

Tweets: [10M]

Fetch

Store

Push

Store

Crawled
items

FetchInternet

100X

10X
Real time

How can we gain a better performance without
using more resources?

Let’s try out different system configurations!

Opportunity: Data processing engines in the
pipeline were all configurable

> 100 > 100 > 100

2300

0 500 1000 1500
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

A
ve

ra
g

e
 w

ri
te

 la
te

n
cy

 (
s)

Default configuration was bad, so was the expert’
Default

Recommended
 by an expert Optimal

Configuration

better

better

0 0.5 1 1.5 2 2.5
Throughput (ops/sec) 104

0

50

100

150

200

250

300

L
a

te
n

cy
 (

m
s)

Default configuration was bad, so was the expert’

Default

Recommended
 by an expert

Optimal
Configuration

better

better

0 500 1000 1500
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

A
ve

ra
g

e
 w

ri
te

 la
te

n
cy

 (
s)

The default configuration is typically bad and the
optimal configuration is noticeably better than median

Default Configuration

Optimal
Configuration

better

better

• Default is bad
• 2X-10X faster than worst
• Noticeably faster than median

What did happen at the end?

• Achieved the objectives (100X user, same experience)

• Saved money by reducing cloud resources up to 20%

• Our tool was able to identify configurations that was
consistently better than expert recommendation

Outline

Case
Study

Transfer
Learning

Theory
Building

Guided
Sampling

Current
Research

Setting the scene

ℂ = O1 × O2 × ⋯ × O19 × O20

Dead code removal

Configuration
Space

Constant folding

Loop unrolling

Function inlining

c1 = 0 × 0 × ⋯ × 0 × 1c1 ∈ ℂ

fc(c1) = 11.1msCompile
time

Execution
time

Energy

Compiler
(e.f., SaC, LLVM)

Program Compiled
Code

Instrumented
Binary

Hardware

Compile Deploy

Configure

fe(c1) = 110.3ms
fen(c1) = 100mwh

Non-functional
measurable/quantifiable

aspect

A typical approach for understanding the
performance behavior is sensitivity analysis

O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1
0 × 0 × ⋯ × 1 × 0
0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

y1 = f(c1)
y2 = f(c2)
y3 = f(c3)

yn = f(cn)

̂f ∼ f(⋅)
⋯

LearnTraining/Sample
Set

Performance model could be in any appropriate
form of black-box models

O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1
0 × 0 × ⋯ × 1 × 0
0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

y1 = f(c1)
y2 = f(c2)
y3 = f(c3)

yn = f(cn)

̂f ∼ f(⋅)
⋯

Training/Sample
Set

Evaluating a performance model
O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1
0 × 0 × ⋯ × 1 × 0
0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

y1 = f(c1)
y2 = f(c2)
y3 = f(c3)

yn = f(cn)

̂f ∼ f(⋅)
⋯

LearnTraining/Sample
Set

Evaluate
Accuracy

APE(̂f, f) =
| ̂f(c) − f(c) |

f(c)
× 100

A performance model contain useful information
about influential options and interactions

f(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

f : ℂ → ℝ

Performance model can then be used to reason
about qualities

void Parrot_setenv(. . . name,. . . value){
#ifdef PARROT_HAS_SETENV
 my_setenv(name, value, 1);
#else
 int name_len=strlen(name);
 int val_len=strlen(value);
 char* envs=glob_env;
 if(envs==NULL){
 return;
 }
 strcpy(envs,name);
 strcpy(envs+name_len,"=");
 strcpy(envs+name_len + 1,value);
 putenv(envs);
#endif
}

#ifdef LINUX
extern int Parrot_signbit(double x){
 union{
 double d;
 int i[2];
 } u;
 u.d = x;
ifdef BIG_ENDIAN
 return u.i[0] < 0;
else
 return u.i[1] < 0;
endif
}
#endif

endif

else

PARROT_HAS_SETENV

endif

endif

LINUX

else

BIG_ENDIAN

f(·) = 5 + 3⇥ o1

Execution time (s)

f(o1 := 0) = 5

f(o1 := 1) = 8

Insight: Performance measurements of the real
system is “similar” to the ones from the simulators

Measure

Simulator (Gazebo)

Data

Configurations

Performance
So why not reuse these data,
instead of measuring on real robot?

We developed methods to make learning cheaper
via transfer learning

Target (Learn)Source (Given)

D
at

a
M

od
el

Transferable
Knowledge

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

Extract Reuse

Learn Learn
Goal: Gain strength by
transferring information
across environments

What is transfer learning?

What is transfer learning?

Transfer learning is a machine learning technique, where
knowledge gain during training in one type of problem is
used to train in other similar type of problem

What is the advantage of transfer learning?

• During learning you may need thousands of rotten and fresh potato and
hours of training to learn.

• But now using the same knowledge of rotten features you can identify
rotten tomato with less samples and training time.

• You may have learned during daytime with enough light and exposure;
but your present tomato identification job is at night.

• You may have learned sitting very close, just beside the box of potato; but
now for tomato identification you are in the other side of the glass.

A simple transfer learning via model shift
logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

Figure 5: The first column shows the log joint probability and the corresponding posterior. In the second column we
have estimates of the log joint and the posterior for uniformly spaced points. In the third column we have the same
except that more points were chosen in high likelihood regions.

AGPR will query point (x). However, given sufficient smoothness, we know that the joint probability will be very low
there after exponentiation due to points (3) and (4). Therefore, the BAPE active learner will not be as interested in (x)
as AGPR. Observe that the uncerainty at (x) is large in the log joint probability space in comparison to the uncertainty
elsewhere; however, in the probability space this is smaller than the uncertainty at the high probability regions. As
Figure 5 indicates, while we model the log joint probability as a GP we are more interested in the uncertainty model
of the posterior/joint probability. Finally, as a special case for BQ, [20] consider evaluating the model evidence–i.e.
the integral under the conditional. Their utility function uses approximations tailored to estimating the integral well.
Note that our goal of estimating the posterior well is more difficult than estimating an integral under the conditional
as the former implies the latter but not vice versa.

3 Other Algorithms for Comparison

We list and describe some potential alternatives for posterior estimation which we use in our empirical evaluation.

1. MCMC - Density Estimation (MCMC-DE): We implement MCMC with a Metropolis Hastings (MH) chain
and use kernel density estimation (KDE) on the accepted points to estimate the posterior. When comparing MCMC
against NED/EV we consider the total number of queries and not just those accepted. There are several variants
of the MH proposal scheme and several tuning parameters. Comparing to all of them is nontrivial. We use MH in
its basic form using a fixed Gaussian proposal distribution. Practitioners usually adjust the proposal based on the
acceptance rate. Here, we chose the proposal manually by trying different values and picking the one that performed
best within the queries used. Note that this comparison is advantageous to MCMC. In one experiment we test with
Emcee [6], a popular package for Affine Invariant MCMC which automatically fine tunes the proposal bandwidth
based on acceptance rate [6].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate the samples. However,
this time we regress on the queries (not samples) to estimate the posterior. We include this procedure since MCMC
can be viewed as a heuristic to explore the parameter space in high likelihood regions. We show that a principled query
strategy outperforms this heuristic.

3. Approximate Bayesian Computing (ABC): There are several variants of ABC [18, 22]. We compare with a basic
form given in [17]. At each iteration, we randomly sample ✓ from the prior and then sample an observation Xsim

from the likelihood. If d(Xsim,Xobs) < ✏ we add ✓ to our collection. Here d(·, ·) is some metric on a sufficient

7

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

Figure 5: The first column shows the log joint probability and the corresponding posterior. In the second column we
have estimates of the log joint and the posterior for uniformly spaced points. In the third column we have the same
except that more points were chosen in high likelihood regions.

AGPR will query point (x). However, given sufficient smoothness, we know that the joint probability will be very low
there after exponentiation due to points (3) and (4). Therefore, the BAPE active learner will not be as interested in (x)
as AGPR. Observe that the uncerainty at (x) is large in the log joint probability space in comparison to the uncertainty
elsewhere; however, in the probability space this is smaller than the uncertainty at the high probability regions. As
Figure 5 indicates, while we model the log joint probability as a GP we are more interested in the uncertainty model
of the posterior/joint probability. Finally, as a special case for BQ, [20] consider evaluating the model evidence–i.e.
the integral under the conditional. Their utility function uses approximations tailored to estimating the integral well.
Note that our goal of estimating the posterior well is more difficult than estimating an integral under the conditional
as the former implies the latter but not vice versa.

3 Other Algorithms for Comparison

We list and describe some potential alternatives for posterior estimation which we use in our empirical evaluation.

1. MCMC - Density Estimation (MCMC-DE): We implement MCMC with a Metropolis Hastings (MH) chain
and use kernel density estimation (KDE) on the accepted points to estimate the posterior. When comparing MCMC
against NED/EV we consider the total number of queries and not just those accepted. There are several variants
of the MH proposal scheme and several tuning parameters. Comparing to all of them is nontrivial. We use MH in
its basic form using a fixed Gaussian proposal distribution. Practitioners usually adjust the proposal based on the
acceptance rate. Here, we chose the proposal manually by trying different values and picking the one that performed
best within the queries used. Note that this comparison is advantageous to MCMC. In one experiment we test with
Emcee [6], a popular package for Affine Invariant MCMC which automatically fine tunes the proposal bandwidth
based on acceptance rate [6].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate the samples. However,
this time we regress on the queries (not samples) to estimate the posterior. We include this procedure since MCMC
can be viewed as a heuristic to explore the parameter space in high likelihood regions. We show that a principled query
strategy outperforms this heuristic.

3. Approximate Bayesian Computing (ABC): There are several variants of ABC [18, 22]. We compare with a basic
form given in [17]. At each iteration, we randomly sample ✓ from the prior and then sample an observation Xsim

from the likelihood. If d(Xsim,Xobs) < ✏ we add ✓ to our collection. Here d(·, ·) is some metric on a sufficient

7

Target

SourceTh
ro

ug
hp

ut

Machine
twice as fast

[Pavel Valov, et al. “Transferring performance prediction models…”, ICPE’17]

DataData

Data

Measure

Measure

Reuse Learn

TurtleBot

Simulator (Gazebo)

[P. Jamshidi, et al., “Transfer learning for improving model predictions ….”, SEAMS’17]

Configurations

Our transfer learning solution

f(o1, o2) = 5 + 3o1 + 15o2 � 7o1 ⇥ o2

input, x

Gaussian processes for performance modeling

t = n t = n + 1

Observation

Mean

Uncertainty

New
observation

ou
tp

ut
, f

(x
)

input, x

Gaussian Processes enables reasoning about
performance

Step 1: Fit GP to the data seen
so far

Step 2: Explore the model for
regions of most variance

Step 3: Sample that region

Step 4: Repeat

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Configuration
Space

Empirical
Model

Experiment

Experiment

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Selection Criteria

Sequential Design

The intuition behind our transfer learning
approach

xf

12 / 38

Intuition: Observations on
the source(s) can affect
predictions on the target

Example: Learning the
chess game make learning
the Go game a lot easier!

Configurations

Performance

Models

errors. Also, for building GP models, we do not need to know
any internal details about the system; the learning process can
be applied in a black-box fashion using the sampled perfor-
mance measurements. In the GP framework, it is also possible
to incorporate domain knowledge as prior, if available, which
can enhance the model accuracy [20].

In order to describe the technical details of our transfer
learning methodology, let us briefly describe an overview of
GP model regression; a more detailed description can be found
elsewhere [35]. GP models assume that the function f̂(x) can
be interpreted as a probability distribution over functions:

y = f̂(x) ⇠ GP(µ(x), k(x,x0)), (4)

where µ : X ! R is the mean function and k : X ⇥ X ! R
is the covariance function (kernel function) which describes
the relationship between response values, y, according to the
distance of the input values x,x0. The mean and variance of
the GP model predictions can be derived analytically [35]:

µt(x) = µ(x) + k(x)|(K + �2I)�1(y � µ), (5)
�2
t (x) = k(x,x) + �2I � k(x)|(K + �2I)�1k(x), (6)

where k(x)| = [k(x,x1) k(x,x2) . . . k(x,xt)], I is
identity matrix and

K :=

2

64
k(x1,x1) . . . k(x1,xt)

...
. . .

...
k(xt,x1) . . . k(xt,xt)

3

75 (7)

GP models have shown to be effective for performance
predictions in data scarce domains [20]. However, as we
have demonstrated in Figure 2, it may becomes inaccurate
when the samples do not cover the space uniformly. For
highly configurable systems, we require a large number of
observations to cover the space uniformly, making GP models
ineffective in such situations.

C. Model prediction using transfer learning
In transfer learning, the key question is how to make accu-

rate predictions for the target environment using observations
from other sources, Ds. We need a measure of relatedness not
only between input configurations but between the sources
as well. The relationships between input configurations was
captured in the GP models using the covariance matrix that
was defined based on the kernel function in Eq. (7). More
specifically, a kernel is a function that computes a dot product
(a measure of “similarity”) between two input configurations.
So, the kernel helps to get accurate predictions for similar
configurations. We now need to exploit the relationship be-
tween the source and target functions, g, f , using the current
observations Ds,Dt to build the predictive model f̂ . To capture
the relationship, we define the following kernel function:

k(f, g,x,x0) = kt(f, g)⇥ kxx(x,x
0), (8)

where the kernels kt represent the correlation between source
and target function, while kxx is the covariance function for
inputs. Typically, kxx is parameterized and its parameters are
learnt by maximizing the marginal likelihood of the model
given the observations from source and target D = Ds [Dt.

Note that the process of maximizing the marginal likelihood is
a standard method [35]. After learning the parameters of kxx,
we construct the covariance matrix exactly the same way as in
Eq. 7 and derive the mean and variance of predictions using
Eq. (5), (6) with the new K. The main essence of transfer
learning is, therefore, the kernel that capture the source and
target relationship and provide more accurate predictions using
the additional knowledge we can gain via the relationship
between source and target.

D. Transfer learning in a self-adaptation loop
Now that we have described the idea of transfer learning for

providing more accurate predictions, the question is whether
such an idea can be applied at runtime and how the self-
adaptive systems can benefit from it. More specifically, we
now describe the idea of model learning and transfer learning
in the context of self-optimization, where the system adapts
its configuration to meet performance requirements at runtime.
The difference to traditional configurable systems is that we
learn the performance model online in a feedback loop under
time and resource constraints. Such performance reasoning is
done more frequently for self-adaptation purposes.

An overview of a self-optimization solution is depicted
in Figure 3 following the well-know MAPE-K framework
[9], [23]. We consider the GP model as the K (knowledge)
component of this framework that acts as an interface to which
other components can query the performance under specific
configurations or update the model given a new observation.
We use transfer learning to make the knowledge more accurate
using observations that are taken from a simulator or any
other cheap sources. For deciding how many observations
and from what source to transfer, we use the cost model
that we have introduced earlier. At runtime, the managed
system is Monitored by pulling the end-to-end performance
metrics (e.g., latency, throughput) from the corresponding
sensors. Then, the retrieved performance data needs to be
Analysed and the mean performance associated to a specific
setting of the system will be stored in a data repository.
Next, the GP model needs to be updated taking into account
the new performance observation. Having updated the GP
model, a new configuration may be Planned to replace the
current configuration. Finally, the new configuration will be
enacted by Executing appropriate platform specific operations.
This enables model-based knowledge evolution using machine
learning [2], [21]. The underlying GP model can now be
updated not only when a new observation is available but
also by transferring the learning from other related sources.
So at each adaptation cycle, we can update our belief about
the correct response given data from the managed system and
other related sources, accelerating the learning process.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness and applicability of our
transfer learning approach for learning models for highly-
configurable systems, in particular, compared to conventional
non-transfer learning. Specifically, we aim to answer the
following three research questions:
RQ1: How much does transfer learning improve the prediction
accuracy?

CoBot experiment: DARPA BRASS

0 2 4 6 8
Localization error [m]

10

15

20

25

30

35

40

C
P

U
 u

til
iz

a
tio

n
 [

%
]

Energy
constraint

Safety
constraint

Pareto
front

Sweet
Spot

better

better

no_of_particles=x
no_of_refinement=y

CoBot
experiment

5 10 15 20 25

5

10

15

20

25

0

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

0

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

0

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

0

5

10

15

20

25

Source
(given)

Target
(ground truth

6 months)

Prediction with
4 samples

Prediction with
Transfer learning

CPU [%] CPU [%]

0 500 1000 1500 2000 2500
Measurement cost ($)

0

5

10

15

20

25

30

Result: CoBot experiment
%
	S
ou

rc
e

%Target

Accuracy
constraint

Budget
constraint

better

better

Prediction error

Results: Other configurable systems

CoBot WordCount SOL

RollingSort Cassandra (HW) Cassandra (DB)

Transfer Learning for Improving Model Predictions
in Highly Configurable Software

Pooyan Jamshidi, Miguel Velez, Christian Kästner
Carnegie Mellon University, USA

{pjamshid,mvelezce,kaestner}@cs.cmu.edu

Norbert Siegmund
Bauhaus-University Weimar, Germany

norbert.siegmund@uni-weimar.de

Prasad Kawthekar
Stanford University, USA
pkawthek@stanford.edu

Abstract—Modern software systems are built to be used in

dynamic environments using configuration capabilities to adapt to

changes and external uncertainties. In a self-adaptation context,

we are often interested in reasoning about the performance of

the systems under different configurations. Usually, we learn

a black-box model based on real measurements to predict

the performance of the system given a specific configuration.

However, as modern systems become more complex, there are

many configuration parameters that may interact and we end up

learning an exponentially large configuration space. Naturally,

this does not scale when relying on real measurements in the

actual changing environment. We propose a different solution:

Instead of taking the measurements from the real system, we

learn the model using samples from other sources, such as

simulators that approximate performance of the real system at

low cost. We define a cost model that transform the traditional

view of model learning into a multi-objective problem that not

only takes into account model accuracy but also measurements

effort as well. We evaluate our cost-aware transfer learning

solution using real-world configurable software including (i) a

robotic system, (ii) 3 different stream processing applications,

and (iii) a NoSQL database system. The experimental results

demonstrate that our approach can achieve (a) a high prediction

accuracy, as well as (b) a high model reliability.

Index Terms—highly configurable software, machine learning,

model learning, model prediction, transfer learning

I. INTRODUCTION

Most software systems today are configurable, which gives
end users, developers, and administrators the chance to cus-
tomize the system to achieve a different functionality or
tune its performance. In such systems, hundreds or even
thousands of configuration parameters can be tweaked, making
the system highly configurable [35]. The exponentially grow-
ing configuration space, complex interactions, and unknown
constraints among configuration options make it difficult to
understand the performance of the system. As a consequence,
many users rely on default configurations or they change only
individual options in an ad-hoc way.

In this work, we deal with the type of configurable systems
that operate in dynamic and uncertain environments (e.g.,
robotic systems). Therefore, it is desirable to react to environ-
mental changes by tuning the configuration of the system when
we anticipate that the performance will drop to an undesirable
level. To do so, we use black-box performance models that
describe how configuration options and their interactions influ-
ence the performance of a system (e.g., execution time). Black-
box performance models are meant to ease understanding,
debugging, and optimization of configurable systems [35]. For
example, a reasoning algorithm may use the learned model in

Predictive Model

Learn Model with
Transfer Learning

Measure Measure

Data
Source
Target

Simulator (Source) Robot (Target)

Adaptation

Fig. 1: Transfer learning for performance model learning.

order to identify the best performing configuration for a robot
when it goes from indoor to an outdoor environment.

Typically, we learn a performance model for a given con-
figurable system by measuring from a set of configurations
selected by some sampling strategy. That is, we measure the
performance of a given system multiple times in different
configurations and learn how the configuration options and
their interactions affect performance. However, such a way
of learning from real systems, whether it is a robot or a
software application, is a difficult task for several reasons:
(i) environmental changes (e.g., people wandering around
robots), (ii) high costs or risks of failure (e.g., a crashed robot),
(iii) the large amount of time required for measurements (e.g.,
we have to repeat the measurements several times to get a
reliable value), and (iv) changing system dynamics (e.g., robot
motion). Moreover, it is often not possible to create potentially
important scenarios in the real environment.

In this paper, as depicted in Figure 1, we propose a different
solution: instead of taking the measurements from the real
system, we reuse prior information (that we can get from
other sources at a lower cost) in order to learn a performance
model for the real system faster and cheaper. The concept
of reusing information from other sources is the idea behind
transfer learning [37], [31]. Similar to human beings that can
learn from previous experience and transfer the learning to
accomplish new tasks easier, quicker, and in a better way, in
this work, we use other sources to provide cheaper samples
for accelerating model learning. Instead of taking the mea-
surements from the real system (we refer to as the target), we
measure the system performance using a proxy of the system
(we refer to as the source, e.g., a simulator). We then use
a regression model that automatically learns the relationship
between source and target to learn an accurate and reliable
performance model using only a few samples taken from the
real system, leading to much lower cost and faster learning

Details: [SEAMS ’17]

Outline

Case
Study

Transfer
Learning

Theory
Building

Guided
Sampling

Current
Research

Looking further: When transfer learning goes
wrong

10

20

30

40

50

60

A
b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

[%
]

Sources s s1 s2 s3 s4 s5 s6

noise-level 0 5 10 15 20 25 30
corr. coeff. 0.98 0.95 0.89 0.75 0.54 0.34 0.19
µ(pe) 15.34 14.14 17.09 18.71 33.06 40.93 46.75

Fig. 6: Prediction accuracy of the model learned with samples
from different sources of different relatedness to the target.
GP is the model without transfer learning.

the incoming stream and it is essentially a CPU intensive
application. RollingSort is a memory intensive system that
performs rolling counts of incoming messages for identifying
trending topics. SOL is a network intensive system, where
the incoming messages will be routed through an multi-
layer network. These are standard benchmarks that are widely
used in the community, e.g., research papers [14] as well as
industry benchmarks [18]. For more details about the internal
architecture of these systems, we refer to the appendix [1].

The notion of source and target set depends on the subject
system. In CoBot, we again simulate the same navigation mis-
sion in the default environment (source) and in a more difficult
noisy environment (target). For the three stream processing
applications, source and target represent different workloads,
such that we transfer measurements from one workload for
learning a model for another workload. More specifically, we
control the workload using the maximum number of messages
which we allow to enter the stream processing architecture. For
the NoSQL application, we analyze two different transfers:
First, we use as source a query on a database with 10 million
records and as target the same query on a database with 20
million records, representing a more expensive environment to
sample from. Second, we use as source a query on 20 million
records on one cluster and as target a query on the same dataset
run on a different cluster, representing hardware changes.
Overall, our subjects cover different kinds of applications
and different kinds of transfer scenarios (changes in the
environment, changes in the workload, changes in the dataset,
and changes in the hardware).

Experimental setup: As independent variables, we sys-
tematically vary the size of the learning sets from both source
and target environment in each subject system. We sample
between 0 and 100 % of all configurations in the source
environment and between 1 and 10 % of all configurations
in the target environment.

As dependent variable, we measure learning time and

TABLE I: Overview of our experimental datasets. “Size”
column indicates the the number of measurements in the
datasets and “Testbed” refer to the infrastructure where the
measurements are taken and their details are in the appendix.

Dataset Parameters Size Testbed

1 CoBot(4D)

1-odom miscalibration,

2-odom noise,

3-num particles,

4-num refinement

56585 C9

2 wc(6D)

1-spouts, 2-max spout,

3-spout wait, 4-splitters,

5-counters, 6-netty min wait

2880 C1

3 sol(6D)

1-spouts, 2-max spout,

3-top level, 4-netty min wait,

5-message size, 6-bolts

2866 C2

4 rs(6D)

1-spouts, 2-max spout,

3-sorters, 4-emit freq,

5-chunk size, 6-message size

3840 C3

5

6

cass-10

cass-20

1-trickle fsync, 2-auto snapshot,

3-con. reads, 4-con. writes

5-file cache size in mb

6-con. compactors

1024 C6x,C6y

prediction accuracy of the learned model. For each subject
system, we measure a large number of random configurations
as the evaluation set, independently from configurations sam-
pled for learning, and compare the predictions of the learned
model f̂ to the actual measurements of the configurations in
the evaluation set Do. We compute the absolute percentage
error (APE) for each configuration x in the evaluation set
|f̂(x)�f(x)|

f(x) ⇥ 100 and report the average to characterize
accuracy of the prediction model. Ideally, we would use the
whole configuration space as evaluation set (Do = X), but the
measurement effort would be prohibitively high for most real-
world systems [20], [31]; hence we use large random samples
(cf. size column in Table I).

The measured and predicted metric depends on the subject
system: For the CoBot system, we measure average CPU usage
during the same mission of navigating along a corridor as in
our case study; we use the average of three simulation runs
for each configuration. For the stream processing and NoSQL
experiments, we measure average response time (latency) over
a window of 8 and 10 minutes respectively. Also, after each
sample collection, the experimental testbed was cleaned which
required several minutes for the Storm measurements and
around 1 hour (for offloading and cleaning the database) for
the Cassandra measurements. We sample the given number of
configurations in source and target randomly and report aver-
age results and standard deviations of accuracy and learning
time over 3 repetitions.

Results: We show results of our experiments in Figure 7.
The 2D plot shows average errors across all subject systems.
The results in which the set of source samples Ds is empty rep-
resents the baseline case without transfer learning. In Figure 8,
we additionally show a specific slice through our accuracy
results, in which we only vary the number of samples from the
source (and only for 4 subject systems to produce a reasonably
clear plot), but keep the number of samples from the target at
a constant 1 %. Although the results differ significantly among
subject systems (not surprising, given different relatedness of
source and target) the overall trends are consistent.

First, our results show that transfer learning can achieve
high prediction accuracy with only few samples from the target

It worked! It didn’t!

Insight: Predictions become
more accurate when the source
is more related to the target.

Non-transfer-learning

5 10 15 20 25
number of particles

5

10

15

20

25

n
u

m
b

e
r

o
f

re
fin

e
m

e
n

ts

5

10

15

20

25

30

5 10 15 20 25
number of particles

5

10

15

20

25

n
u

m
b

e
r

o
f

re
fin

e
m

e
n

ts

10

12

14

16

18

20

22

24

5 10 15 20 25
number of particles

5

10

15

20

25

n
u

m
b

e
r

o
f

re
fin

e
m

e
n

ts

10

15

20

25

5 10 15 20 25
number of particles

5

10

15

20

25
n

u
m

b
e

r
o

f
re

fin
e

m
e

n
ts

10

15

20

25

5 10 15 20 25
number of particles

5

10

15

20

25

n
u

m
b

e
r

o
f

re
fin

e
m

e
n

ts

6

8

10

12

14

16

18

20

22

24

(a) (b) (c)

(d) (e) 5 10 15 20 25
number of particles

5

10

15

20

25

n
u

m
b

e
r

o
f

re
fin

e
m

e
n

ts

12

14

16

18

20

22

24

(f)

CPU usage [%] CPU usage [%] CPU usage [%]

CPU usage [%] CPU usage [%] CPU usage [%]

It worked! It worked! It worked!

It didn’t! It didn’t! It didn’t!

Key question: Can we develop a theory to explain
when transfer learning works?

Target (Learn)Source (Given)

D
at

a
M

od
el

Transferable
Knowledge

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

Extract Reuse

Learn Learn

Q1: How source and target
are “related”?

Q2: What characteristics
are preserved?

Q3: What are the actionable
insights?

Mathematical
Framework

of configuration optimization

We define configuration optimization as a multi-objective
optimization problem with unknown feasibility constraints

x * = argminc∈𝒞 f(x)
ϕi(c) ≤ bi, i = 1,...,q

Configuration space may include real, ordinal, and
categorical configuration options

• The variables defining the configuration space can be ordinal (real,
integer), and categorical.

• Ordinal parameters have a domain of a finite set of values which are
either integer and/or real values.

• Ordinal values must have an ordering by the less-than operator.

• Categorical parameters (Boolean) also have domains of a finite set of
values but have no ordering requirement.

We assume the derivative of the optimization
function is not available

• We assume that the derivative of f is not available.

• And that bounds, such as Lipschitz constants, for the derivative of f is also
unavailable.

• Evaluating feasibility is often in the same order of expense as evaluating
the objective function f.

• As for the objective function, no particular assumptions are made on the
constraint functions.

We induce partial ordering between configurations
in the configuration space

ℝd : y ≺ y′� ⟺ ∀i ∈ [d]yi ≤ y′�i & ∃jyj < y′�j

𝒞 : c ≺ c′� ⟺ f(c) ≺ f(c′�)

Based on the induced ordering of configurations we
can define the Pareto optimal set of configurations

Γ = {c ∈ 𝒞 : ∄c′� ≺ c}

Applying these constraints gives the constrained
Pareto-optimal set

Γ = {c ∈ 𝒞 : ∄c′� ≺ c & ϕi(c′ �) ≤ bi}

The multi-objective function maps each point in the 3-dimensional
configuration space on the left to the optimization space on the right

O1

O2

O3

Objective2

Objective1

f
c1

c2

c3

Valid
RegionInvalid

Configuration

We hypothesized that we can exploit similarities across
environments to learn “cheaper” performance models

O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1

0 × 0 × ⋯ × 1 × 0

0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

ys1 = fs(c1)

ys2 = fs(c2)

ys3 = fs(c3)

ysn = fs(cn)

O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1

0 × 0 × ⋯ × 1 × 0

0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

yt1 = ft(c1)

yt2 = ft(c2)

yt3 = ft(c3)

ytn = ft(cn)

Source Environment
(Execution time of Program X)

Target Environment
(Execution time of Program Y)

Similarity

[P. Jamshidi, et al., “Transfer learning for performance modeling of configurable systems….”, ASE’17]

Our empirical study: We looked at different highly-
configurable systems to gain insights

[P. Jamshidi, et al., “Transfer learning for performance modeling of configurable systems….”, ASE’17]

SPEAR	(SAT	Solver)
Analysis	time
14	options	
16,384	configurations
SAT	problems
3	hardware
2	versions

X264	(video	encoder)
Encoding	time
16	options	
4,000 configurations
Video	quality/size
2	hardware
3	versions

SQLite	(DB	engine)
Query	time
14	options	
1,000 configurations
DB	Queries
2	hardware
2 versions

SaC (Compiler)
Execution	time
50	options	
71,267 configurations
10	Demo	programs	

Linear shift happens only in limited environmental
changes

Soft Environmental change Severity Corr.

SPEAR
NUC/2 -> NUC/4 Small 1.00
Amazon_nano -> NUC Large 0.59
Hardware/workload/version V Large -0.10

x264
Version Large 0.06
Workload Medium 0.65

SQLite
write-seq -> write-batch Small 0.96
read-rand -> read-seq Medium 0.50

Target

SourceTh
ro

ug
hp

ut

Implication: Simple transfer learning is limited
to hardware changes in practice

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

Figure 5: The first column shows the log joint probability and the corresponding posterior. In the second column we
have estimates of the log joint and the posterior for uniformly spaced points. In the third column we have the same
except that more points were chosen in high likelihood regions.

AGPR will query point (x). However, given sufficient smoothness, we know that the joint probability will be very low
there after exponentiation due to points (3) and (4). Therefore, the BAPE active learner will not be as interested in (x)
as AGPR. Observe that the uncerainty at (x) is large in the log joint probability space in comparison to the uncertainty
elsewhere; however, in the probability space this is smaller than the uncertainty at the high probability regions. As
Figure 5 indicates, while we model the log joint probability as a GP we are more interested in the uncertainty model
of the posterior/joint probability. Finally, as a special case for BQ, [20] consider evaluating the model evidence–i.e.
the integral under the conditional. Their utility function uses approximations tailored to estimating the integral well.
Note that our goal of estimating the posterior well is more difficult than estimating an integral under the conditional
as the former implies the latter but not vice versa.

3 Other Algorithms for Comparison

We list and describe some potential alternatives for posterior estimation which we use in our empirical evaluation.

1. MCMC - Density Estimation (MCMC-DE): We implement MCMC with a Metropolis Hastings (MH) chain
and use kernel density estimation (KDE) on the accepted points to estimate the posterior. When comparing MCMC
against NED/EV we consider the total number of queries and not just those accepted. There are several variants
of the MH proposal scheme and several tuning parameters. Comparing to all of them is nontrivial. We use MH in
its basic form using a fixed Gaussian proposal distribution. Practitioners usually adjust the proposal based on the
acceptance rate. Here, we chose the proposal manually by trying different values and picking the one that performed
best within the queries used. Note that this comparison is advantageous to MCMC. In one experiment we test with
Emcee [6], a popular package for Affine Invariant MCMC which automatically fine tunes the proposal bandwidth
based on acceptance rate [6].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate the samples. However,
this time we regress on the queries (not samples) to estimate the posterior. We include this procedure since MCMC
can be viewed as a heuristic to explore the parameter space in high likelihood regions. We show that a principled query
strategy outperforms this heuristic.

3. Approximate Bayesian Computing (ABC): There are several variants of ABC [18, 22]. We compare with a basic
form given in [17]. At each iteration, we randomly sample ✓ from the prior and then sample an observation Xsim

from the likelihood. If d(Xsim,Xobs) < ✏ we add ✓ to our collection. Here d(·, ·) is some metric on a sufficient

7

Soft Environmental change Severity Dim t-test

x264
Version Large

16
12 10

Hardware/workload/ver V Large 8 9

SQLite
write-seq -> write-batch V Large

14
3 4

read-rand -> read-seq Medium 1 1

SaC Workload V Large 50 16 10

Implication: Avoid wasting budget on non-informative part
of configuration space and focusing where it matters.

Influential options and interactions are preserved
across environments

216

250
= 0.000000000058

We only need to
explore part of
the space:

Transfer learning across environment
O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1

0 × 0 × ⋯ × 1 × 0

0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

ys1 = fs(c1)

ys2 = fs(c2)

ys3 = fs(c3)

ysn = fs(cn)

Source
(Execution time of Program X)

Learn
performance

model ̂fs ∼ fs(⋅)

Observation 1: Not all options and interactions are influential
and interactions degree between options are not high

̂fs(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

ℂ = O1 × O2 × O3 × O4 × O5 × O6 × O7 × O8 × O9 × O10

Observation 2: Influential options and interactions
are preserved across environments

̂fs(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

̂ft(⋅) = 10.4 − 2.1o1 + 1.2o3 + 2.2o7 + 0.1o1o3 − 2.1o3o7 + 14o1o3o7

Transfer Learning for Performance Modeling of
Configurable Systems: An Exploratory Analysis

Pooyan Jamshidi
Carnegie Mellon University, USA

Norbert Siegmund
Bauhaus-University Weimar, Germany

Miguel Velez, Christian Kästner
Akshay Patel, Yuvraj Agarwal
Carnegie Mellon University, USA

Abstract—Modern software systems provide many configura-
tion options which significantly influence their non-functional
properties. To understand and predict the effect of configuration
options, several sampling and learning strategies have been
proposed, albeit often with significant cost to cover the highly
dimensional configuration space. Recently, transfer learning has
been applied to reduce the effort of constructing performance
models by transferring knowledge about performance behavior
across environments. While this line of research is promising to
learn more accurate models at a lower cost, it is unclear why
and when transfer learning works for performance modeling. To
shed light on when it is beneficial to apply transfer learning, we
conducted an empirical study on four popular software systems,
varying software configurations and environmental conditions,
such as hardware, workload, and software versions, to identify
the key knowledge pieces that can be exploited for transfer
learning. Our results show that in small environmental changes
(e.g., homogeneous workload change), by applying a linear
transformation to the performance model, we can understand
the performance behavior of the target environment, while for
severe environmental changes (e.g., drastic workload change) we
can transfer only knowledge that makes sampling more efficient,
e.g., by reducing the dimensionality of the configuration space.

Index Terms—Performance analysis, transfer learning.

I. INTRODUCTION

Highly configurable software systems, such as mobile apps,
compilers, and big data engines, are increasingly exposed to
end users and developers on a daily basis for varying use cases.
Users are interested not only in the fastest configuration but
also in whether the fastest configuration for their applications
also remains the fastest when the environmental situation has
been changed. For instance, a mobile developer might be
interested to know if the software that she has configured
to consume minimal energy on a testing platform will also
remain energy efficient on the users’ mobile platform; or, in
general, whether the configuration will remain optimal when
the software is used in a different environment (e.g., with a
different workload, on different hardware).

Performance models have been extensively used to learn
and describe the performance behavior of configurable sys-
tems [15], [19], [21], [23], [33], [43]–[45], [54], [61], [63].
However, the exponentially growing configuration space, com-
plex interactions, and unknown constraints among configura-
tion options [56] often make it costly and difficult to learn
an accurate and reliable performance model. Even worse,
existing techniques usually consider only a fixed environment
(e.g., fixed workload, fixed hardware, fixed versions of the
dependent libraries); should that environment change, a new
performance model may need to be learned from scratch.
This strong assumption limits the reusability of performance
models across environments. Reusing performance models or

Fig. 1: Transfer learning is a form of machine learning that takes
advantage of transferable knowledge from source to learn an accurate,
reliable, and less costly model for the target environment.

their byproducts across environments is demanded by many
application scenarios, here we mention two common scenarios:
• Scenario 1: Hardware change: The developers of a soft-

ware system performed a performance benchmarking of the
system in its staging environment and built a performance
model. The model may not be able to provide accurate
predictions for the performance of the system in the actual
production environment though (e.g., due to the instability
of measurements in its staging environment [6], [30], [38]).

• Scenario 2: Workload change: The developers of a database
system built a performance model using a read-heavy
workload, however, the model may not be able to provide
accurate predictions once the workload changes to a write-
heavy one. The reason is that if the workload changes,
different functions of the software might get activated (more
often) and so the non-functional behavior changes, too.
In such scenarios, not every user wants to repeat the costly

process of building a new performance model to find a
suitable configuration for the new environment. Recently, the
use of transfer learning (cf. Figure 1) has been suggested
to decrease the cost of learning by transferring knowledge
about performance behavior across environments [7], [25],
[51]. Similar to humans that learn from previous experience
and transfer the learning to accomplish new tasks easier,
here, knowledge about performance behavior gained in one
environment can be reused effectively to learn models for
the changed environments with a lower cost. Despite its
success, it is unclear why and when transfer learning works
for performance analysis in highly configurable systems.

Details: [ASE ’17]

Outline

Case
Study

Transfer
Learning

Theory
Building

Guided
Sampling

Current
Research

How to sample the
configuration space to

learn a “better”
performance behavior?

How to select the most
informative configurations?

The similarity across environment is a
rich source of knowledge for
exploration of the configuration space

When we treat the system as black boxes, we cannot
typically distinguish between different configurations

O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1
0 × 0 × ⋯ × 1 × 0
0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

• We therefore end up blindly explore the
configuration space

• That is essentially the key reason why “most”
work in this area consider random sampling.

Without considering this knowledge, many
samples may not provide new information

1 × 0 × 1 × 0 × 0 × 0 × 1 × 0 × 0 × 0c1
c2 1 × 0 × 1 × 0 × 0 × 0 × 1 × 0 × 0 × 1

O1 × O2 × O3 × O4 × O5 × O6 × O7 × O8 × O9 × O10

̂fs(c1) = 14.9
̂fs(c2) = 14.9

c3 1 × 0 × 1 × 0 × 0 × 0 × 1 × 0 × 1 × 0 ̂fs(c3) = 14.9

1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ̂fs(c128) = 14.9c128

⋯

̂fs(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

Without knowing this
knowledge, many blind/

random samples may not
provide any additional

information about
performance of the system

In higher dimensional spaces, the blind samples
even become less informative/effective

Learning to Sample (L2S)

Extracting the knowledge about influential options
and interactions: Step-wise linear regression

O1 × O2 × ⋯ × O19 × O20

0 × 0 × ⋯ × 0 × 1

0 × 0 × ⋯ × 1 × 0

0 × 0 × ⋯ × 1 × 1

1 × 1 × ⋯ × 1 × 0
1 × 1 × ⋯ × 1 × 1

⋯

c1
c2
c3

cn

ys1 = fs(c1)

ys2 = fs(c2)

ys3 = fs(c3)

ysn = fs(cn)

Source
(Execution time of Program X)

Learn
performance

model

̂fs ∼ fs(⋅)

1. Fit an initial model

2. Forward selection: Add
terms iteratively

3. Backward elimination:
Removes terms iteratively

4. Terminate: When neither
(2) or (3) improve the model

Build a performance distribution using kernel
density estimation using the source data

0 1 2 3 4 5
average read latency (µs)

×104

0

20

40

60

80

100

120

140

160

o
b
se

rv
a
tio

n
s

1000 1200 1400 1600 1800 2000
average read latency (µs)

0

10

20

30

40

50

60

70

o
b
se

rv
a
tio

n
s

1

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

1

0
.5 1

1
.5 2

2
.5 3

3
.5 4

×
1
0

4

(a) cass-20 (b) cass-10

L2S extracts the knowledge about influential
options and interactions via performance models

̂fs(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

L2S exploits the knowledge it gained from the
source to sample the target environment

0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0c1
c2 1 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0

O1 × O2 × O3 × O4 × O5 × O6 × O7 × O8 × O9 × O10
̂ft(c1) = 10.4
̂ft(c2) = 8.1

c3 0 × 0 × 1 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ̂ft(c3) = 11.6

̂ft(⋅) = 10.4 − 2.1o1 + 1.2o3 + 2.2o7 + 0.1o1o3 − 2.1o3o7 + 14o1o3o7

c4 0 × 0 × 0 × 0 × 0 × 0 × 1 × 0 × 0 × 0 ̂ft(c4) = 12.6

c5 0 × 0 × 1 × 0 × 0 × 0 × 1 × 0 × 0 × 0 ̂ft(c5) = 11.7
c6 1 × 0 × 1 × 0 × 0 × 0 × 1 × 0 × 0 × 0 ̂ft(c6) = 23.7
cx 1 × 0 × 1 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ̂ft(cx) = 9.6

̂fs(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

Exploration vs
Exploitation
We also explore the

configuration space using
pseudo-random sampling to
detect missing interactions

For capturing options and interactions that only appears
in the target, L2S relies on exploration (random sampling)

Performance
Distribution

Influential
Option

Learning

Influential
Interaction

(ii) Sampling

Configurable
System

Performance
Model

ExploitationExploration

Transfer
Knowledge

PerfConf <Conf,Perf>

So
ur

ce

Ta
rg

et

(i) Extract
Knowledge

Performance
Influence

Model

L2S transfers knowledge about the structure of performance models
from the source to guide the sampling in the target environment

Target (Learn)Source (Given)

D
at

a
M

od
el

Transferable
Knowledge

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i,xi 2
F where ✏i ⇠ N (0,�i). The training data for our regression
models is then simply Dtr = {(xi, yi)}ni=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

Extract Reuse

Learn Learn

̂fs(⋅) = 1.2 + 3o1 + 5o3 + 0.9o7 + 0.8o3o7 + 4o1o3o7

Evaluation:
Other transfer learning approaches
also exists

“Model shift” builds a model in the source and uses
the shifted model “directly” for predicting the target

[Pavel Valov, et al. “Transferring performance prediction models…”, ICPE’17]

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

Figure 5: The first column shows the log joint probability and the corresponding posterior. In the second column we
have estimates of the log joint and the posterior for uniformly spaced points. In the third column we have the same
except that more points were chosen in high likelihood regions.

AGPR will query point (x). However, given sufficient smoothness, we know that the joint probability will be very low
there after exponentiation due to points (3) and (4). Therefore, the BAPE active learner will not be as interested in (x)
as AGPR. Observe that the uncerainty at (x) is large in the log joint probability space in comparison to the uncertainty
elsewhere; however, in the probability space this is smaller than the uncertainty at the high probability regions. As
Figure 5 indicates, while we model the log joint probability as a GP we are more interested in the uncertainty model
of the posterior/joint probability. Finally, as a special case for BQ, [20] consider evaluating the model evidence–i.e.
the integral under the conditional. Their utility function uses approximations tailored to estimating the integral well.
Note that our goal of estimating the posterior well is more difficult than estimating an integral under the conditional
as the former implies the latter but not vice versa.

3 Other Algorithms for Comparison

We list and describe some potential alternatives for posterior estimation which we use in our empirical evaluation.

1. MCMC - Density Estimation (MCMC-DE): We implement MCMC with a Metropolis Hastings (MH) chain
and use kernel density estimation (KDE) on the accepted points to estimate the posterior. When comparing MCMC
against NED/EV we consider the total number of queries and not just those accepted. There are several variants
of the MH proposal scheme and several tuning parameters. Comparing to all of them is nontrivial. We use MH in
its basic form using a fixed Gaussian proposal distribution. Practitioners usually adjust the proposal based on the
acceptance rate. Here, we chose the proposal manually by trying different values and picking the one that performed
best within the queries used. Note that this comparison is advantageous to MCMC. In one experiment we test with
Emcee [6], a popular package for Affine Invariant MCMC which automatically fine tunes the proposal bandwidth
based on acceptance rate [6].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate the samples. However,
this time we regress on the queries (not samples) to estimate the posterior. We include this procedure since MCMC
can be viewed as a heuristic to explore the parameter space in high likelihood regions. We show that a principled query
strategy outperforms this heuristic.

3. Approximate Bayesian Computing (ABC): There are several variants of ABC [18, 22]. We compare with a basic
form given in [17]. At each iteration, we randomly sample ✓ from the prior and then sample an observation Xsim

from the likelihood. If d(Xsim,Xobs) < ✏ we add ✓ to our collection. Here d(·, ·) is some metric on a sufficient

7

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

logP (θ,Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

P (θ|Xobs)

Θ

Figure 5: The first column shows the log joint probability and the corresponding posterior. In the second column we
have estimates of the log joint and the posterior for uniformly spaced points. In the third column we have the same
except that more points were chosen in high likelihood regions.

AGPR will query point (x). However, given sufficient smoothness, we know that the joint probability will be very low
there after exponentiation due to points (3) and (4). Therefore, the BAPE active learner will not be as interested in (x)
as AGPR. Observe that the uncerainty at (x) is large in the log joint probability space in comparison to the uncertainty
elsewhere; however, in the probability space this is smaller than the uncertainty at the high probability regions. As
Figure 5 indicates, while we model the log joint probability as a GP we are more interested in the uncertainty model
of the posterior/joint probability. Finally, as a special case for BQ, [20] consider evaluating the model evidence–i.e.
the integral under the conditional. Their utility function uses approximations tailored to estimating the integral well.
Note that our goal of estimating the posterior well is more difficult than estimating an integral under the conditional
as the former implies the latter but not vice versa.

3 Other Algorithms for Comparison

We list and describe some potential alternatives for posterior estimation which we use in our empirical evaluation.

1. MCMC - Density Estimation (MCMC-DE): We implement MCMC with a Metropolis Hastings (MH) chain
and use kernel density estimation (KDE) on the accepted points to estimate the posterior. When comparing MCMC
against NED/EV we consider the total number of queries and not just those accepted. There are several variants
of the MH proposal scheme and several tuning parameters. Comparing to all of them is nontrivial. We use MH in
its basic form using a fixed Gaussian proposal distribution. Practitioners usually adjust the proposal based on the
acceptance rate. Here, we chose the proposal manually by trying different values and picking the one that performed
best within the queries used. Note that this comparison is advantageous to MCMC. In one experiment we test with
Emcee [6], a popular package for Affine Invariant MCMC which automatically fine tunes the proposal bandwidth
based on acceptance rate [6].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate the samples. However,
this time we regress on the queries (not samples) to estimate the posterior. We include this procedure since MCMC
can be viewed as a heuristic to explore the parameter space in high likelihood regions. We show that a principled query
strategy outperforms this heuristic.

3. Approximate Bayesian Computing (ABC): There are several variants of ABC [18, 22]. We compare with a basic
form given in [17]. At each iteration, we randomly sample ✓ from the prior and then sample an observation Xsim

from the likelihood. If d(Xsim,Xobs) < ✏ we add ✓ to our collection. Here d(·, ·) is some metric on a sufficient

7

Target

SourceTh
ro

ug
hp

ut

Machine
twice as fast

“Data reuse” combines the data collected in the source with the
ones in the target in a “multi-task” setting to predict the target

DataData

Data

Measure

Measure

Reuse Learn

TurtleBot

Simulator (Gazebo)

[P. Jamshidi, et al., “Transfer learning for improving model predictions ….”, SEAMS’17]

Configurations

f(o1, o2) = 5 + 3o1 + 15o2 � 7o1 ⇥ o2

“Data reuse” with guided sampling

DataData

Data

Measure

Measure

Reuse Learn

TurtleBot

Simulator (Gazebo)
!(#$, #&) 	= 	5 + 3#$ + 15#& − 7#$×#&

Configurations

Evaluation:
Learning performance behavior of
Machine Learning Systems

ML system: https://pooyanjamshidi.github.io/mls

https://pooyanjamshidi.github.io/mls

Configurations of deep neural networks affect
accuracy and energy consumption

0 500 1000 1500 2000 2500
Energy consumption [J]

0

20

40

60

80

100

V
a
lid

a
tio

n
 (

te
st

)
e
rr

o
r

CNN on CNAE-9 Data Set

72%

22X

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model
cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax

ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model

cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax

ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

Deep neural
network as a
highly
configurable
system

8/20

Table 1: Experimental Results

Performance Consistency Influential Options Influential Interactions

Environment ES M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

DNN

ec1 : [h1 ! h2] S 0.98 0.30 0.98 0.97 0.93 8 6 5 1 0.82 16 12 12 0.94
ec2 : [h1 ! h3] S 1.00 0.19 0.99 0.93 0.94 8 7 7 0 0.90 16 12 12 0.93
ec3 : [h3 ! h4] M 0.89 0.41 0.47 0.46 0.66 7 7 5 1 0.80 12 18 12 0.68
ec4 : [w1 ! w2] S 1.00 0.01 1.00 0.95 0.95 7 7 6 1 0.82 12 12 12 0.98
ec5 : [w1 ! w3] S 1.00 0.01 1.00 0.94 0.95 7 7 6 1 0.89 12 12 12 0.99
ec6 : [w1 ! w4] S 1.00 0.01 1.00 0.95 0.95 7 8 6 1 0.85 12 12 12 0.98
ec7 : [v1 ! v2] M 0.97 0.24 0.96 0.86 0.93 6 6 6 0 0.78 12 14 12 0.90
ec8 : [v1 ! v3] M 0.94 0.21 0.93 0.58 0.79 6 7 6 0 0.66 16 21 16 0.74
ec9 : [v2 ! v3] M 0.95 0.04 0.93 0.54 0.79 6 7 6 0 0.73 17 21 16 0.76
ec10 : [h4w3v1 ! h4w2v2] L 0.48 0.31 0.45 0.66 0.70 7 6 6 0 0.70 18 14 14 0.60

h1: Azure, h2: AWS, h3: TK1, h4: GPU; w1: Co↵ee, w2: DiatomSizeReduction, w3: Adiac, w4: ShapesAll;
v1: TensorFlow, v2: Theano, v3: CNTK;
Metrics: M1: Pearson correlation; M2: Kullback-Leibler (KL) divergence; M3: Spearman correlation; M4/M5: Perc.
of top/bottom conf.; M6/M7: Number of influential options; M8/M9: Number of options agree/disagree; M10:
Correlation btw importance of options; M11/M12: Number of interactions; M13: Number of interactions agree on
e↵ects; M14: Correlation btw the coe↵s;

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

4 Technical Aims and Research Plan

We will pursue the following technical aims: (1) investigate potential criteria for e↵ective sampling for
exploration of the design space of DNN architectures (Section 4.2), (2) build analytical models that ac-
curately predict the performance of a given architecture configuration given other similar architectures,
which either have been measured in the target environments or other similar environments, without
measuring the network performance directly (Section 4.3), and (3), develop a tunning mechanism
that exploit the performance model from previous step to e↵ectively search for optimal architectures
(Section 4.4).

4.1 Project Timeline

We plan to complete the proposed project in two years. To mitigate project risks, we will divide the
project into three major phases:

8

Network
Design

Model
Compiler

Hybrid
Deployment

OS/
Hardware

Sc
op

e
of

th

is
Pr

oj
ec

t

Neural Search

Hardware
Optimization

Hyper-parameter

DN
N

sy
st

em
 d

ev
el

op
m

en
t s

ta
ck

Deployment
Topology

DNN measurements
are costly

Each sample cost ~1h

4000 * 1h ~= 6 months

Yes, that’s the cost we
paid for conducting our

measurements!

L2S enables learning a more accurate model with less
samples exploiting the knowledge from the source

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

100

200
500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(a) DNN (hard)

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

100

200

500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(b) XGBoost (hard)

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

100200500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(c) Storm (hard)

Convolutional Neural Network

L2S may also help data-reuse approach to learn
faster

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e
a

n
 A

b
so

lu
te

 P
e

rc
e
n

ta
g

e
 E

rr
o

r

100

200
500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(a) DNN (hard)

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e
a

n
 A

b
so

lu
te

 P
e

rc
e
n

ta
g

e
 E

rr
o

r
100

200

500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(b) XGBoost (hard)

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e
a

n
 A

b
so

lu
te

 P
e

rc
e
n

ta
g

e
 E

rr
o

r

100200500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(c) Storm (hard)

XGBoost

Evaluation:
Learning performance behavior of
Big Data Systems

Some environments the similarities across environments
may be too low and this results in “negative transfer”

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e

a
n

 A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r

100

200
500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(a) DNN (hard)

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e

a
n

 A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r

100

200

500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(b) XGBoost (hard)

3 10 20 30 40 50 60 70
Sample Size

0

20

40

60

80

100

M
e

a
n

 A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r

100200500

L2S+GP
L2S+DataReuseTL
DataReuseTL
ModelShift
Random+CART

(c) Storm (hard)Apache Storm

Why performance
models using L2S
sample are more

accurate?

The samples generated by L2S contains more
information… “entropy <-> information gain”

10 20 30 40 50 60 70
sample size

0

1

2

3

4

5

6

e
n

tr
o

p
y

[b
its

]

Max entropy

L2S

Random

10 20 30 40 50 60 70
sample size

0

1

2

3

4

5

6

7

e
n
tr

o
p
y

[b
its

]

Max entropy

L2S

Random

10 20 30 40 50 60 70
sample size

0

1

2

3

4

5

6

7

e
n

tr
o

p
y

[b
its

]

Max entropy

L2S

Random

DNN XGboost Storm

Limitations

• Limited number of systems and environmental changes

• Synthetic models

• https://github.com/pooyanjamshidi/GenPerf

• Binary options

• Non-binary options -> binary

• Negative transfer

https://github.com/pooyanjamshidi/GenPerf

Details: [FSE ’18]

Outline

Case
Study

Transfer
Learning

Empirical
Study

Guided
Sampling

Current
Research

What will the software systems
of the future look like?

Software 2.0
Increasingly customized and configurable

VISION

Increasingly competing objectives

Accuracy

Training speed
Inference speed

Model sizeEnergy

Deep neural
network as a
highly
configurable
system

8/20

Table 1: Experimental Results

Performance Consistency Influential Options Influential Interactions

Environment ES M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

DNN

ec1 : [h1 ! h2] S 0.98 0.30 0.98 0.97 0.93 8 6 5 1 0.82 16 12 12 0.94
ec2 : [h1 ! h3] S 1.00 0.19 0.99 0.93 0.94 8 7 7 0 0.90 16 12 12 0.93
ec3 : [h3 ! h4] M 0.89 0.41 0.47 0.46 0.66 7 7 5 1 0.80 12 18 12 0.68
ec4 : [w1 ! w2] S 1.00 0.01 1.00 0.95 0.95 7 7 6 1 0.82 12 12 12 0.98
ec5 : [w1 ! w3] S 1.00 0.01 1.00 0.94 0.95 7 7 6 1 0.89 12 12 12 0.99
ec6 : [w1 ! w4] S 1.00 0.01 1.00 0.95 0.95 7 8 6 1 0.85 12 12 12 0.98
ec7 : [v1 ! v2] M 0.97 0.24 0.96 0.86 0.93 6 6 6 0 0.78 12 14 12 0.90
ec8 : [v1 ! v3] M 0.94 0.21 0.93 0.58 0.79 6 7 6 0 0.66 16 21 16 0.74
ec9 : [v2 ! v3] M 0.95 0.04 0.93 0.54 0.79 6 7 6 0 0.73 17 21 16 0.76
ec10 : [h4w3v1 ! h4w2v2] L 0.48 0.31 0.45 0.66 0.70 7 6 6 0 0.70 18 14 14 0.60

h1: Azure, h2: AWS, h3: TK1, h4: GPU; w1: Co↵ee, w2: DiatomSizeReduction, w3: Adiac, w4: ShapesAll;
v1: TensorFlow, v2: Theano, v3: CNTK;
Metrics: M1: Pearson correlation; M2: Kullback-Leibler (KL) divergence; M3: Spearman correlation; M4/M5: Perc.
of top/bottom conf.; M6/M7: Number of influential options; M8/M9: Number of options agree/disagree; M10:
Correlation btw importance of options; M11/M12: Number of interactions; M13: Number of interactions agree on
e↵ects; M14: Correlation btw the coe↵s;

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

4 Technical Aims and Research Plan

We will pursue the following technical aims: (1) investigate potential criteria for e↵ective sampling for
exploration of the design space of DNN architectures (Section 4.2), (2) build analytical models that ac-
curately predict the performance of a given architecture configuration given other similar architectures,
which either have been measured in the target environments or other similar environments, without
measuring the network performance directly (Section 4.3), and (3), develop a tunning mechanism
that exploit the performance model from previous step to e↵ectively search for optimal architectures
(Section 4.4).

4.1 Project Timeline

We plan to complete the proposed project in two years. To mitigate project risks, we will divide the
project into three major phases:

8

Network
Design

Model
Compiler

Hybrid
Deployment

OS/
Hardware

Sc
op

e
of

th

is
Pr

oj
ec

t

Neural Search

Hardware
Optimization

Hyper-parameter

DN
N

sy
st

em
 d

ev
el

op
m

en
t s

ta
ck

Deployment
Topology

We found many configuration with the same accuracy
while having drastically different energy demand

0 500 1000 1500 2000 2500
Energy consumption [J]

0

20

40

60

80

100

V
a
lid

a
tio

n
 (

te
st

)
e
rr

o
r

CNN on CNAE-9 Data Set

72%

22X
100 150 200 250 300 350 400

Energy consumption [J]

8

10

12

14

16

18

V
a
lid

a
tio

n
 (

te
st

)
e
rr

o
r

CNN on CNAE-9 Data Set

22X

10%

300J

Pareto frontier

Optimizing Energy Consumption of Deep Neural
Networks

Model
Learning (4.2)

Search-based
Optimization (4.3)

Guided
Sampling (4.1)

Train DNN

Deploy DNN

Measure Perf.

Model
Search

Transfer
Learning

0 500 1000 1500 2000 2500
Energy consumption [J]

0

20

40

60

80

100
V

a
li
d
a
ti
o
n
 (

te
s
t)

 e
rr

o
r

CNN on CNAE-9 Data Set

xf

12 / 38

DNN Evaluation

8/20

Table 1: Experimental Results

Performance Consistency Influential Options Influential Interactions

Environment ES M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

DNN

ec1 : [h1 ! h2] S 0.98 0.30 0.98 0.97 0.93 8 6 5 1 0.82 16 12 12 0.94
ec2 : [h1 ! h3] S 1.00 0.19 0.99 0.93 0.94 8 7 7 0 0.90 16 12 12 0.93
ec3 : [h3 ! h4] M 0.89 0.41 0.47 0.46 0.66 7 7 5 1 0.80 12 18 12 0.68
ec4 : [w1 ! w2] S 1.00 0.01 1.00 0.95 0.95 7 7 6 1 0.82 12 12 12 0.98
ec5 : [w1 ! w3] S 1.00 0.01 1.00 0.94 0.95 7 7 6 1 0.89 12 12 12 0.99
ec6 : [w1 ! w4] S 1.00 0.01 1.00 0.95 0.95 7 8 6 1 0.85 12 12 12 0.98
ec7 : [v1 ! v2] M 0.97 0.24 0.96 0.86 0.93 6 6 6 0 0.78 12 14 12 0.90
ec8 : [v1 ! v3] M 0.94 0.21 0.93 0.58 0.79 6 7 6 0 0.66 16 21 16 0.74
ec9 : [v2 ! v3] M 0.95 0.04 0.93 0.54 0.79 6 7 6 0 0.73 17 21 16 0.76
ec10 : [h4w3v1 ! h4w2v2] L 0.48 0.31 0.45 0.66 0.70 7 6 6 0 0.70 18 14 14 0.60

h1: Azure, h2: AWS, h3: TK1, h4: GPU; w1: Co↵ee, w2: DiatomSizeReduction, w3: Adiac, w4: ShapesAll;
v1: TensorFlow, v2: Theano, v3: CNTK;
Metrics: M1: Pearson correlation; M2: Kullback-Leibler (KL) divergence; M3: Spearman correlation; M4/M5: Perc.
of top/bottom conf.; M6/M7: Number of influential options; M8/M9: Number of options agree/disagree; M10:
Correlation btw importance of options; M11/M12: Number of interactions; M13: Number of interactions agree on
e↵ects; M14: Correlation btw the coe↵s;

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

4 Technical Aims and Research Plan

We will pursue the following technical aims: (1) investigate potential criteria for e↵ective sampling for
exploration of the design space of DNN architectures (Section 4.2), (2) build analytical models that ac-
curately predict the performance of a given architecture configuration given other similar architectures,
which either have been measured in the target environments or other similar environments, without
measuring the network performance directly (Section 4.3), and (3), develop a tunning mechanism
that exploit the performance model from previous step to e↵ectively search for optimal architectures
(Section 4.4).

4.1 Project Timeline

We plan to complete the proposed project in two years. To mitigate project risks, we will divide the
project into three major phases:

8

DNN Stack

Deep architecture design level variations
FUTURE WORK

Deep architecture deployment variations

[2.44, 0.88]
[9.93, 0.77]

FUTURE WORK

Deep architecture hardware-level variations
FUTURE WORK

NVIDIA Xavier

Exploring the design space of deep networks

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model

cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax
ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model

cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax

ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

Optimal Architecture
(Yesterday)

Optimal Architecture
(Today)

New Fraud Pattern

Exploring the design space of deep networks

0.2 0.4 0.6 0.8 1 1.2
Inference time [h]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
a
lid

a
tio

n
 e

rr
o
r

Default

Pareto
optimal

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model

cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax

ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model

cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax

ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

their fitness, as well as a data queue Q containing the genotypes with unknown fitness which should
be evaluated.

Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) in M (Algorithm 2). Note that no synchronization
is required, and all workers are fully occupied during architecture evolution.

To make our algorithm as generic as possible, architectures are always trained from scratch (for a
fixed number of steps) with random weight initialization during evaluation. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is straightforward.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).

im
age

sep. conv 3x3/2

sep. conv 3x3/2

sep. conv 3x3

conv 3x3

global pool

linear &
 softm

ax

small CIFAR-10 model

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3

global pool

linear &
 softm

ax

large CIFAR-10 model

cell

cell

cell

cell

cell

cell

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3/2

sep. conv 3x3

sep. conv 3x3

sep. conv 3x3

im
age

conv 3x3/2

conv 3x3/2

sep. conv 3x3/2

global pool

linear &
 softm

ax

ImageNet model

cell

cell

cell

cell

cell

cell

cell

Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 ⇥ 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3⇥3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which

6

better

better

Configuration options and interactions influence
performance of DNNs

1- <0,0,0,0,0,0,0,1,1,1,1,1>
2- <0,0,0,0,0,0,1,0,0,0,0,0>
3- <0,0,0,0,0,1,0,0,0,0,0,0>
4- <0,0,0,0,0,1,1,0,0,0,0,0>
5- <0,0,0,0,1,0,0,0,0,0,0,0>
6- <0,0,0,0,1,0,1,0,0,0,0,0>
7- <0,0,0,0,1,1,0,0,0,0,0,0>
8- <0,0,0,0,1,1,1,0,0,0,0,0>
9- <0,0,0,1,0,0,0,0,0,0,0,0>
10-<0,0,0,1,0,0,1,0,0,0,0,0>

0 50 100 150 200 250 300
Network architecture number

1

2

3

4

5

6

7

8

9

In
fe

re
n
ce

 t
im

e
 [
h
]

1

2

3

4

5

6

7

8

9

10

Insight: Learn a model on a cheaper workload to
explore the expensive workload faster

0 50 100 150 200 250 300
Network architecture number

1

2

3

4

5

6

7

8

9

In
fe

re
n
ce

 t
im

e
 [
h
]

0 50 100 150 200 250 300
Network architecture number

1

2

3

4

5

6

7

In
fe

re
n
ce

 t
im

e
 [
m

]

Workload W1
Hardware H1

Workload W2
Hardware H2

Outline

Case
Study

Transfer
Learning

Empirical
Study

Guided
Sampling

Future
Research

Configuration errors are prevalent

Configuration errors are common

69%

31%

Configuration
Error

Other
Errors

cobalt.io

http://cobalt.io

Configuration complexity and dependencies between
options is a major source of configuration errors

Default

Operational context I

Operational context II

Operational context III

Configuration complexity and dependencies between
options is a major source of configuration errors

Configuration Options

Apache Hadoop Architecture

Associated to

Configurations are software too

We can find the repair patches faster with a lighter
workload

• [localization]: Using transfer learning to derive the most
likely configurations that manifest the bugs

• [repair]: Automatically prepare patches to fix the
configuration bug

Many systems are now configurable
built

Given the ever growing configurable systems,
how can we enable learning practical models
that scale well and provide reliable predictions

for exploring the configuration space?

