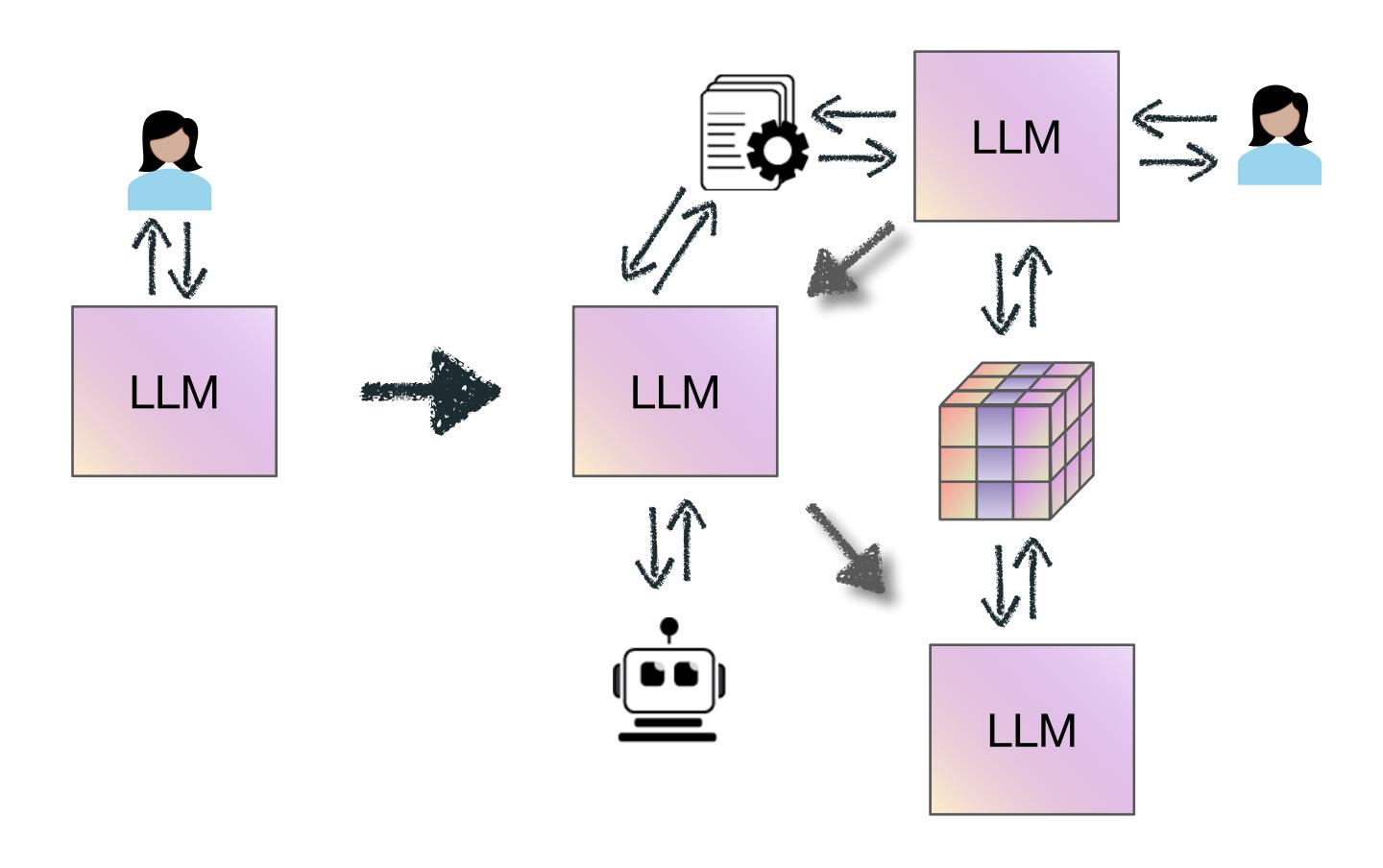
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems

Pooyan Jamshidi University of South Carolina

https://pooyanjamshidi.github.io/

Modern ML Systems are increasingly composed of multiple interdependent components



Performance tradeoff in ML pipelines becomes orders of magnitude more difficult than the single-task ML systems

- Compositional Complexity: Dependencies propagate performance impacts.
- Cascading Tradeoffs: Latency and cost propagate through the graph. Accuracy depends on intermediate representations.
- Tradeoff Analysis: Improving one node may degrade overall performance.
- Optimization often requires a joint search over an exponentially large search space!

ML inference services have strict requirements

Highly Responsive!

ML inference services have strict requirements

Highly Responsive!

Cost-Efficient!

ML inference services have strict requirements

Highly Responsive!

Highly Accurate!

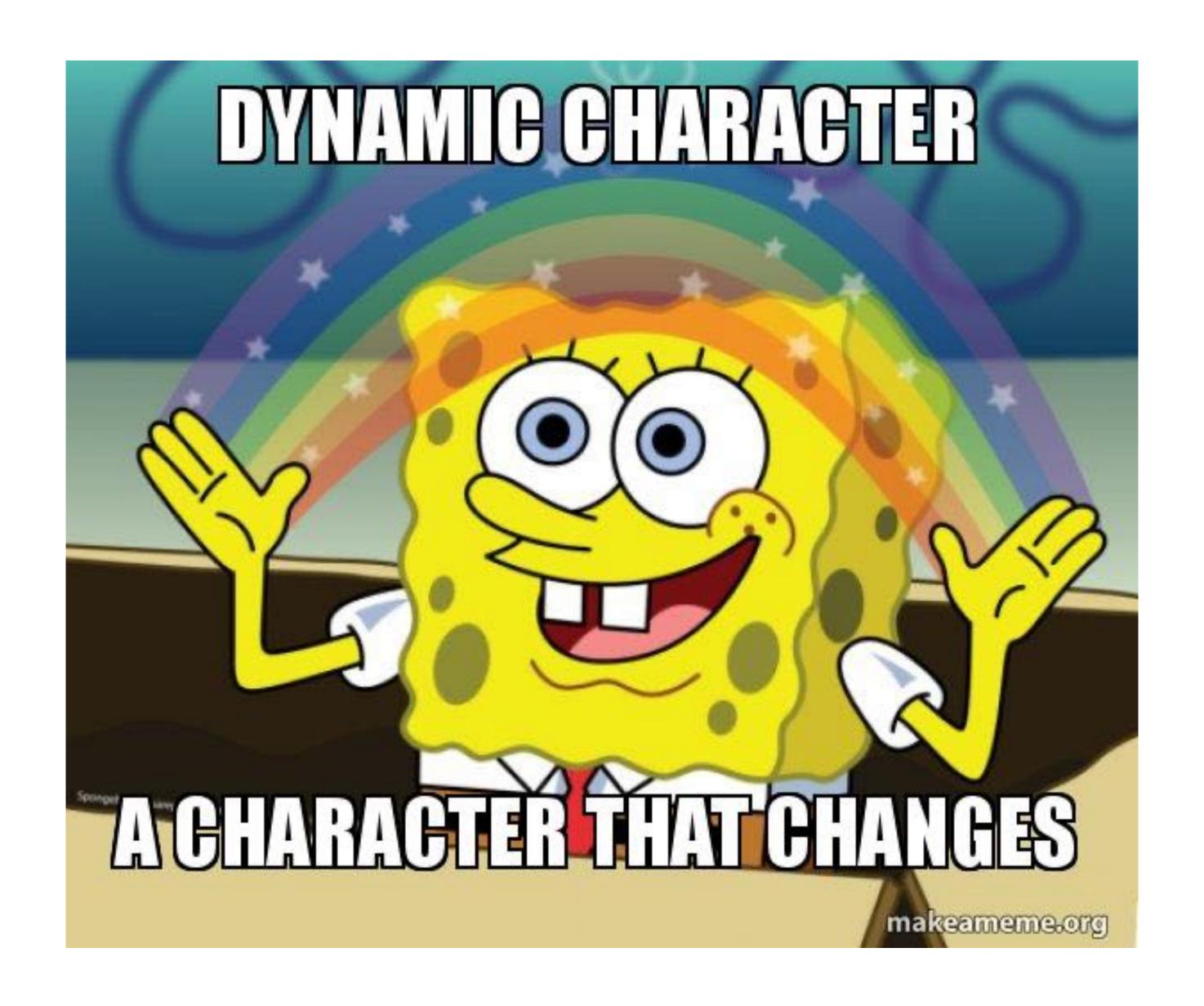
ML inference services have strict & conflicting requirements

Highly Responsive!

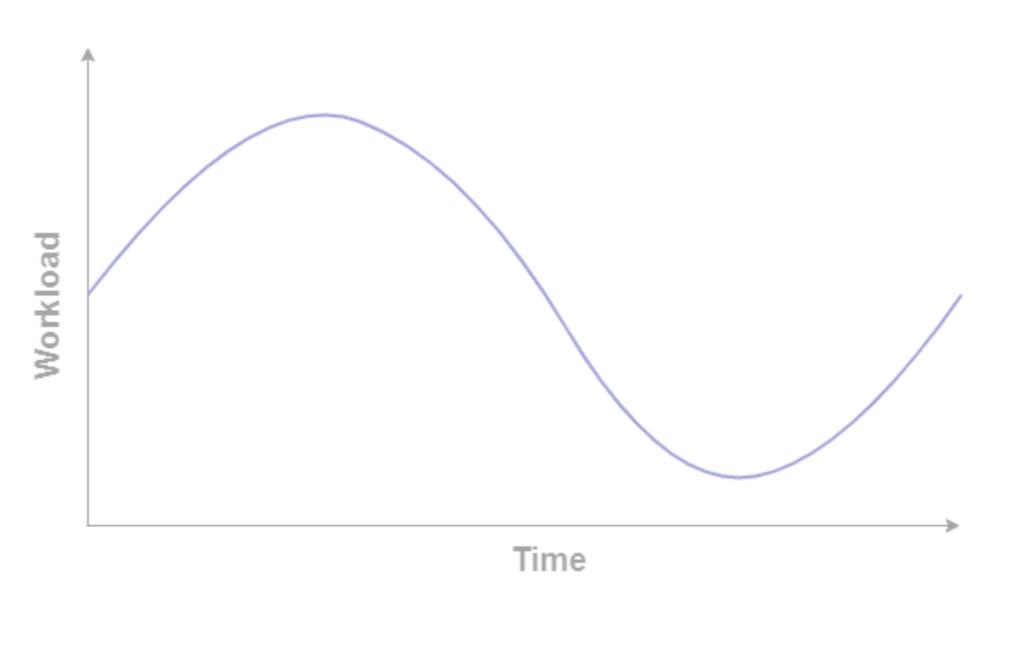
Cost-Efficient!

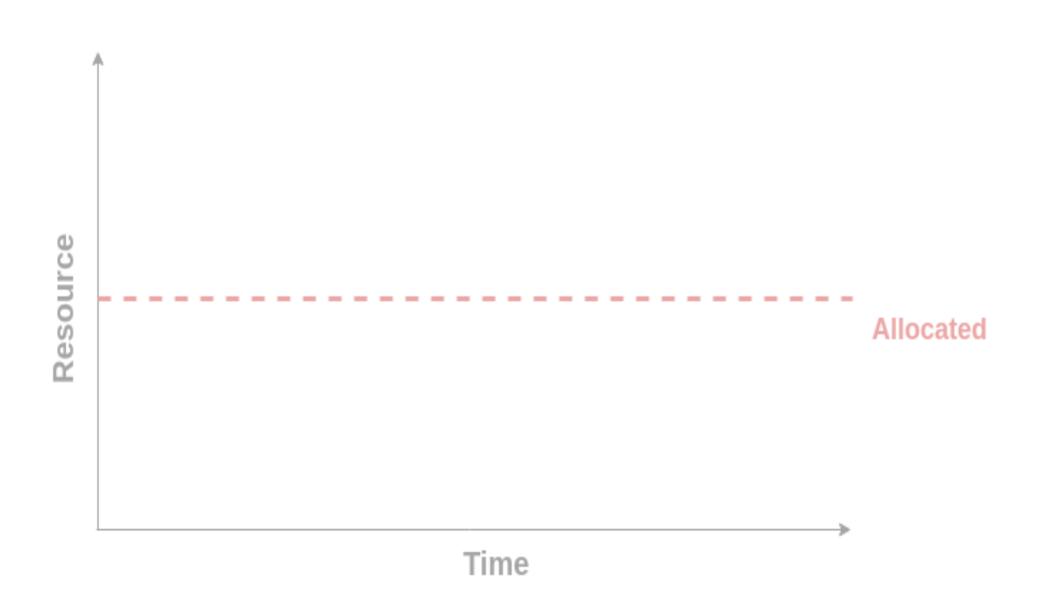
Highly Accurate!

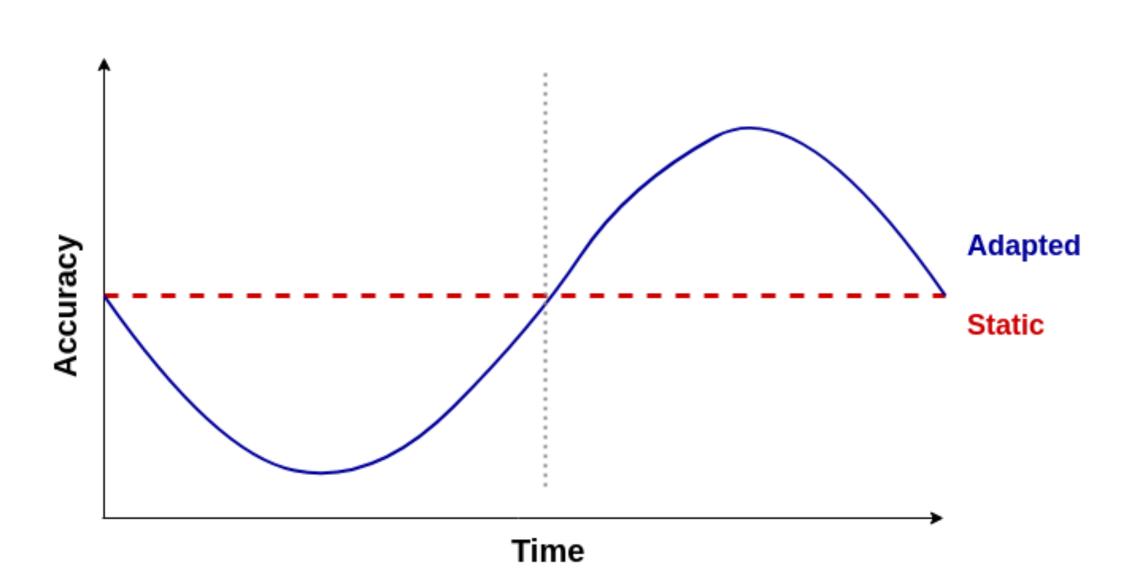
More challenge: Dynamic workload



Quality adaptation





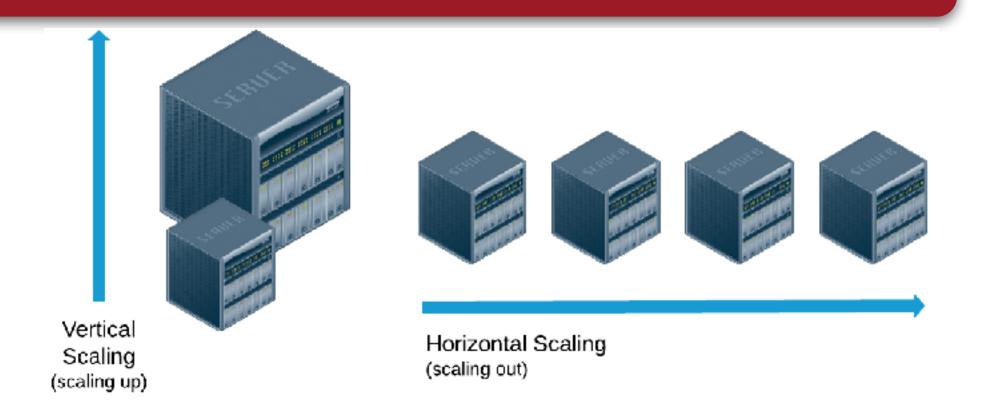


Our work, similar to all other research publications, stands on the shoulders of giants:)

Resource Scaling

Vertical Scaling (AutoPilot EuroSys'20)

Horizontal Scaling (MArk ATC'19)

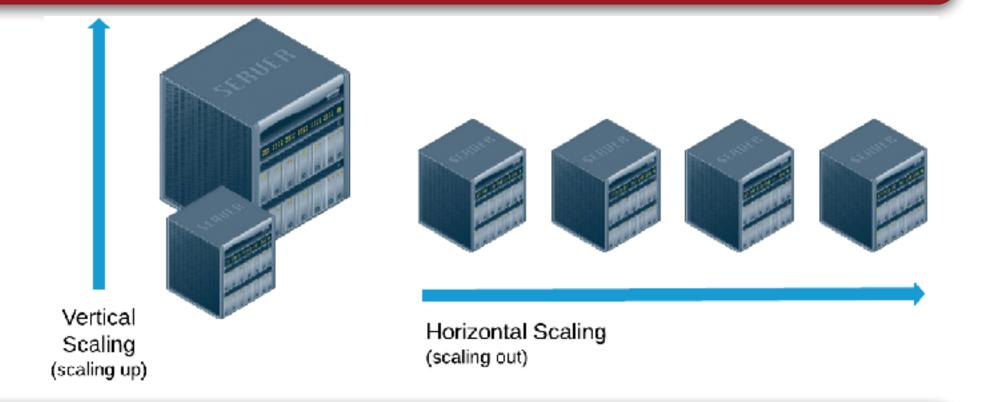


Our work, similar to all other research publications, stands on the shoulders of giants:)

Resource Scaling

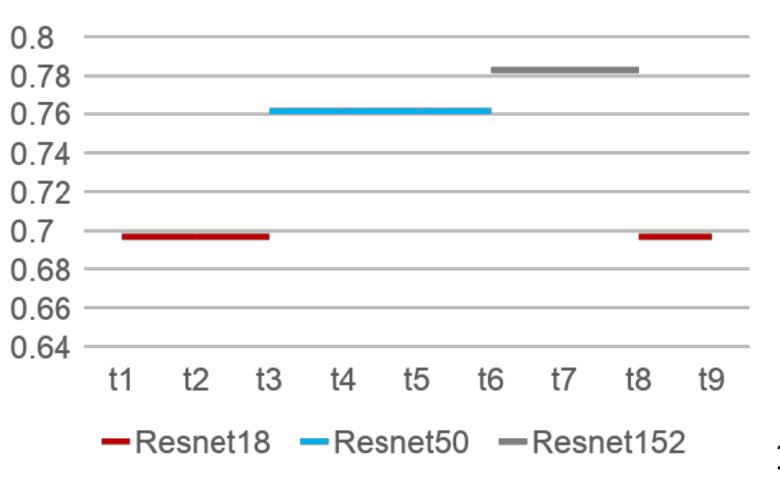
Vertical Scaling (AutoPilot EuroSys'20)

Horizontal Scaling (MArk ATC'19)



Quality Adaptation

Model Variants (Model-Switching Hotcloud'20)



Solutions Preview: \\ InfAdapter, IPA, and Sponge

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi*

Iran University of Science and Technology*, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

Journal of Systems Research

Volume 4, Issue 1, April 2024

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH ACCURACY AND COST-EFFICIENCY

Saeid Ghafouri @

Kamran Razavi 👓

University of South Carolina & Queen Mary University of London

Technical University of Darmstadt

Mehran Salmani ®
Technical University of Ilmenau

Alireza Sanaee

Queen Mary University of London

Tania Lorido Botran

Roblox

Lin Wang

Paderborn University

Joseph Doyle ©
Queen Mary University of London

Pooyan Jamshidi © University of South Carolina

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Kamran Razavi*

Saeid Ghafouri*

Max Mühlhäuser

Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

Pooyan Jamshidi University of South Carolina Lin Wang Paderborn University

Problem:

Multi-Objective Optimization with Known Constraints under Uncertainty

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m),$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

Solutions:

Different Assumptions

InfAdapter [2023]:

Autoscaling for ML Inference

IPA [2024]:

Autoscaling for ML Inference Pipeline

Sponge [2024]:

Autoscaling for ML Inference Pipeline Dynamic SLO

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi*

Iran University of Science and Technology*, Queen Mary University of London§, Technical University of Darmstadt[†], University of South Carolina[‡]

InfAdapter [2023]: Autoscaling for **ML Model Inference**

Volume 4, Issue 1, April 2024

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH ACCURACY AND COST-EFFICIENCY

University of South Carolina & Queen Mary University of London

Mehran Salmani

Alireza Sanaee Queen Mary University of London Tania Lorido Botran

Lin Wang

IPA [2024]:

Autoscaling for **ML Inference Pipeline**

Sponge: Inference Serving with Dynamic SLOs Using In-Place **Vertical Scaling**

Kamran Razavi*

Saeid Ghafouri*

Max Mühlhäuser

Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University Sponge [2024]:

Autoscaling for ML Inference Pipeline with **Dynamic SLO**

Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi*

Iran University of Science and Technology*, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

HotCloud '20

ID.

ROGRAM

PARTICIPATE

PONSORS

BOUT

Model-Switching: Dealing with Fluctuating Workloads in Machine-Learning-as-a-Service Systems

Authors:

Jeff Zhang, New York University; Sameh Elnikety, Microsoft Research; Shuayb Zarar and Atul Gupta, Microsoft; Siddharth Garg, New York University

Abstract:

Machine learning (ML) based prediction models, and especially deep neural networks (DNNs) are increasingly being served in the cloud in order to provide fast and accurate inferences. However, existing service ML serving systems have trouble dealing with fluctuating workloads and either drop requests or significantly expand hardware resources in response to load spikes. In this paper, we introduce Model-Switching, a new approach to dealing with fluctuating workloads when serving DNN models. Motivated by the observation that end-users of ML primarily care about the accuracy of responses that are returned within the deadline (which we refer to as effective accuracy), we propose to switch from complex and highly accurate DNN models to simpler but less accurate models in the presence of load spikes. We show that the flexibility introduced by enabling online model switching provides higher effective accuracy in the presence of fluctuating workloads compared to serving using any single model. We implement Model-Switching within Clipper, a state-of-art DNN model serving system, and demonstrate its advantages over baseline approaches.

University of South Carolina

Lin wang Paderborn University InfAdapter [2023]:
Autoscaling for
ML Model Inference

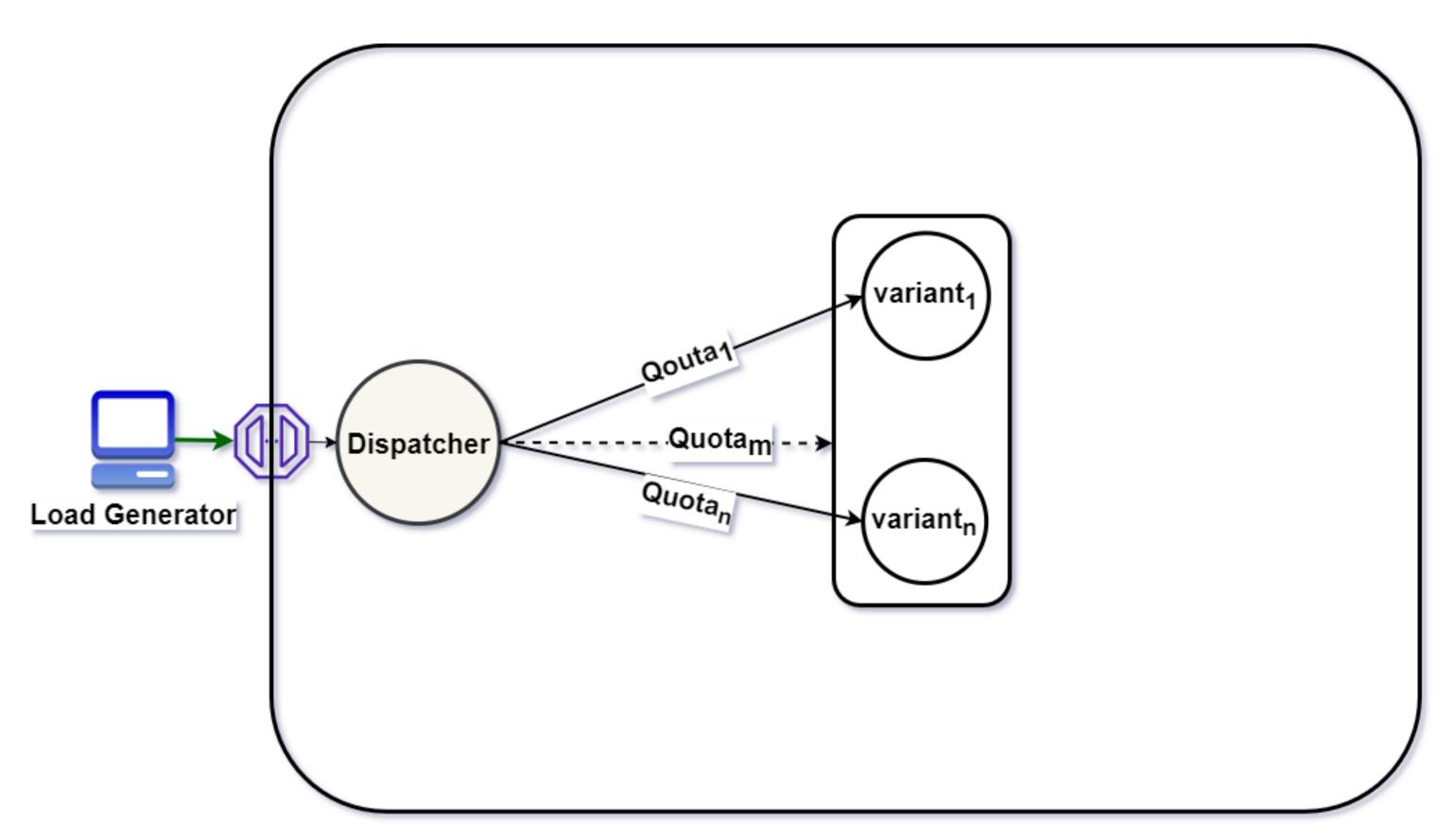
IPA [2024]:

Autoscaling for ML Inference Pipeline

Sponge [2024]:

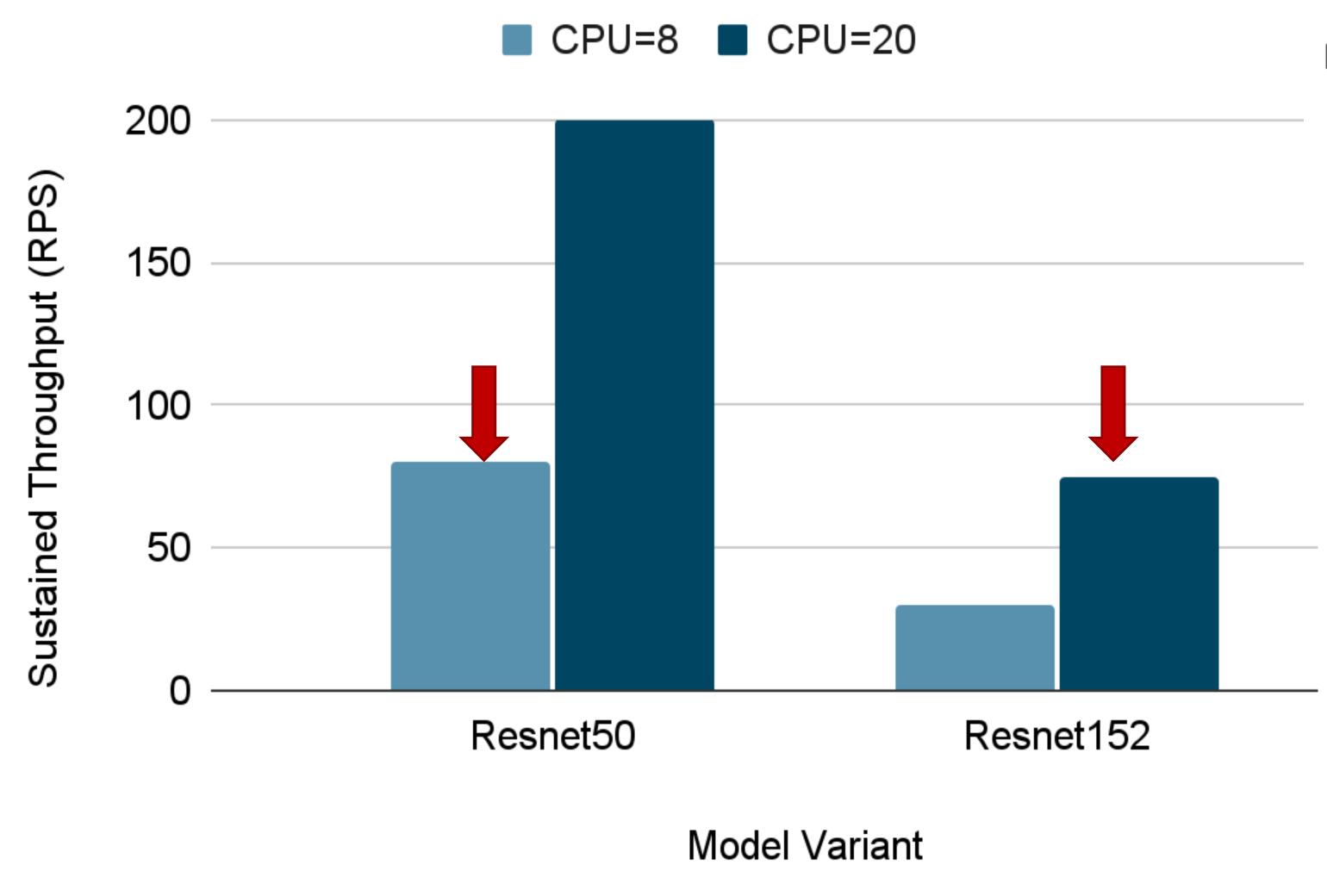
Autoscaling for ML Inference Pipeline with Dynamic SLO

InfAdapter (our solution) vs. Model Switching (prior work)



Selecting a **subset of model variants**, each having its size meeting latency requirements for the predicted workload while **maximizing accuracy and minimizing resource cost**

First insight: The same throughput can be achieved with different computing resources by switching the model variants



ResNet-50:

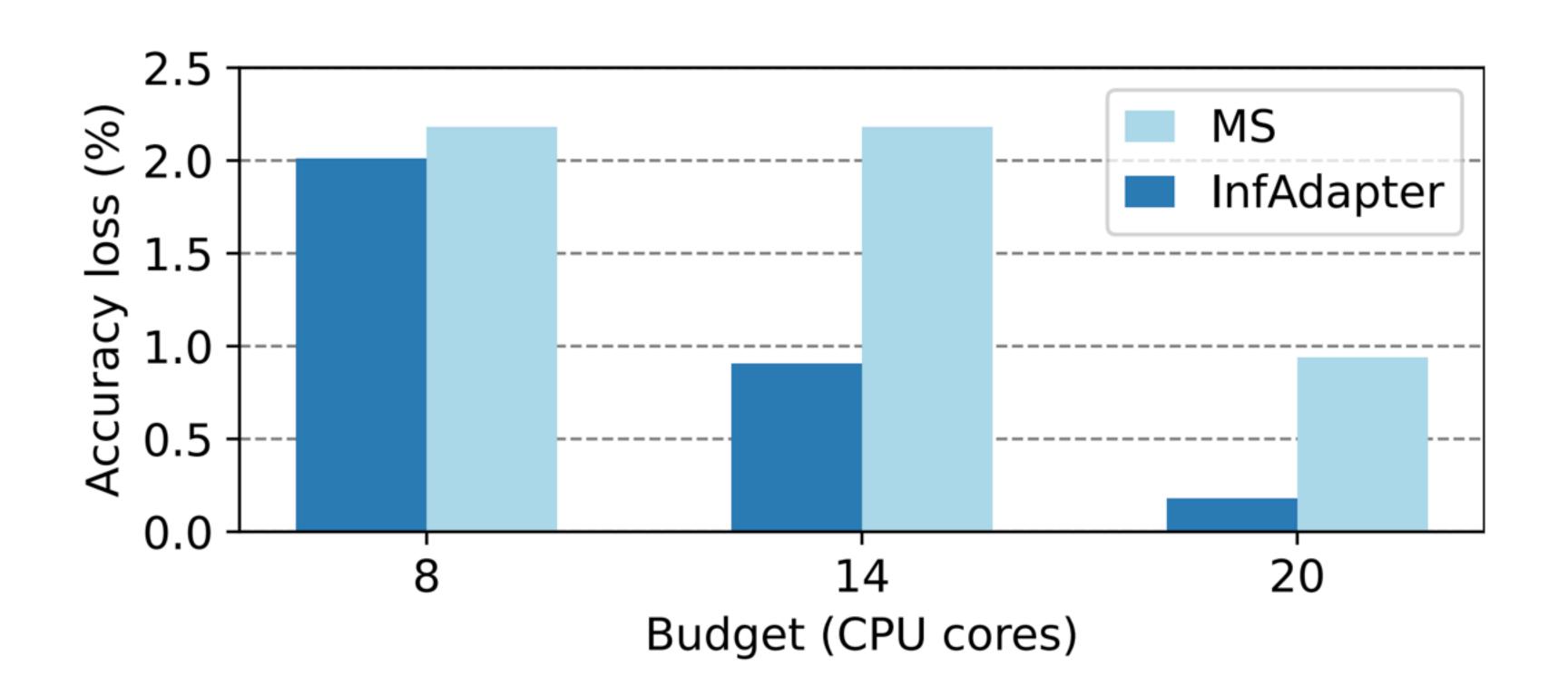
- Depth: 50 layers.
- Top-1 Accuracy: ~76-77% on ImageNet.
- Top-5 Accuracy: ~93-94% on ImageNet.
- Model Size: Smaller, faster to train and deploy.

ResNet-152:

- Depth: 152 layers.
- Top-1 Accuracy: ~78-80% on ImageNet.
- Top-5 Accuracy: ~94.5-95% on ImageNet.
- Model Size: Larger, higher computational cost,

Multi-models (our solution—InfAdapter) vs single-model (Model-Switching)

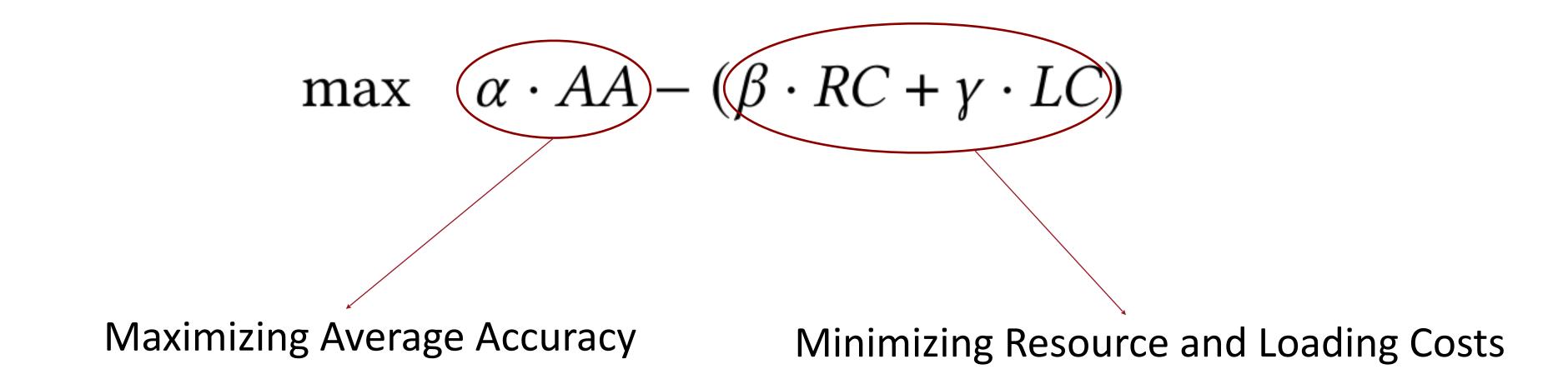
Higher average accuracy by using multiple model variants



$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$

$$\max (\alpha \cdot AA) - (\beta \cdot RC + \gamma \cdot LC)$$

Maximizing Average Accuracy



$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m),$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m), \quad \text{Supporting incoming workload}$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC)$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m), \quad \text{Supporting incoming workload}$$

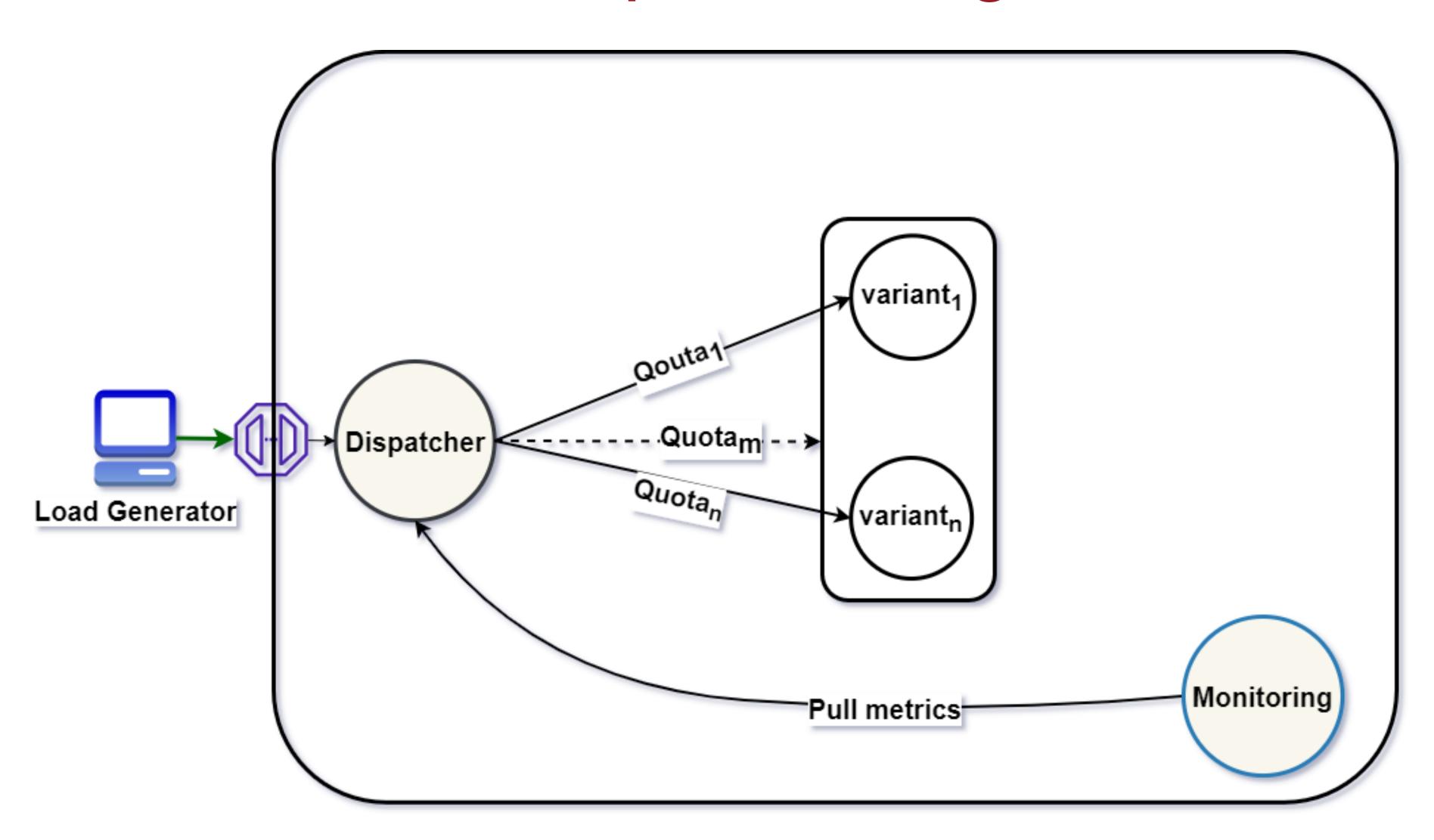
$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

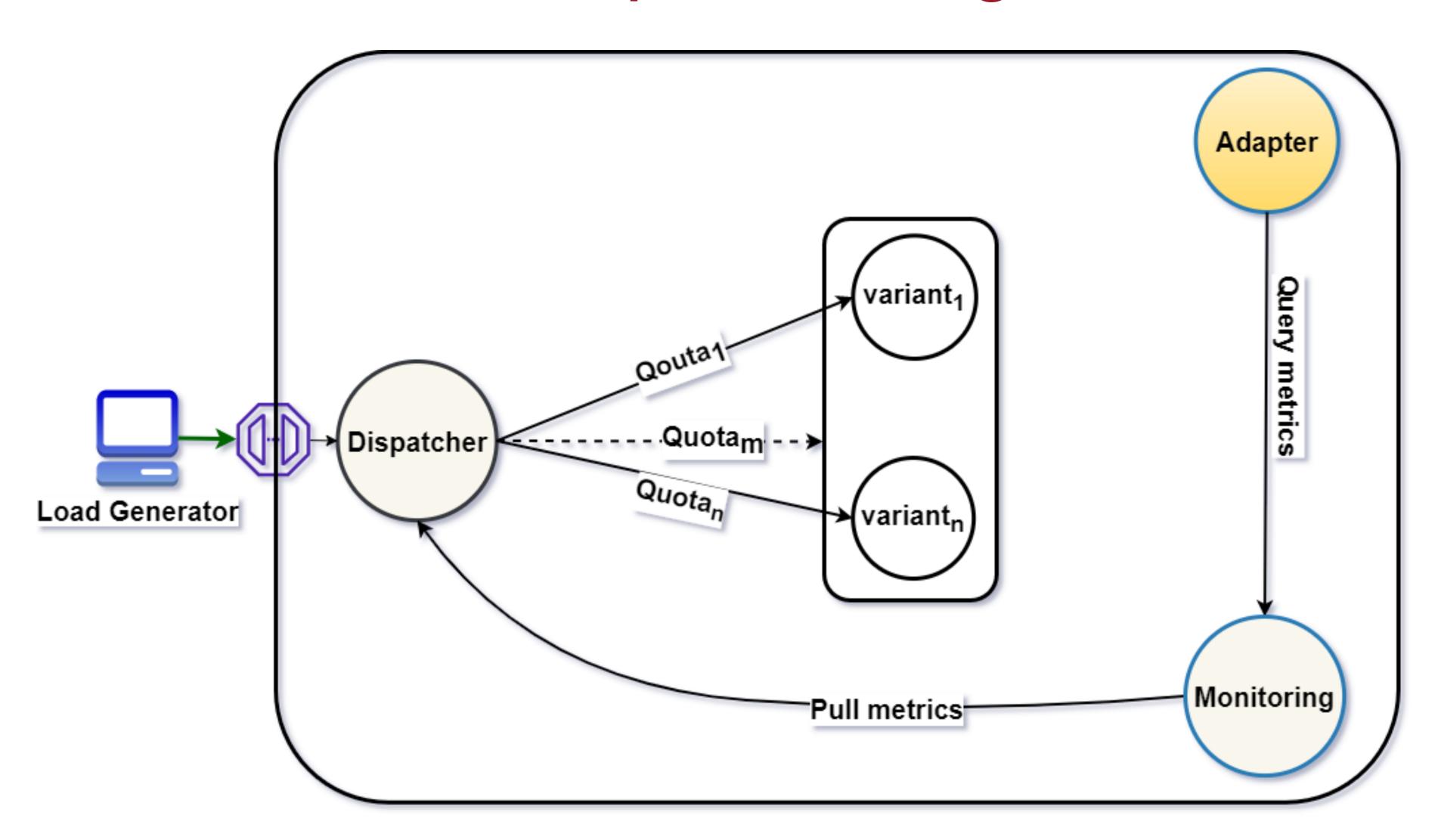
$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

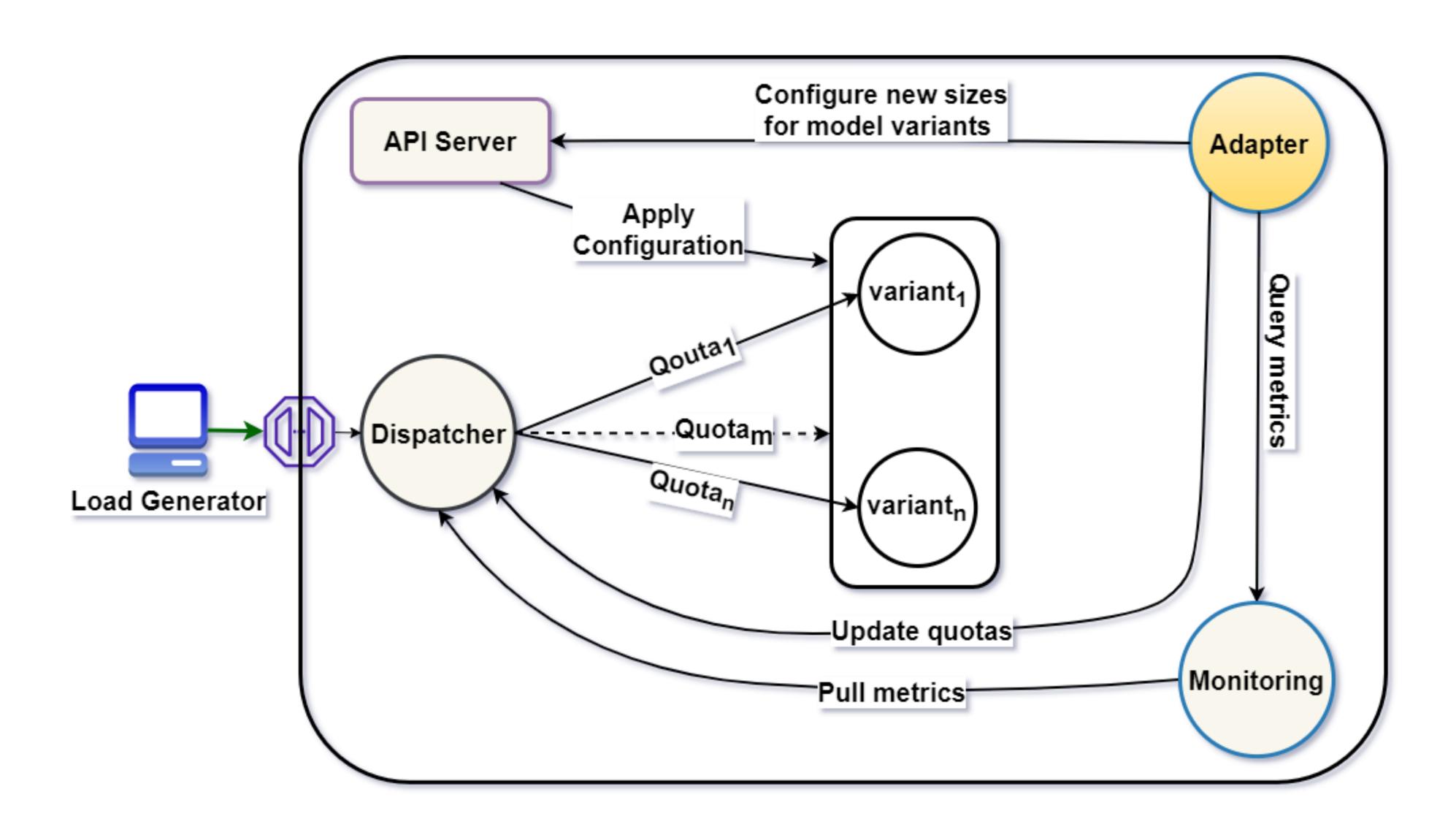
InfAdapter: Design



InfAdapter: Design



InfAdapter: Design



InfAdapter: Experimental evaluation setup

Workload: Twitter-trace sample (2022-08)

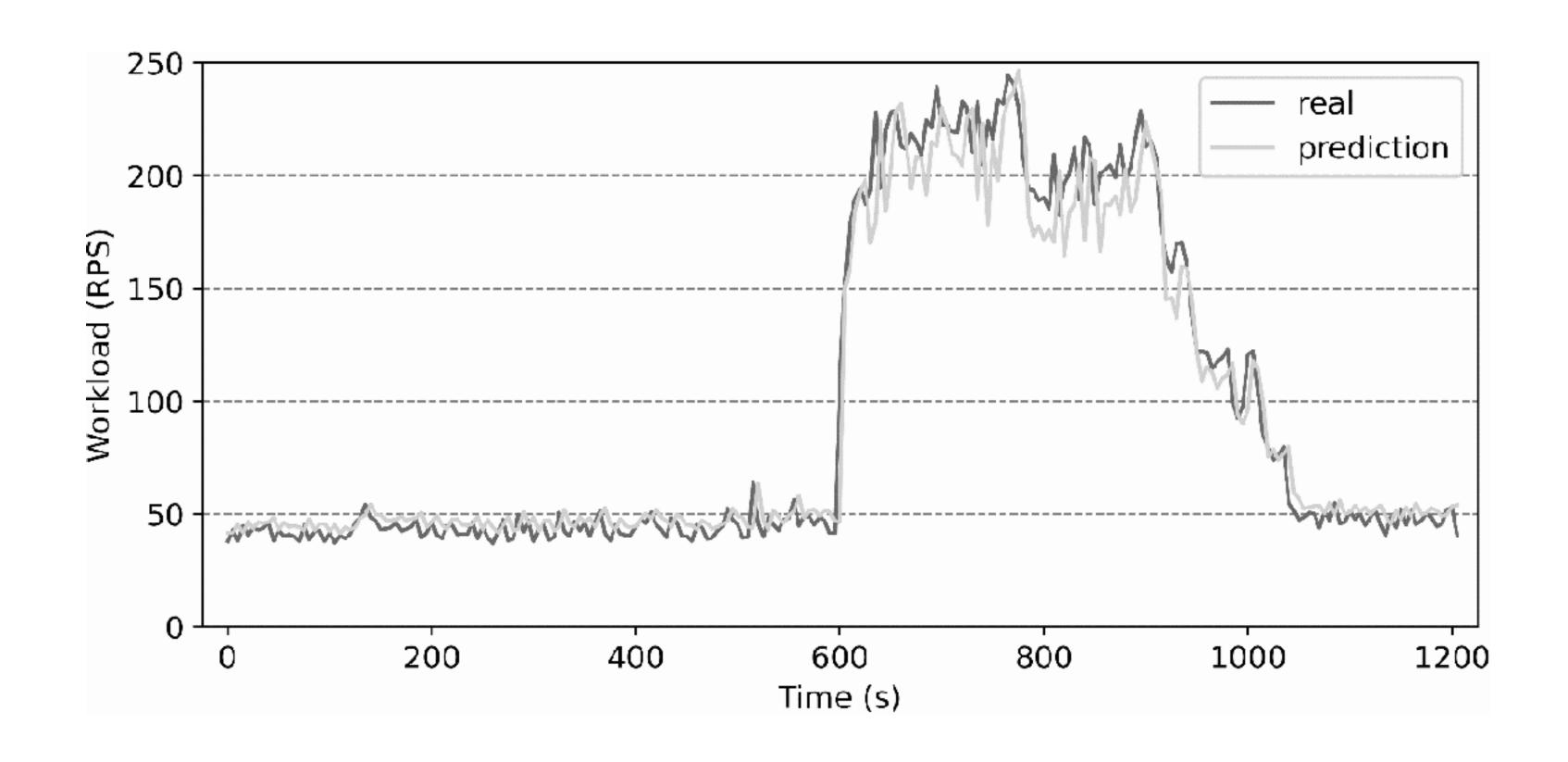
Baselines: Kubernetes VPA and Model-Switching

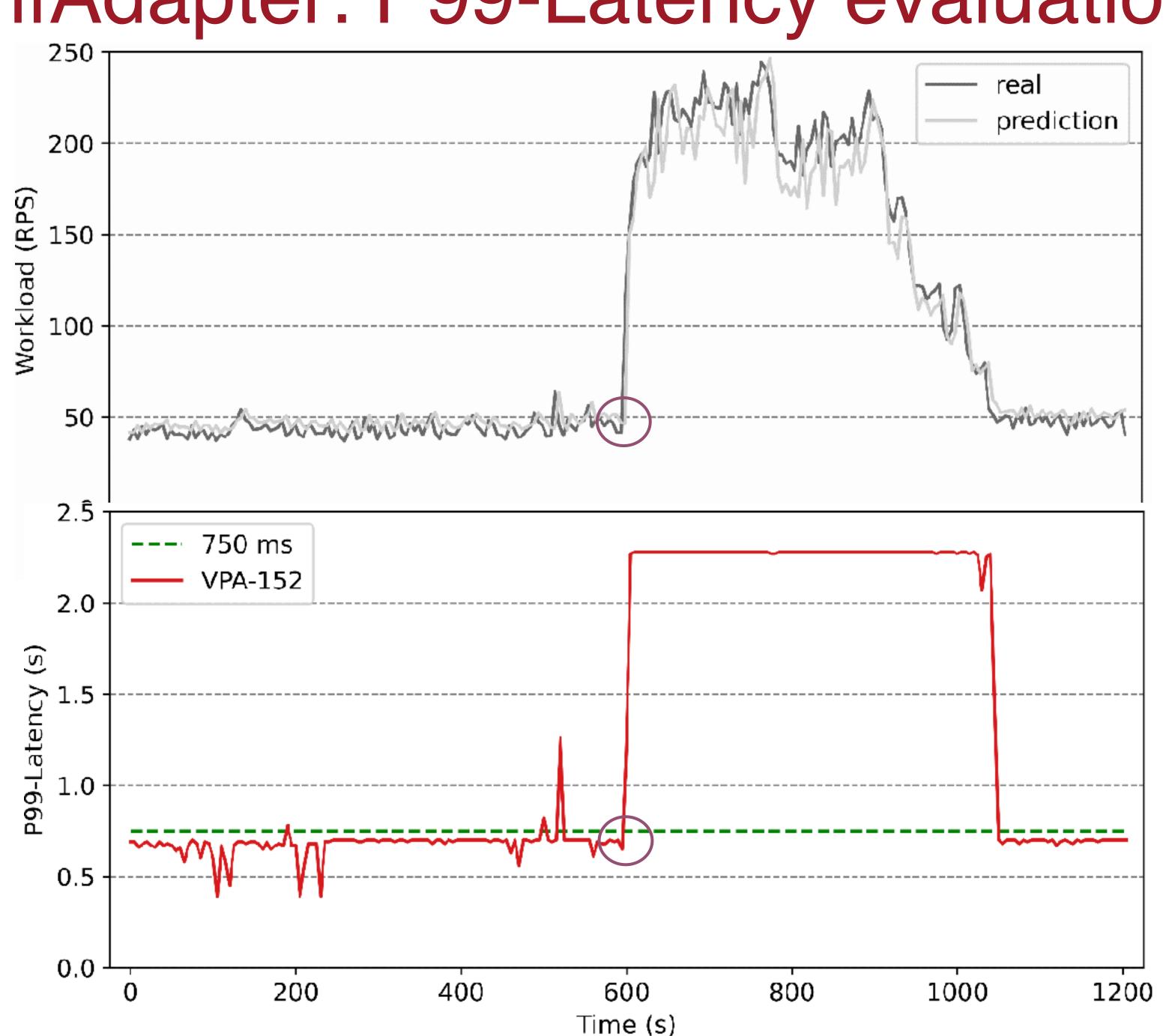
Used models: Resnet18, Resnet34, Resnet50, Resnet101, Resnet152

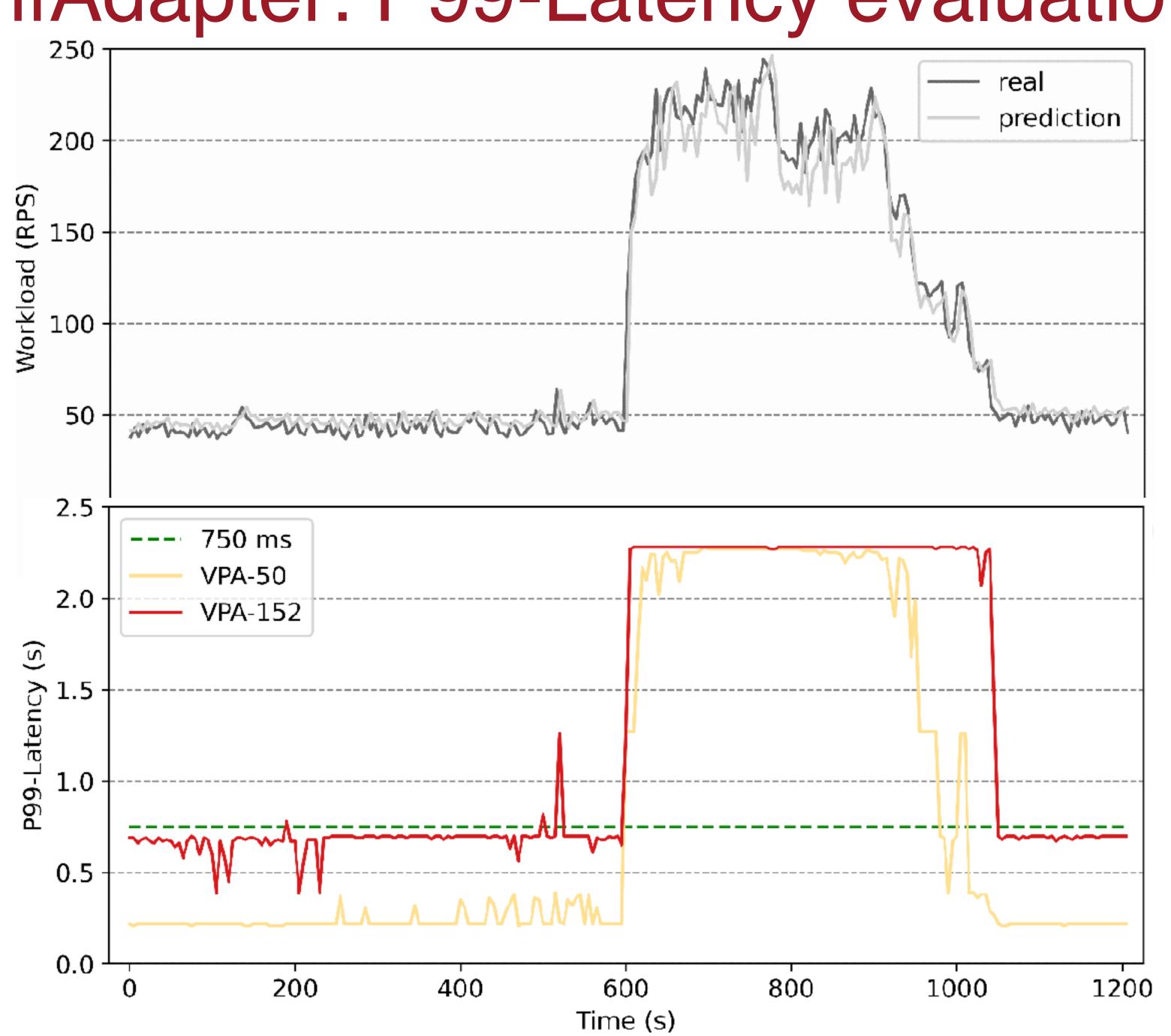
Interval adaptation: 30 seconds

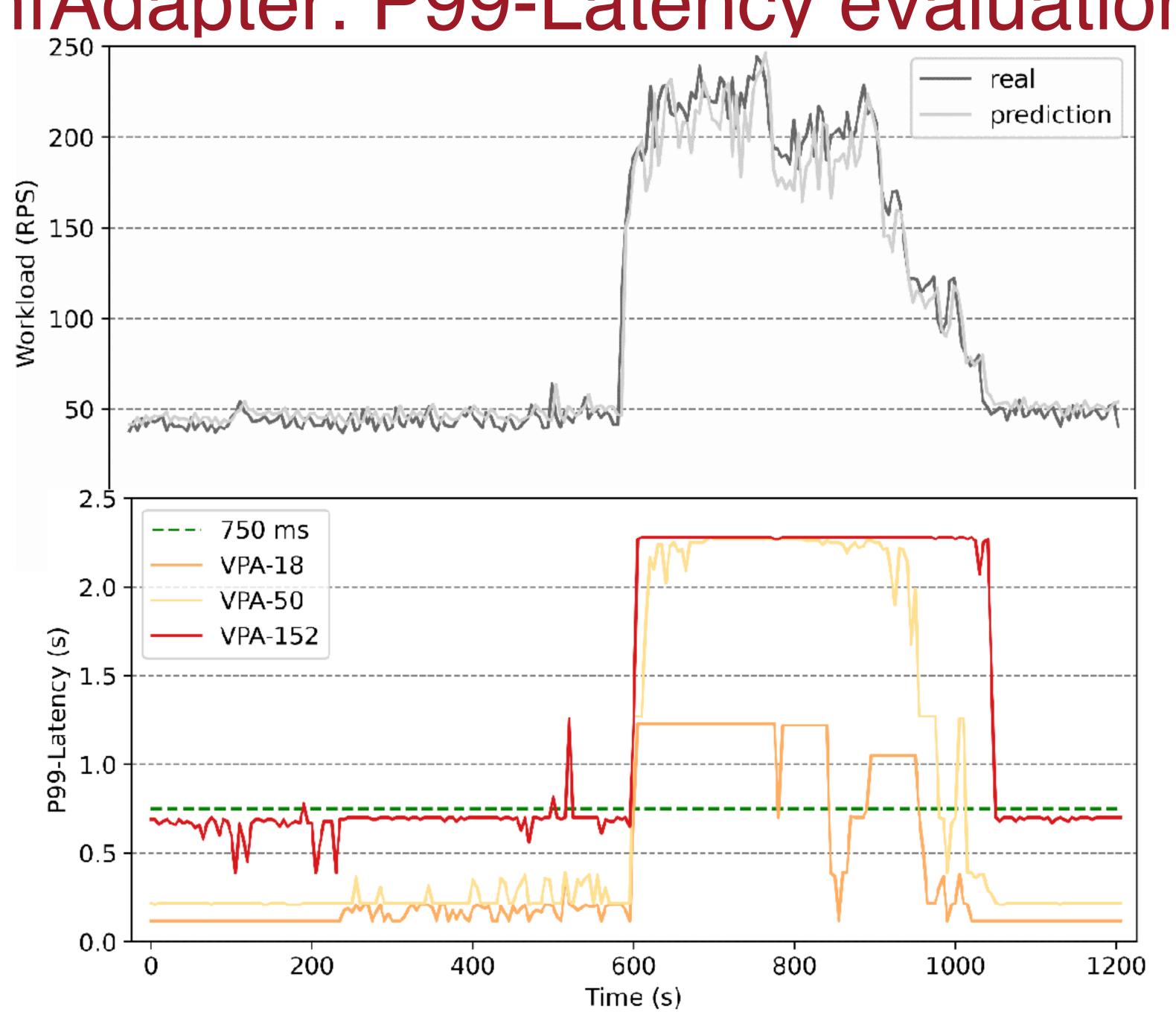
Kubernetes cluster: 48 Cores, 192 GiB RAM

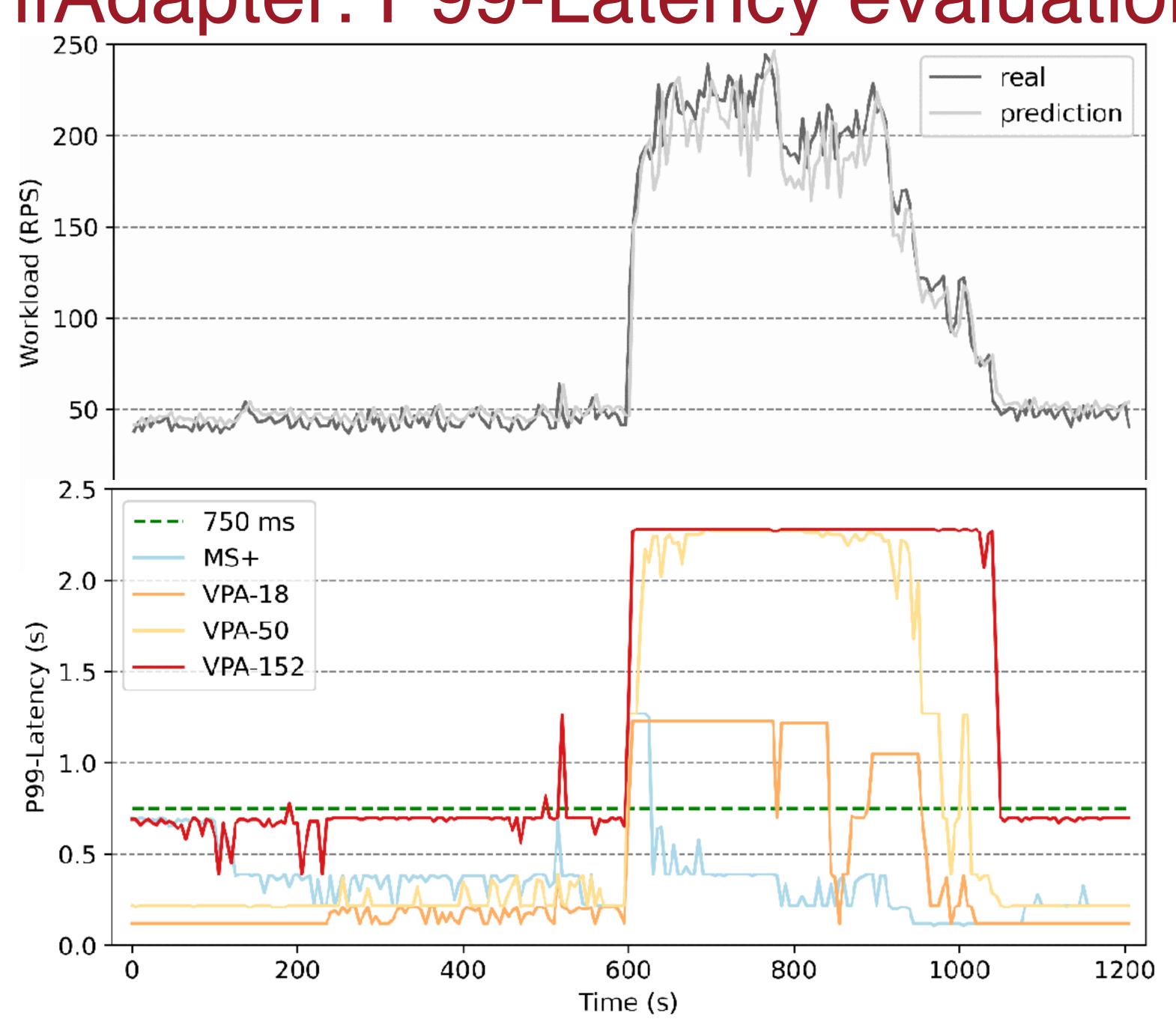
Workload Pattern

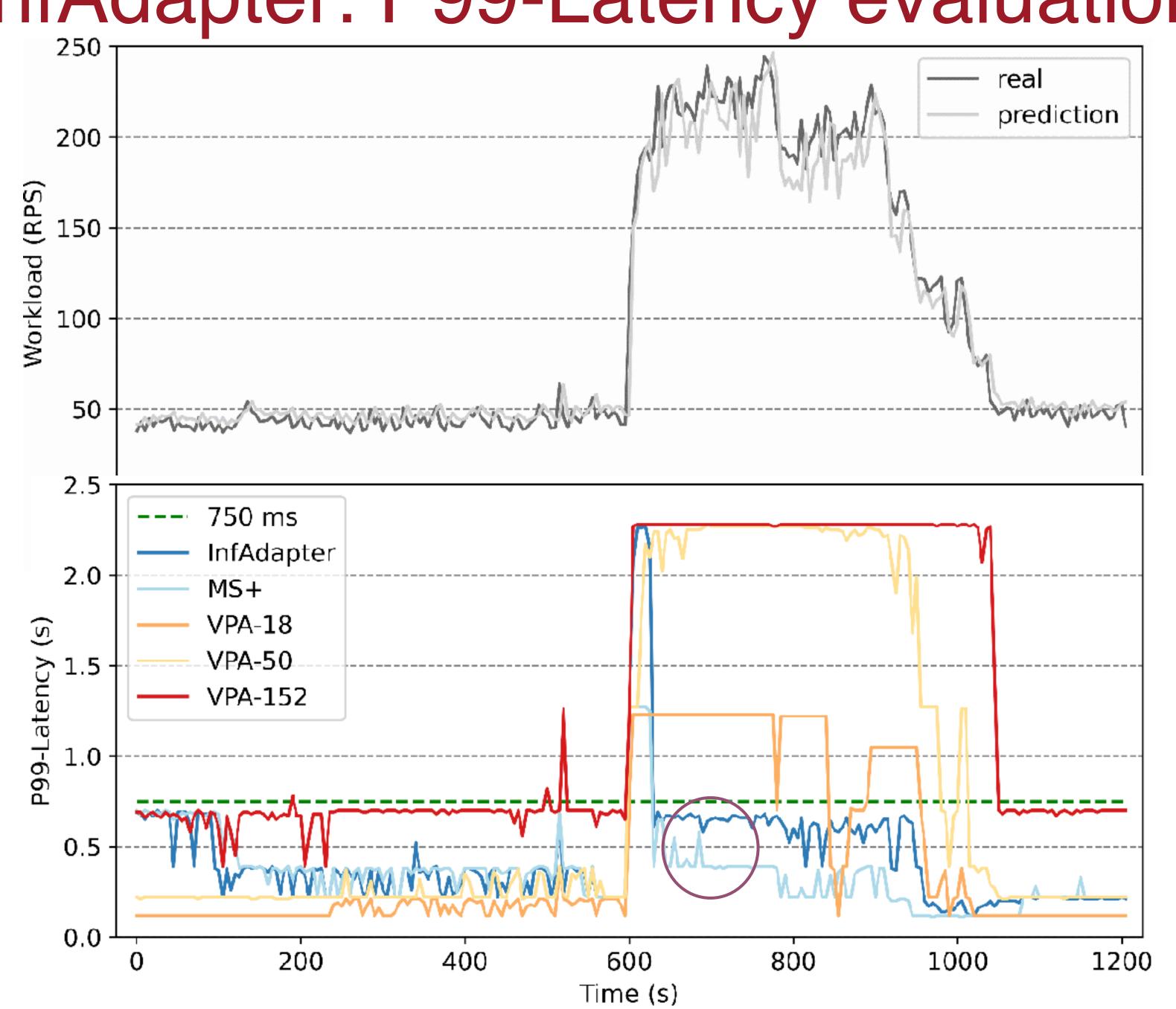




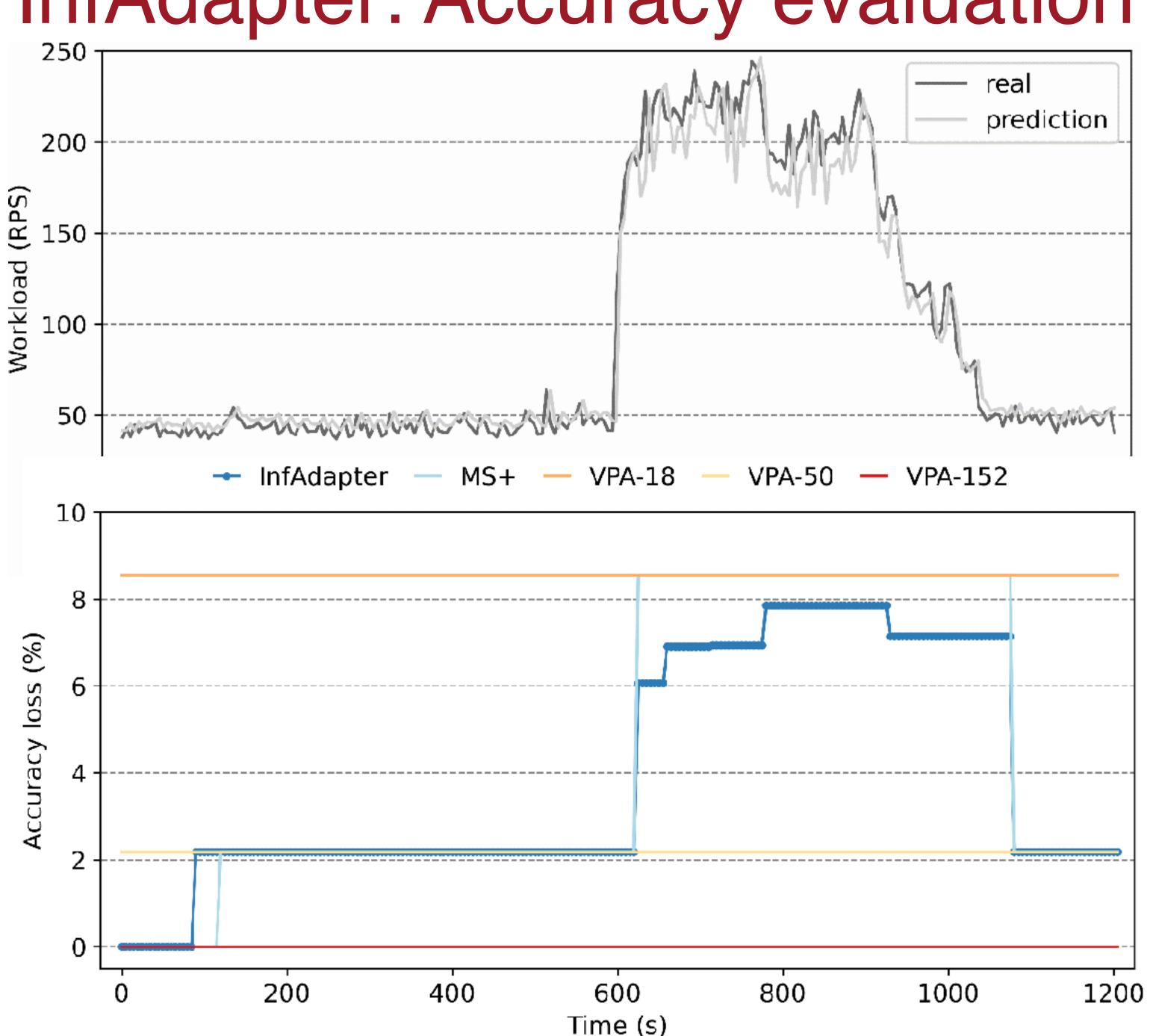




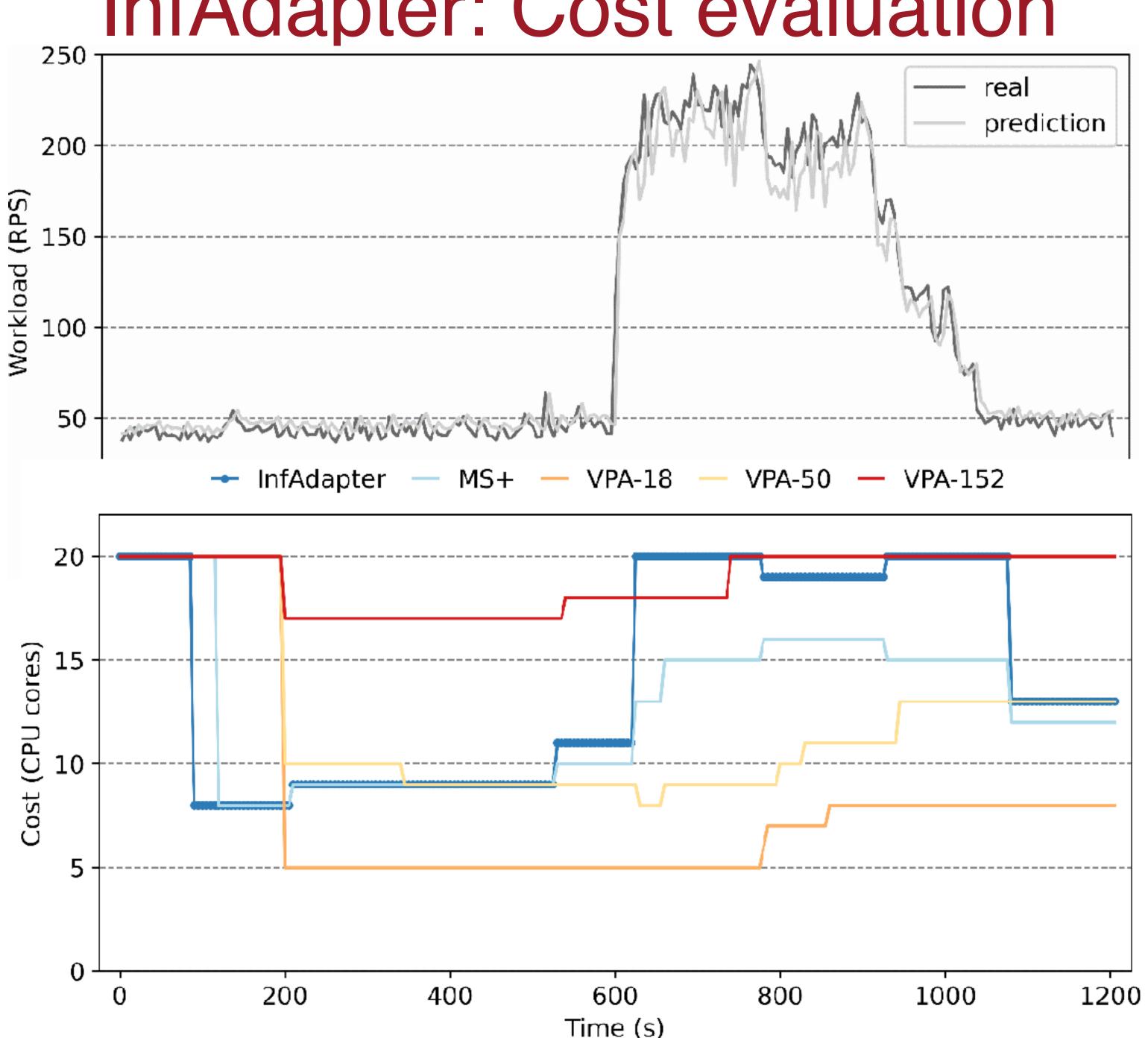




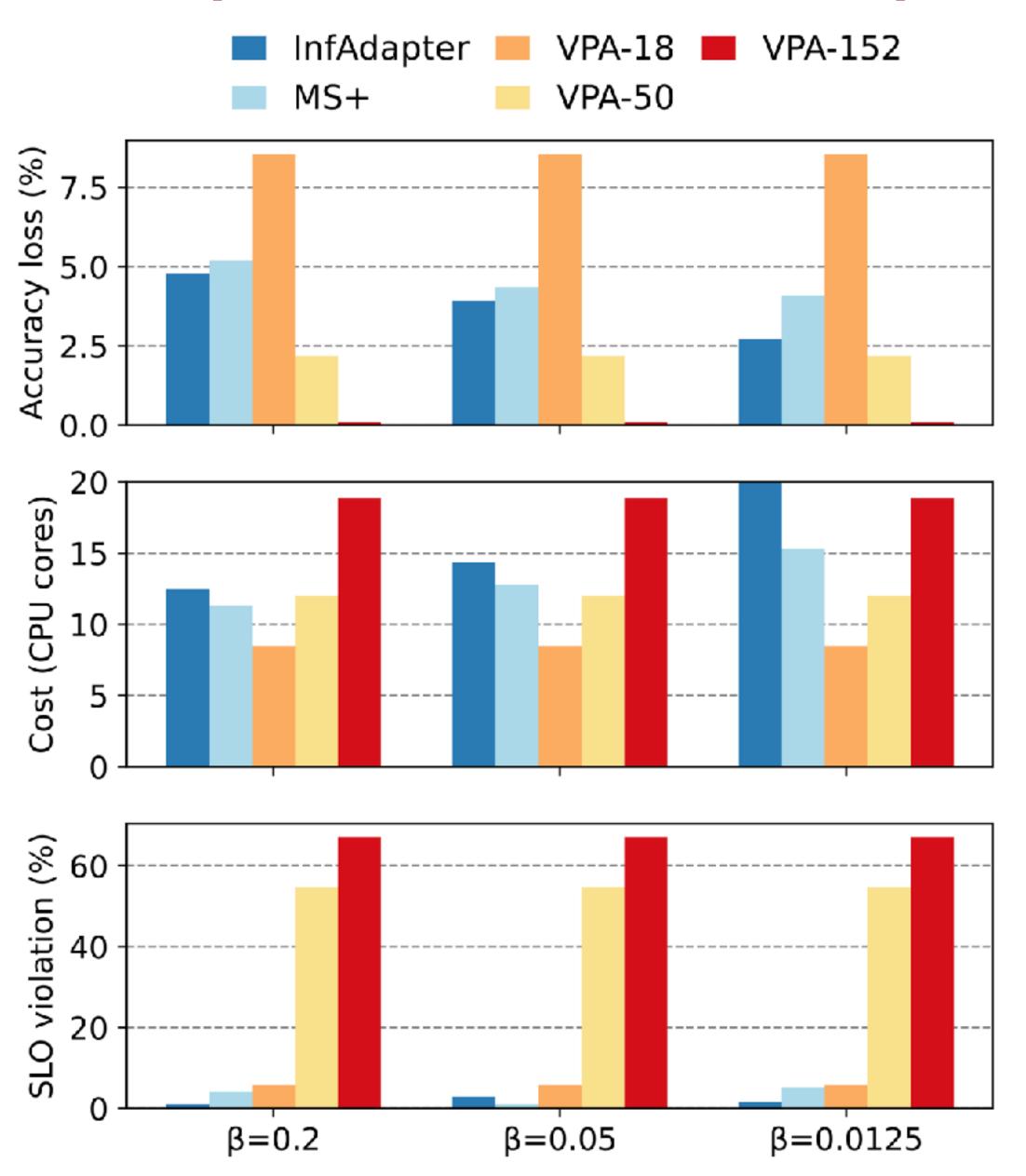
InfAdapter: Accuracy evaluation



InfAdapter: Cost evaluation



InfAdapter: Tradeoff Space



Takeaway

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Takeaway

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

Using a set of model variants simultaneously provides higher average accuracy compared to having one variant.

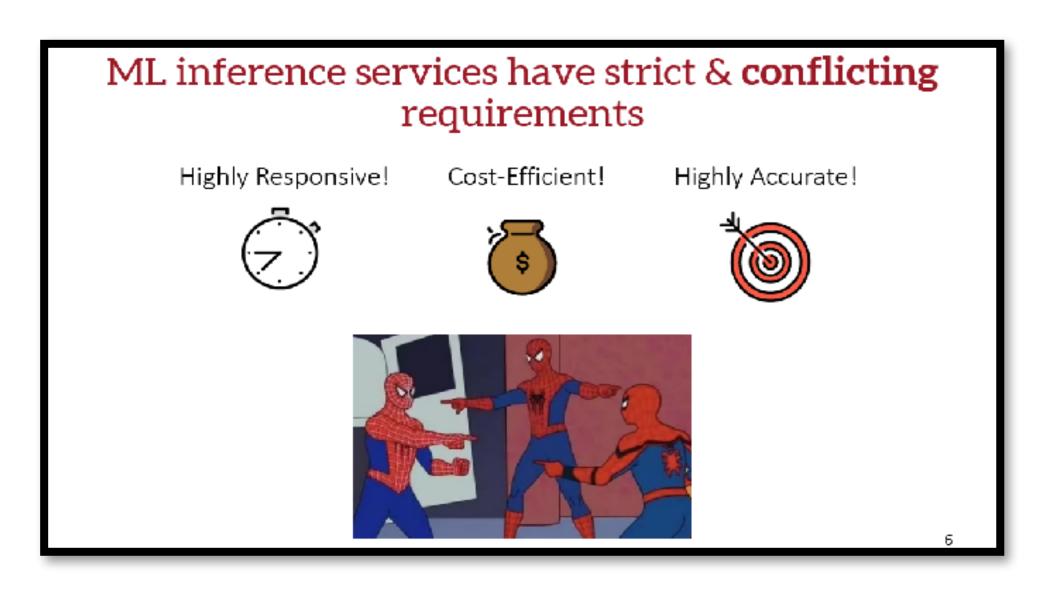
Takeaway

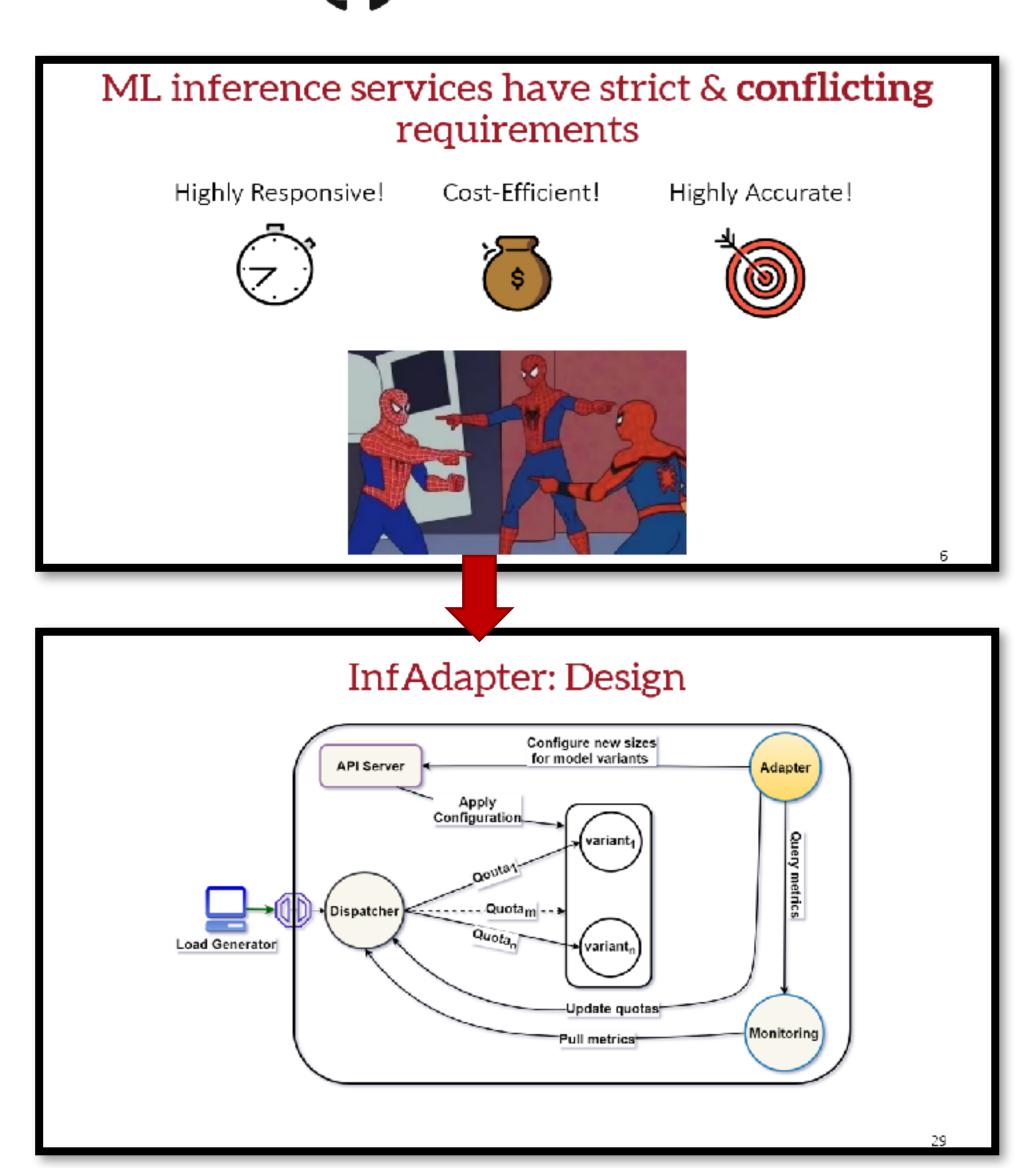
Inference Serving Systems should consider accuracy, latency, and cost at the same time.

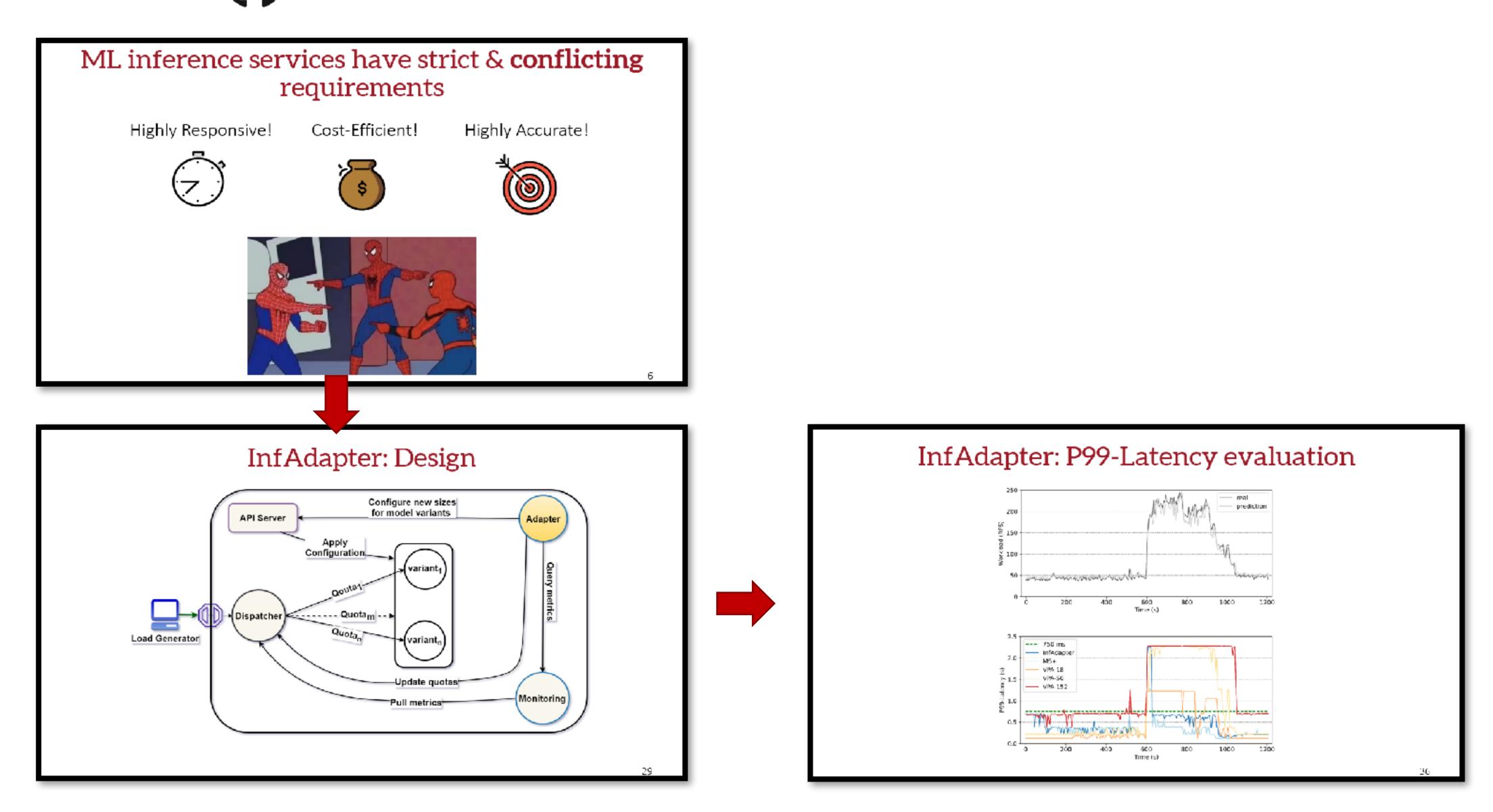
Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

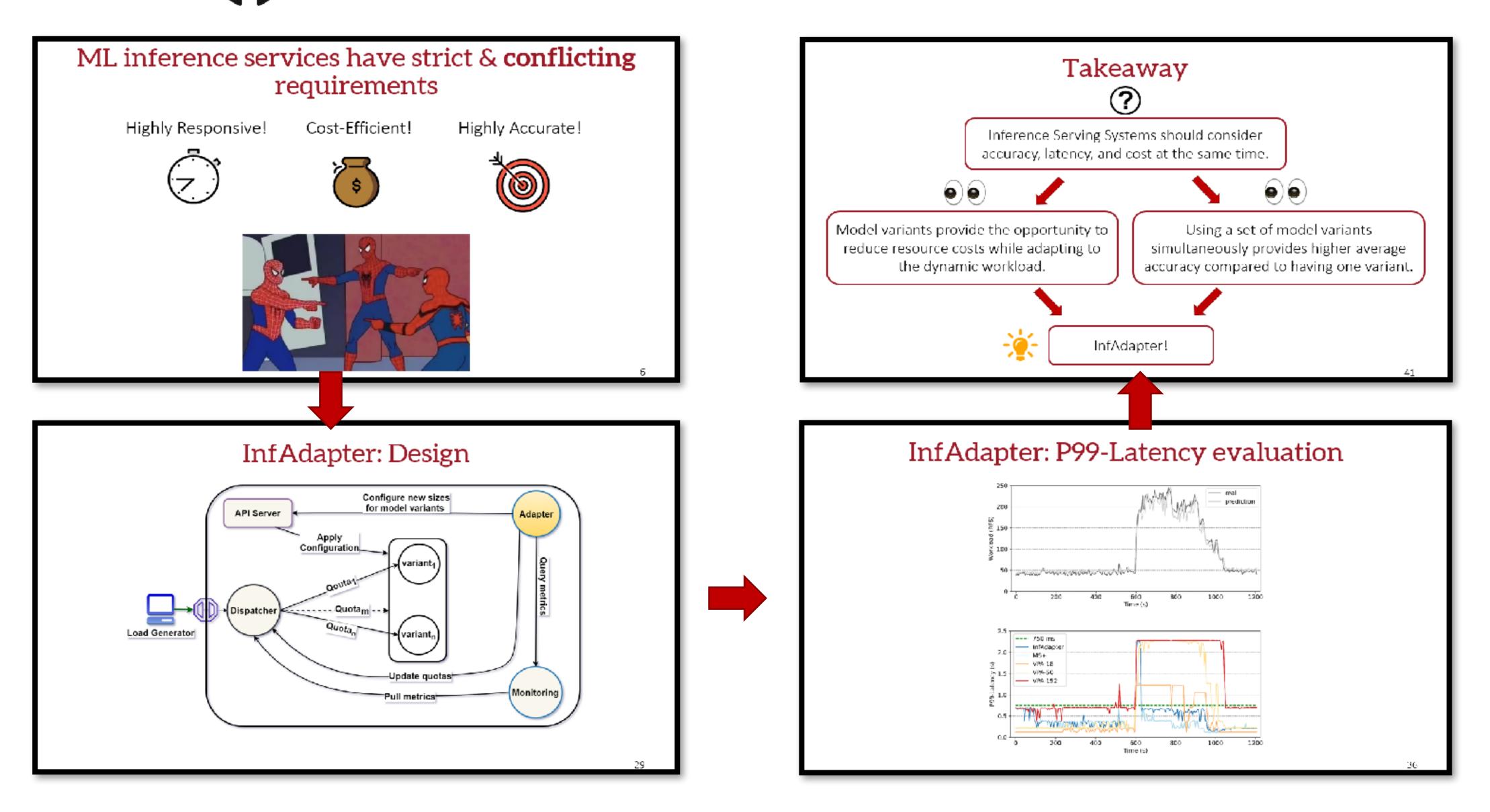
Using a set of model variants simultaneously provides higher average accuracy compared to having one variant.

InfAdapter!









Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi*

Iran University of Science and Technology*, Queen Mary University of London[§], Technical University of Darmstadt[†], University of South Carolina[‡]

Journal of Systems Research

Volume 4, Issue 1, April 2024

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH ACCURACY AND COST-EFFICIENCY

Saeid Ghafouri ©

Kamran Razavi 💿

University of South Carolina & Queen Mary University of London

Technical University of Darmstadt

Mehran Salmani
Technical University of Ilmenau

Alireza Sanaee ©

Queen Mary University of London

Tania Lorido Botran

Roblox

Lin Wang
Paderborn University

Joseph Doyle ©
Queen Mary University of London

Pooyan Jamshidi

University of South Carolina

IPA [2024]:
Autoscaling for

InfAdapter [2023]:

Autoscaling for

ML Model Inference

ML Inference Pipeline

EuroMLSys

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

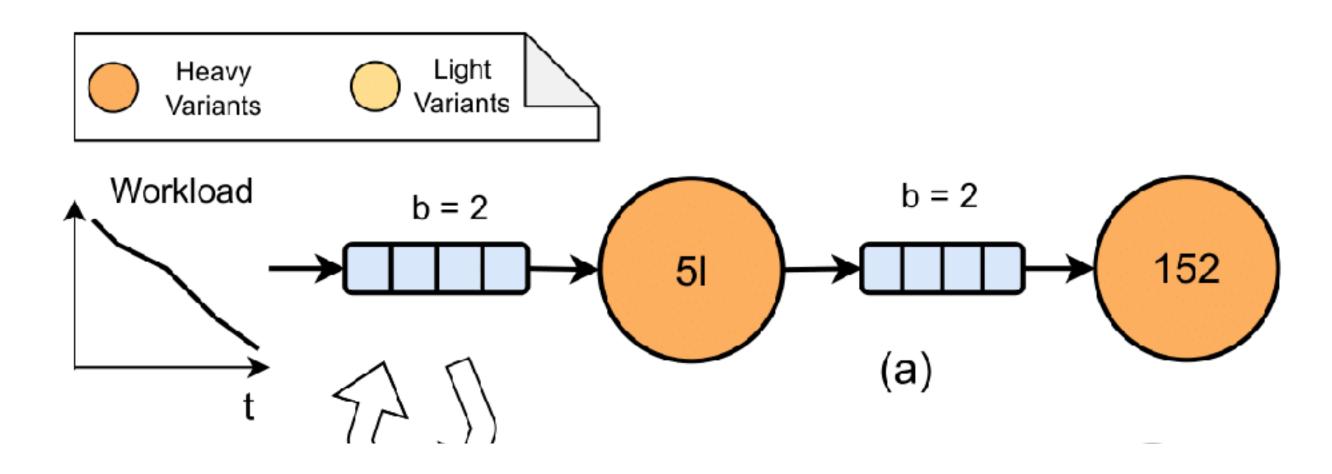
Kamran Razavi* Saeid Ghafouri* Max Mühlhäuser
Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

Pooyan Jamshidi University of South Carolina Lin Wang
Paderborn University

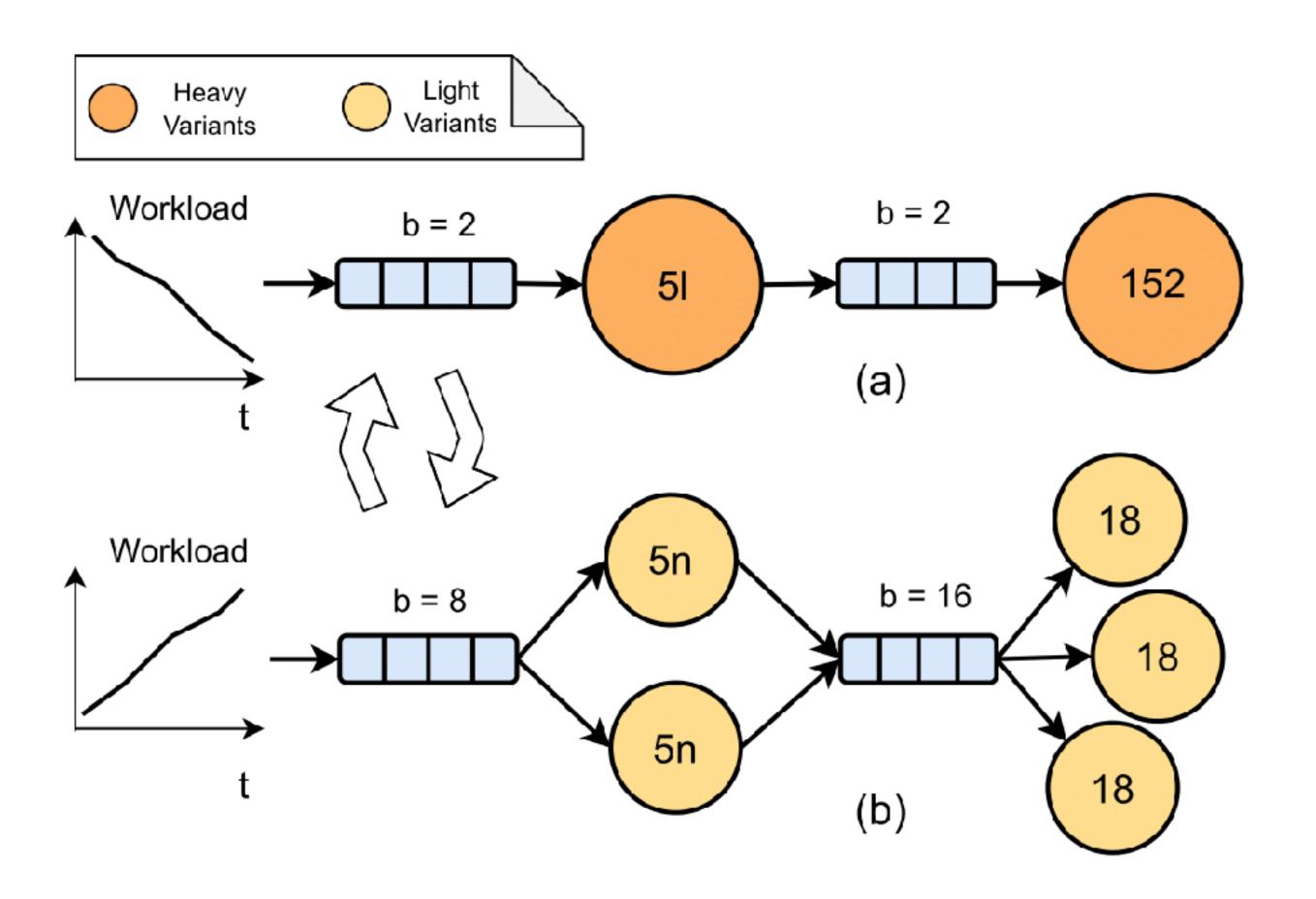
Sponge [2024]:

Autoscaling for ML Inference Pipeline with Dynamic SLO

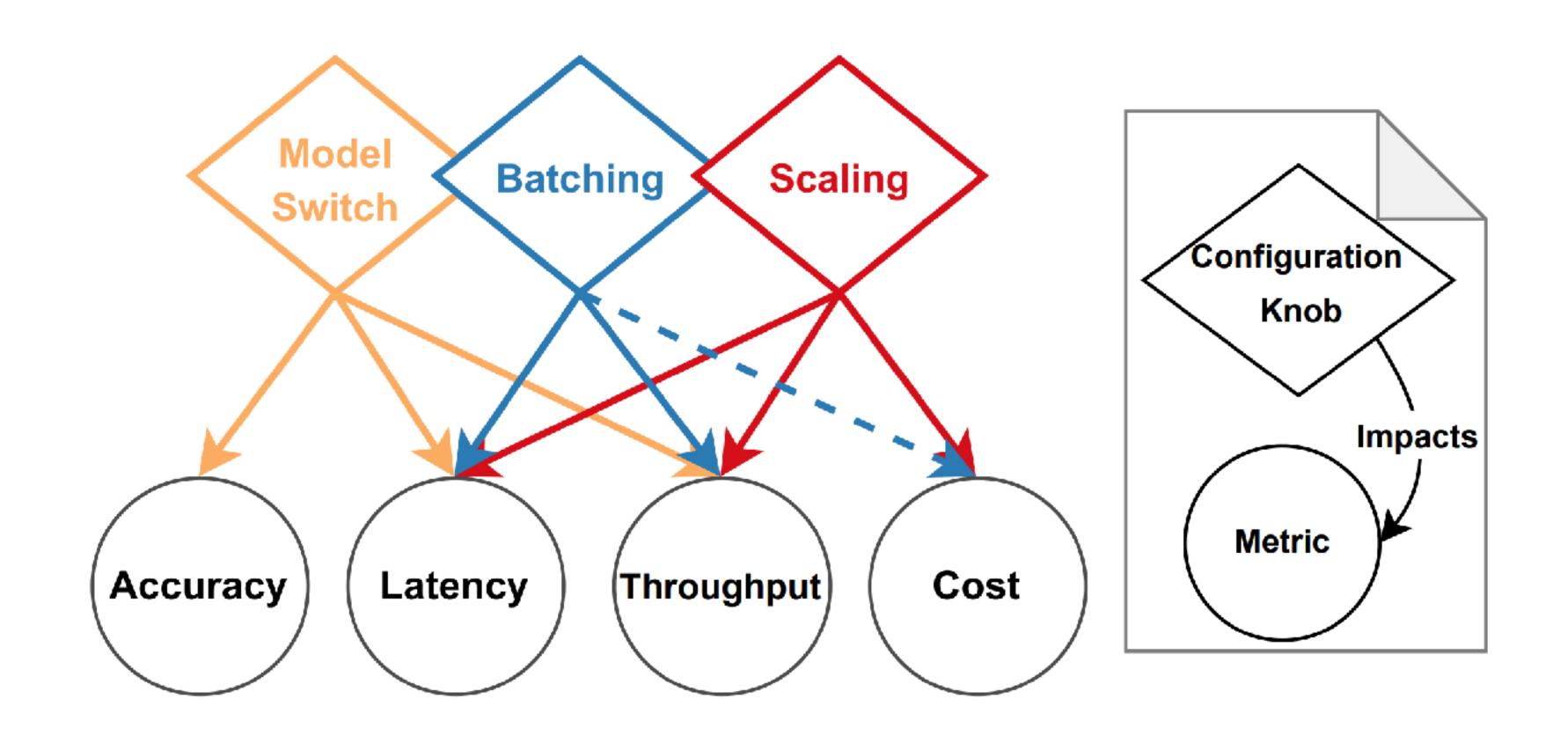
The Variabilities ML Pipelines



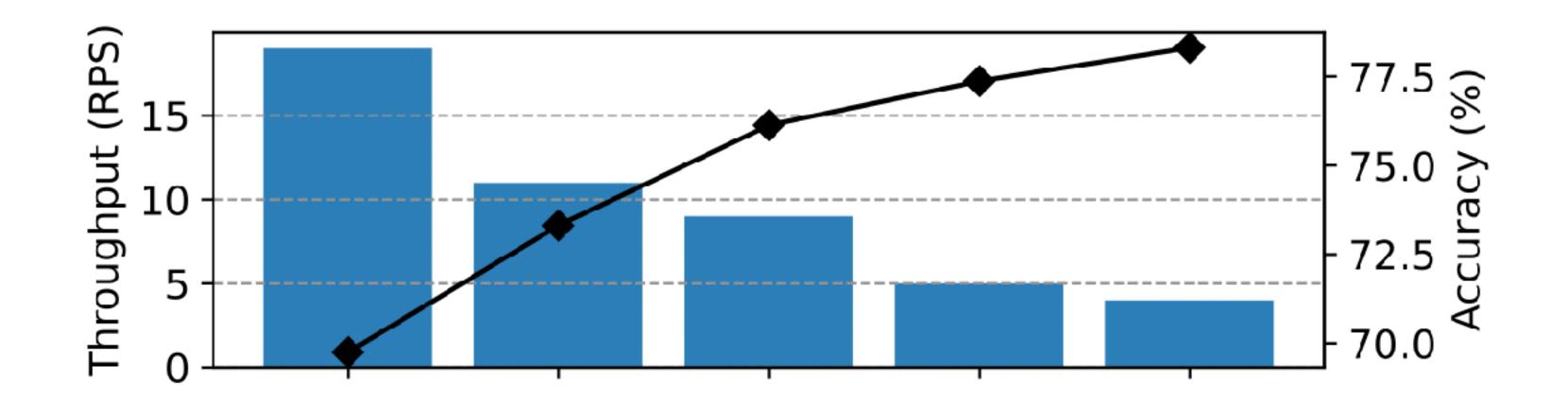
The Variability Space of Multi-Node ML Pipelines is Much Larger than a Single-Node Pipelines



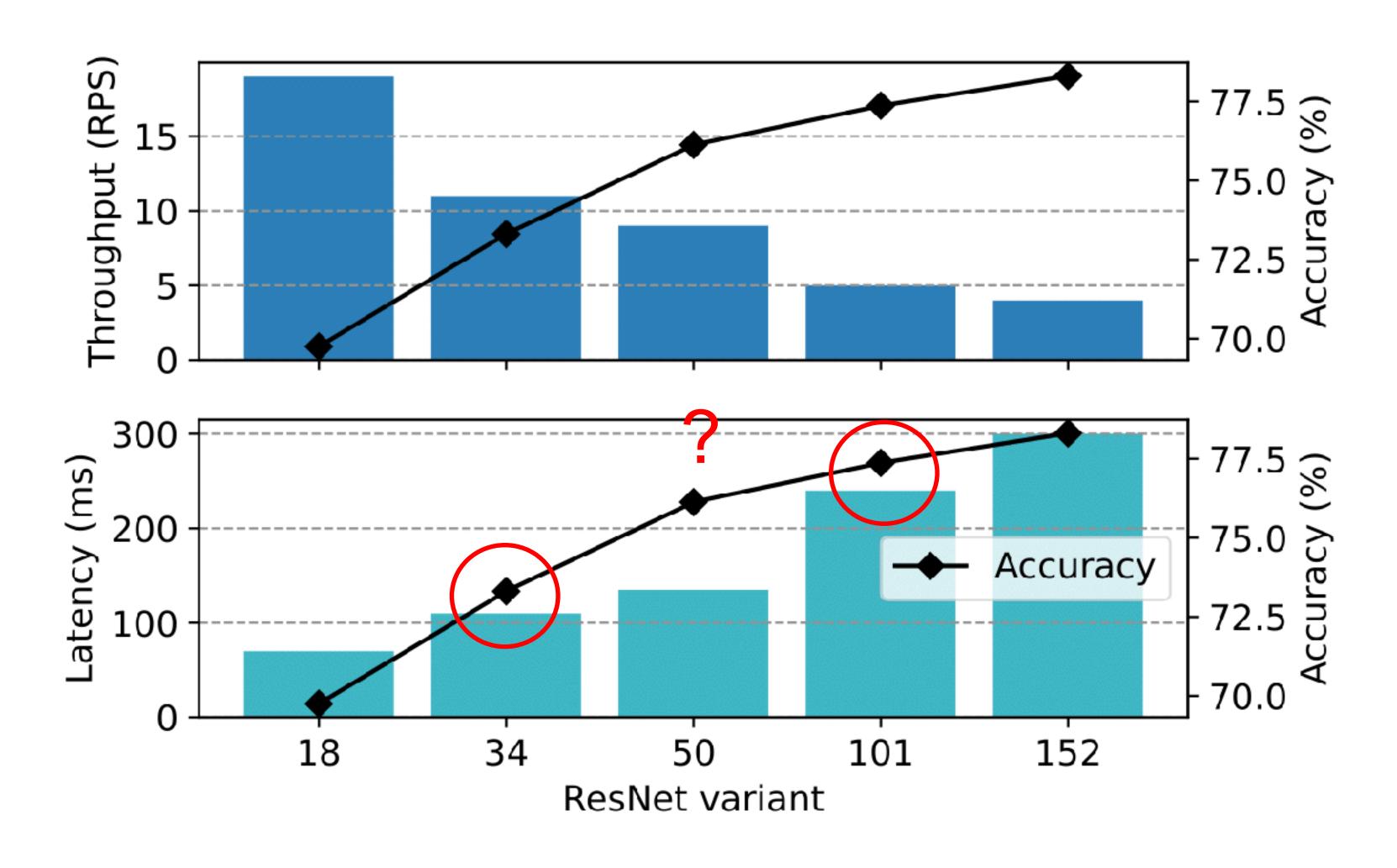
Search Space



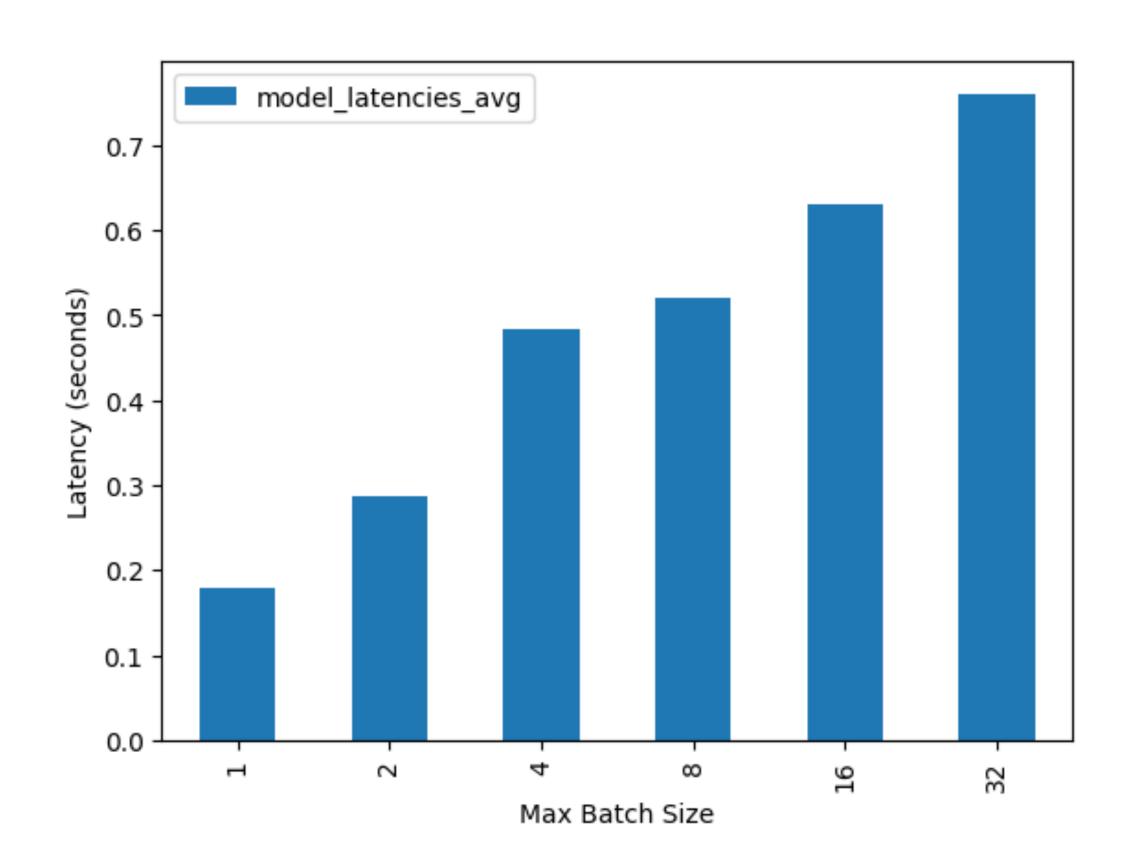
Is only scaling enough?

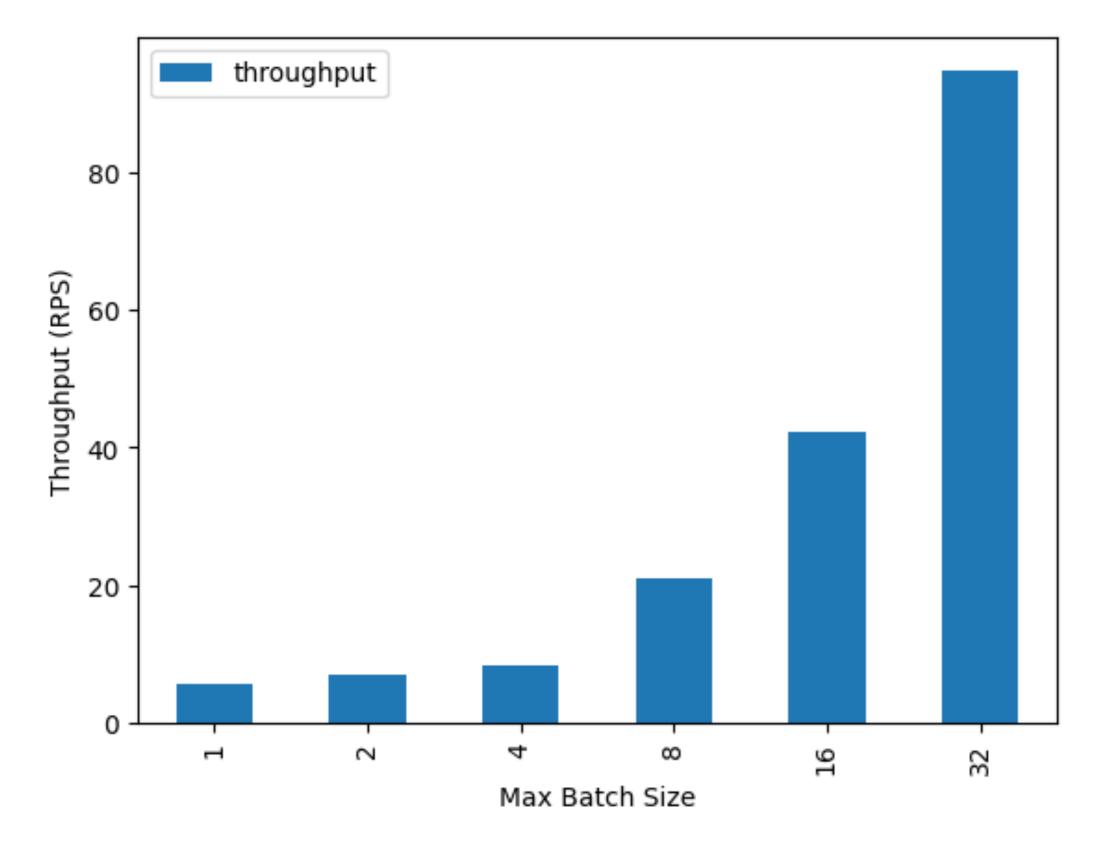


Is only scaling enough?

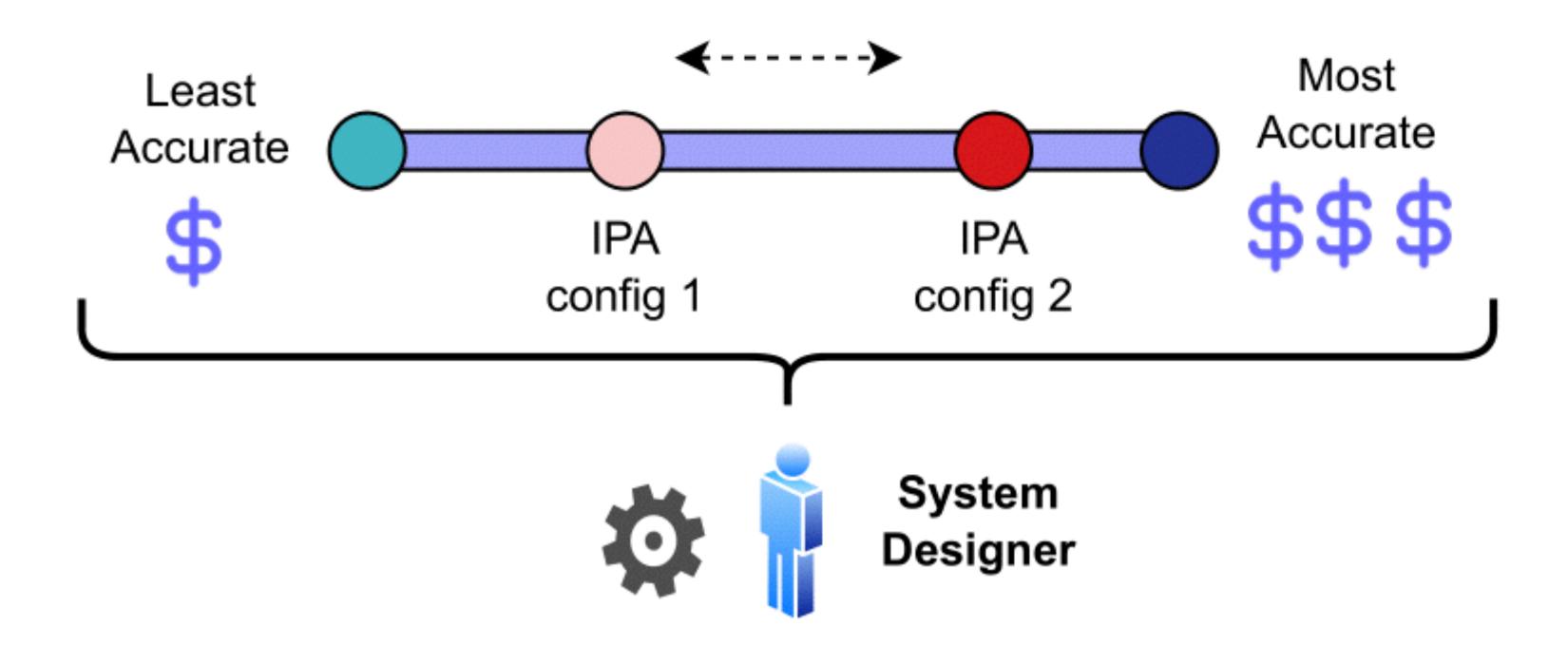


Effect of Batching



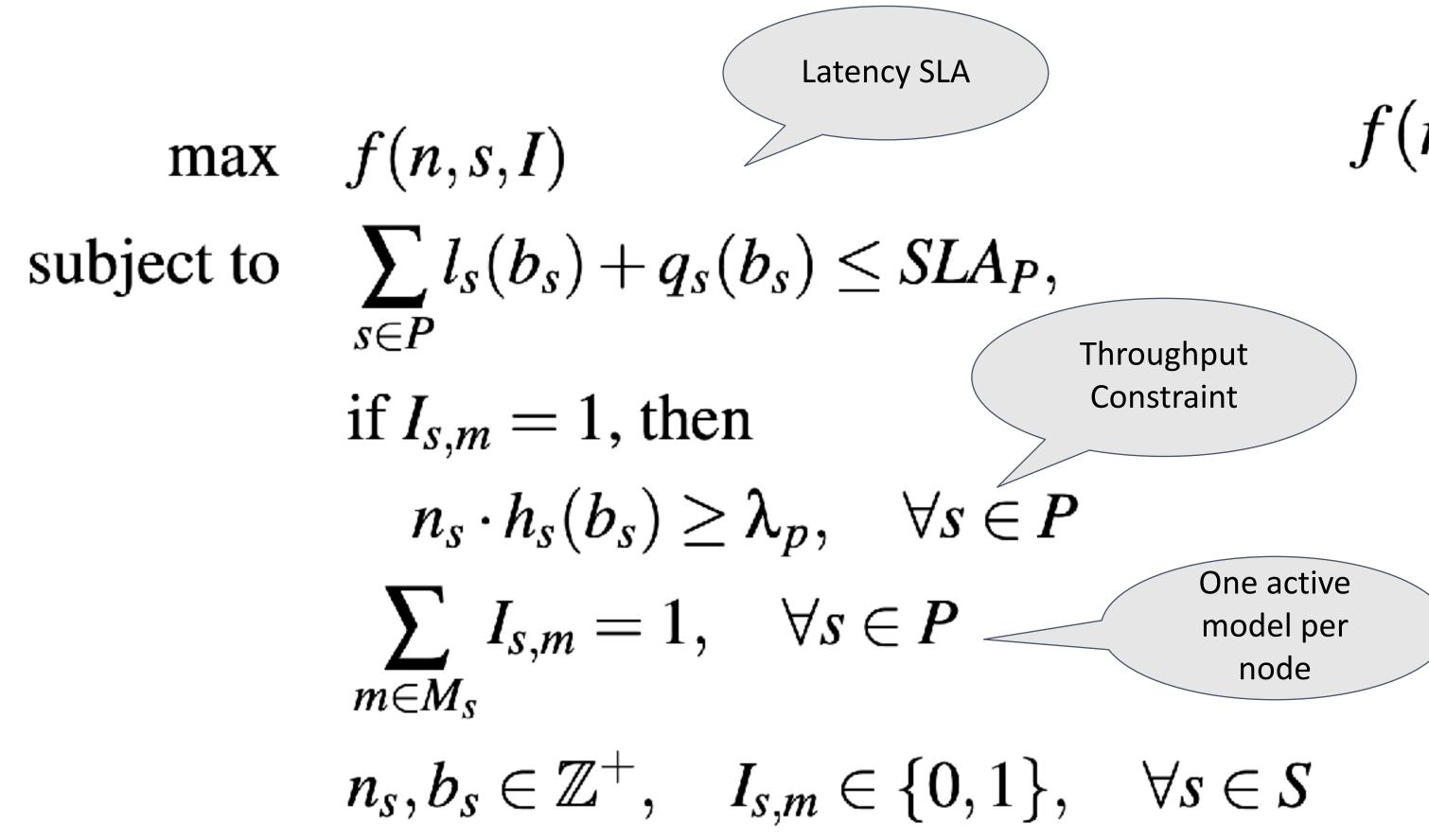


Goal: Providing a flexible inference pipeline



$$f(n,s,I) = lpha \sum_{s \in P} (\sum_{m \in M_S} a_{s,m}.I_{s,m}) \ -eta \sum_{s \in P} n_s.R_s$$
 Resource Objective $-\delta \sum_{s \in P} b_s$ Batch Control

Accuracy



$$f(n,s,I) = \alpha \sum_{s \in P} (\sum_{m \in M_s} a_{s,m}.I_{s,m})$$

$$-\beta \sum_{s \in P} n_s.R_s$$

$$-\delta \sum_{s \in P} b_s$$

Evaluations Saturage Doctor Doctor

Setup and Partial Results

For more comprehensive results, please refer to the IPA paper!

How to navigate Model Variants

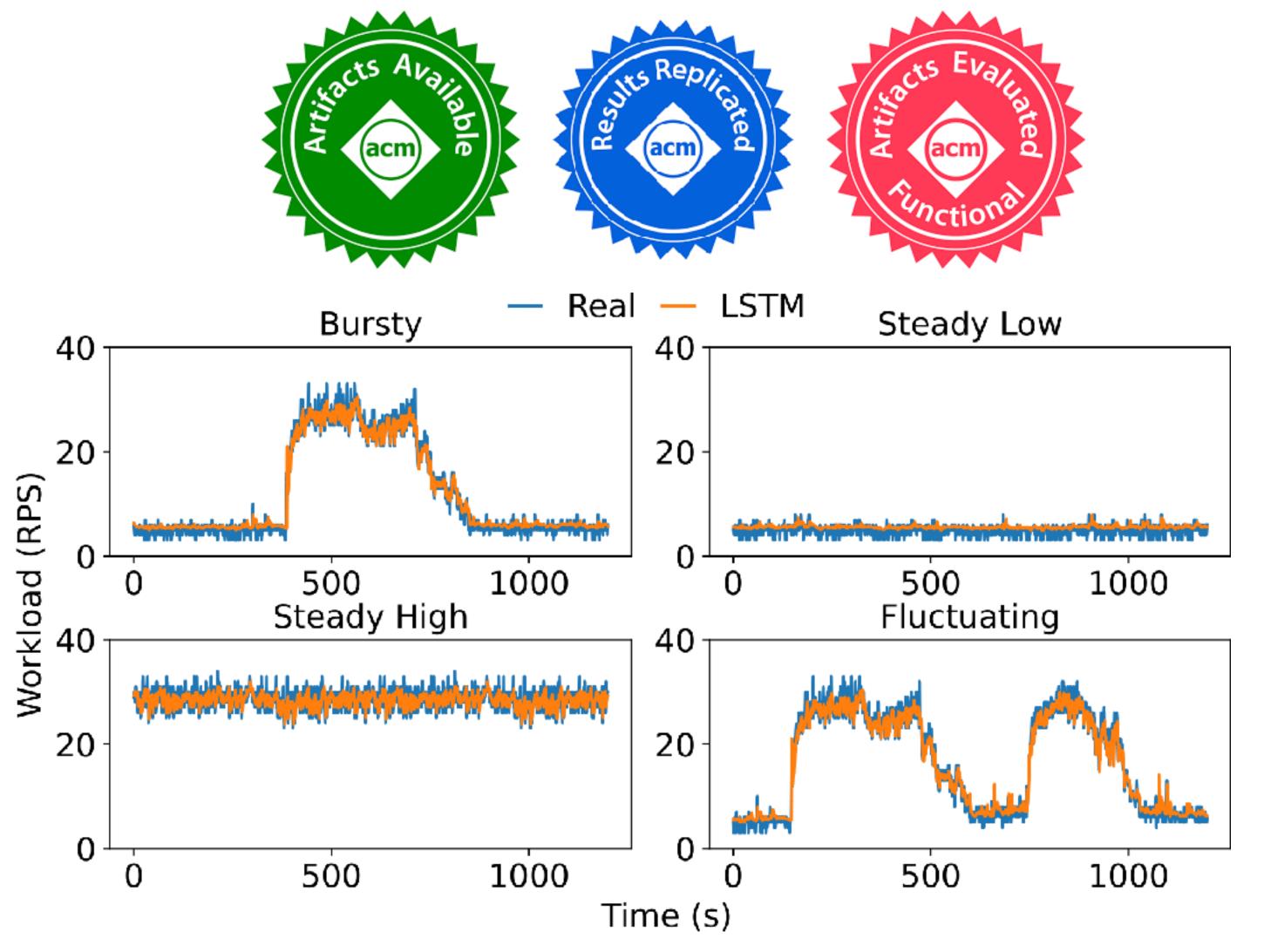
- 1. Industry standard
- 2. Used in recent research
- 3. Complete set of autoscaling, scheduling, observability tools (e.g. CPU usage)
- 4. APIs for changing the current AutoScaling algorithms

- 1. Industry standard ML server
- 2. Have the ability make inference graph
- 3. Rest and GRPC endpoints
- 4. Have many of the features we need like monitoring stack out of the box

Evaluation

kubernetes & CORE Object Object Classifier Detector NLP stages (a) Video Monitoring Video stages Question Audio to Text **Answering** (b) Audio Question Answering Sentiment Audio to Text **Analysis** (c) Audio Sentiment Analysis Question Text Summariser Answering (d) Summarisation Question Answering Neural Language Text Machine Identification Summariser Translation (e) Natural Language Processing

(https://github.com/reconfigurable-ml-pipeline/ipa



We compared IPA with RIM and FA2

Rim: Offloading Inference to the Edge

Yitao Hu University of Southern California yitaoh@usc.edu

Rajrup Ghosh University of Southern California rajrupgh@usc.edu Weiwu Pang
University of Southern California
weiwupan@usc.edu

Bongjun Ko IBM Research bongjun_ko@us.ibm.com

Ramesh Govindan
University of Southern California
ramesh@usc.edu

Xiaochen Liu University of Southern California liu851@usc.edu

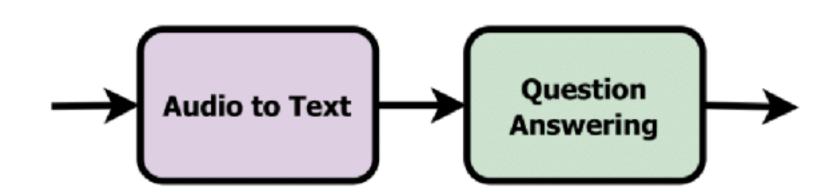
> Wei-Han Lee IBM Research wei-han.lee1@ibm.com

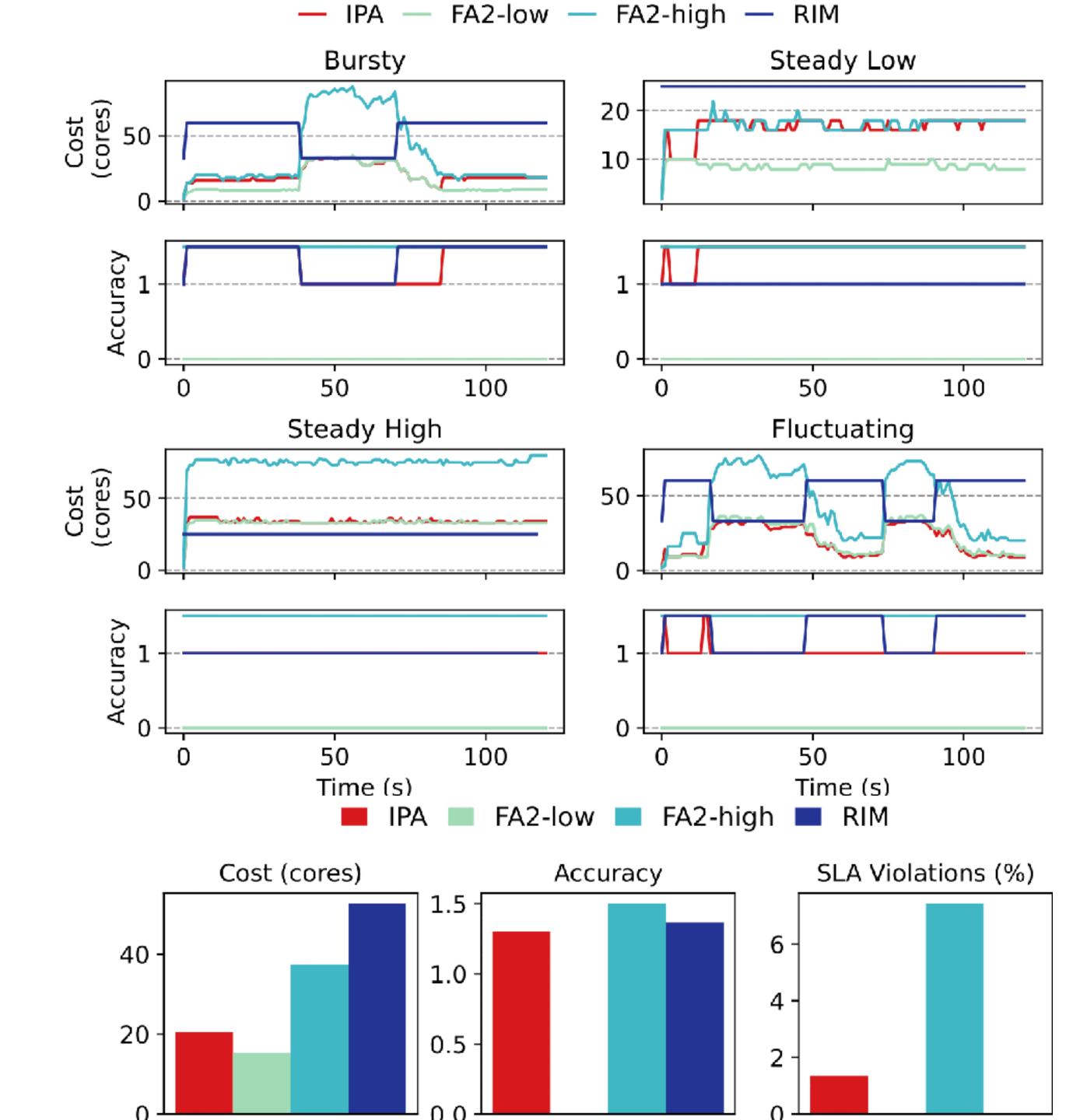
FA2: Fast, Accurate Autoscaling for Serving Deep Learning Inference with SLA Guarantees

Kamran Razavi[†], Manisha Luthra[†], Boris Koldehofe^{†,‡}, Max Mühlhäuser[†], Lin Wang^{†,§}

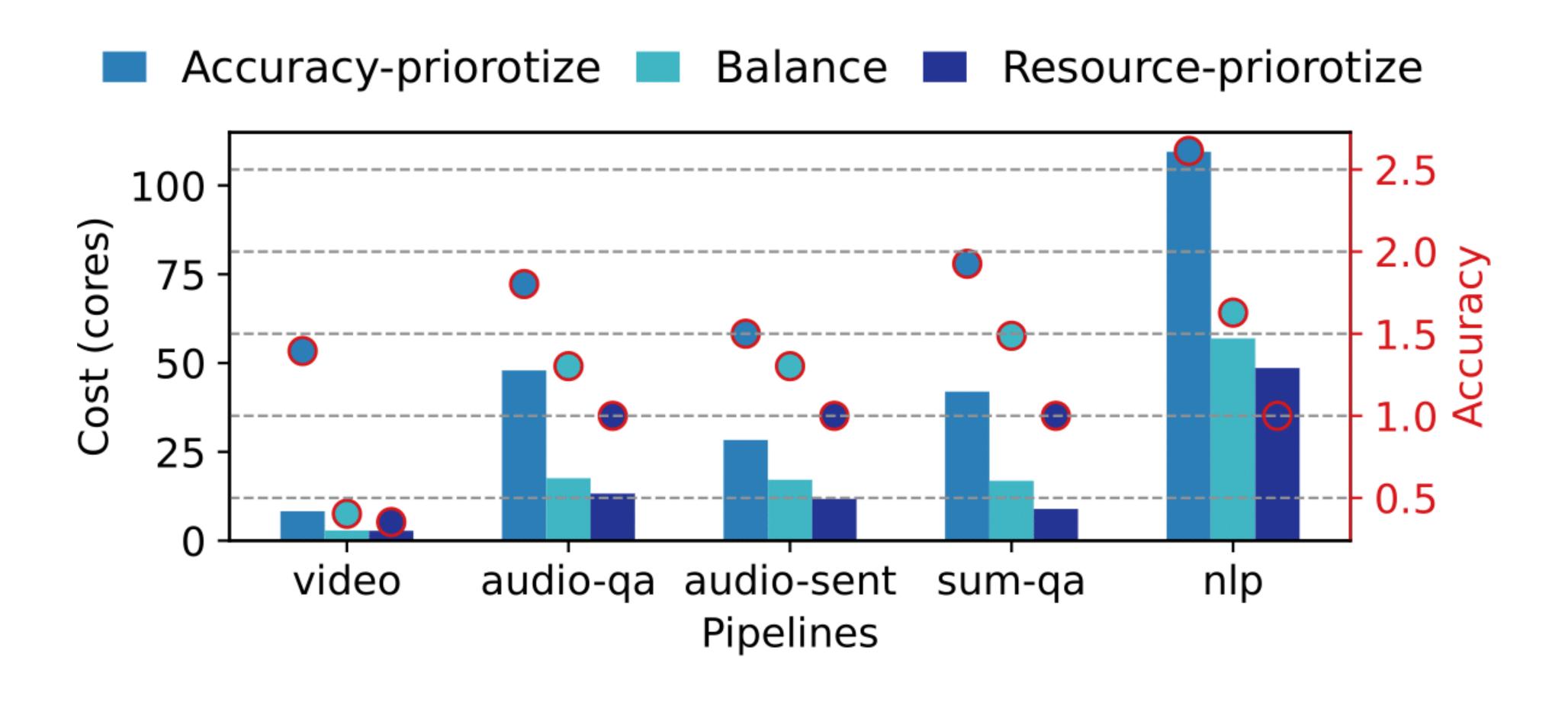
†Technische Universität Darmstadt [‡]University of Groningen [§]Vrije Universiteit Amsterdam

Audio + QA Pipeline

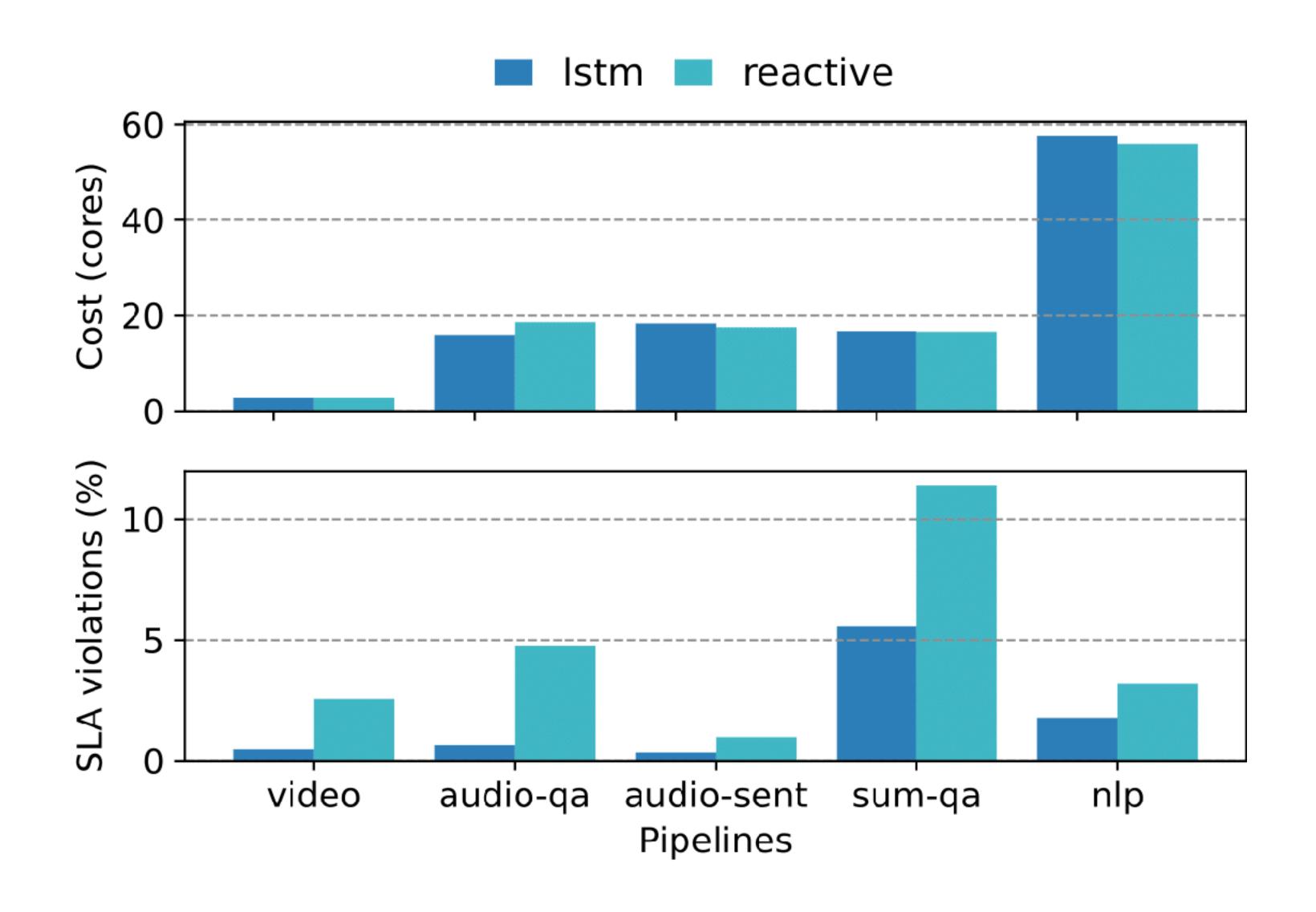




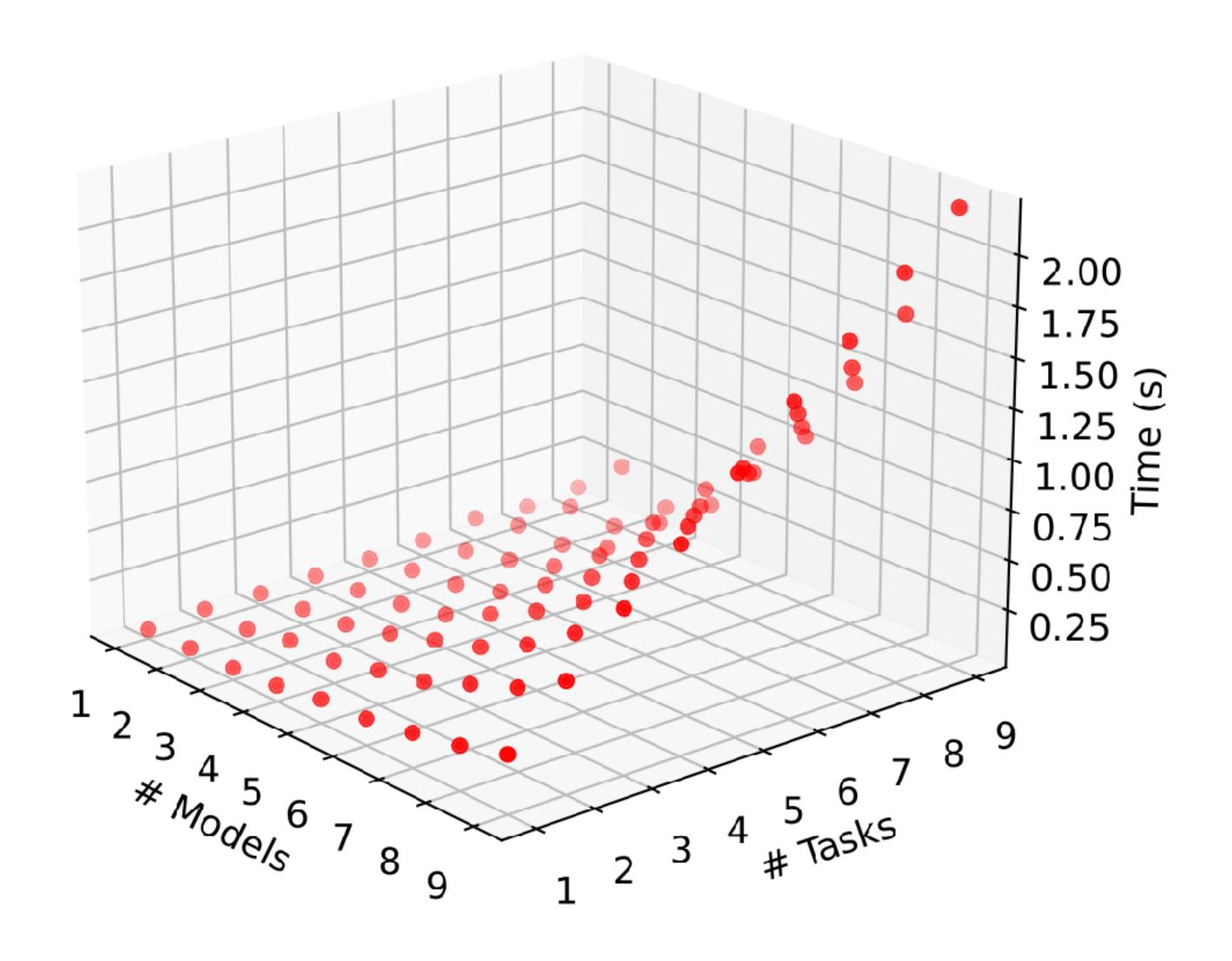
Adaptivity to multiple objectives



Effect of predictor



Gurobi solver scalability



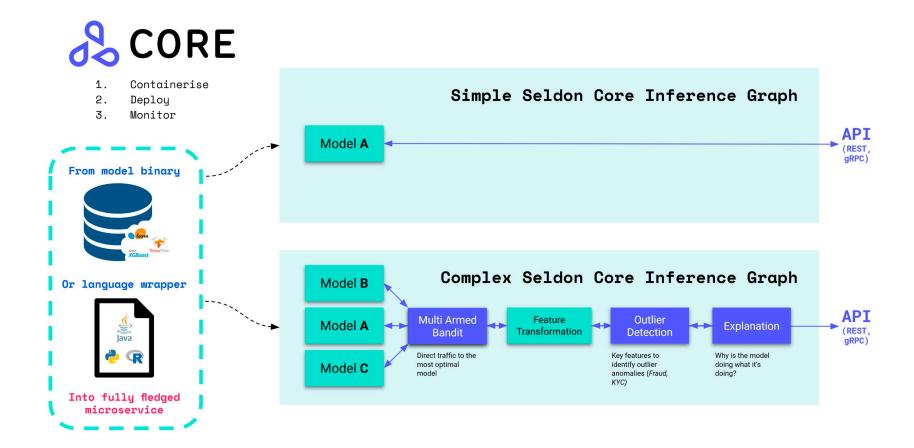
Full replication package is available

https://github.com/reconfigurable-ml-pipeline

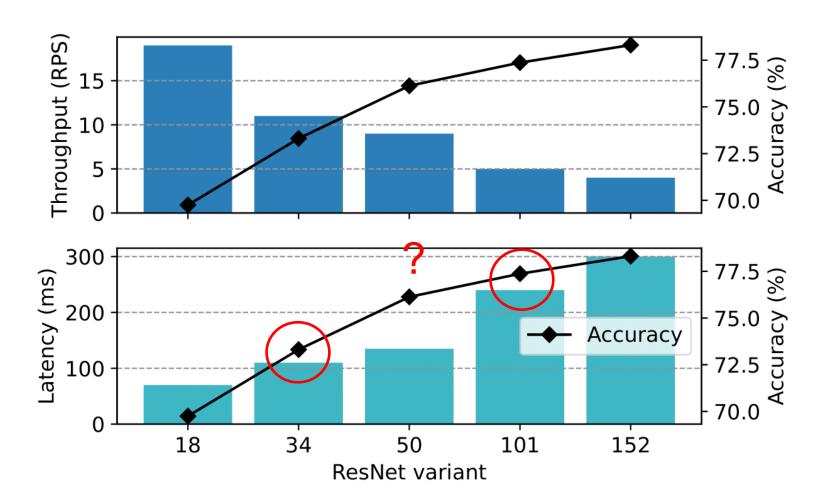


Model Serving

Pipeline



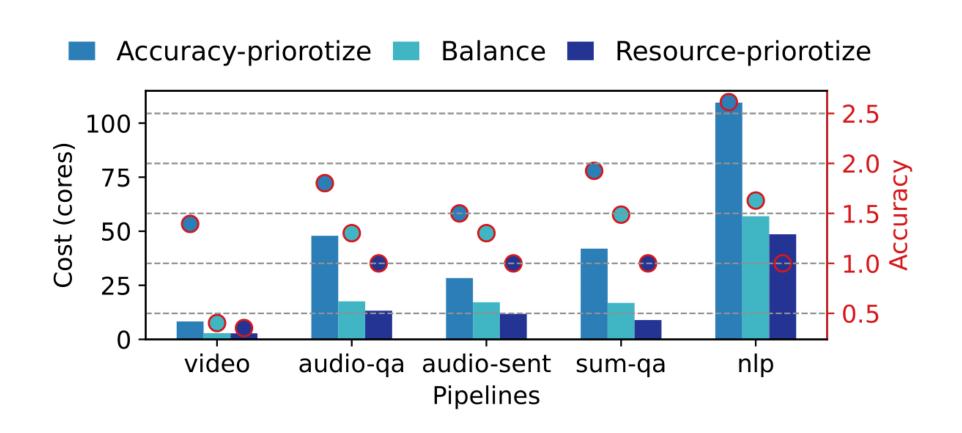
Is only scaling enough?



Snapshot of the System



Adaptivity to multiple objectives



Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani*, Saeid Ghafouri^{§‡}, Alireza Sanaee[§], Kamran Razavi[†], Max Mühlhäuser[†], Joseph Doyle[§], Pooyan Jamshidi[‡], Mohsen Sharifi^{*}

Iran University of Science and Technology*, Queen Mary University of London§, Technical University of Darmstadt[†], University of South Carolina[‡]

InfAdapter [2023]: Autoscaling for ML Model Inference

Volume 4, Issue 1, April 2024

[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH ACCURACY AND COST-EFFICIENCY

University of South Carolina & Queen Mary University of London

Mehran Salmani

Alireza Sanaee 0 Queen Mary University of London

Tania Lorido Botran

Lin Wang

IPA [2024]:

Autoscaling for ML Inference Pipeline

Sponge: Inference Serving with Dynamic SLOs Using In-Place **Vertical Scaling**

Kamran Razavi* Technical University of Darmstadt Queen Mary University of London

Saeid Ghafouri*

Max Mühlhäuser Technical University of Darmstadt

Pooyan Jamshidi University of South Carolina

Lin Wang Paderborn University

Sponge [2024]:

Autoscaling for ML Inference Pipeline with **Dynamic SLO**

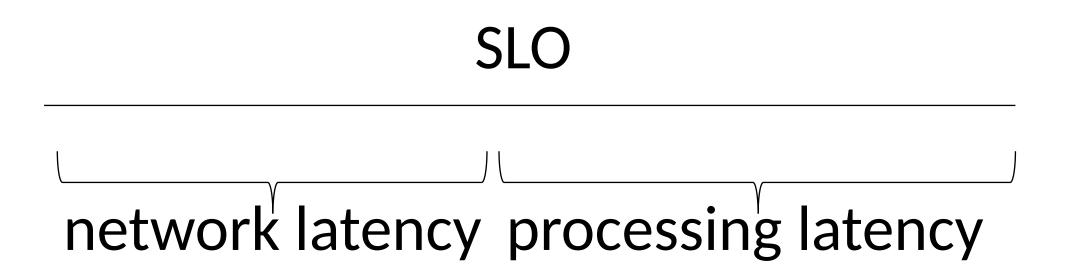
Dynamic User -> Dynamic Network Bandwidths

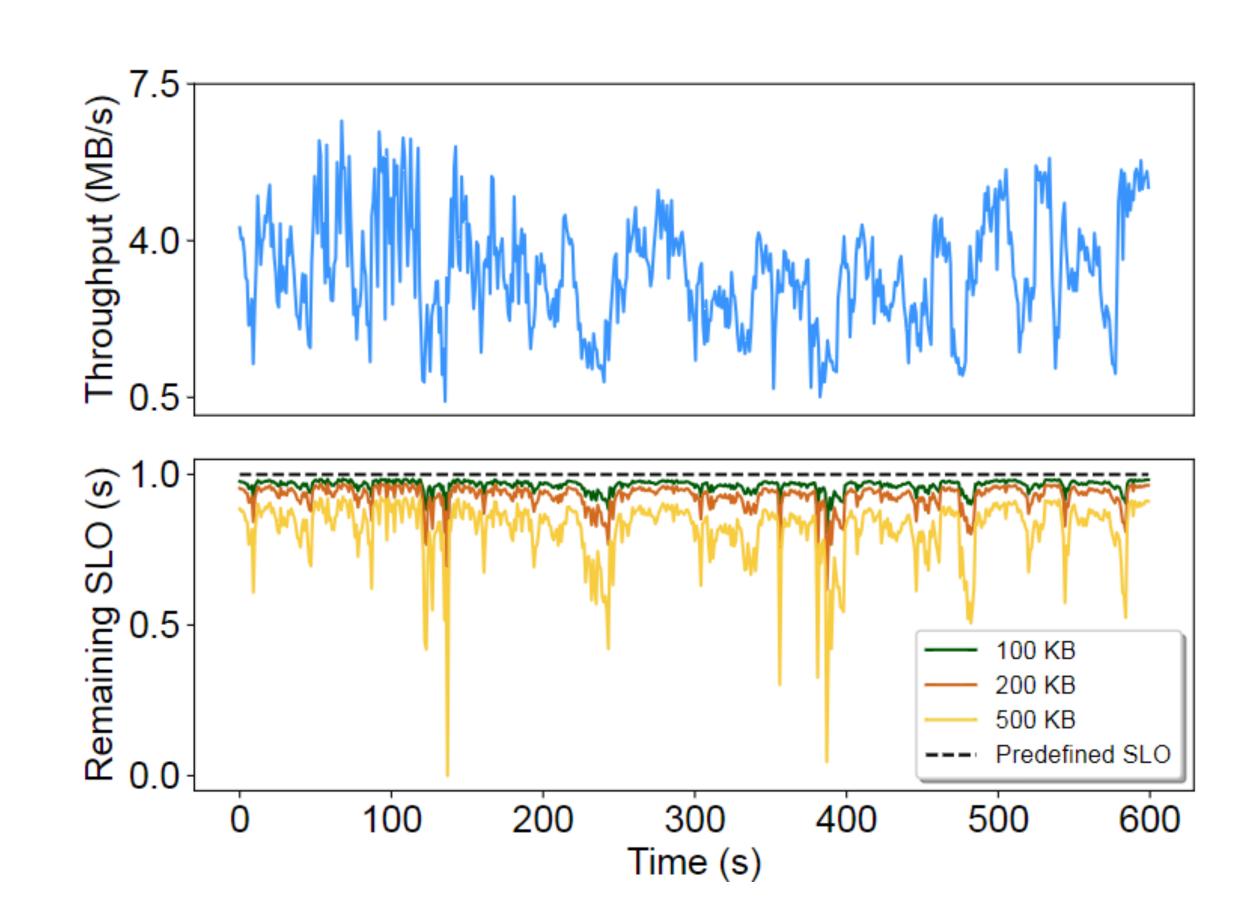
- **Users** move
 - L Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

SLO
network latency processing latency

Dynamic User -> Dynamic Network Bandwidths

- Users move
 - Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests



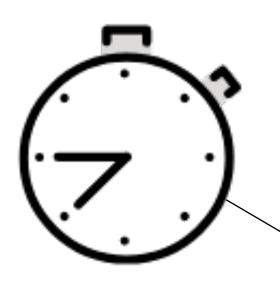


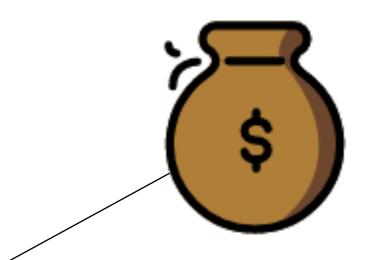
Inference Serving Requirements

(end-to-end latency guarantee)

Cost-Efficient!

(least resource consumption)





Resource Scaling

oe.

In-place Vertical Scaling

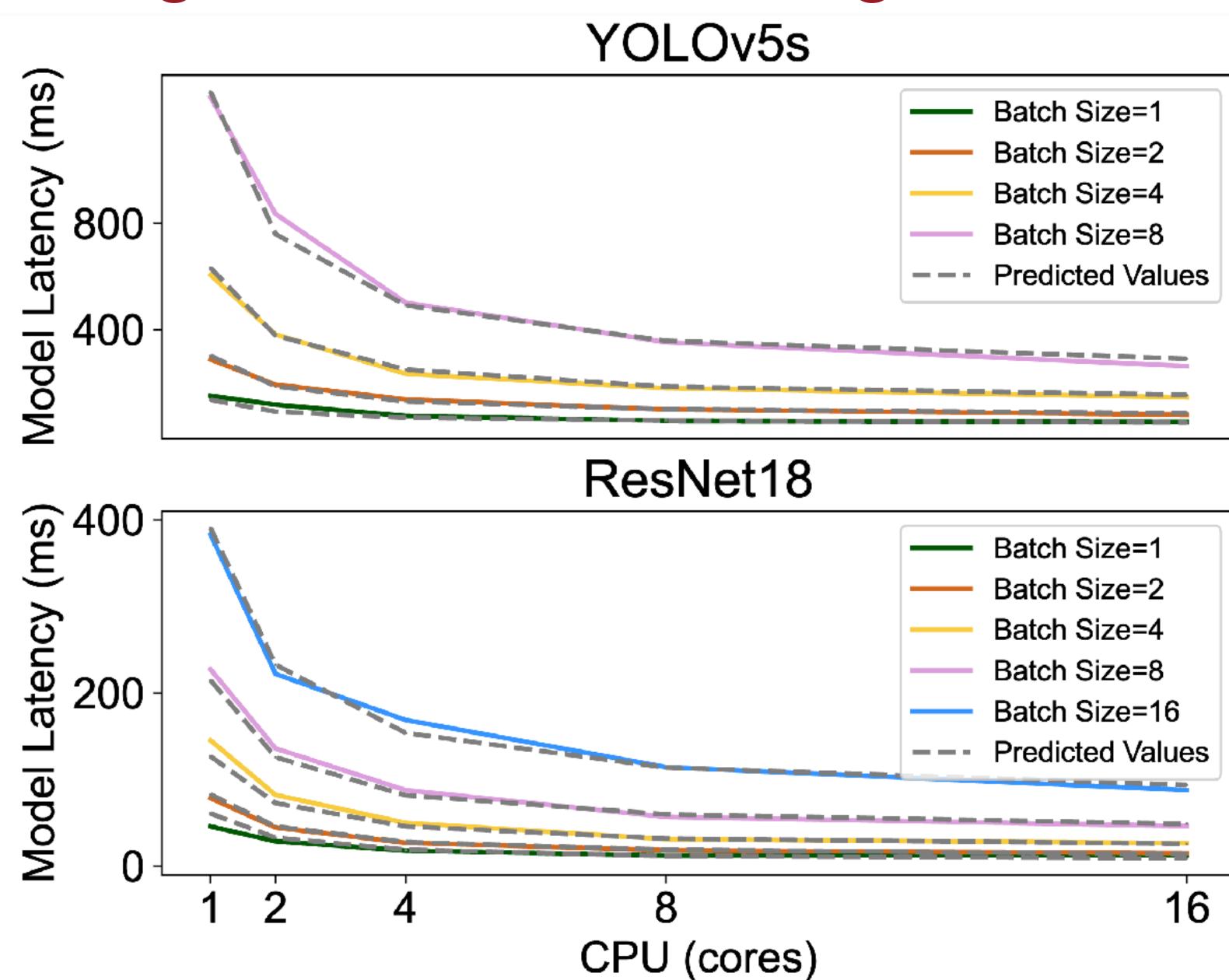
(more responsive)

Horizontal Scaling

(more cost efficient)

Vertical Scaling DL Model Profiling

- How much resource should be allocated to a DL model?
 - Latency/batch size →
 linear relationship
 - Latency/CPU allocation → inverse relationship



```
Minimize c + \delta \times b
subject to l(b,c) + q_r(b,c) + \operatorname{cl}_{max} \leq SLO, \forall r \in R
                   h(b,c) \geq \lambda
                   b, c \in \mathbb{Z}^+
```

Minimize $c + \delta \times b$ subject to $l(b,c) + q_r(b,c) + \operatorname{cl}_{max} \leq SLO, \quad \forall r \in R$ $h(b,c) \geq \lambda$ $b,c \in \mathbb{Z}^+$

$$c+\delta imes b$$
 Limit the batch size to grow infinitely!

Minimize resource costs

subject to
$$l(b,c) + q_r(b,c) + cl_{max} \leq SLO$$
, $\forall r \in R$

$$h(b,c) \geq \lambda$$

$$b, c \in \mathbb{Z}^+$$

Minimize resource costs

$$c + \delta \times b$$

 $c+\delta \times b$ Limit the batch size to grow infinitely!

subject to
$$l(b,c) + q_r(b,c) + \operatorname{cl}_{max} \leq SLO$$
, $\forall r \in R$

$$h(b,c) \ge \lambda$$

 $b,c \in \mathbb{Z}^+$

$$b, c \in \mathbb{Z}^+$$

Set of all requests

Model's batch size

Model's CPU allocation

Communication latency associated with $r \in R$ cl_r

 cl_{max} Highest cl_r in R

Pre-defined SLO for *R* SLO

l(b,c)Processing time of a model with allocation core *c* and

batch size *b*

Queuing time of $r \in R$ with allocation core c and $q_r(b,c)$

batch size b

h(b,c)Throughput of a model with allocation core c and

batch size *b*

λ Request arrival rate

System Design

3 design choices:

1. In-place vertical scaling

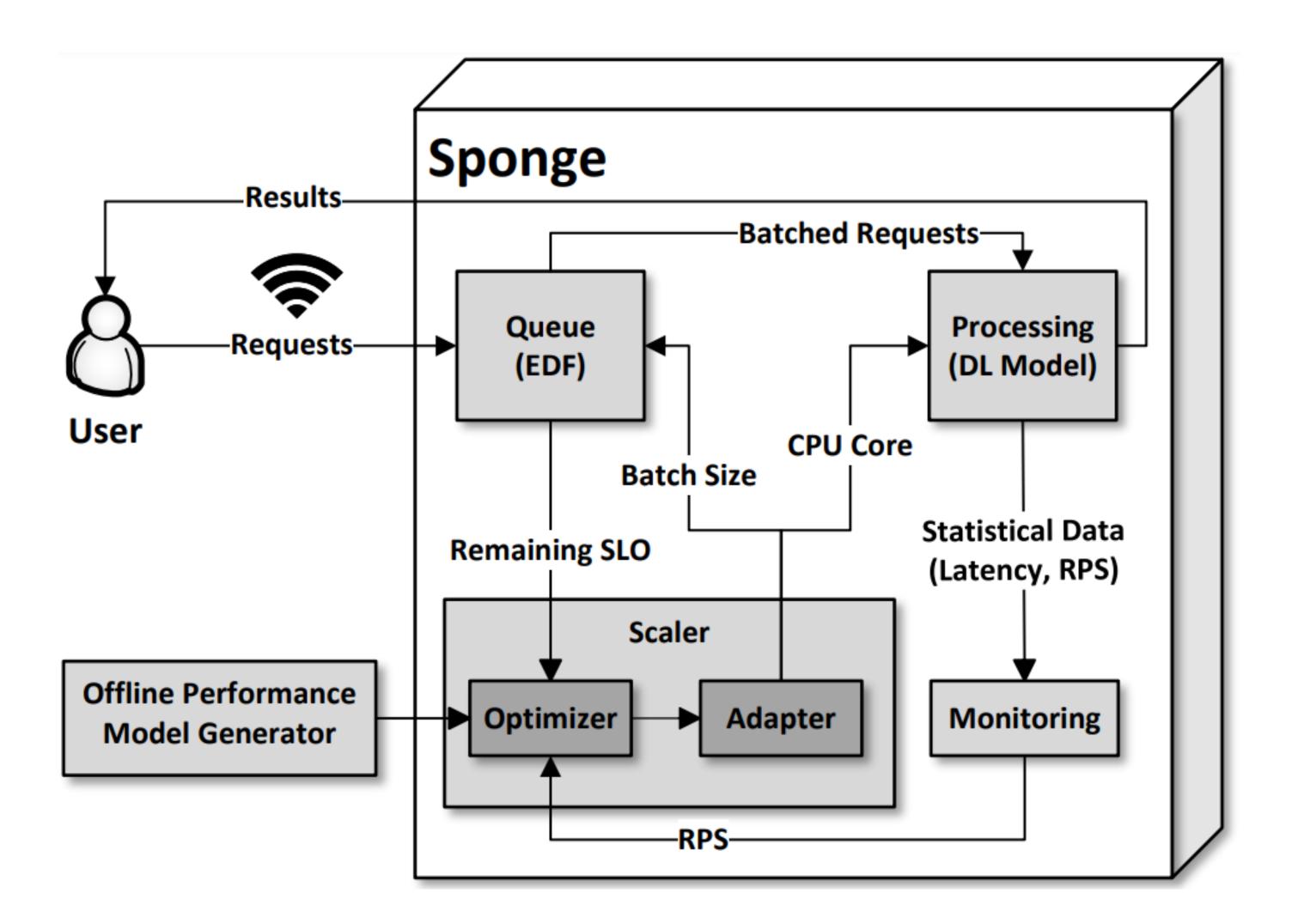
Fast response time

2. Request reordering

High priority requests

3. Dynamic batching

Increase system utilization

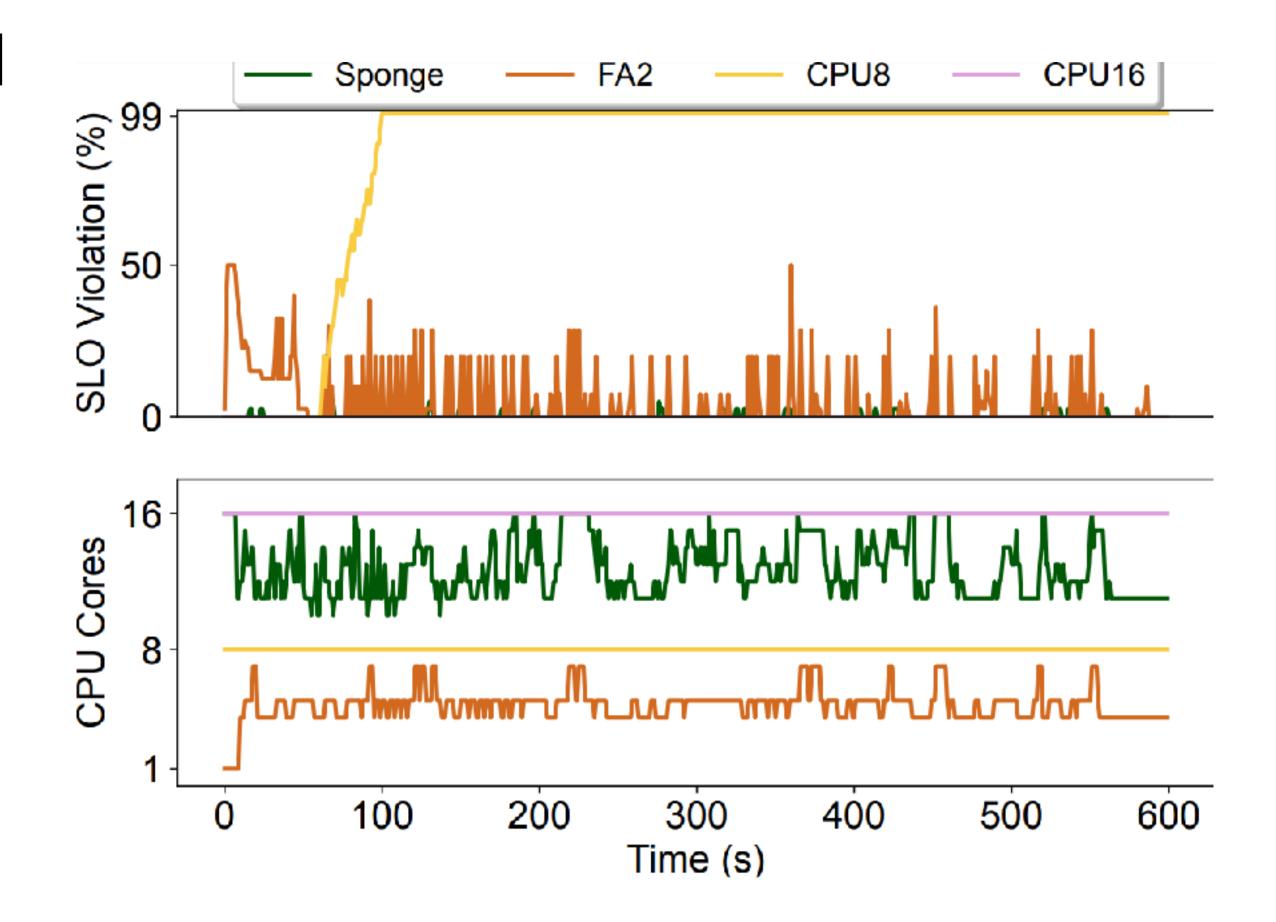


Evaluation

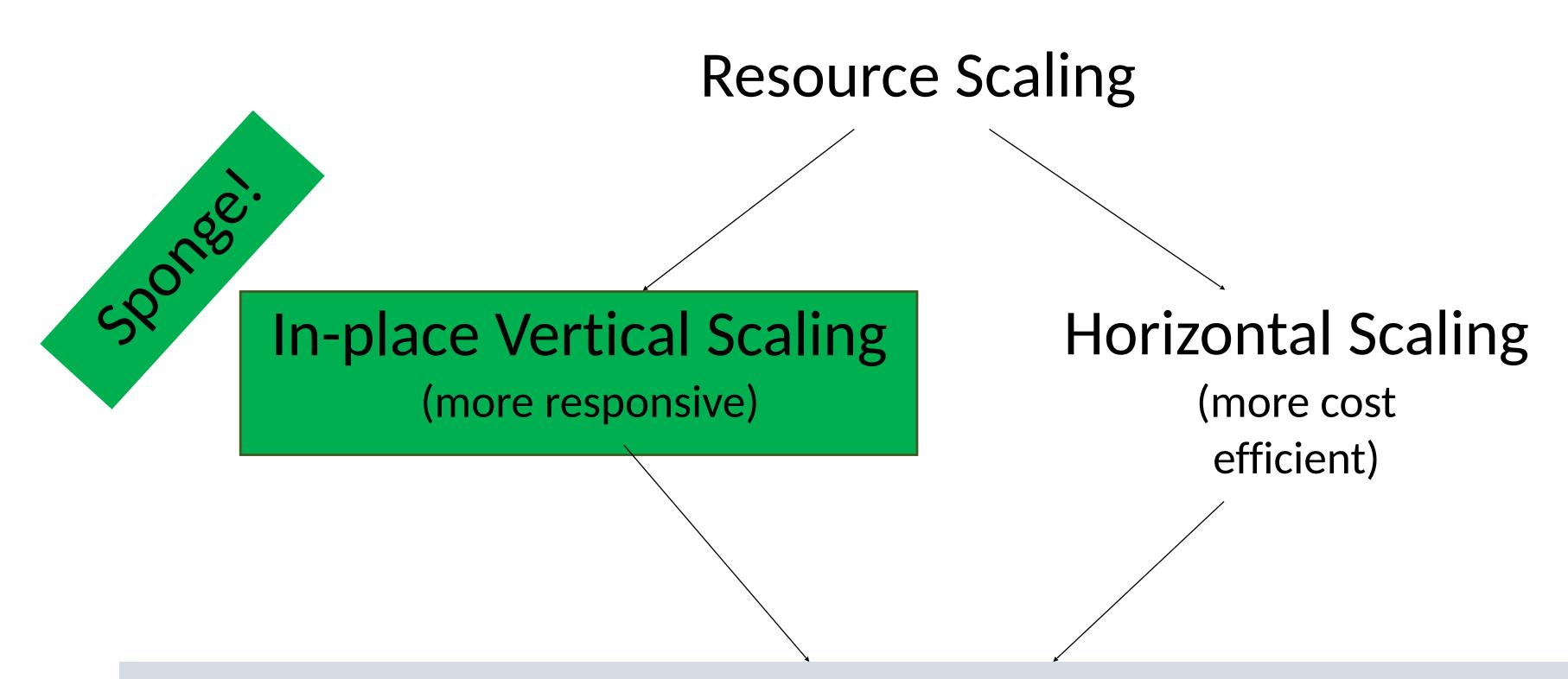
SLO guarantees (99th percentile) with up to 20% resource save up compared to static resource allocation.

Sponge source code: (7)

https://github.com/saeid93/sponge

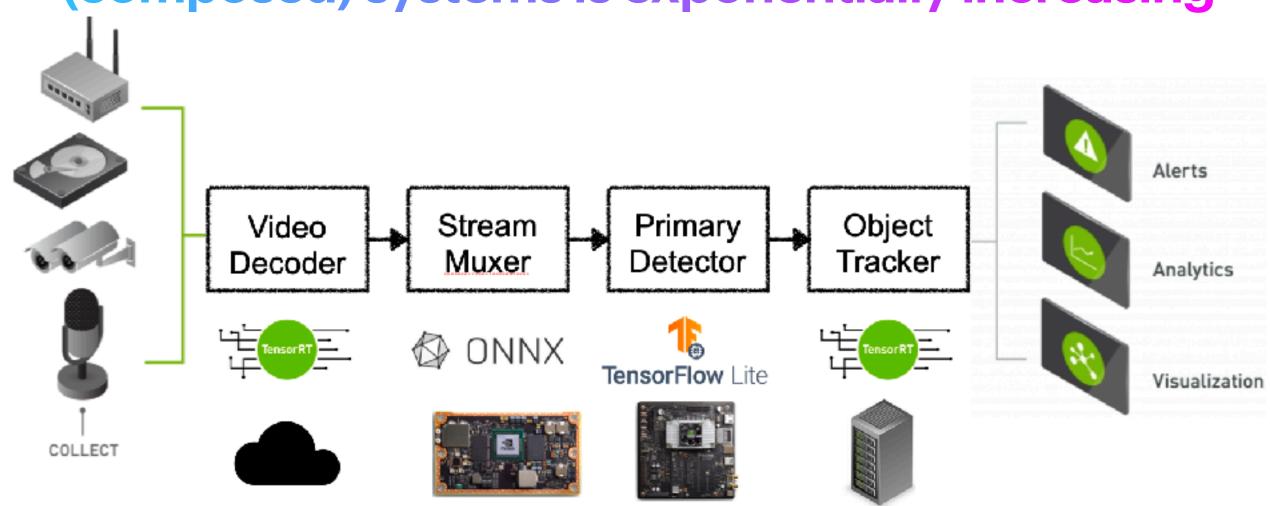


Future Directions

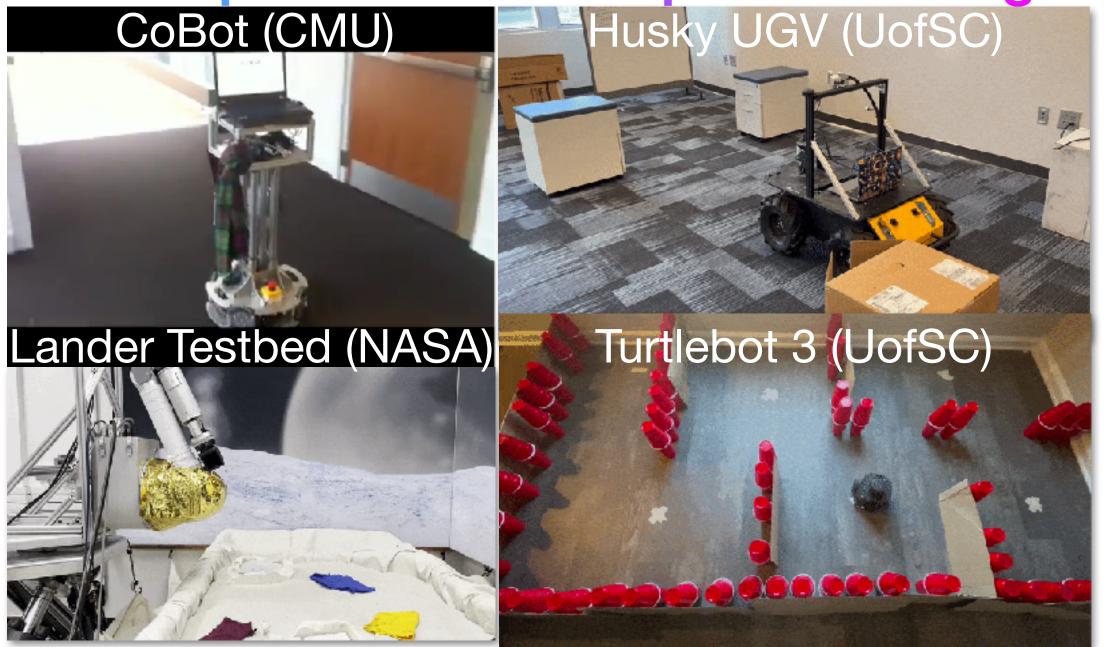


How can both scaling mechanisms be used jointly under a dynamic workload to be responsive and cost efficient while guaranteeing SLOs?

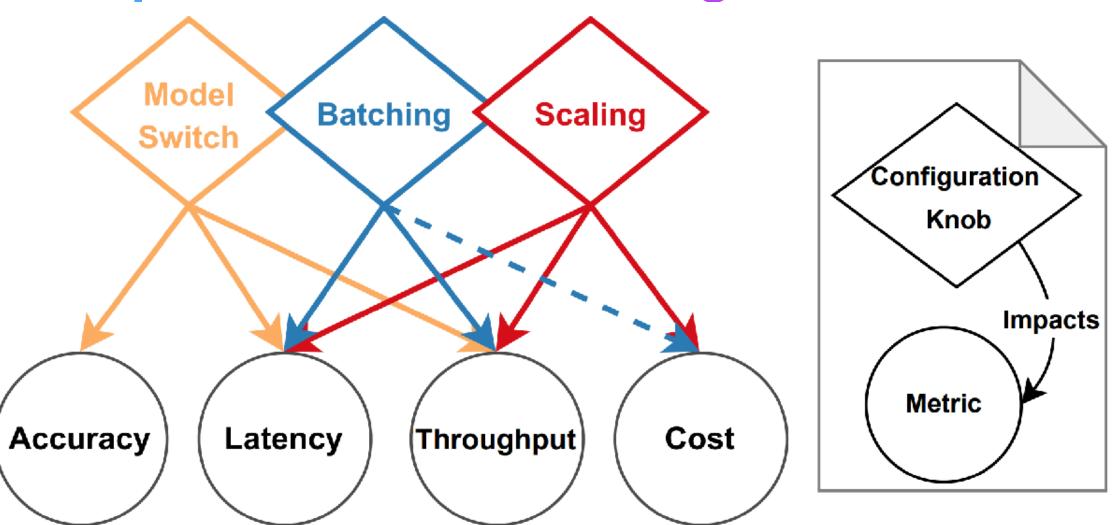
The variability space (design space) of (composed) systems is exponentially increasing



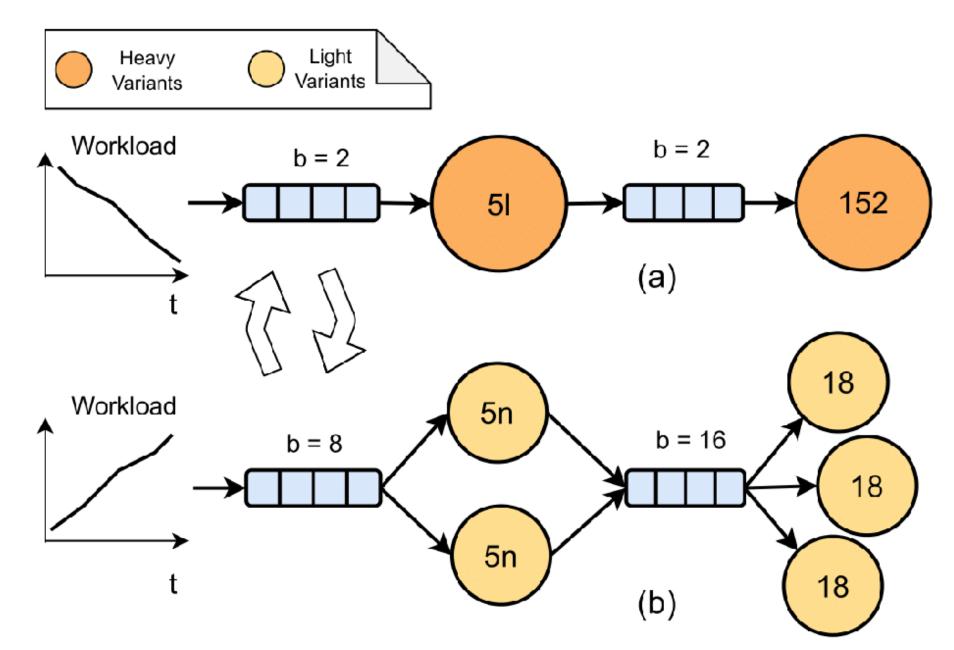
Systems operate in uncertain environments with imperfect and incomplete knowledge



Performance goals are competing and users have preferences over these goals

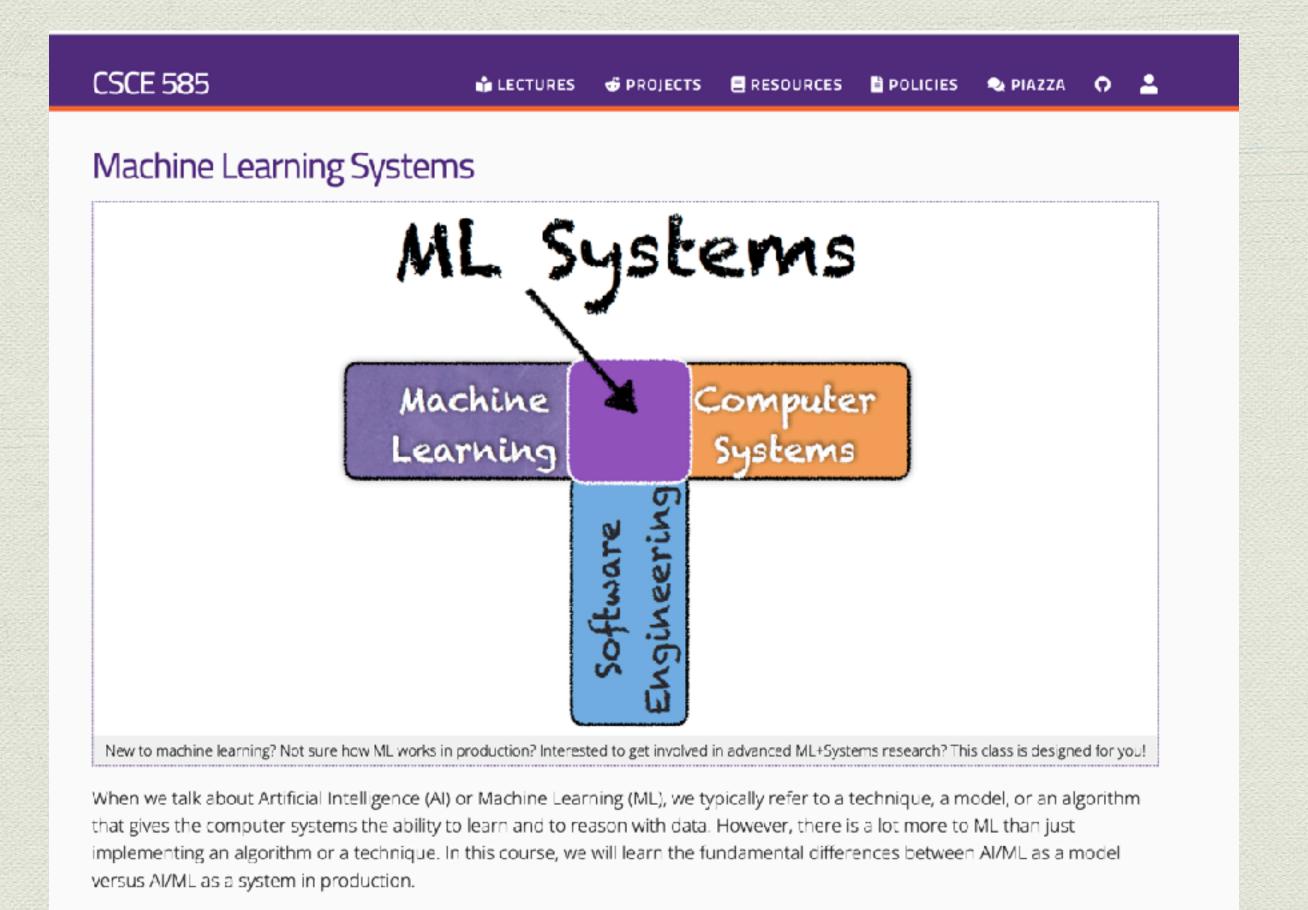


Goal: Enabling users to find the right quality tradeoff



Extension Ideas

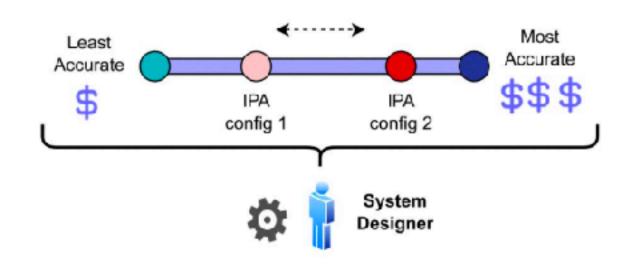
Two teams in the CSCE 585 ML Systems course have explored interesting ideas to extend and build on top of IPA infrastructure!



Course Website: https://pooyanjamshidi.github.io/mls/

Considering Energy Consumption in IPA Towards Sustainable AI

Regan Willis, Chase Bryson, Osasuyi Agho



https://github.com/csce585-mlsystems/Sustainable-IPA

IPA-Ext

Sabah S. Anis
Computer Science
ML Engineer

Misagh Soltani
Computer Science
ML Research Scientist,
ML Engineer

Xeerak Muhammad Computer Science ML Engineer, Scribe, Team Lead

https://github.com/csce585-mlsystems/ipa-ext

https://github.com/pooyanjamshidi/modular-composed-ai-systems/tree/main/talks