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https://pooyanjamshidi.github.io/

Modern ML Systems are increasingly composed
of multiple interdependent components




Performance tradeoff in ML pipelines becomes orders of
magnitude more difficult than the single-task ML systems

 Compositional Complexity: Dependencies propagate performance
Impacts.

 Cascading Tradeoffs: Latency and cost propagate through the graph.
Accuracy depends on intermediate representations.

 Tradeoff Analysis: Improving one node may degrade overall performance.

* Optimization often requires a joint search over an exponentially large
search space!



ML inference services have strict requirements

Highly Responsive!
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ML inference services have strict requirements

Highly Responsive! Cost-Efficient!
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ML inference services have strict requirements

Highly Responsive! Cost-Efficient! Highly Accurate!
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ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!
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More challenge: Dynamic workload

DYNAMIC CHARACTER

N A\‘.._..a

A\GHARAGTER THAT GHANGES

amemerorg



Quality adaptation

Adapted

Static

Time



Our work, similar to all other research publications,
stands on the shoulders of giants :)

Resource Scaling

Vertical Scaling (AutoPilot EuroSys’20)
Horizontal Scaling (mark ATc’19)
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Our work, similar to all other research publications,
stands on the shoulders of giants :)

Resource Scaling

Vertical Scaling (AutoPilot EuroSys’20)
Horizontal Scaling (mark ATc’19)

Quality Adaptation

Model Variants (Model-Switching Hotcloud’20)

0.8
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Problem: Solutions:

Multi-Objective Optimization Different Assumptions
with Known Constraints

under Uncertainty InfAdapter [2023]:

Autoscaling for
ML Inference

max o -AA—(f-RC+y-LC)

subjectto A < Z thy, (nm,), | IPA [2024]:
meM ool Autoscaling for
Am < thy,(n,) ML Inference Pipeline

Dm(Ny) < L,VYm € M,

RC < B,

Sponge [2024]:
Autoscaling for
ML Inference Pipeline

Dynamic SLO
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Model-Switching: Dealing with Fluctuating Workloads in
Machine-Learning-as-a-Service Systems

Authors:

lelf Zhang, New York University, Sarneh Elnikely, MicruseT Research, Shuayb Zarar and Al Gupla, Microsofl, Siddharth Garg, New York University

Abstract:

Machine l2arning (ML) based prediction madels, and especially deep neural networks (DNNs) are increasingly being served in the cloud 'n order to provide fast
and accurete inferences. However, existing service ML serving systems have trouble cealing with fluctuating workloads and either drop recuests or significant'y
expand hardware resources in rasporse 10 load spikes. In this pager, we introduce Mcdel-Switching, a new approach to dealing with fluctuating worklozds
when serving DNN madels. Motivated by the observation that erc-users of ML primanly care about the accuracy of respenses that are returned wathin the
ceadline (which we refer to as effective accuracy), we propose to sw tch from complex and highly accurate DNN mcdels to simpler but less accurate models in
tne presence of load spikes. We show tnat the flexibility intreducze by enabling online madel switching provides higher effect ve accuracy in the presence of
fluctuatirg workloads compared to s2rving using any single model|. We implement Model-Switchirg within Clipper, 2 state-cf-art DNN model serving system,
and demonstrate its advantages over baseline approaches.



InfAdapter (our solution) vs.
Model Switching (prior work)

-

Selecting a subset of model variants, each having its size
meeting latency requirements for the predicted workload

while maximizing accuracy and minimizing resource cost .



First insight: The same throughput can be achieved with
different computing resources by switching the model variants

B CPU=8 B CPU=20 ResNet-50:
200
e Depth: 50 layers.

N
& 150 e Top-1Accuracy: ~76-77% on ImageNet.
§_ e Top-5 Accuracy: ~93-94% on ImageNet.
c
S . . .
= 100 Model Size: Smaller, faster to train and deploy.
c
— ResNet-152:
e,
o 50
= e Depth: 152 layers.
»
(?) s « Top-1Accuracy: ~78-80% on ImageNet.

Resheta0 Reshet152  Top-5 Accuracy: ~94.5-95% on ImageNet.

Model Variant  Model Size: Larger, higher computational cost

18



Multi-models (our solution—InfAdapter) vs
single-model (Model-Switching)

Higher average accuracy by using multiple model variants

2.5
O B MS

Budget (CPU cores)



InfAdapter: Formulation

max o -AA—-(f-RC+y-LC)
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InfAdapter: Formulation

max — (f-RC+y-LC)

Maximizing Average Accuracy
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InfAdapter: Formulation

max — (@C + yE)

Maximizing Average Accuracy

N

Minimizing Resource and Loading Costs

22



InfAdapter: Formulation

max o-AA—-(f-RC+y-LC)

subjectto A < Z thm (Nm),
meM

Am < th,,(n,,)
Pm(nm) < L,Vm € M,
RC < B,

n, € W,Vm € M.
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InfAdapter: Formulation

max o-AA—-(f-RC+y-LC)

SUbjeCt to 6 thm(n\m)a -Supporting incoming workload
meM /

Am < thy,(ng,)
Pm(ny) < L,Vm e M,
RC < B,

n, € W,Vm € M.
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InfAdapter: Formulation

max o-AA—-(f-RC+y-LC)

SUbJ€Ct to @ thm -Supporting incoming workload

mem
Am < thm(nm)

Guaranteeing end-to-end latency - @nm) < L)Vm € M,
RC < B,
n, € W,Vm € M.
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InfAdapter

Load Generator

. @D Dispatcher j<=z------- Quota, - -

. Design

Pull metrics
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InfAdapter: Design

- @D Dispatcher
e

Load Generator

Adapter

@ g

3

qovt?? 3

o

3,

--------- Quotapy - - 2
= @

Pull metrics
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InfAdapter: Design

p Configure new sizes
AP| Server for model variants _
\
Apply
Configuration—__
Qout??
- @D Dispatcher j<=-------- Quotam - -
= —
Uotan

Load Generator

Adapter

sajaw Alanp

Update quotas—

Pull metrics
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InfAdapter:. Experimental evaluation setup

Workload: Twitter-trace sample (2022-08)

Baselines: Kubernetes VPA and Model-Switching

Used models: Resnetl8, Resnet34, Resnet50, Resnet101, Resnet152

Interval adaptation: 30 seconds

Kubernetes cluster: 48 Cores, 192 GiB RAM

29



Workload (RPS)
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation

250
Jk”'[r — real
“ \ ‘\ [*-\ prediction
7 kY- ;j/VJ ------ .
4 V)
e R 1
® |
s “f
i I € i\ --------------------
=,
= LV
e - —— - - - —— T - P e p—— ~-, Ul = o o o o — - —— - —— - — - - : . | ¥y I -
el ey \«vww\,"dm’w’\;u*\im}\'! VYA i
2.5
-—- 750 ms , _ —
VPA-18 | V‘
2071 VPASO
0 —— VPA-152 |
> 1.5 -
-
<))
3
o 1.0
@)
o
0.5
0.0

0 200 400 600 800 1000 1200
Time (s)



InfAdapter: P99-Latency evaluation
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InfAdapter: P99-Latency evaluation
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InfAdapter: Accuracy evaluation
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InfAdapter: Cost evaluation
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InfAdapter: Tradeoff Space
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Takeaway

@

Inference Serving Systems should consider

accuracy, latency, and cost at the same time.
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Takeaway

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

Model variants provide the opportunity Using a set of model variants
to reduce resource costs while adapting simultaneously provides higher average
to the dynamic workload. accuracy compared to having one variant.
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Takeaway

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

Model variants provide the opportunity Using a set of model variants

simultaneously provides higher average
accuracy compared to having one variant.

to reduce resource costs while adapting
to the dynamic workload.
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O https://github.com/reconfigurable-ml-pipeline/InfAdapter

ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!

—
® ©
: y 4
S0
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O https://github.com/reconfigurable-ml-pipeline/InfAdapter

ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!

Y

Inf Adapter: Design
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Configuration—___ ’




O https://github.com/reconfigurable-ml-pipeline/InfAdapter

ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!
© ®
X

InfAdapter: Design InfAdapter: P99-Latency evaluation
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T for model variants Adapter
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O https://github.com/reconfigurable-ml-pipeline/InfAdapter

ML inference services have strict & conflicting
requirements

Highly Responsive! Cost-Efficient! Highly Accurate!

[ |

Inf Adapter: Design

/%A Configure new sizes
T for model variants Adapter
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Takeaway

©

Inference Serving Systems should consider
accuracy, latency, and cost at the same time.

oo / N oo

Model variants provide the opportunity to Using a sct of madel variants
recuce resource cosls while adapting L simullznzously provides higher gverage
the dynamic workload. accuracy comparec Lo having one variznl.
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[SOLUTION] IPA: INFERENCE PIPELINE ADAPTATION TO ACHIEVE HIGH
ACCURACY AND COST-EFFICIENCY

Saeid Ghafouri Kamran Razavi
University of South Carolina & Queen Mary University of London Technical University of Darmstadt
Mehran Salmani Alireza Sanaee Tania Lorido Botran Lin Wang
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IPA [2024]:
Autoscaling for
ML Inference Pipeline



The Variabilities ML Pipelines

Heavy Light
Variants Variants

Wo rkload
0 @
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The Variability Space of Multi-Node ML Pipelines
is Much Larger than a Single-Node Pipelines
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Is only scaling enough?
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Is only scaling enough?
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Effect of Batching
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Goal: Providing a flexible inference
pipeline

Least <o > Most

Acourate (T T (@) Accurate
$ IPA IPA $ $ $

| config 1 config 2 |
'I System
Q m Designer
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Problem Formulation




Problem Formulation

max  f(n,s,]) f(n,s,I)

subject to Y Is(bs) +g5(bs) < SLAp,

seP Throughput
. C i
lf IS m — 1 then onstraint

s hs(bs) > A,, VseP
Z Iom=1, VseP One e
mEM nhode

ng,bs €Z", I,€q{0,1}, VseS§




Evaluations
etup and Partial Results

For more comprehensive
results, please refer to
the IPA paper!




How to navigate Model Variants

kubernetes dq<) CORE

1. Industry standard Industry standard ML server
Used in recent research Have the ability make inference graph

Complete set of autoscaling, scheduling, Rest and GRPC endpoints
observability tools (e.g. CPU usage) Have many of the features we need like

4. APIls for changing the current AutoScaling monitoring stack out of the box
algorithms

W N
W=



Evaluation

(a) Video Monitoring

Question

Audio to Text )
Answering

Object Object
Detector Classifier

(b) Audio Question Answering

Audio to Text Sentime.nt
Analysis

(c) Audio Sentiment Analysis

Text Question
Summariser Answering

(d) Summarisation Question Answering

Language
Identification

(e) Natural Language Processing

Neural
Machine
Translation

Workload (RPS)

N
-

N
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N
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N
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TR AT P i PV MV W T Y
, . . 01— , ,
0 500 1000 0 500 1000
Steady High Fluctuating
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https://github.com/reconfigurable-ml-pipeline/ipa

We compared |IPA with RIM and FA2

Rim: Offloading Inference to the Edge

Yitao Hu Weiwu Pang Xiaochen Liu
University of Southern California University of Southern California University of Southern California
yitaoh@usc.edu weiwupan @usc.edu l1u851 @usc.edu
Rajrup Ghosh Bongjun Ko Wei-Han Lee
University of Southern California IBM Research IBM Research
rajrupgh@usc.edu bongjun_ko@us.ibm.com wei-han.lee1 @ibm.com

Ramesh Govindan
University of Southern California
ramesh@usc.edu

FA2: Fast, Accurate Autoscaling for Serving Deep
Learning Inference with SLA Guarantees

Kamran Razavil, Manisha Luthra’, Boris Koldehofe'*, Max Miihlhduser!, Lin Wang™3

Technische Universitit Darmstadt
tUniversity of Groningen
3Vrije Universiteit Amsterdam
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Audio + QA
Pipeline

Question
Answering

Audio to Text

— IPA FA2-low — FA2-high — RIM
Bursty Steady Low

Cost
(cores)

Accuracy

Cost
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31 | I O
o
|
<o, , , 01 . .
0 50 100 0 50 100
Time (s) Time (s)

m PA FA2-low B FA2-high B RIM

Cost (cores) Accuracy SLA Violations (%)
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Adaptivity to multiple objectives

B Accuracy-priorotize ® Balance I Resource-priorotize

100
M
v 75 o
S ©
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g > 103
S |

N
Ul

video audio-ga audio-sent sum-ga nlp
Pipelines
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Effect of predictor

B Istm ™ reactive
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Gurobi solver scalability
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Full replication package is available

https://github.com/reconfigurable-ml-pipeline

AdaptiveFlow Unfollow

Repositories related to Sustainability, Performance, Auto-scaling, Reconfiguration, Runtime Optimizations for ML Inference Pipelines

A2 1follower ™ United States of America

Popular repositories & View as: Public ~
You are viewing the README and pinned
ipa Public InfAdapter Public repositories as a public user.
Source code of IPA Source code of "Reconciling High Accuracy, Cost-Efficiency, and Low

You can create a README file or pin repositories

Latency of Inference Serving Systems" o
visible to anyone.

® Jupyter Notebook Y 8 4 ® Python Y 7 ,
2 k4 ’ Get started with tasks that most successful

organizations complete.

load_tester Public kubernetes-python-client Public
Discussions

® Python  Yr 2 @ Python
Set up discussions to engage with your
community!

INFaaS Public Turn on discussions

Forked from stanford-mast/INFaaS

Model-less Inference Serving
People

®C++

G61dc0


https://github.com/reconfigurable-ml-pipeline

Model Serving Is only scaling enough?

Pipeline
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EuroMLSys

Sponge: Inference Serving with Dynamic SLOs Using In-Place

Vertical Scaling i%?:fcz ﬁingg]r

ML Inference Pipeline with
Dynamic SLO

Kamran Razavi’ Saeid Ghafouri’ Max Miihlhauser
Technical University of Darmstadt Queen Mary University of London Technical University of Darmstadt

Pooyan Jamshidi Lin Wang

University of South Carolina Paderborn University




Dynamic User -> Dynamic Network Bandwidths

. Users move

. Fluctuations in the network
bandwidths

. Reduced time-budget for
processing requests

SLO

| I\ |
Y .
network latency processing latency




Dynamic User -> Dynamic Network Bandwidths

. Users move

. Fluctuations in the network
bandwidths

. Reduced time-budget for
processing requests
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Inference Serving Requirements

Highly Responsive! Cost-Efficient!

(end-to-end latency guarantee) (least resource consumption)

~

6 (

Resource Scaling

N

Horizontal Scaling

(more cost
efficient)




Vertical Scaling DL Model Profiling
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Problem Formulation

Minimize c¢+0 X b

subject to [(b,c) + g, (b,c) + clyax < SLO, Vr € R
h(b,c) > A
bceZ"




Problem Formulation

- Minimize resource costs

Minimize ¢+38Xb

subject to [(b,c) + g, (b,c) + clyax < SLO, Vr € R
h(b,c) > A
bceZ"




Problem Formulation

- Minimize resource costs

Limit the batch size to grow infinitely!

Minimize c.'. SXbh—>
subjectto I(b,c) + q,(b,¢) + clypax < SLO, Vr € R
h(b,c) > A
b,ceZ"




Problem Formulation

Minimize

subject to

- Minimize resource costs

Limit the batch size to grow infinitely!

[(b,c) +g,(b,c) + clypax < SLO, Vr eR

h(b,c) > A R
b,c e Z" 'Z

cl,

Clmax

SLO
[(b,c)

CIr (b3 C)
h(b,c)

A

Set of all requests

Model’s batch size

Model’s CPU allocation

Communication latency associated with r € R
Highest cl, in R

Pre-defined SLO for R

Processing time of a model with allocation core ¢ and
batch size b

Queuing time of r € R with allocation core ¢ and
batch size b

Throughput of a model with allocation core ¢ and
batch size b

Request arrival rate




System Design

3 design choices:

/
Sponge

1. In-place vertical scaling
o Fastresponse time patched Requests—

: =
2. Request reordering - Queue R
: . Requests—  epF) (DL Model)
e High priority requests
User

CPU Core

3. Dynamic batching satchsize |
oo . R i SLO Statistical Data
e Increase system utilization emaining (Latency, RPS)

Scaler l
Offline Performance - u
Model Generator Optimizer Adapter Monitoring

RPS

Results




Evaluation

SLO guarantees (99th percentile) with
up to 20% resource save Up compared —— Sponge —— FA2 CPU8 CPU16
to static resource allocation. |

O
O

SLO Violation (%)
8)
o

o

Sponge source code: O
hitps://gith m 1d9 1

—
(@)

CPU Cores

0 100 200 300 400 500 600
Time (8)



https://github.com/saeid93/sponge

Future Directions

Resource Scalmg

Horlzontal Scaling

(more cost
effluent)

How can both scaling mechanlsms be used jointly under a
dynamic workload to be responsive and cost efficient
while guaranteeing SLOs?




The variability space (design space) of

(composed) systems is exponentially increasing
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Systems operate in uncertain environments

with imperfect and incomplete knowledge
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Performance goals are competing and users
have preferences over these goals
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Extension Ideas

Two teams in the CSCE
585 ML Systems course
have explored interesting
Ideas to extend and build
on top of IPA
Infrastructure!




(SCE 585 a# LECTURES & PROJECTS [IRESOURCES B POLICIES ®piazza O

Machine Learning Systems

Compute.r
Sjsl:e.ms_

New to machine learning? Not sure hcw ML works in production? Interested to gat invalved in advanced ML+Systems research? This class is desgned for yo.!

When we talk zbout Artificial Inzell gence (Al) or Machine _earning (ML), we tyoically refar to a technique, a madel, or an algorithm
that gives the computer systems the ability to learm anc to reason with data. However, there is ¢ ot more t¢ ML thar just
implemerting an algorithm or a techniquJe. In this course, w2 will learr the fundamental cifferancss betweer AI/ML as a mocel

versus AI/ML as £ system in producticn.

UNIVERSITY OF

South Carolina



https://pooyanjamshidi.github.io/mls/

Considering Energy
Consumption in |IPA Towards
Sustainable Al

Regan Willis, Chase Bryson, Osasuyi Agho

https.//github.com/csce585-mlisystems/Sustainable-I1PA



https://github.com/csce585-mlsystems/Sustainable-IPA

IPA-Ext

Misagh Soltani Xeerak Muhammad
Sabah S. Anis Computer Science Computer Science
Computer Science ML Research Scientist, ML Engineer, Scribe, Team
ML Engineer ML Engineer Lead

https.//github.com/csce585-mlisystems/ipa-ext



https://github.com/csce585-mlsystems/ipa-ext

https://github.com/pooyanjamshidi/modular-composed-ai-systems/tree/main/talks



https://github.com/pooyanjamshidi/modular-composed-ai-systems/tree/main/talks

