Design Space Exploration of Distributed ML

Course Project CSCE 790 (Machine Learning Systems)

Project description

 How the choice of configuration parameters in distributed ML setting affect training time?

Project goal

- The aim of the project is to perform design space exploration of distributed ML.
- The goal is to understand how the choice of configurations in the training environment can influence training time of DNNs.

Distributed ML

- There are various approaches to accelerate training of DNNs.
 - Data parallelism, where you shard training data across multiple nodes.
 - Model parallelism, where you split the model across multiple nodes.
 - The focus of this project is on the "data parallelism".

Setting up the experimental environment

- First you need to setup your experimental environment
 - 2 nodes
 - Each with 1-2 GPU
 - I may be able to provide a simple environment, contact me once you created your team.
 - You may use your own GPU servers.

Deciding the configuration space

- You need to select few configuration options that affect performance, e.g., :
 - Number of parameter servers
 - Number of worker nodes
 - Communication protocol
 - Buffer size
 - etc

Selecting specific DNN architectures

- Select few pre-trained DNN architectures that fit onto your hardware platform, e.g.:
 - Any pre-trained CNN architecture
 - Use available implementations, e.g.,: <u>https://github.com/tensorflow/benchmarks</u>

Deciding about workload

- Choose 2 different workloads from existing datasets, e.g. UCI repository, or other available datasets
 - Image
 - Time-series
 - Text
 - etc.

Start measurements

- Once you decided about the configuration space, you need to determine the configurations that you want to measure.
- At this stage you need to discretize the continuous variables.
- And think about using a sampling strategy, e.g., random sampling, or possibly Full factorial design
 - <u>https://en.wikipedia.org/wiki/Design_of_experiments</u>
- You need to measure training time for each configuration

Analyzing data

- Once you measured configurations, you need to dig into data and find interesting trends.
 - You could look into optimal configurations
 - You could find whether the optimal configurations in one DNN architecture is also optimal in other architectures, if not dig into and find out why.
 - You could look into correlation measures across different workloads
 - You may want to have a look at this to get some idea what kinds of analyses you may want to perform: https://arxiv.org/pdf/ 1804.01138.pdf

Final point

- Use your creativity when it comes to analyzing the results, try to surprise me!
- If you find a very interesting observations and dig into it by providing some insight, you will then get a good score!
- If you also produce very good results, you may also want to think about a potential paper, it's optional, but I strongly recommend it.