
Classification and comparison of architecture evolution reuse
knowledge—a systematic review

Aakash Ahmad1,2, Pooyan Jamshidi1,2,3,*,† and Claus Pahl1,2,3

1School of Computing, Dublin City University, Dublin, Ireland
2Lero—the Irish Software Engineering Research Centre, Ireland
3Irish Centre for Cloud Computing and Commerce (IC4), Ireland

ABSTRACT

Context: Architecture-centric software evolution (ACSE) enables changes in system’s structure and
behaviour while maintaining a global view of the software to address evolution-centric trade-offs.
The existing research and practices for ACSE primarily focus on design-time evolution and runtime
adaptations to accommodate changing requirements in existing architectures.
Objectives: We aim to identify, taxonomically classify and systematically compare the existing
research focused on enabling or enhancing change reuse to support ACSE.
Method: We conducted a systematic literature review of 32 qualitatively selected studies and
taxonomically classified these studies based on solutions that enable (i) empirical acquisition and
(ii) systematic application of architecture evolution reuse knowledge (AERK) to guide ACSE.
Results: We identified six distinct research themes that support acquisition and application of AERK.
We investigated (i) how evolution reuse knowledge is defined, classified and represented in the existing
research to support ACSE and (ii) what are the existing methods, techniques and solutions to support
empirical acquisition and systematic application of AERK.
Conclusions: Change patterns (34% of selected studies) represent a predominant solution, followed by
evolution styles (25%) and adaptation strategies and policies (22%) to enable application of reuse
knowledge. Empirical methods for acquisition of reuse knowledge represent 19% including pattern
discovery, configuration analysis, evolution and maintenance prediction techniques (approximately
6% each). A lack of focus on empirical acquisition of reuse knowledge suggests the need of
solutions with architecture change mining as a complementary and integrated phase for architecture
change execution. Copyright © 2014 John Wiley & Sons, Ltd.

Received 13 May 2013; Revised 23 September 2013; Accepted 27 December 2013

KEY WORDS: software architecture; architecture-centric software evolution; architecture evolution reuse
knowledge; systematic literature review; evidence-based study in software evolution;
research synthesis

1. INTRODUCTION

Modern software systems operate in a dynamic environment with frequent changes in stakeholder needs,
business and technical requirements and operating environments [1, 2]. These changing requirements
trigger a continuous evolution in existing software to prolong its productive life and economic value over
time [1, 3]. During the design, development and evolution of software systems, the role of an architecture

*Correspondence to: Pooyan Jamshidi, School of Computing, Dublin City University, Dublin, Ireland.
†E-mail: pooyan.jamshidi@computing.dcu.ie

Copyright © 2014 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 26:654–691
Published online 12 February 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1643



as a blueprint of software is central to map the changes in requirements [4] and their implementations in
source code [5]. Architecture abstracts the implementation specific details of a software by modelling
lines-of-code as architectural components and their interconnections. As a result, an architecture
model enables planning, modelling and executing both design-time evolution [3, 6] and runtime
adaptation [7, 8]—at higher abstraction levels such as software components and connectors [3, 7, 9, 10].

Lehman’s law of continuing change [2] poses a challenge to research and practices that aim to
support long-living and continuously evolving architectures [7, 11, 12] under frequently varying
requirements [4, 10]. The law states, ‘systems must be continually adapted or they become
progressively less satisfactory’. To support a continuous change [2], existing solutions focused on
exploiting reusable knowledge and expertise to address recurring evolution [13] and adaptation [12]
of software architectures. However, there has been no attempt to analyse the existing research with a
systematic study of active trends, limitations and future dimensions for evolution reuse in software
architectures [9, 14]. Furthermore, considering the growing demand for autonomic computing [15, 16]
or specifically self-adaptive architectures [6, 11, 12], we must distinguish the effects of reuse on design-
time [3] (also static or off-line) as well as on runtime (also dynamic adaptation or online) evolution [7].

Recently, we conducted a systematic review [9] to classify and compare state of the research and
practices that enable architecture-centric software evolution (ACSE). An evaluation of this review
suggested,

given the increasing importance of reuse in ACSE, a dedicated effort is required to systematically
classify and compare available evidences that support reuse in evolution and adaptation to address
architecture-based change management.

Existing studies of architecture evolution research are focused on analysing [14], characterising [10]
and comparing [9, 6] ACSE approaches. In contrast to the existing reviews on architectural evolution
[6, 9, 10, 14], our focus in this review is to classify and compare research that enables acquisition and
application of reuse knowledge to support ACSE.

In recent years, interest in the area of architecture knowledge (AK) research [17] has grown—in
books [18], research conferences [19], workshops [20] and dedicated body of knowledge [21].
Although architecture evolution reuse knowledge (AERK)‡ could be classified as a sub-domain of
AK, a survey of AK research [17] identifies architectural maintenance and evolution as an
independent concern. This allows us to conclude that in the general context of AK, there is a need
to explicitly classify and compare research on evolution knowledge to address recurring evolution in
architectures [12, 13, 22]. Thus, we shift architectural knowledge application focus from the reuse of
design-time artefacts to the reuse of evolution-centric artefacts, although the progress of architecture
evolution reuse research [13, 22, 23] is reflected over more than a decade starting in 2001 [23].
However, we did not find any evidence to systematically synthesise the collective impact of existing
research focused on AERK.

To carry out this review, we followed the guidelines in [24] to conduct a systematic literature review
(SLR) of evolution reuse in architectures. SLRs help to identify, classify and synthesise a comparative
overview of state-of-the-art research and enable knowledge transfer among the research community.
The objective of this research is to systematically identify and classify the available evidence about
evolution reuse in software architectures and provide a comparison of existing research to highlight
its potential, limitations and future dimensions.

This SLR includes 32 qualitatively selected studies that are classified as research that supports
acquisition or application of reuse knowledge to support ACSE. To assess the contribution of each
study, we provide a comparison among all the studies and synthesise our results using 12
comparison attributes. The comparison attributes are derived and refined by following the guidelines
in [10, 14, 25], our experience with SLRs [9, 26], a qualitative assessment of the studies and an
external validation of the review protocol.

In Figure 1, a classification of existing literature highlights primary contributions of this paper,
focussing on the following:

‡Please note that we use the terms ‘AERK’ and ‘evolution reuse knowledge’ and ‘reuse knowledge’ interchangeably—all
referring to the same concept.

CLASSIFICATION AND COMPARISON OF AERK 655

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



• How AERK is defined, classified and expressed in existing research to support ACSE. The
contribution is a taxonomic classification scheme to identify and categorise research with
overlapping and disjoint themes on evolution reuse.

• What existing methods and techniques enable or enhance evolution reuse in software architec-
tures. We classify and compare the state of research and analyse the research impact based on
26 (81%) of qualitatively assessed studies.

• What existing methods and techniques enable an empirical acquisition of evolution reuse knowl-
edge. We analyse the role of existing methodologies to discover and share evolution reuse based
on six (19%) selected studies.

We identified three distinct research themes that enable reuse in architecture evolution.Change patterns
[4, 27], as the most prominent solution address corrective, perfective and adaptive changes [10] for design-
time evolution [3, 13] as well as runtime adaptations [7, 12]. In contrast, evolution styles [13, 22] only
support design-time evolution as corrective and perfective type changes [10], whereas adaptation
strategies and policies [12, 28] enable self-adaptation in running architectures. In general, we observed
non-complementary and solution-specific representation and expression of AERK. In the knowledge
acquisition context, we identified three research themes—pattern discovery [29, 30], configuration
analysis [23, 31] and evolution and maintenance prediction [32, 33]. We observed a lack of research
on empirical approaches to analyse and discover knowledge [30, 32, 33] that can be shared and reused
to guide ACSE.

On the basis of a taxonomic classification of studies, we provide a definition of AERK. We propose a
framework, REVOLVE, that supports architecture change mining (for reuse knowledge acquisition) as a
complementary and integrated phase to architecture change execution (for reuse knowledge application).
This framework guides the systematic review. The literature base we provide in [34] is itself subject to a
continuous evolution (adding newly published studies over time) and helps in knowledge sharing with
ACSE community [35, 36]. In particular, the results of this SLR are beneficial for the following:

• Researchers in software engineering and software architecture in particular, who require an
identification of relevant studies. A systematic presentation of research provides a foundational
body of knowledge to develop theory and solutions, analyse research implications and to establish
future dimensions.

• Practitioners interested in understanding the methods and solutions with formalism and tool
support to model, analyse and implement evolution reuse in software architectures.

In general, this SLR provides a literature base to identify emerging trends or formulating hypotheses
as a complement to existing studies [6, 9, 10, 14, 17]. The collected data in [34]—as an online literature
base—provides a detailed insight and objective interpretation of the results.

The remainder of this paper is organised as follows. Section 2 presents background details and related
research. Section 3 describes details about the research methodology we followed to plan, conduct and
document the SLR. Section 4 highlights the results based on a taxonomical classification of the
literature. Sections 5 and 6 present two separate concerns—application and acquisition of reuse
knowledge, respectively. Research implications and validity threats are discussed in Section 7 with
conclusions in Section 8.

Figure 1. An overview of the contribution of systematic review.

656 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



2. BACKGROUND

Architectural maintenance [32], evolution [3, 22] and adaptation [12] represent different views of
change implementation determined by the types, means, times and frequency of changes in software
architectures. We highlight existing secondary studies in the context of ACSE that justifies the needs
and scope of this review. In contrast to the existing systematic reviews on ACSE [6, 9, 10, 14, 17],
this SLR specifically focuses on a taxonomical classification and comparison of research that
supports evolution reuse in architectures.

2.1. Architecture-centric software maintenance and evolution

The implications of software maintenance and evolution in the context of system life cycle became
obvious with the emergence of Lehman’s laws of software evolution [2] and the International
Organization for Standardization/ International Electrotechnical Commission (ISO/IEC) 14764
standard for software maintenance [37]. Since then, maintenance and evolution represent a critical
activity in system life cycle to prolong the productive life, economic value and operational reliability
of existing software [1, 2, 25]. However, beyond these abstract laws and theoretical standardisations,
a critical decision is to select an appropriate abstraction to implement changes in software [3, 13, 22].
In contrast to source-code refactoring [5], architecture models—as topological configurations of
components and their connectors—represent an appropriate abstraction of software to enable
maintenance and evolution in a controllable fashion [3, 9, 14]. The software engineering literature in
general and theory of software architectures in particular treated maintenance and evolution as virtually
synonymous, interchangeable concepts [1, 8]. However, in this review, we must maintain a distinction
between the two based on the time of change implementation. More specifically, architectural
maintenance refers to post-deployment changes implemented as static or off-line modifications of
architecture. In contrast, architectural evolution refers to consequential changes in architectures usually
implemented as dynamic or online modifications of architecture. Furthermore, in order to consider the
needs for autonomic computing [15] and self-adaptive architectures [6, 7, 11], we must distinguish
between design-time maintenance [32, 33] and runtime evolution or adaptations [12, 28]. In the
taxonomy of software change [25], the factors influencing evolution are the following:

• Time of evolution: To operate in a dynamic and openworld [16], modern software systems need to evolve
their architecture while maintaining system execution. This highlights a critical factor as a change (either
design-time or runtime evolution) that must be implemented in a timely and consistent fashion [12].

• Frequency of change: It determines the rate at which software must evolve in order to keep its
utility [2]. Therefore, evolution reuse knowledge could provide assistance to effectively address
frequent (business and technical) change cycles in architecture of software systems.

• Evolution reuse: To support a frequent evolution and adaptation in a timely fashion, solutions
must follow ‘build-once, use-often’ philosophy to support reuse of recurring architectural changes
[4, 31]. In recent years, solution for architectural evolution promoted evolution styles [13, 22] to
enable change reuse. However, systematic reviews in ACSE [9, 10, 14, 17] suggest the needs for
solutions that enable a continuous empirical discovery of reuse knowledge that can be shared and
reused to enable or enhance ACSE.

2.2. Secondary studies on software architecture evolution

In recent years, the SLRs on ACSE have focused on architecture evolution analysis [14], characterisation of
architectural changes [10] and classification and comparison of architecture evolution research [9, 6]. We
summarise the existing SLRs [9, 10, 14] (in Section 2.2.1) and survey-based studies [6] (in Section 2.2.2)
to justify the needs and scope for this review (in Section 2.2.3).

2.2.1. Systematic literature reviews of software architecture evolution.
A. Review of architecture change characterisation—A systematic review (Williams and Carver

[10] in Table I) investigated a total of 130 peer-reviewed studies—published from 1976 to
2008—to characterise design-time and runtime evolution as corrective, perfective, adaptive
and preventive type changes in architectures. The SLR [10] proposed a comprehensive change

CLASSIFICATION AND COMPARISON OF AERK 657

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



characterisation scheme to systematically classify different approaches on how to distinguish and
characterise software architecture changes and change impact analysis. The scheme works as a
decision tree to provide support for system developers to assess the impact and feasibility of
desired changes.

B. Review of architecture evolution analysis—A systematic review (Breivold et al. [14] in Table I)
investigates 82 peer-reviewed studies—published from 1992 to 2012—focused on design-time
evolution of software architectures. The SLR in [14] is focused on analysing the evolvability
of a software architecture. The primary objective of this review is to provide an overview of
existing approaches for analysing and improving software architecture evolution and to identify
critical factors influencing software architecture evolvability.

C. Classification and comparison of ACSE research—We conducted a systematic review (Jamshidi
et al. [9] in Table I) of 60 peer-reviewed studies—published from 1995 to 2011—focused on
design-time and runtime evolution of software architectures. In the SLR [9], we qualitatively
investigated the state of the art to classify and compare of formalisms and tool support that
enable or enhance software architecture evolution.

2.2.2. Survey-based and taxonomic studies on software architecture evolution.
A. Survey of self-management in dynamic software—A survey-based study (Bradbury et al. [6] in

Table I) reviewed 14 studies—published from 1992 to 2002—focused on runtime evolution of
software architectures. The survey [6] synthesises formal specifications for dynamic adaptation
of software architectures. The authors present a set of classification criteria for the comparison of
dynamic software architectures based on the types, processes and infrastructure for dynamic
adaptation of architectures.

B. Mapping study on knowledge-based approaches in software architectures—A mapping study
(Li et al. [17] in Table I) provides a systematic mapping of research on knowledge-based
approaches in software architecture according to 55 peer-reviewed studies—published from
2000 to 2011. The mapping study [17] identifies gaps in the application of knowledge-based
approaches to five architecting activities that include architectural analysis, synthesis,
evaluation, implementation, and maintenance and evolution. The study shows an increasing
interest in the application of knowledge-based approaches in software architecture with only 5/
55 studies on architectural knowledge for maintenance and evolution.

C. Industrial survey and taxonomic study on architecture evolution—Stammel et al. [35] pro-
vided an overview of various approaches evaluated based on real-world industrial scenarios
on the evolution of sustainable systems. The study targets practitioners because it is a general
and live document based on a growing number of industrial experience reports. Slyngstad et al.
[38] performed a survey among software architects from software industry in order to capture a
more complete picture of risk and management issues in software architecture evolution.

Table I. A summary of secondary studies on architecture-centric software evolution.

Study type Study reference Study focus
Year of

publication
Time

constraints
Total

reviewed
Years of
studies

Systematic
literature
review(s)

Williams and
Carver [10]

Change characterisation 2010 Design-time,
runtime

130 1976–2008

Breivold
et al. [14]

Evolvability analysis 2011 Design-time 82 1992–2010

Jamshidi
et al. [9]

Classification and
comparison

2013 Design-time,
runtime

60 1995–2011

Ahmad and
Jamshidi [34]

Reuse-driven evolution N/A Design-time,
runtime

32 1999–2012

Surveys Bradbury
et al. [6]

Dynamic evolution 2004 Runtime 14 1992–2002

Mapping
studies

Li et al. [17] Architecture knowledge 2013 N/A 55 2000–2011

658 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



Although not directly related to the ACSE, some taxonomies of software change [25, 8] try to
answer the questions like why, how, what, when and where aspects of software evolution that
have also acted as a guideline for us to define the comparison attributes (detailed in Section 3).

2.3. A systematic review of architecture evolution reuse knowledge

The review in this paper (Ahmad and Jamshidi [34] in Table I) is focused on a systematic
identification, classification and comparison of the existing research that supports application and
acquisition of reuse knowledge to support ACSE. In contrast to the mapping study on AK [35] that
identifies only five studies on design-time maintenance and evolution, our SLR is comprised of 32
studies published from 1999 to 2011 and is focused on both design-time and runtime evolution. As
presented in Table I, the proposed SLR complements the existing body of secondary studies on
ACSE [6, 10, 14] and extends our previous review [9]. Given the importance of reuse in ACSE
[14], it exclusively focuses on classification and comparison of evolution reuse knowledge.

In order to ensure that a similar review or any study has not already been performed, we searched the
Compendex, IEEE Xplore, ACM and Google Scholar digital libraries (on 23/10/2012). None of the
retrieved publications were related to any of our research questions detailed in Section 3. Considering
the importance of reuse in ACSE [9, 14] and the relative maturity of AK approaches [18, 21], a
consolidation of existing evidence about application and acquisition of reuse knowledge to support
ACSE is timely.

3. RESEARCH METHODOLOGY

In contrast to a non-structured review process, a SLR [24, 39] reduces bias by following a precise and
rigorous sequence of methodological steps to investigate the state of research. More specifically, an
SLR relies on a well-defined and evaluated review protocol to extract, analyse and document the
results as illustrated in Figure 2. We adopted the guidelines in [24] with a three-step review process
that includes planning, conducting and documenting the SLR. The review is complemented by
evaluation of the outcome of each step, as illustrated in Figure 2. We also provide a taxonomical
classification and comparison of the reviewed studies. A taxonomical classification is the foundation
for comparative analysis of studies based on our defined comparison attributes (Section 3.5) that are
subject to external evaluation prior to results reporting in [34].

Figure 2. Systematic review process for classification and comparison of reuse knowledge in architecture-
centric software evolution.

CLASSIFICATION AND COMPARISON OF AERK 659

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



3.1. Definition and evaluation of the protocol for systematic review

According to the guidelines in [24], the review protocol drives the planning, conducting and documenting
phases of the systematic review as illustrated in Figure 2. The protocol definition is provided in the
reminder of Section 3. More specifically, protocol for SLR includes (i) identification of the needs and
objectives for SLR (Section 3.2), (ii) definition of search strategies to identify, include and exclude and
qualitatively analyse the relevant literature (Sections 3.3 and 3.4), (iii) data extraction and results
synthesis (Section 3.5) and (iv) results classification (Section 3.6). We developed the review protocol
by following the guidelines in [24, 39, 40] and our experience with conducting the systematic review
[9, 26]. Additional details about the review protocol are provided in [34].

As suggested by [9] and [24], we externally evaluated the protocol before its execution. We asked
two external experts for feedback, who had experience in conducting SLRs in an area that overlaps
with software architecture research (see Acknowledgement section). The feedback made by the
expert resulted in a refined protocol. We also performed a pilot study of the systematic review with
15 (approximately 50%) of the included studies. The objective for conducting a pilot study was to
first reduce the bias for (i) identification of primary studies, (ii) extraction of data from these studies
and (iii) synthesising the results of review. On the basis of the external review of the protocol, we
expanded the review scope, improved search strategies and refined the inclusion/exclusion criteria
during the pilot studies (see Section 3.3 for details).

3.2. Planning the review

The review plan consists of three steps as (i) identifying the needs for SLR, (ii) specifying the research
questions and (iii) defining and evaluating the review protocol, as illustrated in Figure 2.

3.2.1. Identify the needs for systematic literature review. The needs for SLR have been identified in
[9] and its contribution already justified in Section 2. This SLR complements the existing reviews on
ACSE [6, 9, 10, 14, 17] to investigate the state of research for application and acquisition of AERK
(cf. Table I). Although the progress of research on architecture evolution reuse [13, 22, 23] is
reflected over more than a decade [23], we did not find any evidence to systematically synthesise the
collective impact of existing research on reuse knowledge (Section 2.3). Therefore, in this SLR, we
aim to classify and compare existing research; identify the research potential and its limitations; and
outline future dimensions for methods, techniques and solution that enable evolution reuse in
software architectures. In addition, the research questions help us to (i) outline the scope and
contributions of SLR and (ii) define and evaluate the review protocol to conduct the SLR.

3.2.2. Specify the research questions. The research questions are based on our motivation to conduct
the SLR, that is, the answers provide us with an evidence-based overview of the definition, application
and acquisition of reuse knowledge to support ACSE methods and techniques. We define three
research questions that represent the foundation for deriving the search strategy for literature
extraction. The objective outlines the primary intent of investigation for each question. In addition, a
comparative analysis allows us to analyse the collective impact of research, represented in terms of
comparison attributes (in Section 3.5, Table V).

• Research question 1—How evolution reuse knowledge is defined, classified and expressed in
existing literature to enable architecture-based software change management?

• Objective—To understand the existing classification and representation of AERK that provides a
foundation for a detailed comparison of solutions to enable ACSE.

• Research question 2—What are the existing methodologies and techniques that support applica-
tion of reuse knowledge to evolve software architectures?

• Objective—To identify and compare existing solutions that support an explicit reuse of change
implementation mechanisms to enable design-time evolution and runtime adaptations in
architectures.

• Research question 3—What empirical approaches are employed to discover evolution reuse
knowledge?

660 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



• Objective—To investigate and compare the available support for empirical acquisition/discovery
of reuse knowledge and expertise that can be shared to guide architecture evolution.

3.3. Conducting the review

To conduct the review, we follow a three-step process as (i) searching the studies for review, (ii)
selection and qualitative assessment of studies and (iii) extraction and synthesis of data from studies,
as illustrated in Figure 2.

3.3.1. Selection of primary studies for review. The search terms used to identify primary studies were
developed using suggestions in [39] and guided by the research questions (cf. Section 3.2). Our search
process comprises of primary and secondary search.

• Primary search is a five-step process to identify and retrieve the relevant literature. The summary
of each step involved in primary search is presented in Table II.

• Secondary search includes (i) review of references/bibliography section in the selected primary
studies to find other relevant articles, (ii) review of citations to the selected primary studies to find
any relevant articles, also known as a backward pass [24, 39] and (c) identify and contact authors
of selected primary studies for extended versions of the research, if required. The secondary
search did not lead to identification of any relevant studies. The secondary search and study selec-
tion was performed iteratively until no new studies were found.

The research question resulted in a composition of search string applied to six databases as
illustrated in Figure 3. We extracted published peer-reviewed literature from years 1999 to 2012
(inclusive). The year 1999 was chosen as the preliminary search that found no earlier results related
to any of the research questions with 1550 manuscripts extracted. Because we used our primary
search criteria on title and abstract, the results provided a relatively high number of irrelevant
studies, which were further refined with secondary search.

Note that we have decomposed the search string for illustrative reasons in Figure 3. To search the
primary studies, the sub-strings in Figure 3 were combined and represented as a single search string.

Table II. A summary of the steps in the literature search.

Search step Description

1. Derive search strings From RQs (cf. Table I) in Section 3.1
2. Consider synonyms and alternatives Consider the alternative spellings and synonyms while

composing search strings as follows:
Evolution as (change, restructure, update, extension,
adaptation, reconfiguration, migration, transformation
and modification)

Methods and techniques to enable reuse as (customise,
pattern, plan, styles, framework and strategies)

Empirical methods for discovery (identification, extraction,
tracing, mining, discovery and acquisition)

Architecture or software architecture (we only consider the
term software architecture as only using architecture
resulted in a large amount of irrelevant studies focusing on
hardware, network or system architecture)

3. Search-term combinations Boolean OR to incorporate alternative spellings and synonyms
Boolean AND to link the major terms. Number of unique
search string depends on a multiplier: ([AND]
clause) × (<OR>-keywords)

4. Search string division Dividing strings so that they could be applied to
different databases.

Assigning unique IDs to every (sub-) search string and
customising them for all selected resources

5. Reference management Citations with Zotero

RQs, research questions.

CLASSIFICATION AND COMPARISON OF AERK 661

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



3.4. Selection and qualitative assessment of primary studies

The study selection comprises of a four-step process that includes screening, initial selection, final
selection and qualitative assessment as presented in Tables III and IV. In Table IV, the qualitative
assessment helps us to include/exclude studies and rank the selected studies based on their quality
score in the Appendix.

3.4.1. Screening of identified literature. An initial screening is performed for all the studies based on
four criteria as presented in Table III. The screening ensures that each of the selected study represents a
(i) peer-reviewed research, is (ii) written in English language, is (iii) not a secondary study and is (iv)
not a book. If the answer to all of these four criteria is [YES], the study is included for initial selection.
Otherwise, if the answer to any of the four criteria is [NO], the study is excluded.

3.4.2. Initial selection. This process comprises screening of titles and abstracts of the potential
primary studies. For almost 35% of studies, no decision could be made just on title and abstract, as
these papers did not make a clear distinction between an explicit representation and application
(RQ1 and RQ2) or acquisition (RQ1 and RQ3) of reuse knowledge. During initial selection, the
decision to exclude [NO] or proceed to the final selection [YES] was based on an examination of
the full text for each study.

3.4.3. Final selection. This process is based on a brief validation of the studies, the use of formalisms
and tool support and details of the experimental setup. After performing this step, 34 studies were
selected. During the secondary search process, references and citations for the 34 selected studies
were also reviewed, but this did not lead to the inclusion of any other relevant studies. As a result,
34 studies were included for qualitative assessment.

3.4.4. Qualitative assessment of included studies. For the 34 included studies, we primarily focused
on the technical rigor of content presented in the study. We based our qualitative assessment on two
factors as general assessment (G) and specific assessment (S), as summarised in Table IV.
Additional details about the quality checklist are provided in [34]. Quality scores provided us with a
numerical quantification to rank the selected studies in the Appendix.

On the basis of the quality assessment checklist in Table IV, the quality ranking formula is given as
follows. G represents five factors as general assessment criteria from Table IV, providing a maximum

Figure 3. Summary of the primary search process.

662 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



score of 1 (25% weight), S represents a total of five factors as specific items providing a maximum
score of 3. S is weighted as three times more than G (75% weight) as specific contributions of a
study are more important than general factors for assessment. On the basis of a consensus among
the researchers and suggestions from the external reviewers, the criteria for qualitative assessment
maximum score was G + S= 4, where a 3–4 score represented quality papers, a score less than 3 and
greater than or equal to 1.5 was acceptable and a score less than 1.5 resulted in study exclusion.

Quality score ¼ ∑5
G¼1

5
þ ∑5

S¼1

5
� 3

 !" #

On the basis of the qualitative assessment of 34 studies, we excluded two studies to finally select 32
studies for the review. Two studies were excluded because their quality scored was less than 1.5
according to the criteria in Table IV. The selected studies are listed with title, authors, quality score
and citation count in the Appendix. Please note that quality ranking is an internal metric only that
helps us to choose most related studies and does not reflect any comparison or objective
interpretation of selected studies.

3.5. Data extraction and synthesis

In order to record the extracted data from the selected studies, we followed [24, 39] and designed a
structured format as presented in Table V. The format in Table V records the data as generic and
documentation specific items and comparison attributes for a collective and comparative analysis of
research to answer RQ1–RQ3. The data were extracted by locating evidence for each item in the
selected studies. Self-explanatory comparison attributes (CA1–CA12 in Table V) are the smallest

Table III. Summary of the study selection process (without qualitative assessment).

Step I. Screening
Is the study in English language? Yes No
Is the study a scientific peer-reviewed
published research
(no white papers or technical reports)?

Yes No

Is the study not a secondary study? Yes No
Is the study not a book or a book chapter? Yes No
If [YES] to all four criteria, then go to
Step II; otherwise, exclude study

Step II. Initial selection
RQ1, RQ2 Does the study presents

a method, technique or a
solution for application of
evolution reuse knowledge?

RQ2, RQ3 Does the study presents
a method, technique
or a solution for an
empirical acquisition
of evolution reuse knowledge?

If [YES], go to Step III;
otherwise, exclude study

If [YES], go to Step III;
otherwise, exclude study

Step III. Final selection
RQ1, RQ2 A. Are evaluations for

application of
reuse knowledge and
architecture evolution
are provided?

RQ1, RQ2 A. Are the source(s) of
reuse knowledge
and its discovery/
acquisition presented?

B. Are formalism
and tool support for
reuse knowledge
application provided?

B. Are the details
about the experimental
setup of reuse knowledge
discovery/acquisition provided?

If [YES] to both A and B, then include study;
otherwise, exclude study

CLASSIFICATION AND COMPARISON OF AERK 663

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



unit of data that we extracted from the literature for comparison purposes and provided for external
evaluation. These attributes provide the base for follow-up syntheses, that is, mainly classification
and comparison of claims and supporting evidence of evolution reuse detailed in the paper. Instead
of reading through detailed results (Sections 4, 5 and 6), external reviewers examined a summary of
results provided in [34] to evaluate the protocol and suggestions about documentation of SLR results.

3.3. Classifying the results

To discuss the results, first, we need to provide a conceptual framework to systematically present the
existing literature and to identify the required steps that enable ACSE. With the help of a framework,
we can organise the reviewed studies in terms of framework processes and activities that (a process-
centric view to) support application and acquisition of evolution reuse knowledge. Section 3.3.1
highlights some established models and frameworks for architectural evolution and adaptation, whereas
Section 3.3.2 presents the proposed framework to consolidate the existing research on application and
acquisition of AERK.

3.3.1. Models and frameworks for architectural migration and evolution. We introduce some
established reference models and frameworks based on their impact and relevance for design-time
evolution [3] and runtime adaptations of software architectures [7]. The selected models and
frameworks are acknowledged through high citations in the research community, provide a detailed
documentation and cover a process-based view for design-time evolution as well runtime adaptations
detailed as follows:

• Horseshoe model for architectural extraction and transformation

The horseshoe model [41] (proposed by Software Engineering Institute in 1999) represents one of
the classical approaches for architecture-based reverse and forward engineering. The horseshoe
model follows a three-step process including architectural extraction, architectural transformation
and architecture-based development. In recent years, a number of solutions have extended the
classical horseshoe model that includes (i) SOA Migration Horseshoe [42], (ii) SOA Migration

Table IV. Summary of quality assessment checklist.

General items for quality assessment (G)

Score for general items ∑5
G¼1 = Yes = 1 Partially = 0.5 No= 0

G1 Are problem definition and motivation of
the study clearly presented?

G2 Is the research environment in which the
study was carried out properly explained?

G3 Are research methodology and its
organisation clearly stated?

G4 Are the contributions of the in-line
with presented results?

G5 Are the insights and lessons learnt
from the study explicitly mentioned?

Specific items for quality assessment (S)

Score for specific items ∑5
G¼1 = Yes = 1 Partially = 0.5 No= 0

S1 Is the research clearly focused on application or
acquisition of evolution reuse?

S2 Are the details about related research
clearly addressing evolution reuse in architectures?

S3 Is the research validation clearly illustrates
application or acquisition of evolution reuse?

S4 Are the results clearly validated in a real
(industrial case study) evaluation context?

S5 Are limitations and future implications
for architecture evolution reuse clearly positioned?

664 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



Framework [43] and (iii) Architecture Driven Modernisation (ADM) model [44]. The SOA Migration
Horseshoe [42] and SOA Migration Framework [43] support migration of a legacy software to service-
oriented architectures. In contrast, the ADM [44] model is a more generic model that supports a
process-based approach to architecture-based evolution. In Section 3.3.2, we further explain how
ADM model helps us to develop the proposed framework to support reuse in ACSE.

• IBM autonomic framework

The International Business Machine (IBM’s) autonomic framework provides a number of solutions to
support autonomic computing [15, 16] by means of dynamic and self-adaptive architectures [6, 11]. Two
of the well-established autonomic frameworks are software tuning panels for autonomic control (STAC)
[45] and monitor, analyse, plan, execute knowledge (MAPE-K) frameworks [15]. STAC aims to
automatically re-architecture the (system source code) to facilitate autonomic adaptation of a software. In
contrast, the MAPE-K model supports application of adaptation knowledge to execute dynamic adaptation
of a software and ultimately its underlying architecture. In Section 3.3.2, we further explain how

Table V. Extracted data and comparison attributes.

CLASSIFICATION AND COMPARISON OF AERK 665

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



MAPE-K framework helps us to identify and develop the framework to highlight research on runtime
adaptations of architectures.

3.3.2. A framework to classify research on acquisition and application of evolution reuse knowl-
edge. We derive our proposed framework from two well-known reference models: the Object
Management Group (OMG’s) ADM method [44] and the IBM MAPE-K reference model [15],
presented in Figure 4. ADM represents architectural modernisation and evolution at design-time [13, 22],
whereas MAPE-K loop supports runtime adaptations [12, 28]. Using established reference models and
practices validates the adequacy of our classification and comparison framework. In the following, we
briefly present the details for the ADM and MAPE-K models as a basis for our proposed framework to
organise research on reuse knowledge. Additional details about the proposed framework provided in [46].

The ADM horseshoe model consists of three architectural views: business architecture, application
and data architecture and technical architecture (Figure 4A). The existing system with a three-layer
architecture is on left, whereas the target system with evolved architectural view on right. The
transformation from legacy to target represents the path of evolution.

Therefore, the ADM method involves transformation of the existing legacy architectures in an
incremental fashion to the target architectures. The evolution involves the transformation of legacy
(procedural) code to new (object-oriented) code. In summary, transformation at any architectural
layer relies on three elements:

• Knowledge discovery of the legacy system,
• Definition of target architecture and
• Transformation steps for source to target evolution.

The MAPE-K reference framework describes dynamic adaptation process of software. The MAPE-
K reference model in Figure 4B is used to communicate the architectural aspects of autonomic systems.
Although MAPE-K does not entirely focus on architecture of dynamic software, it provides a reference
model to monitor, analyse, plan and execute runtime adaptation of architectures [6, 12, 28]. The
MAPE-K reference model relies on the following:

• Monitoring monitors the system and measure attributes related to architectural configurations and
properties for possible runtime reconfigurations of architecture.

• Analysing analyses the measured runtime data and detects violations of the requirements.
• Planning generates a change plan for architectural reconfigurations.
• Execute enacts structural and behavioural changes to the running system based on the actions
recommended by the plan function.

• Knowledge includes shared data such as topology information, metrics and policies for dynamic
adaptation.

After discussing the ADM and MAPE-K reference frameworks, we propose an integrated framework
called REVOLVE presented in Figure 5. The reviewed studies are organised (in Section 4) according to
the methods and techniques for evolution history analysis (i.e. change mining for reuse knowledge

Figure 4. Reference models for knowledge in architecture evolution and adaptation.

666 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



acquisition) and change implementation (i.e. change execution for reuse knowledge application), which
form the two core activities of REVOLVE in Figure 5, each covered by ADM and MAPE-K separately.
Additional technical details about the proposed REVOLVE framework in terms of framework activities
and framework process are provided in [46].

The concepts and methods used in ADM and MAPE-K reference models can be reused or possibly
extended to develop the processes and activities in REVOLVE framework. Method engineering [47]
enables us to reuse the existing concepts from existing methods (frameworks, models or solutions)
to develop new methods by reusing existing methodologies with reduced efforts and time to derive
or develop new solutions. More specifically, during architecture change mining process in the
REVOLVE framework, we exploit the knowledge discovery concepts from ADM [44] model for
acquisition of evolutionary knowledge from architecture evolution histories. Moreover, the
discovered knowledge can be shared and reused as in the MAPE-K framework [15] to analyse, plan
and execute architectural adaptation.

The REVOLVE framework in Figure 5 along with the presentation of its processes, activities and
their corresponding studies in Table VI is beneficial for ACSE researchers and practitioners. The
framework assists ACSE researchers with quick identification of relevant studies. A systematic
presentation of state of research provides a foundational body of knowledge to develop theory and

Figure 5. REVOLVE—an integrated view of architecture change mining and change execution.

Table VI. Processes, activities and repositories of framework to represent reviewed studies.

Process Activity Repository Research evidences

1. Architecture
change mining

Identify evolution
reuse knowledge

Evolution history [S7, S9, S10, S17, S29, S31]

Share evolution
reuse knowledge

Knowledge collection [S8, S9, S10, S17, S31]

Analyse evolution
reuse knowledge

Knowledge collection [S9, S10, S17, S29]

2. Architecture
change execution

Reuse evolution
knowledge

Knowledge collection [S1, S2, S3, S4, S5, S6, S8,
S11, S12, S13, S14, S15, S16,
S18, S19, S20, S21, S22, S23,
S24, S25, S26, S27, S28, 30, S32]

Capture evolution
reuse knowledge

Evolution history [S7, S29, S31]

CLASSIFICATION AND COMPARISON OF AERK 667

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



solutions, analyse research implications and to establish future dimensions. In addition, the framework
can be beneficial for practitioners interested in understanding the methods and solutions with
formalism and tool support to model, analyse, and implement evolution reuse in software
architectures. The framework provides a process-centric view of a collection of existing solutions for
acquisition and application of reuse knowledge to evolve software architectures.

We conceptualised the logical relationship between individual research elements as a framework in
Figure 5. It defines an iterative mechanism to continuously discover reuse knowledge that can be
shared and reused to guide ACSE in a semi-automated way. The framework provides an aggregated
representation of existing literature. In Section 4, we further discuss the framework processes and
activities from Figure 5. The results highlight a lack of solutions that integrate the concept of
empirical acquisition of reuse knowledge to guide ACSE with reuse knowledge application. Beyond
this review, this framework can assist researchers and practitioners to objectively identify and
interpret potential and limitations in state-of-the-art research [34].

4. RESULTS CATEGORISATION AND REUSE KNOWLEDGE TAXONOMY

Our discussion of results uses the REVOLVE framework for reuse knowledge from Section 3.3.
Central to this framework is a set of processes, activities and repositories (in Table VI, which
complements Figure 6). The processes encompass architecture change mining as a complementary
and integrated phase to change execution—a concept partially realised in only one of the reviewed
studies [S7].§ We also present the relative distribution of the five activities of the REVOLVE
framework. Figure 6 highlights a significant portion (53%) of studies focussing on methods and
techniques for application of evolution reuse knowledge. On the other hand, only 9% of studies
focus on analysing reuse knowledge. Please note that some of the studies cover different activities
of the REVOLVE framework. For example, studies [S9, S10, S17, S13] both represent research on
identifying and sharing reuse knowledge. Similarly, studies [S7, S29, S31] represent capturing and
identifying reuse knowledge.

Table VI summarises the involved processes, their corresponding activities, associated repositories
and identified studies—concrete research evidence of the claims. In Figure 5, it is vital to highlight the
complementary role of tool support and formalism to support reuse in ACSE. In recent years, there is a
growing need for tool and automation support to model and execute architecture evolution in a (semi-)
automated way [48, 13].

For example, in Figure 5, to support automation of the activity for reuse knowledge identification,
the solution must provide a tool or a prototype to analyse architecture evolution histories that
contain evolutionary data of significant size and complexity [S29, S31]. A lack of tool support
results in an increase in the complexity of architecture evolution process, process scalability
(changes from small to large systems) and error proneness in change implementation.

Figure 6. Percentage distribution of studies based on REVOLVE framework activities.

§The notation [Sn] (n is a number) represents a reference to studies included in the SLR, which are listed in the Appendix.
The notation also maintains a distinction between the bibliography and list of selected for SLR.

668 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



4.1. A taxonomical classification of architecture evolution reuse knowledge

The taxonomy defines a systematic identification, naming and organisation of reuse approaches into
groups that share, overlap or are distinguished by various attributes. A taxonomical classification
provides an insight into the commonality or distinction of research themes as denoted in Figure 7.
We explicitly discuss three distinct classification types of reuse knowledge research as generic and
thematic. A solution-specific classification is introduced in Sections 5 and 6 when we provide a
comparison of existing research.

A. Generic classification is derived on the basis of a review of studies and our experience with pre-
vious SLRs [9, 26] that helped us to refine classification attributes based on studies for analysing
the role of reuse knowledge in ACSE. In Figure 7, the literature is classified into methods and
techniques that enables change reuse in architectural evolution (26 studies, i.e. 81%) and empir-
ical acquisition or discovery (six studies, i.e. 19%) of reuse knowledge and expertise by
exploiting evolution histories. Dotted rectangles in Figure 7 represent the comparison attributes
extracted by full-text investigation of the selected studies, as explained in Table V—data extrac-
tion and synthesis.

B. Thematic classification provides details about the predominant research themes based on time and
type of evolution. In the following, we focus on taxonomy of identified research themes based on a
mapping of activities in REVOLVE framework to identified research themes in Figure 7.

1. Evolution styles [S1, S5, S8, S11, S13, S21, S23] are inspired by a conventional concept of
architecture styles that represent a reusable vocabulary of architectural elements (component or
connectors) and a set of constraints on them to express a style [49]. Evolution styles focus on
defining, classifying, representing and reusing frequent evolution plans [S1, S11] and
architecture change expertise [S5, S8, S13, S21]. Style-based approaches represent 22% of the
reviewed studies addressing corrective and perfective changes implemented as design-time
evolution. In the style-driven approaches, we observed a trend towards structural evolution-off-
the-shelf [S13, S21] and evolution planning [S1, S8] with time, cost and risk analysis to derive
evolution plans.

2. Change patterns [S2, S6, S12, S14, S15, S16, S17, S20, S21, S27, S29, S30, S24] exploit the same
idea as design patterns [50] that aim at providing a generic, repeatable solution to recurring design
problems. In contrast, change patterns follow reuse-driven methods and techniques to offer a ge-
neric solution to frequent evolution problems. Pattern-based solutions accounted for 41% of total
reviewed literature, focusing on corrective, adaptive and perfective changes supporting both
design-time and runtime evolution. Adaptation and reconfiguration patterns [S16, S19] are the

Figure 7. A taxonomical classification of architecture evolution reuse knowledge.

CLASSIFICATION AND COMPARISON OF AERK 669

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



runtime evolution solutions. The solutions also address the co-evolution of processes [S30], re-
quirements [S2] and underlying architecture models. In addition, a number of studies propose
language-based formalism [S6, S12, S14, S15] to enable reuse in architectural migration and in-
tegration. Unlike styles that only use model-driven evolution, pattern-based changes are
expressed as different techniques using model transformations [S2, S30], state transitions [S16,
S19] and change operationalisation [S27].

3. Adaptation strategies and policies [S3, S4, S25, S26, S28, S32] focus on reuse and customisation
of adaptation policies [S3, S4], reusable and knowledge-driven strategies [S25, S26, S32] and
aspects [S28] to support the reuse of policies in self-adaptive architectures. With a recent empha-
sis on autonomic computing, and growing demand for highly available architectures, reuse-driven
strategies aim to support knowledge-driven reuse at runtime. These accounted for 19% of
reviewed literature with a focus on adaptive change. Runtime reconfigurations of architectures
are also highlighted in the MAPE-K reference model [5, S4].

4. Pattern discovery [S19, S29] represents methods and techniques for post-mortem analysis of
evolution history (change logs [S29] and version control [S19]) to discover recurring changes
as pattern instances. Pattern-based knowledge acquisition/discovery mechanisms represented a
6% of the total study population.

5. Architecture configuration analysis [S7, S31] exploits configuration management techniques to
analyse architectural configurations [S7]. It focuses on mining architecture revision histories to
capture evolution and variability in order to represent crosscutting relationships among evolving
architecture elements. This is particularly beneficial to classify changes as atomic and composite
types and allows determining the extent to which architectural change can be parallelised
(commutative and dependent changes) [S31]. Architecture configuration analysis represented
6% of total study population.

6. Evolution and maintenance prediction [S9, S10] focuses on prediction of maintenance and
evolution efforts for software architectures. We included two studies in which [S9] represents a
set of change scenarios for predicting perfective and adaptive evolution tasks in architectures.
In [S10], on the basis of an architectural evaluation and maintenance prediction, the required
maintenance and evolution effort for a software system can be estimated [S10].

4.2. A mapping of identified research themes to activities in REVOLVE framework

Although the REVOLVE framework has provided a broader categorisation of research, some
observations and interpretation of the results suggested an explicit mapping among the identified
research themes and the activities of REVOLVE framework. Figure 8 provides a mapping of the
framework’s activities (cf. Figure 6) and the identified research themes (cf. Figure 7) to classify and
compare application (Section 5) and acquisition (Section 6) of AERK. The circles on the right axis
in Figure 8 represent mapping between framework activities and identified research themes for a
study reference (e.g. ‘8’ represents ‘S8’ in the Appendix list of selected studies). Alternatively, the
circles on the left axis represent publication map (providing a temporal distribution, 1999 to 2012)
for framework activities and identified research themes.

In this section, an iterative mapping process has been employed to present the identified research
themes and to provide an answer to the first research question (RQ1). The map as bubble plot is
depicted in Figure 8 to enable a mapping of research themes to activities of REVOLVE based on the
following:

• Five activities of the REVOLVE framework (cf. Figure 6) along the horizontal axis.
• Six identified research themes (cf. Figure 7) along the vertical axis.

For example, in Figure 8, the bubble at the right axis and at the intersection of ‘research
theme’ change pattern (CP) and ‘framework activity’ knowledge reuse (KR) represents the
studies [S2, S6, S12, S14, S15, S16, S19, 20, 22, 27, 30] that support change patterns to apply reuse
knowledge in ACSE. Alternatively, the bubble at the left axis that intersects ‘CP’ and 2012 represents
the studies [2, 17, 48] published in 2012 and focus on change patterns. The relative size of the bubble
indicates the total number of studies (bigger the size, more studies a theme represents).

670 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



4.3. Definition of architecture evolution reuse knowledge

Research Question RQ1 addresses how AERK is defined and expressed in the context of ACSE and is
answered in this section. After we have defined AERK here, we answer RQ2 (application of reuse
knowledge in Section 5) and RQ3 (acquisition of reuse knowledge in Section 6).

In the reviewed studies, we observed that interpreting and assessing individual studies as isolated
solutions to a specific research problem lacks consistency in representing what exactly defines AERK
and how it is classified and expressed in literature. This could be a direct consequence of the
respective author views on how to achieve reuse in a solution-specific context. For example, the
concept of evolution style has distinct and diverse interpretations as Garlan et al. who define
evolutionary plans [S1, S11] following a style, whereas Tamzalit et al. exploit styles as evolution
patterns [S13, S21, S23]. Moreover, Cuesta et al. express evolution styles as an integrated part of
architectural knowledge [S8] that drives architecture evolution. In addition, Yskout et al. utilised
change patterns for architecture co-evolution [S2], Côté et al. for pattern-to-pattern integration [S27],
Gomma et al. for runtime adaptations [S16, S19] and Zdun et al. exploited language-based formalism
for evolution and integration patterns [S6, S12, S15]. This reflects a lack of consideration of what
existing methods could be leveraged, extended or refined to achieve reuse that drives ACSE [3, 9, 11].

Evolution in the reviewed literature refers to design-time changes [S1, S2, S6, S13, S20] or runtime
adaptations [S3, S4, S16, S25] as perfections, reconfigurations or corrections in architectural structure and
behaviour [10]. We observed that the term evolution (also including evolving, evolve and co-evolution)
has six variations as change (also including changing): reconfiguration, adaptation, restructuring,
update, transformation and migration. The reasons for distinctive terminologies are as follows:

• Type of architecture change refers to corrective, adaptive (also reconfigurative [S16, S19]) and
perfective (also updative [S23], restructurive [S21], transformative [S5] and migrative [S6]). With
a more conventional interpretation of ISO/IEC 14764 and architectural change characterisation
[10], we did not find any study to support preventive changes. This indicates that existing work
lacks support for reuse in pre-emptive and pro-active evolution of architectures [11, 15].

• Time Constraint of Change refers to evolution, change, update and restructure for design-time evo-
lution [3], whereas reconfiguration and adaptation refer to runtime evolution [S3, 6]. In Figure 9,
there is a clear inclination (53% of total studies) towards style-driven approaches, evolutionary plans
and model co-evolution for design-time (also known as static evolution). In contrast, runtime (also
known as dynamic evolution) comprises of 28% of studies focussing on self-adaptation and runtime

Figure 8. Study mapping over the range of research themes, REVOLVE activities and time period.

CLASSIFICATION AND COMPARISON OF AERK 671

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



reconfigurations reflected by studies published in 2004 and 2009. However, with a growing impor-
tance of autonomic computing [15] and the context of high-availability architectures [S3, S4, S16,
S19, S25, S26, S32], there is a need to realise the potential of reuse at runtime reflected by the
MAPE-K model.

This suggests that evolution is an unclear term in the context of types and time of architectural changes
making it hard to implicitly derive a unified or aggregated definition for evolution reuse knowledge. In the
study titles, the keyword ‘evolution’ occurs 10 times, ‘change’ five times and ‘adaptation’ six times (i.e.
approximately 34%, 15% and 19%, respectively). Because of a characterisation of architectural change
types [10] and times of evolution [25], a clear consensus or unified definition is not possible. In fact, it
would only limit the acceptance of the concept with a narrow view based on available evidence.
However, an aggregated definition of evolution reuse knowledge is important to classify and compare
the existing research. We further discuss the types and time or architectural changes in Section 5, while
answering RQ2—a comparison of method for application of reuse knowledge.

Reuse in the reviewed studies is expressed as evolution styles (seven studies, 22%), change patterns
(13 studies, 40%) and adaptation strategies and policies (six studies, 19%) in Figure 7. An interesting
observation is that although they are novel as methodical approaches, both evolution styles and change
patterns conceptually extend the more conventional concepts of architecture styles [49] and design
patterns [50] to represent evolution expertise. Evolution styles [S1, S13, S21] primarily aims at
defining, classifying, representing and reusing frequent corrective and perfective changes as a design-
time activity. In contrast, change patterns [S2, S16, S19] promote the ‘build-once, use-often’
philosophy to offer a generic, repeatable solution to frequent adaptive, corrective and perfective
changes as design-time and runtime-time evolution. The concept of reusable adaptation strategies and
policies is only represented in the context of reuse plans [S3, S4, S25] and aspects [S28] for self-
adaptive architectures.

Once we have identified the relative representation and expression of architecture evolution and
evolution reuse, we can provide a consolidated view of AERK in the context of ACSE. We provide
an aggregated definition of AERK as

A collection and integrated representation (problem-solution mapping) of empirically discovered
generic and repeatable change implementation expertise that can be shared and reused as a solu-
tion to frequent (architecture) evolution problems.

In the existing literature, the generic and repetitive solutions are predominantly expressed as evolution
styles and patterns. In addition, frequent evolution operations represent addition, removal or modification
of architecture elements as design-time change or runtime adaptation. Some studies [S1, S11, S13, S20]
implicitly denoted reuse as a first-class abstraction—by operationalising and parameterising changes—to
resolve recurring evolution tasks. In summary, to answer RQ1, we provided a definition of a generic and
thematic classification scheme and organised research about reuse knowledge in ACSE along this
scheme. A classification, definition and representation of reuse knowledge are missing in the existing
literature to reflect a consolidated impact of research that has progressed for more than a decade
(1999–2012). This classification is not meant to be exhaustive and might need to be adapted to

Figure 9. Study distribution—time constraints of architectural evolution reuse.

672 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



consider future developments. Figures 7 and 8, however, provide a foundation for a more fine-granular
classification and comparison of studies as discussed in Section 5 in the succeeding text.

5. APPLICATION OF ARCHITECTURE EVOLUTION REUSE KNOWLEDGE

On the basis of the generic and thematic classification in Section 4, to answer to RQ2, we classify and
compare the existing methods and techniques that support application of evolution reuse knowledge
based on the generic and thematic classification in Section 4. A systematic identification and
comparison of existing research are particularly beneficial to gain an insight into aspects of problem-
solution mapping and architecture evolution characterisation or to assess formalisms and tool support.
The comparative analysis is presented as a number of structured tables (Tables VII and VIII).
Additional details of synthesised data are available in [34]. In this section, a thematic coding process
has been employed to identify the comparison attributes (cf. Table V) and to provide an answer to the
RQ2. More specifically, what are the existing methods and techniques that enable application of reuse
knowledge to support architecture evolution is answered in Section 5.1 and how to compare the
existing techniques to analyse a collective impact of existing research that enhance evolution reuse is
answered in Section 5.2.

5.1. Methods and techniques for application of evolution reuse knowledge

On the basis of the classification of research themes, we focus on answering RQ2 with Table VII. It has
three columns associated with the following aspects:

• Problem view—Why there is a need for reuse knowledge to address recurring evolution problems?
• Solution view—How do solutions provide methods and techniques to address these research
problems?

• Comparison view—What are the trends, type, means and time of evolution, formalism and tool
support, architectural description notations and evaluation methods? See Table VIII for details.

For each reviewed study, the problem and solution views are captured in Table V (with ID 5, 6 in
generic and documentation specific items) and represented in Table VII. Whereas the comparison
view is represented with a set of comparison attributes in Table V. Note that because of the
classification scheme (styles versus patterns versus strategies and policies), we denote adaptation
patterns [S16, S19] as a sub-theme of change patterns [S2, S17]. For example, Table VII highlights
change patterns as a solution to address the problems of continuous runtime adaptations of
software architectures. More specifically, the studies [S16, S19] propose adaptation patterns to
support reuse of architectural configurations and adaptations. Furthermore, Table VII serves as a
catalogue for problem-solution map along with the available evidence to support application of
reuse knowledge.

5.2. Comparison of methods and techniques for application of evolution reuse knowledge

In order to go beyond the analysis of individual studies, a holistic comparison of existing research
based on comparison attributes including their objective and concrete evidence is provided in
Table VIII. We compare available methods and techniques based on comparison attributes CA1 to
CA12 (cf. Table V). The comparison of research methodologies to support the application of
evolution reuse knowledge is based on eight distinct comparison attributes CA1–CA6, CA11 and
CA12 from the full list (remaining ones will be covered in Section 6).

CA1: What are the identified research trends for reuse in architecture-based evolution and adaptation?

Objective: The aim is to identify available solutions that support reuse knowledge for ACSE. In
addition, an overview of research builds the foundation for a comparative analysis of individual
methodologies as discussed in the succeeding text and mapped out later on in Figure 10. Each

CLASSIFICATION AND COMPARISON OF AERK 673

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



T
ab
le

V
II
.
M
et
ho
ds

an
d
te
ch
ni
qu
es

to
en
ab
le

ap
pl
ic
at
io
n
of

ev
ol
ut
io
n
re
us
e
kn
ow

le
dg
e.

R
es
ea
rc
h
pr
ob
le
m

S
ol
ut
io
n
(m

et
ho
d
an
d
te
ch
ni
qu
es
)

S
tu
di
es

E
vo
lu
tio

n
st
yl
es

H
ow

to
o
en
ab
le

ev
ol
ut
io
n
pl
an
ni
ng

an
d
tr
ad
e-
of
f
an
al
ys
is
?

E
vo
lu
ti
on

pa
th
s—

to
pl
an

an
d
ap
pl
y
re
us
ab
le

ev
ol
ut
io
n
st
ra
te
gi
es
.

[S
1,

11
]

H
ow

to
ac
hi
ev
e
re
cu
rr
in
g
st
ru
ct
ur
al

ev
ol
ut
io
n
of

ar
ch
ite
ct
ur
e?

E
vo
lu
ti
on

sh
el
f—

lib
ra
ry

of
re
us
ab
le

an
d
re
lia
bl
e
ev
ol
ut
io
n
ex
pe
rt
is
e.

[S
13
]

H
ow

to
en
ha
nc
e
ch
an
ge

re
us
ab
ili
ty

an
d
ar
ch
ite
ct
ur
e
co
ns
is
te
nc
y?

U
pd

at
e
st
yl
es
—
re
us
e
ex
pe
rt
is
e
fo
r
re
st
ru
ct
ur
in
g
an
d
up
da
tin

g
ar
ch
ite
ct
ur
es
.

[S
21
,S

23
]

H
ow

to
ex
pl
oi
t
ar
ch
ite
ct
ur
e
kn
ow

le
dg
e
as

an
as
se
t
fo
r

ar
ch
ite
ct
ur
e
ev
ol
ut
io
n?

A
K
-d
ri
ve
n
ev
ol
ut
io
n
st
yl
es
—
us
e
of

A
K

as
ev
ol
ut
io
n
st
yl
es

to
co
ns
tr
ai
n

an
d
tr
ig
ge
r
ev
ol
ut
io
n

[S
8]

H
ow

to
re
us
e
in

tr
an
sf
or
m
at
io
n
an
d
re
fi
ne
m
en
t
of

co
m
po
ne
nt
-m

od
el

to
se
rv
ic
e-
dr
iv
en

ar
ch
ite
ct
ur
es
?

St
yl
e-
ba

se
d
tr
an

sf
or
m
at
io
ns
—
to

ac
hi
ev
e
m
ig
ra
tio

n
fr
om

co
m
po
ne
nt
-b
as
ed

ar
ch
ite
ct
ur
e
to

bu
si
ne
ss
-d
ri
ve
n
se
rv
ic
e
ar
ch
ite
ct
ur
e.

[S
5]

C
ha
ng
e
pa
tte
rn
s

H
ow

to
co
-e
vo
lv
e
pr
oc
es
s,
re
qu
ir
em

en
ts
w
ith

ar
ch
ite
ct
ur
es
?

C
o-
ev
ol
vi
ng

m
od

el
s—

re
us
ab
le

pa
tte
rn
s
to

en
ab
le

co
-e
vo
lu
tio

n
in

pr
oc
es
s
an
d
re
qu
ir
em

en
ts
to

th
ei
r
un
de
rl
yi
ng

ar
ch
ite
ct
ur
es
.

[S
2,

S
30
]

H
ow

to
en
ab
le

a
co
nt
in
uo
us

ru
nt
im

e
ad
ap
ta
tio

n
of

ar
ch
ite
ct
ur
es
?

A
da

pt
at
io
n
pa

tt
er
ns
—

re
us
e@

ru
nt
im

e
to

su
pp
or
t
ar
ch
ite
ct
ur
al

re
co
nfi

gu
ra
tio

ns
an
d
se
lf
-a
da
pt
at
io
ns
.

[S
16
,S

19
]

H
ow

to
ex
pl
oi
t
th
e
re
us
e
of

de
si
gn

m
et
ho
ds
,d

oc
um

en
ts
an
d

pr
oc
es
s
fo
r
ar
ch
ite
ct
ur
e
m
ig
ra
tio

n
an
d
ev
ol
ut
io
n?

P
at
te
rn
-t
o-
pa

tt
er
n
ev
ol
ut
io
n
an

d
in
te
gr
at
io
n—

ev
ol
ut
io
n
op
er
at
or
s

an
d
de
si
gn

do
cu
m
en
ts
to

ta
ck
le

re
qu
ir
em

en
t
an
d
ar
ch
ite
ct
ur
e

ch
an
ge
s
[S
27
].
M
od
el
-b
as
ed

m
ig
ra
tio

n
an
d
in
te
gr
at
io
n
of

pr
oc
es
s-
ce
nt
ri
c
ar
ch
ite
ct
ur
e
m
od
el
s
[S
12
,S

15
].

[S
27
,S

12
,
S
15
]

H
ow

to
en
ab
le

an
in
cr
em

en
ta
l
m
ig
ra
tio

n
of

le
ga
cy

ar
ch
ite
ct
ur
e
by

m
ea
ns

of
re
us
ab
le

de
ci
si
on

m
od
el
s?

P
at
te
rn

la
ng

ua
ge
-b
as
ed

fo
rm

al
is
m
—

to
fa
ci
lit
at
e
a

pi
ec
em

ea
l
m
ig
ra
tio

n
of

ar
ch
ite
ct
ur
e
m
od
el
s.

[S
6,

S
14
]

H
ow

to
ef
fe
ct
iv
el
y
m
an
ag
e
ev
ol
ut
io
n
at

di
ff
er
en
t
ar
ch
ite
ct
ur
al

ab
st
ra
ct
io
ns
?

E
vo
lu
ti
on

pa
tt
er
ns

an
d
ru
le
s—

to
m
od
el
,
an
al
ys
e
an
d

ex
ec
ut
e
ar
ch
ite
ct
ur
al

tr
an
sf
or
m
at
io
ns

at
di
ff
er
en
t
ab
st
ra
ct
io
n
le
ve
ls
.

[S
20
,S

22
]

A
da
pt
at
io
n
st
ra
te
gi
es

an
d
po
lic
ie
s

H
ow

to
pr
ov
id
e
m
ec
ha
ni
sm

s
fo
r
ar
ch
ite
ct
ur
e
to

ad
ap
ta
tr
un
tim

e
in

or
de
r
to

ac
co
m
m
od
at
e
va
ry
in
g
re
so
ur
ce
s,
sy
st
em

er
ro
rs

an
d

ch
an
gi
ng

re
qu
ir
em

en
ts
?

St
ra
te
gi
es

fo
r
se
lf
-a
da

pt
at
io
n—

su
pp
or
te
d
w
ith

st
yl
is
ed

ar
ch
ite
ct
ur
al
de
si
gn

m
od
el
s

fo
ra
ut
om

at
ic
al
ly

m
on
ito

ri
ng

sy
st
em

be
ha
vi
or

fa
lli
ng

ou
ts
id
e
of

ac
ce
pt
ab
le
ra
ng
es
,

an
d
th
en

a
hi
gh
-l
ev
el

re
pa
ir
st
ra
te
gy

is
se
le
ct
ed
.

[S
3,

S
4]

H
ow

to
ut
ili
se

re
us
ab
le

as
pe
ct
s
to

de
ve
lo
p
se
lf
-a
da
pt
iv
e

ar
ch
ite
ct
ur
es
?

R
eu
sa
bl
e
ad

ap
ta
ti
on

as
pe
ct
s—

to
re
us
ab
le

as
pe
ct
s
an
d
po
lic
ie
s
to

de
ve
lo
p
se
lf
-a
da
pt
iv
e
ar
ch
ite
ct
ur
es
.

[S
28
]

H
ow

to
ef
fi
ci
en
tly

co
ns
tr
uc
t
sy
st
em

gl
ob
al

ad
ap
ta
tio

n
be
ha
vi
ou
r

ac
co
rd
in
g
to

th
e
dy
na
m
ic

ad
ap
ta
tio

n
re
qu
ir
em

en
ts
?

C
om

po
sa
bl
e
ad

ap
ta
ti
on

pl
an

ni
ng

th
at

pr
ov
id
es

a
sy
st
em

at
ic

co
or
di
na
tio

n
m
ec
ha
ni
sm

to
ac
hi
ev
e

ef
fe
ct
iv
e

an
d

co
rr
ec
t

co
m
po
si
tio

n.
It

al
so

al
lo
w
s

pr
ot
ot
yp
in
g,

te
st
in
g,

ev
al
ua
tio

n
an
d
in
je
ct
io
n
of

ne
w

ad
ap
ta
tio

n
be
ha
vi
ou
rs

fo
r

co
m
po
ne
nt
-b
as
ed

ad
ap
ta
bl
e
ar
ch
ite
ct
ur
es
.

[S
18
]

H
ow

to
sp
ec
if
yi
ng

an
d
en
ac
t
ar
ch
ite
ct
ur
al

ad
ap
ta
tio

n
po
lic
ie
s
th
at

dr
iv
e
se
lf
-a
da
pt
iv
e
be
ha
vi
or
?

K
no

w
le
dg

e-
ba

se
d
ad

ap
ta
ti
on

m
an

ag
em

en
t—

fo
r
re
as
on
in
g
an
d
de
ci
si
on
-m

ak
in
g

ab
ou
tt
he

tim
in
g
an
d
na
tu
re

of
sp
ec
ifi
c
ad
ap
ta
tio

ns
gr
ou
nd
ed

on
kn
ow

le
dg
e-
ba
se
d

ad
ap
ta
tio

n
po
lic
ie
s.

[S
25
,S

26
,
S
32
]

A
K
,a
rc
hi
te
ct
ur
al

kn
ow

le
dg
e.

674 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



T
ab
le

V
II
I.
A

ho
lis
tic

co
m
pa
ri
so
n
of

m
et
ho
ds

an
d
te
ch
ni
qu
es

to
su
pp
or
t
ap
pl
ic
at
io
n
of

re
us
e
kn
ow

le
dg
e.

M
et
ho
ds
/te
ch
ni
qu
es

C
om

pa
ri
so
n
at
tr
ib
ut
es

R
es
ea
rc
h

tr
en
ds

(C
A
1)

T
yp
e
of

ch
an
ge

(C
A
2)

T
im

e
of

ch
an
ge

(C
A
3)

M
ea
ns

of
ch
an
ge

(C
A
4)

E
vo
lu
tio

n
su
pp
or
t

fo
rm

al
is
m

(C
A
5)

A
rc
hi
te
ct
ur
e

de
sc
ri
pt
io
n

(C
A
6)

T
oo
l
su
pp
or
t

(C
A
11
)

E
va
lu
at
io
n

m
et
ho
d
(C
A
12
)

E
vo
lu
tio

n
st
yl
es

E
vo
lu
tio

n
pa
th
s

[S
1,

S
11
]

E
vo
lu
tio

n
pl
an
s

C
or
re
ct
iv
e

an
d
pe
rf
ec
tiv

e
D
es
ig
n-
tim

e
C
ha
ng
e

op
er
at
io
ns
,

m
od
el

tr
an
sf
or
m
at
io
n+

+

Q
V
T
-b
as
ed

m
od
el

ev
ol
ut
io
n

A
cm

e
A
D
L

an
d
U
M
L

2.
0+

+

A
E
vo
l

C
as
e
st
ud
y

E
vo
lu
tio

n
sh
el
f
[S
13
]

E
vo
lu
tio

n
st
yl
es

C
or
re
ct
iv
e+

+

an
d
pe
rf
ec
tiv

e
D
es
ig
n-
tim

e
M
od
el

tr
an
sf
or
m
at
io
n

Q
V
T
-b
as
ed

m
od
el

ev
ol
ut
io
n+

+

A
cm

e
A
D
L

an
d
U
M
L

2.
0+

+

--
C
as
e
S
tu
dy

U
pd
at
e
st
yl
es

[S
21
,S

23
]

U
pd
at
in
g

st
yl
es

[S
11
],

ar
ch
ite
ct
ur
e

st
yl
e
[S
10
]

C
or
re
ct
iv
e+

+

an
d
pe
rf
ec
tiv

e
D
es
ig
n-
tim

e
M
od
el

tr
an
sf
or
m
at
io
n

G
ra
ph tr
an
sf
or
m
at
io
n

ru
le
s+

+

A
D
L
+
+
an
d

U
M
L
2.
0,

A
G
G

[S
11
]

an
d
U
SE

[S
10
]

C
as
e
st
ud
y

A
K
-d
ri
ve
n

ev
ol
ut
io
n

st
yl
es

[S
8]

A
K
dE

S
C
or
re
ct
iv
e+

+

an
d
pe
rf
ec
tiv

e
R
un
tim

e
M
od
el

t
ra
ns
fo
rm

at
io
n

Q
V
T
-b
as
ed

m
od
el

ev
ol
ut
io
n

A
T
R
IU

M
m
et
am

od
el

A
T
R
IU

M
C
as
e
st
ud
y

S
ty
le
-b
as
ed

tr
an
sf
or
m
at
io
ns

[S
5]

S
ty
le
-b
as
ed

ev
ol
ut
io
n
an
d

re
fi
ne
m
en
t

C
or
re
ct
iv
e+

+

an
d
pe
rf
ec
tiv

e
D
es
ig
n-
tim

e
M
od
el

tr
an
sf
or
m
at
io
n

G
ra
ph

t
ra
ns
fo
rm

at
io
n

ru
le
s

U
M
L
pr
ofi

le
fo
r
S
O
A
,

gr
ap
h
m
od
el

P
os
ei
do
n
an
d

G
T
X
L

C
as
e
st
ud
y

C
ha
ng
e

pa
tte
rn
s

M
od
el

co
-e
vo
lu
tio

n
[S
2,

S
30
]

R
eq
ui
re
m
en
ts

[S
2]
,b

us
in
es
s

pr
oc
es
s
[S
30
]

A
da
pt
iv
e
an
d

co
rr
ec
tiv

e
D
es
ig
n-
tim

e
M
od
el

tr
an
sf
or
m
at
io
n

--
U
M
L
2.
0
[S
2]

an
d
gr
ap
h

m
od
el

[S
15
]

V
IA

T
R
A
[S
2]

--
[S
15
]

In
du
st
ri
al

va
lid

at
io
n
[S
2]

C
as
e
st
ud
y
[S
2]

A
da
pt
at
io
n

pa
tte
rn
s

[S
16
,S

19
]

A
da
pt
at
io
n

st
at
e-
m
ac
hi
ne
s

A
da
pt
iv
e
an
d

pe
rf
ec
tiv

e
R
un
tim

e
R
ec
on
fi
gu
ra
tio

n+
+

op
er
at
io
ns

S
ta
te tr
an
si
tio

n
X
T
E
A
M
,x

A
D
L

an
d
U
M
L
2.
0

R
E
PL

U
S
S
E

[S
6]

an
d

S
A
SS

Y
[S
9]

C
as
e
st
ud
y

P
at
te
rn
-t
o-
pa
tte
rn

ev
ol
ut
io
n

P
at
te
rn
-t
o-
pa
tte
rn

ev
ol
ut
io
n
an
d

in
te
gr
at
io
n

C
or
re
ct
iv
e
an
d

pe
rf
ec
tiv

e+
+

D
es
ig
n-
tim

e
C
ha
ng
e

op
er
at
io
ns

+
+

Ja
ck
so
n’
s

fr
am

ew
or
k

[S
27
]

C
on
te
xt

di
ag
ra
m
,

--
C
as
e
st
ud
y

P
at
te
rn

la
ng
ua
ge
-

ba
se
d
fo
rm

al
is
m

[S
6,

S
12
,
S
15
,S

14
]

P
at
te
rn
-b
as
ed

m
ig
ra
tio

n
[S
6]
,

in
te
gr
at
io
n

[S
12
,S

15
]

an
d
ev
ol
ut
io
n

[S
14
]

C
or
re
ct
iv
e,

pe
rf
ec
tiv

e
an
d

ad
ap
tiv

e

D
es
ig
n-
tim

e
--
[S
6,

S
14
],

M
od
el

tr
an
sf
or
m
at
io
n

[S
12
,S

15
]

--
[6
]
M
od
el
-

dr
iv
en

so
ft
w
ar
e

de
ve
lo
pm

en
t

[S
12
,S

15
]

an
d
R
A
D
M

[S
14
]

ID
L
[6
],
U
M
L

2.
0
an
d
X
M
I

[S
12
,S

15
],

[S
14
]

--
[6
],
M
D
S
D

to
ol

ch
ai
n
[S
12
,S

15
]

an
d
A
rc
hP

ad
[S
14
]

C
as
e
st
ud
y
[1
2,

15
],

m
ig
ra
tio

n
of

do
cu
m
en
t

ar
ch
iv
al

sy
st
em

[S
6]

an
d
in
du
st
ri
al

ca
se

st
ud
y[
S
14
]

(C
on
tin

ue
s)

CLASSIFICATION AND COMPARISON OF AERK 675

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



T
ab
le

V
II
I.
C
on
tin

ue
d

M
et
ho
ds
/te
ch
ni
qu
es

C
om

pa
ri
so
n
at
tr
ib
ut
es

R
es
ea
rc
h

tr
en
ds

(C
A
1)

T
yp
e
of

ch
an
ge

(C
A
2)

T
im

e
of

ch
an
ge

(C
A
3)

M
ea
ns

of
ch
an
ge

(C
A
4)

E
vo
lu
tio

n
su
pp
or
t

fo
rm

al
is
m

(C
A
5)

A
rc
hi
te
ct
ur
e

de
sc
ri
pt
io
n

(C
A
6)

T
oo
l
su
pp
or
t

(C
A
11
)

E
va
lu
at
io
n

m
et
ho
d
(C
A
12
)

E
vo
lu
tio

n
pa
tte
rn
s

an
d
ru
le
s

[S
20
,S

22
]

S
A
E
V

[S
20
],

T
ra
nS

A
T
[S
22
]

C
or
re
ct
iv
e
an
d

pe
rf
ec
tiv

e
D
es
ig
n-
tim

e
C
ha
ng
e
op
er
at
io
n,

ev
ol
ut
io
n
ru
le
s

[S
20
]
an
d
m
od
el

tr
an
sf
or
m
at
io
n

[S
22
]

S
A
E
V
,
E
C
A

[S
20
]
an
d

A
O
S
D

[S
22
]

A
D
L
[2
0]

an
d

A
gr
oU

M
L

[S
22
]

--
[s
20
]
S
af
A
rc
hi
e

[S
22
]

C
as
e
st
ud
y

A
da
pt
at
io
n

st
ra
te
gi
es

an
d
po
lic
ie
s

S
tr
at
eg
ie
s

fo
r
se
lf
-

ad
ap
ta
tio

n
an
d
se
lf
-

re
pa
ir

[S
3,

S
4]

R
ai
nb
ow

fr
am

ew
or
k

[S
3]
,s
ty
le
-

ba
se
d

ad
ap
ta
tio

n
[S
4]

A
da
pt
iv
e,

pe
rf
ec
tiv

e
an
d

co
rr
ec
tiv

e+
+

R
un
tim

e
A
da
pt
at
io
n

op
er
at
or
s
an
d

re
pa
ir
st
ra
te
gi
es

[S
4]

--
A
D
L
[S
3]

+
+
an
d

A
C
M
E
[S
4]

R
ai
nb
ow

an
d

st
itc
h

la
ng
ua
ge

[S
3]

C
as
e
st
ud
y

R
eu
sa
bl
e

an
d
co
m
po
sa
bl
e

ad
ap
ta
tio

n
as
pe
ct
s

[S
28
,S

18
]

A
sp
ec
t-
or
ie
nt
ed

ar
ch
ite
ct
ur
e

[S
28
],

co
m
po
sa
bl
e

ad
ap
ta
tio

n
pl
an
ni
ng

[S
18
]

A
da
pt
iv
e
an
d

co
rr
ec
tiv

e+
+

R
un
tim

e
A
sp
ec
t

ge
ne
ra
tio

n
an
d

w
ea
vi
ng

[S
28
]+
+

C
ae
sa
rJ

A
O
-

pr
og
ra
m
m
in
g

la
ng
ua
ge

[S
28
],
--
[S
18

--
[S
28
],

C
om

po
ne
nt

ar
ch
ite
ct
ur
e

m
od
el

[S
18
]

--
C
as
e
st
ud
y

C
om

po
sa
bl
e

ad
ap
ta
tio

n
pl
an
s
[S
18
]

A
da
pt
at
io
n

po
lic
ie
s
fo
r

se
lf
-a
da
pt
iv
e

be
ha
vi
ou
r

[S
25
,S

26
,
S
32
]

K
no
w
le
dg
e-

ba
se
d

ad
ap
ta
tio

n
m
an
ag
em

en
t

A
da
pt
iv
e
an
d

co
rr
ec
tiv

e+
+

R
un
tim

e
K
no
w
le
dg
e-

ba
se
d
ad
ap
ta
tio

n
po
lic
ie
s

A
rc
hi
te
ct
ur
al

ad
ap
ta
tio

n
m
an
ag
er

xA
D
L

K
B
A
A
M

C
as
e
st
ud
y

‘-
-’
re
pr
es
en
ts
an

at
tr
ib
ut
e
no
t
di
sc
us
se
d
in

th
e
re
vi
ew

ed
st
ud
y;

‘+
+
’
re
pr
es
en
ts
an

im
pl
ic
it
di
sc
us
si
on

of
th
e
at
tr
ib
ut
e,
th
e
re
m
ai
ni
ng

is
al
l
ex
pl
ic
it
in

th
e
lit
er
at
ur
e.

A
K
,
ar
ch
ite
ct
ur
al

kn
ow

le
dg
e;

A
D
L
,
ar
ch
ite
ct
ur
e
de
sc
ri
pt
io
n
la
ng
ua
ge
;
ID

L
,
in
te
rf
ac
e
de
sc
ri
pt
io
n
la
ng
ua
ge
;
A
G
G
,
at
tr
ib
ut
ed

gr
ap
h
gr
am

m
ar
;
X
M
I,
X
M
L
m
et
ad
at
a
in
te
rc
ha
ng
e;

G
T
X
L
,
gr
ap
h
tr
an
sf
or
m
at
io
n
eX

ch
an
ge

la
ng
ua
ge
;
S
A
E
V
,
so
ft
w
ar
e
ar
ch
ite
ct
ur
e
ev
ol
ut
io
n;

E
C
A
,
ev
en
t
co
nd
iti
on

ac
tio

n;
A
O
S
D
,
as
pe
ct

or
ie
nt
ed

so
ft
w
ar
e
de
ve
lo
pm

en
t;
K
B
A
A
M
,

kn
ow

le
dg
e-
ba
se
d
ar
ch
ite
ct
ur
al
ad
ap
ta
tio

n
m
an
ag
em

en
t;
X
T
E
A
M
,e
X
te
ns
ib
le
to
ol
-c
ha
in

fo
r
ev
al
ua
tio

n
of

ar
ch
ite
ct
ur
al
m
od
el
s;
M
D
S
D
,m

od
el
dr
iv
en

so
ft
w
ar
e
de
ve
lo
pm

en
t;
R
A
D
M
,

re
us
ab
le

ar
ch
ite
ct
ur
e
de
sc
ri
pt
io
n
m
od
el
s.

676 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



theme (from Section 4.1) contains one or more trends. Figure 10 provides a mapping of the
research themes (y-axis) to types and time of architectural changes (x-axis). For example, in
Figure 10, the study [S4] represents adaptation strategies for perfective changes at runtime.

1. Evolution-off-the-shelf—We observed a trend following evolution styles for structural evolution [S1,
S11, S13] in component-based architectures and evolution planning [S1, S11] based on time, cost
and risk of changes to define alternative evolution strategies. An interesting observation is a recent
emergence of evolution style [S8] that exploits AK as an asset to drive evolution-off-the-shelf [S13].
In Figure 10, our comparison suggests that evolution style-based approaches only focus on
corrective and perfective type changes [10]. We could not find any evidence to support adaptive
or preventive type evolution. Evolution styles are limited to supporting only design-time evolution
in software architectures.

2. Pattern and language-based formalisms—Pattern-based solutions address the co-evolution of
business processes [S30] and requirements [S2] along with their underlying architecture models.
Adaptation [S19] and reconfiguration patterns [S16] support dynamic adaptations as well. Pattern
language-based solutions aim at building a system-of-patterns to support migration [S6], integration
[S12, S15] and evolution [S14] of component-based architectures. On the basis of the comparison
map in Figure 10, we can conclude that pattern-based techniques enable corrective, adaptive
and perfective type changes but do not address preventive change. Pattern-based solutions are
heavily biased towards design-time evolution. However, studies on reconfiguration and adaptation
patterns suggest a potential for future research to address dynamic adaptation by leveraging change
patterns [S19].

3. Reuse knowledge for self-adaptation and self-repair—In particular, self-adaptive and self-repair
techniques reflect the recent emphasis on autonomic computing and growing demands for high-
availability architectures.
Reuse-driven self-adaptation enables dynamic evolution reflected as reusable adaptation strategies

for adaptive architectures [S3, S25]. In addition, knowledge-based adaptation policies [S4, S26, S32]
enhance self-organisation and repair of dynamic adaptive architectures. Self-adaptation strategies are
the key to supporting dynamic and high-availability architectures. Unlike styles and patterns,
reusable adaptation strategies focus on runtime reuse of adaptation expertise. Moreover, self-repair
[S4, S26] policies promise to tackle preventive type of changes. However, on the basis of the
mapping in Figure 10, we did not find explicit evidence to address preventive changes that
corresponds to unanticipated evolution [11].

Figure 10. A comparison map of research trends—based on time and types of changes.

CLASSIFICATION AND COMPARISON OF AERK 677

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



CA2: What types of architectural changes are supported to achieve evolution reuse?

Objectives: To investigate the type of change support offered by existing ACSE solutions: corrective,
perfective, adaptive and preventive changes [10]. This change typology is based on the ISO/IEC
14764 standard and architecture change characterisation in [10].
In Figure 10, style-driven approaches focus on corrective and perfective changes (also reported as

updative [S23], restructurive [S21], transformative [S5] and migrative [S6]). Pattern-based solutions
support corrective [S27], perfective [S12, S15, S6, S14] and adaptive change support (also called
reconfigurative [S16, S19]). Adaptation strategies and policies, as the name indicates, primarily
focus on runtime adaptive [S3, S4, S28] changes. Note that none of the reviewed studies addresses
preventive change that aims to prevent problems before they occur. This suggests a lack of focus on
tackling unanticipated evolution [6, S4] in software architectures.

CA3: How do time aspects affect change implementation during architecture evolution?

Objectives: To analyse the temporal aspects [25] in terms of the time (or stage) associated to architec-
ture evolution in Figure 10. The existing evidence suggests the following:

• Reuse@Runtime enables application of reuse knowledge at runtime to achieve dynamic
adaptation. Reconfiguration patterns reflect reusable strategies as a consequence of growing
demands for autonomic and self-adaptive architectures for runtime evolution [S2, S4, S25,
S26, S27]. We could not find evidence of style-based approaches that facilitate runtime reuse.

• Reuse@Designtime enables application of reuse knowledge at design-time to achieve evolution.
Style-driven approaches [S1, S13, S8] are heavily oriented towards design-time evolution. In con-
trast, pattern-driven reuse is aimed primarily at design-time changes [S2, S30, S27] but also support
runtime reconfigurations [S16, S19]. However, adaptation strategies lack explicit support for design-
time reuse.

CA4: What are the existing means of architectural change to achieve evolution reuse?

Objectives: To study and compare the change implementation mechanisms and to analyse if there exist
any recurring themes among them. We only present the predominant means of change as (at least
indicated in five or more studies) individual methods, and techniques are already summarised in
Table VIII.Evolution operators as the most utilised means of change that could be further classified
as change [S1, S11, S20, S22, S27], adaptation [S19] and reconfiguration operators [S16]. Model
transformation enables design-time evolution as discussed in [S1, S13, S21, S23, S5, S2, S30].
Furthermore, adaptation plans exploit repair strategies and aspect weaving mechanism [S4, S18,
S26, S28, S32] for runtime adaptation.

CA5: What types of formal methodologies are exploited to support reuse in ACSE?

Objectives: To analyse the extent to which formal techniques facilitate modelling, analysing and
executing evolution reuse. We only present predominant formal methods (at least indicated in three
or more studies).
We observed an overwhelming bias towards model-based architecture evolution that is primarily

achieved through model transformation with Query/View/Transformation (QVT) [S1, S11, S13] and
also graph-based specifications [S11, S10, S5, S12, S15]. This observation is also reported in [9]. The
only exceptions are adaptation patterns [S16, S19, S12, S27] that exploit state transition and pattern-
to-pattern integration using or architecture evolution.

CA6: What are the notations used for architectural descriptions in evolving architecture models?

Objectives: To identify the modelling notation used to support architecture evolution. We primarily
focus on investigating the role of architecture descriptions in enabling and enhancing architecture
evolution (at least three studies).
The three commonly used architectural description notation are UML 2.0 [S11, S13, S23, S2, S19,

S12], architecture description languages (ADLs) [S11, S13, S21, S16, S20, S3, S25, S26] and UML
profiles [S5, S22, S18]. The primary motive to use ADLs or UML is the availability of extensive

678 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



research literature and tool support to specify architecture models with model-based verification and
transformation to support evolution. Most notable ADLs are ACME and xADL.

CA11: What is the available tool support to enable or enhance reuse in architectural evolution and
adaptation?

Objectives: to analyse the role of automation and tool support in enabling the architect to model, ana-
lyse and execute reuse in ACSE.

Tool support is significant to assist the architects in decisions-making and automating complex tasks,
especially where there is a need to model and choose among alternative evolution paths [S1, S11].
In the reviewed studies, tool support is generally provided in terms of research prototypes.
Automation allows an architect to model [S1, S21], analyse and execute generic, reusable strategies
for evolution [S2, S1, S21]. However, there is a mandatory user intervention through appropriate
parameterisation and customisation of evolution process to accommodate the human perspective
before and after evolution [S6, S9, S11, S12]. Some practical issues and lessons learned regarding
tool support for architecture evolution reuse have been reported in [48].

CA12: What is the context of evaluation methods to validate research hypotheses or results?

Objectives: The aim is to analyse the context of evaluation, where evaluation context defines the
research environment in which the results are evaluated.
The comparative analysis suggests that validation of the proposed solutions or generated results are

heavily based on surveys, controlled experimentationwith case studies [S1, S21, S8] or evaluation in an
industrial context [S2, S6, S14]. It is evident that solutions are heavily oriented towards case study based
evaluation, usually in a lab experimentation context. The only exceptions are the studies [S2, S6, S14]
that focus on co-evolution of requirements and architectures evaluated in industrial settings.

6. ACQUISITION OF ARCHITECTURE EVOLUTION REUSE KNOWLEDGE

In this section, we investigate the methods and techniques for acquisition of reuse knowledge to answer
RQ3, that is, what are the existing methods and techniques for acquisition of evolution reuse
knowledge (Section 6.1) and how these methods and techniques can be compared to consolidate the
impact of existing research (Section 6.2). Note that the solutions for this research question (i.e.
RQ3) are complementary to the methods and techniques that support application of reuse knowledge
in ACSE.

6.1. Methods and techniques for acquisition of evolution reuse knowledge

In Section 5, we identified change pattern discovery [S17, S29], evolution and maintenance prediction
[S9, S10] and architecture configuration analysis [S7, S31] as the three research themes to support
reuse knowledge acquisition. More specifically,

• Change pattern discovery techniques focus on investigating evolution histories for an experimen-
tal identification of recurring change sequences as potential change patterns.

• Evolution and maintenance prediction methods focus on maintenance profiles [S9] and scenario-
based [S10] prediction of maintenance efforts to enhance or enable architecture evolution.

• Architecture configuration analysis deals with architectural system model that tightly integrates
architectural concepts with concepts from configuration management. Change composition
analysis [S31] focuses on analysing change operationalisation based on a hierarchical composi-
tion of change instances, that is, defining and reusing atomic change operations to build up
composite change operations.

Solutions for reuse knowledge acquisition primarily focus on the post-mortem analysis of
architecture evolution histories to discover evolutionary knowledge. In Table IX, we summarise the

CLASSIFICATION AND COMPARISON OF AERK 679

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



problem-solution mapping to highlight research on knowledge discovery. In this section, the problem-
solution views are presented and captured in Table V (generic and documentation specific items),
whereas attributes CA7–CA12 are presented in Table V as for comparison purposes. We can
observe a relative lack of focus on establishing and exploiting experimental foundation for a
continuous and incremental acquisition of reuse knowledge.

We have identified only a relatively limited number of studies (6/32 of included studies, i.e. 19%
approximately), which do not allow us for any stronger judgments. However, we believe that
highlighting the existing literature based on a problem-solution mapping helps us to analyse the
current state of research and possible future directions as detailed in Table IX. In addition,
summarised results in Table IX allow us to assess methodologies for a collective impact of existing
research on acquisition of reuse knowledge.

6.2. A comparison of methods and techniques for acquisition of evolution reuse knowledge

We provide a comparison of existing techniques in Table X that enables reuse knowledge acquisition
based on six comparison attributes CA6–CA11 from Table V. The comparative analysis highlights the
sources of knowledge; the adoption of empirical approaches; and the role of formalisms and tool
support, type of knowledge discovery and evaluation methods.

We now describe the comparison attributes in detail including their objective and concrete evidence
as comparison options used in the columns of Table X.

CA6: What types of knowledge sources are investigated for acquisition of reuse knowledge?

Objective: In order to discover evolutionary knowledge, existing knowledge sources need to be consid-
ered. A knowledge source represents a repository that maintains historical ACSE data for knowledge
acquisition.

• Pattern discovery techniques exploit change logs [S29] and version controls [S17]) as centrally
managed repositories of evolution history. Change logs and version controls contain fine-grained

Table IX. A summary of methods and techniques for acquisition of reuse knowledge.

Research problem Solution (knowledge acquisition techniques) Included studies

Change pattern discovery

How to empirically discover reusable
change operators and patterns?

Evolution history analysis—post-mortem
analysis of architecture evolution logs [S29]
and version histories [S17] to identify
change patterns.

[S17, S29]

Maintenance and evolution prediction

How to predict the efforts of
architecture-based
maintenance and evolution?

Maintenance profiling—the architecture is
evaluated using the so-called scenario scripting
and the expected maintenance effort for each
change scenario is evaluated for perfective and
adaptive changes [S9].

Scenario-based change prediction—of complex
changes during initial analysis of existing
architecture, and how and to what extent the
process to elicit and assess the impact of such
changes might be improved [S10].

[S9, S10]

Configuration analysis

How to capture and relate
changes for architecture
configurations?

Revision history mining—captures evolution
and variability to represent crosscutting
relationships among evolving architecture
elements [S7].

[S7, S31]

Dependency analysis—analyse change
classification and to dependency analysis [S31].

680 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



T
ab
le

X
.
C
om

pa
ri
so
n
of

m
et
ho
ds

an
d
te
ch
ni
qu
es

fo
r
re
us
e
kn
ow

le
dg
e
ac
qu
is
iti
on
.

C
om

pa
ri
so
n
at
tr
ib
ut
es

K
no
w
le
dg
e

so
ur
ce

(C
A
7)

T
yp
e
of

an
al
ys
is
(C
A
8)

T
yp
e
of

fo
rm

al
is
m

(C
A
9)

T
im

e
of

di
sc
ov
er
y

(C
A
10
)

T
oo
l
su
pp
or
t

(C
A
11
)

E
va
lu
at
io
n

m
et
ho
d

(C
A
12
)

M
et
ho
ds

an
d

te
ch
ni
qu
es

C
ha
ng
e
pa
tte
rn
s

di
sc
ov
er
y
[S
17
,S

29
]

C
ha
ng
e
lo
gs

[S
29
]
an
d

ve
rs
io
n
co
nt
ro
l
[S
17
]

P
os
t-
m
or
te
m

an
al
ys
is
[S
29
]
an
d

ar
ch
ite
ct
ur
e
sn
ap
sh
ot
s
[S
17
]

G
ra
ph

m
in
in
g
[S
29
]
an
d

ve
rs
io
n
sn
ap
sh
ot

[S
17
]

D
es
ig
n-
tim

e
G
-P
ri
de

[S
29
]

an
d
H
E
A
T
[1
7]

C
as
e
st
ud
y

E
vo
lu
tio

n
an
d

m
ai
nt
en
an
ce

pr
ed
ic
tio

n
[S
9,

S
10
]

M
ai
nt
en
an
ce

pr
ofi

le
s
[S
9]

an
d
ch
an
ge

sc
en
ar
io
s
[S
10
]

C
ha
ng
e
sc
en
ar
io
s
ba
se
d
ev
al
ua
tio

n
N
ot

ex
pl
ic
itl
y
m
en
tio

ne
d

D
es
ig
n-
tim

e
N
ot

ex
pl
ic
itl
y

m
en
tio

ne
d

C
as
e
st
ud
y

C
on
fi
gu
ra
tio

n
an
al
ys
is

[S
7,

S
31
]

R
ev
is
io
n
hi
st
or
ie
s
[S
7]

an
d
C
ha
ng
e
L
og
s
[S
31
]

co
nfi

gu
ra
tio

n
m
an
ag
em

en
t

an
al
ys
is
[S
7]

N
ot

ex
pl
ic
itl
y
m
en
tio

ne
d
[S
7]

an
d
gr
ap
h
m
at
ch
in
g
[S
31
]

D
es
ig
n-
tim

e
M
ae

[S
7]

an
d

G
-P
ri
de

[S
31
]

C
as
e
st
ud
y

CLASSIFICATION AND COMPARISON OF AERK 681

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



traces of evolution data sets that can be queried and searched to analyse architecture-centric evolu-
tion history over time.

• Evolution and maintenance prediction utilise maintenance profiles [S9] that represent a set of
change scenarios for perfective and adaptive maintenance tasks. More specifically, by exploiting
maintenance profile, the architecture is evaluated using the so-called scenario scripting. The
expected maintenance effort for each change scenario is assessed. On the basis of architectural eval-
uation and maintenance prediction, the required maintenance and evolution effort for a software sys-
tem and its underlying architecture can be estimated.

• Architecture configuration analysis investigates architecture revision histories [S7] and change logs
[S31]. Revision histories contain datasets for architectural configuration analysis, reflecting evolu-
tion and variability of architectures. These are necessary to represent crosscutting relationships
among evolving architectural elements [S7]. In long-term analyses [S31], dependencies among
change operations determine if evolution operations could be parallelised on the basis of identified
commutative and dependent change operations.

CA7:What types of analyses are performed on knowledge sources for acquisition of reuse knowledge?

Objective: To analyse the application of knowledge discovery/acquisition mechanisms on knowledge
sources.Post-mortem analysis [S29] and version control snapshots [S17] techniques are employed
to discover change patterns. In the context of architecture evolution prediction, scenario-based anal-
yses are used as well as techniques from configuration analysis and management.

CA8: What type of formal methods and techniques are utilised for reuse knowledge acquisition?

Objective: To identify the types of formal methods used for knowledge acquisition.
The role of the formalism, detailing the application of formal techniques, is discussed in three

studies. In particular, graph-based formalisms are exploited for sub-graph mining [18], [S29] to
identify recurring change patterns and graph matching [S31] techniques that are used to discover
change composition and dependencies among operations. Snapshots of architecture versions are
used to discover patterns and possible drifts in architecture from one version to another [S17].

CA9: Is knowledge acquisition performed at design-time or runtime?

Objective: To distinguish between the techniques for runtime and/or design-time discovery or acquisi-
tion of reuse knowledge. In all of the reviewed studies, evolution reuse-knowledge discovery is
performed as a design-time activity. We did not find any evidence that highlights maintaining and
analysing traces of runtime architectural adaptations.

CA10: How are the knowledge acquisition techniques evaluated?

Objective: To compare the type of evaluation methodologies used to validate the knowledge acquisi-
tion techniques.
The evaluation of knowledge acquisition techniques is primarily based on surveys, controlled

experimentation with case studies or evaluation in an industrial context. Existing solutions mainly
apply evaluations based on case study and usually in a controlled lab experimentation.

CA11: What is the tool support for analysing and discovering reuse knowledge from evolution knowl-
edge sources?

Objective: To investigate the extent to which the existing research supports automation and
customisation of the knowledge acquisition process with support by prototypes and tools.
Tool support is critical, especially where the amount of data or the complexity of the knowledge

source is substantial. It is difficult, time consuming and error prone to perform analyses manually. In
most cases, prototypes enable efficient pattern analysis, discovery [S17, S29] and composition
analysis [S31, S7].

682 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



7. RESEARCH IMPLICATIONS AND DISCUSSIONS

In this paper, we present the results of a systematic review to analyse the collective coverage and
impact of existing research that enable or enhance architecture evolution with reuse knowledge. We
classified existing work (Section 4) and provided a comparative analysis for methods and technique
that enable application (Section 5) and acquisition (Section 6) of reuse knowledge to guide
architecture evolution. In this section, we present a summary of research progress and principle
findings of the SLR to highlight trends and possible future research. A yearly distribution of
reviewed studies (research progression to-date) and associated research trends are presented in
Figure 11. The year 1999 was chosen as the preliminary search that found no earlier results related
to any of the research questions.

7.1. Research trends and future directions

In the context of software evolution, research on architecture evolution reuse is continuously growing
over more than a decade (as observed in the reviewed studies from 1999 to 2012). As indicated in
Figure 11, we did not set a lower boundary for the year of publication in the search process, yet the
timeframe of identified studies reflects also the timeframe of emergence and maturation of solutions.
The trend curve starts in 1999 with a study on predicting architecture maintenance and evolution
[S9]. Since 2004, an interesting observation (cf. Table XI) is a continuous exploitation of the
concept evolution styles to support planning [S1, S11], operationalising [S21] and fostering [S13] of
reuse knowledge.

A reflection on research trends and possible future directions is presented in Table XI along with the
aspects of methods and techniques to support application and acquisition of reuse knowledge.

7.1.1. Research trends in application of reuse knowledge. The identified research themes to express
reuse knowledge in architecture evolution are primarily classified as evolution styles, change patterns
and adaptation strategies. Evolution styles [S1] are focused on deriving generic evolution plans [S11,
S8, S21] to support design-time evolution of architectures. In contrast, adaptation strategies [S3] aim to
support reusable adaptation strategies [S18, S28] to support runtime evolution. Only change patterns
[S2, S16] could support both design-time and runtime evolution in architectures. More specifically,
pattern languages [S6, S12] and architecture co-evolution [S2, S30] are the most notable trends for
enabling pattern-driven reusable evolution. Although we only identified two studies, adaptation
patterns promote reuse in runtime evolution [S16, S19].

• Future research dimensions—We can identify the need for future research based on time aspects
of evolution reuse that includes the following:

• Reuse@Runtime refers to application of reuse to support reuse-driven dynamic adaptation in soft-
ware architectures (also known as on-line evolution). In an architectural context for high

Figure 11. Temporal distribution of primary studies (1999–2012).

CLASSIFICATION AND COMPARISON OF AERK 683

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



T
ab
le

X
I.
A

su
m
m
ar
y
of

id
en
tifi

ed
re
se
ar
ch

tr
en
ds

an
d
fu
tu
re

re
se
ar
ch

di
m
en
si
on

s.

C
la
ss
ifi
ca
tio

n
M
et
ho
ds

an
d
te
ch
ni
qu
es

fo
r
ap
pl
ic
at
io
n
of

re
us
e
kn
ow

le
dg
e

M
et
ho
ds

an
d
te
ch
ni
qu
es

fo
r
ac
qu
is
iti
on

of
re
us
e
kn
ow

le
dg
e

S
ol
ut
io
ns

E
vo
lu
tio

n
st
yl
es

C
ha
ng
e
pa
tte
rn
s

A
da
pt
at
io
n
st
ra
te
gi
es

P
at
te
rn

di
sc
ov
er
y

E
vo
lu
tio

n
pr
ed
ic
tio

n
C
on
fi
gu
ra
tio

n
an
al
ys
is

Id
en
tifi

ed
re
se
ar
ch

tr
en
ds

E
vo
lu
tio

n
pl
an
ni
ng

[S
1,

S
11
,
S
8]

M
od
el

co
-e
vo
lu
tio

n
[S
2,

S
30
]

S
el
f-
ad
ap
ta
tio

n
an
d

re
pa
ir
[S
3,

S
4]

L
og
-b
as
ed

po
st
-m

or
te
m

an
al
ys
is
[S
29
]

E
vo
lu
tio

n
sc
en
ar
io

an
al
ys
is
[S
10
]

C
ha
ng
e
co
nfi

gu
ra
tio

n
an
al
ys
is
[S
7]

E
vo
lu
tio

n
pa
th
s

[S
21
,S

23
]

A
da
pt
at
io
n
pa
tte
rn
s

[S
16
,S

19
]

C
om

po
sa
bl
e
ad
ap
ta
tio

ns
[S
18
,S

28
]

C
ha
ng
e
ve
rs
io
n

m
in
in
g
[S
17
]

M
ai
nt
en
an
ce

pr
ofi

le
an
al
ys
is
[S
9]

C
ha
ng
e
co
m
po
si
tio

n
an
al
ys
is
[S
31
]

E
vo
lu
tio

n
sh
el
f

[S
13
,S

21
]

P
at
te
rn

la
ng
ua
ge
s

[S
6,

S
12
,S

15
]

A
da
pt
at
io
n
kn
ow

le
dg
e

[S
25
,S

26
,
S
32
]

P
ot
en
tia
l
fo
r

fu
tu
re

di
m
en
si
on
s

R
eu
se
@
R
un
tim

e
R
eu
se
@
D
es
ig
nt
im

e
E
vo
lu
tio

n
m
in
in
g

R
ec
on
fi
gu
ra
tio

n
pa
tte
rn
s

K
no
w
le
dg
e-
dr
iv
en

m
ig
ra
tio

n,
in
te
gr
at
io
n

an
d
ev
ol
ut
io
n

A
na
ly
si
ng

ev
ol
ut
io
n-
ce
nt
ri
c
co
up
lin

gs

A
da
pt
at
io
n
pl
an
s

an
d
R
E
U
S
A
B
L
E

In
fr
as
tr
uc
tu
re

R
eu
se
-d
ri
ve
n
co
-e
vo
lu
tio

n
of

ar
ch
ite
ct
ur
es

E
vo
lu
tio

n
de
pe
nd
en
cy

an
al
ys
is

684 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



availability, there is an obvious need to capitalise on generic and off-the-shelf expertise to support
reuse-driven self-adaptation [S3, S4, S18, S25]. The IBM autonomic framework [15]—MAPE
loop—embodies the topology, policy and problem determination knowledge to derive config-
uration plans and to enforce adaptation policies to monitor and execute software adaptations.
In contrast to studies [S4, S25, S32], we argue that augmenting the conventional MAPE loop
with explicit evolution reuse knowledge can systematically address frequent adaptation tasks.
The existing solutions either allow customisation of reusable infrastructure [S3], self-repair
[S4] or adaptation aspects [S28] to existing software. However, they lack support for evolu-
tion reuse to guide dynamic adaptations. When addressing recurring evolution, the potential
lies with fostering and reusing off-the-shelf dynamic adaptations to enable evolution reuse
at runtime.

• Reuse@Designtime refers to application of reuse to support generic and reusable evolution in
software architectures (also known as off-line evolution). Existing research clearly focuses on
styles and patterns for the reuse of generic evolution plans, change operationalisation and
model-based architecture co-evolution. With the REVOLVE framework, our review suggests
the need to augment styles [S1, S11, S13, S21] and pattern-driven solutions [S2, S30] with
repository mining techniques [S17, S29, S31] to discover reusable evolution strategies.

7.2.2. Research trends in acquisition of reuse knowledge. In contrast to reuse knowledge application,
we can observe a clear lack of research on knowledge discovery/acquisition techniques (only six
studies) despite an acknowledged need. The primary themes for evolution-centric knowledge
acquisition represent pattern discovery, evolution prediction and architecture configuration analysis.
Change pattern discovery aims at investigating change logs [S29] and version control [S17] systems
for post-mortem analysis of evolution histories. Frequent change instances from evolution histories
are identified and represented as change patterns. Architecture-based prediction of software evolution
aims to exploit scenario-based analysis to estimate the efforts of software evolution [S9, S10].
Configuration analysis techniques aim to investigate the evolution-centric dependencies for software
architectures [S7, S31].

• Future research dimension—The comparative analysis for knowledge acquisition techniques
suggests an investigation of evolution-centric dependencies. In particular, we believe in a need
for evolution mining that aims at analysing, discovering and sharing explicit knowledge to be
reused to anticipate and guide architecture change management. In the reviewed studies, there is
little evidence of architecture change mining. Our review suggests the needs for empirically derived
evolution plans and the need to analyse evolution dependencies. Such dependency analysis is signif-
icant to identify the commutative and dependent changes in order to investigate parallelisation of
evolution operations.

7.2. Benefits of the systematic review for researchers and practitioners

The classification framework (in Section 5) provides a holistic view of different evolution reuse aspects
to be considered in the context of the REVOLVE framework (Figure 5). The trends in Table XI
reiterate the fact that among prominent concerns to tackle ACSE are time aspects of evolution. It
reflects on the role of formalisms and tool support that can be exploited to leverage conventional
data mining techniques for post-mortem analysis of architecture evolution histories. There is a need
to develop a tool chain that could automate the REVOLVE framework with appropriate and
minimal user intervention.

The classification and comparison and its accompanying templates [34] contain 12 comparison
attributes that provides a moderate amount of information. For instance, for the 32 papers and 12
comparison attributes, it creates a collection with 32 * 12 = 384 data points. As a result, the user can,
for example, query and analyse the database based on <Subject: architecture model evolution>
[Object: using graph transformation] (Implications: for change reuse and architecture consistency).
This is beneficial for the following:

• Researchers who require a quick identification of relevant studies and detailed insight into state of
the art that supports application and acquisition of reuse knowledge in ACSE.

CLASSIFICATION AND COMPARISON OF AERK 685

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



• Practitioners interested in understanding the existing methods with supporting formalism and tool
support to analyse and execute evolution reuse.

7.3. Threats to validity of the systematic review

This SLR provides a classification of existing evidence of reuse in ACSE by reviewing and analysing
peer-reviewed literature. Apart from addressing the research questions and providing an overview in
the field according to the REVOLVE framework, we also identified areas that are not covered in the
literature body. This work has been performed on the basis of the review protocol explained in
Section 3.

Although the observations and results of systematic reviews are considered to be reliable [39, 40],
this type of review work has its own limitations that should be considered [36]. We discuss each of
the validity threats associated to different steps in our SLR (cf. Figure 2).

• Threats to the identification of primary studies. In our search strategies, the key idea was to
retrieve as much as possible the available literature to avoid any possible bias. Another critical
challenge in addressing these threats was to determine the scope of our study, because the notion
of reuse knowledge means different things to different research communities including software
architecture, software product lines and self-adaptive software. Therefore, to cover all and avoid
bias, we searched for common terms and combined them in our search string (cf. Figure 3). While
this approach decreases the bias, it also significantly increases the search work. To identify
relevant studies and ensure the process of selection was unbiased, a review protocol was devel-
oped and evaluated.

• Threats to selection and data extraction consistency. We have identified a lack of consistent
terminologies for reuse knowledge (Section 4). This poses difficulties for the composition of
the search queries and the inclusion/exclusion criteria. Such difficulties led us to analyse the terms
concerning reuse knowledge that were found on the selected studies. However, because the notion
of ‘reuse knowledge’ is used in numerous studies, but we are specifically concerned with
‘architecture (-based) evolution reuse knowledge’, we had to exclude a majority of retrieved
studies that affected the low precision of our search. In addition, we performed quality assessment
(Section 3.4 for details) on the studies to ensure that the identified findings and implications came
from credible sources.

• Threats to data synthesis and results. The threat to the reliability of results is mitigated as far as
possible by involving multiple researchers, having a unified scheme for data synthesis and having
several steps where the scheme and process were piloted and externally evaluated. Although as a
general practice, we were determined to use the guidelines provided in [24] to perform our
systematic review, and we had deviations from their procedures as we have detailed in Section 3.

To summarise, we believe that the validity of the study is high, given the use of a systematic
procedure, the involvement and discussion among the researchers and external evaluations. The
openness of our review by exposing our data in [34] allows other researchers to judge the
trustworthiness of the results objectively. This initiative is suggested by the evidence-based software
engineering community (e.g. http://www.dur.ac.uk/ebse/).

8. CONCLUSION

Our focus in this SLR was AERK, that is, knowledge specific to reuse in the evolution of software
architecture. As such, it forms part of the wider AK research in the software architecture
community. The AERK perspective presented in this work shifts the reuse focus from artefacts
(such as software architectures) to processes (here, the evolution of architectures).

On the basis of a qualitative selection of 32 studies, we investigated the coverage and concerns of
reuse knowledge in ACSE. More specifically, we provide a taxonomical classification and holistic
comparison of existing research based on 12 comparisons attributes to derive conclusions about
central aspects, gaps and possible future research directions.

686 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr

http://www.dur.ac.uk/ebse/


We define what exactly constitutes reuse knowledge in the context of architecture evolution based on
the systematic review. Moreover, we derived a taxonomy that aims to assist the researchers in classifying
existing and future approaches for reuse-driven evolution that reflects a continuous progression of
research over the last decade. We presented the research implications organised by the REVOLVE
framework to consolidate the existing work with reflections on future research. The comparative
analyses are presented in a number of structured tables. The reported results aim to facilitate knowledge
transfer among researchers and practitioners to promote the ‘build-once, use-often’ philosophy to
address recurring evolution. On the basis of the proposed conceptual framework, we distinguish
between research efforts on architecture change discovery and mining (6/32 studies, i.e. 19% of the
reviewed literature) and architecture change execution (26/32, 81%). Five distinct research activities—
identifying, sharing, analysing, reusing and capturing reuse knowledge—frame the scope of reuse-
driven architecture evolution. We also identified a number of research gaps and potential future trends:

• Reuse knowledge mining and discovery. In this evolution reuse context, the most frequent
research focus is change patterns to promote reuse for both the design-time evolution and runtime
adaptation of architectures. Knowledge capturing and identification represent the activities that
have received significantly less research effort.

• Dynamic, runtime evolution. The solutions for reuse of design-time changes show a relative
maturation with change patterns. However, with growing needs for autonomic computing and
self-adaptive architectures, more efforts are required to systematically address dynamic evolution.
We believe that architecture evolution mining is particularly helpful to discover reuse knowledge
that can be shared and reused to address anticipated and unanticipated evolution problems. A rel-
ative lack of focus on empirical identification of reuse knowledge suggests the need of solutions
with architecture change mining as a complementary and integrated phase for architecture
change execution.

APPENDIX
List of studies for systematic literature review.

Study ID Author(s), title, channel of publication Year of
publication

Citation
count

Quality
score

[S1] J. M. Barnes, D. Garlan and B. Schmerl. Evolution Styles:
Foundations and Models for Software Architecture Evolution.
In Journal of Software and Systems Modeling.

2012 0 3.8

[S2] K. Yskout, R. Scandariato, W. Joosen.
Change Patterns: Co-evolving Requirements
and Architecture. In Journal of Software and Systems Modeling.

2012 04 3.6

[S3] D. Garlan, S. Cheng, A. Huang, B. Schmerl, P. Steenkiste.
Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. In IEEE Computer

2004 665 3.6

[S4] D. Garlan, S.W. Cheng, B. Schmerl. Increasing
System Dependability through Architecture-Based Self-Repair.
In Architecting Dependable Systems.

2008 138 3.6

[S5] L. Baresi, R. Heckel, S. Thöne and D. Varró. Style-based Modeling
and Refinement of Service-oriented Architectures.
In Journal of Software and Systems Modeling.

2006 82 3.5

[S6] M. Goedicke and U. Zdun. Piecemeal Legacy Migrating
with an Architectural Pattern Language.
In Journal of Software Maintenance: Research and Practice.

2002 29 3.4

[S7] A. Hoek, M. Rakic, R. Roshandel and N. Medvidovic.
Taming Architectural Evolution. In Joint 8th European
Software Engineering Conference and 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering.

2001 72 3.3

[S8] C. E. Cuesta, E. Navarro, D. E. Perry, C. Roda. Evolution Styles:
Using Architectural Knowledge as an Evolution Driver.
In Journal of Software: Evolution and Process.

2012 0 3.3

[S9] P. Bengtsson and Jan Bosch. Architecture Level Prediction
of Software Maintenance. In 3rd European Conference
on Software Maintenance and Reengineering.

1999 107 3.3

(Continues)

CLASSIFICATION AND COMPARISON OF AERK 687

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



[S10] N. Lassing, D. Rijsenbrij, H. v. Vliet. HowWell can we Predict Changes
at Architecture Design Time. In Journal of Systems and Software.

2003 31 3.3

[S11] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku. Evolution Styles:
Foundations and Tool Support for Software Architecture
Evolution. In Joint Working IEEE/IFIP Conference on Software
Architecture 2009 & European Conference on Software Architecture.

2009 47 3.2

[S12] C. Hentrich and U. Zdun. Patterns for Process-Oriented Integration in
Service-Oriented Architectures. In 11th European Conference on
Pattern Languages of Programs.

2006 42 3.2

[S13] O. L. Goaer. D. Tamzalit, M. Oussalah, A. D. Seriai. Evolution Shelf:
Reusing Evolution Expertise within Component-Based Software
Architectures. In IEEE International Computer Software and
Applications Conference.

2008 13 3.0

[S14] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann. Combining
Pattern Languages and Reusable Architectural Decision Models
into a Comprehensive and Comprehensible Design Method. In 7th

Working IEEE/IFIP Conference on Software Architecture.

2008 27 3.0

[S15] U. Zdun and S. Dustdar. Model-Driven and Pattern-Based Integration
of Process-Driven SOA Models. In International Journal Business
Process Integration and Management, 2007.

2007 41 2.9

[S16] H. Gomaa, M. Hussein. Software Reconfiguration Patterns for
Dynamic Evolution of Software Architectures. In 4th Working IEEE/
IFIP Conference on Software Architecture.

2004 50 2.8

[S17] X. Dong, M. W. Godfrey. Identifying Architectural Change Patterns in
Object-Oriented Systems. In 16th IEEE International Conference on
Program Comprehension.

2008 08 2.8

[S18] N. Gui and V. De. Florio, Towards Meta-Adaptation Support with
Reusable and Composable Adaptation Components. In EEE Sixth
International Conference on Self-Adaptive and Self-Organizing
Systems.

2012 0 2.8

[S19] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D. A. Menascé. Software
Adaptation Patterns for Service-oriented Architectures. In ACM
Symposium on Applied Computing.

2010 19 2.7

[S20] N. Sadou, D. Tamzalit, M. Oussalah. How to Manage Uniformly
Software Architecture at Different Abstraction Levels. In 24th

International Conference on Conceptual Modeling.

2005 08 2.4

[S21] D. Tamzalit, T. Mens. Guiding Architectural Restructuring through
Architectural Styles. In 17th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems.

2010 10 2.1

[S22] O. Barais, L. Duchien, A. Le Meur. A Framework to Specify
Incremental Software Architecture Transformations. In 31st

EUROMICRO Conference on Software Engineering and
Advanced Applications.

2005 17 2.1

[S23] D. Tamzalit, M. Oussalah, O. L. Goaer, A. d. Seriai. Updating Software
Architectures: A Style-based Approach. In International Conference
on Software Engineering Research and Practice.

2006 07 2.0

[S24] Le. Goaer, M. Oussalah, D. Tamzalit. Reusing Evolution Practices onto
Object-Oriented Designs: An Experiment with Evolution Styles.
In 19th InternationalConference onSoftwareEngineeringandDataEngineering.

2010 0 2.0

[S25] J. C. Georgas R. N. Taylor. Towards a Knowledge-Based Approach to
Architectural Adaptation Management. In 1st ACM SIGSOFT
Workshop on Self-managed Systems.

2004 41 1.9

[S26] J. C. Georgas, A. v.d. Hoek, R. N. Taylor. Architectural Runtime
Configuration Management in Support of Dependable Self-
Adaptive Software. In Workshop on Architecting Dependable Systems.

2005 17 1.9

[S27] I. Côté, M. Heisel, I. Wentzlaff. Pattern-Based Evolution of Software
Architectures. In European Conference on Software Architecture.

2007 02 1.8

[S28] E. Truyen and W. Joosen. Towards an Aspect-oriented Architecture for
Self-adaptive Frameworks. In Workshop on Aspects, Components, and
Patterns for Infrastructure Software.

2008 04 1.7

APPENDIX
(Continued).

(Continues)

688 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr



[S29] A. Ahmad. P. Jamshidi, C. Pahl. Graph-based Pattern Identification
from Architecture Change Logs. In 10th International Workshop on
System/Software Architectures.

2012 02 1.6

[S30] P. Jamshidi, C. Pahl. Business Process and Software Architecture
Model Co-evolution Patterns. In Workshop on Modeling in Software
Engineering.

2012 01 1.5

[S31] A. Ahmad. P. Jamshidi, M. Arshad, C. Pahl. Graph-based Implicit
Knowledge Discovery from Architecture Change Logs. In 7th

Workshop on SHaring and Reusing Architectural Knowledge.

2012 0 1.5

[S32] J. C. Georgas R. N. Taylor. An Architectural Style Perspective on
Dynamic Robotic Architectures. In IEEE 2nd International Workshop
on Software Development and Integration in Robotics.

2007 02 1.5

ACKNOWLEDGEMENTS

The authors would like to thank Dr Jim Buckely (affiliated with: Lero—the Irish Software Engineering Re-
search Centre, University of Limerick, Ireland) and Bardia Mohabbati (affiliated with: Simon Fraser Univer-
sity, Canada) for their feedback and thoughtful suggestions throughout the development and evaluation of
the review protocol. This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero—the Irish Software Engineering Research Centre (www.lero.ie). The research work described in
this paper was partly supported by the Irish Centre for Cloud Computing and Commerce (IC4), a national
technology centre funded by Enterprise Ireland and the Irish Industrial Development Authority

REFERENCES

1. Mens T, Demeyer S. Software Evolution. Springer: Springer Berlin Heidelberg, 2008: 1–11.
2. Lehman M, Laws of software evolution revisited. Software Process Technology, LNCS 1996.
3. Medvidovic N, Rosenblum D, Taylor RN. A language and environment for architecture-based software development

and evolution. International Conference on Software Engineering, 1999.
4. Yskout K, Scandariato R, Joosen W. Change patterns: co-evolving requirements and architecture. Journal of

Software and Systems Modeling 2012.
5. Moghadam I, Cinnéide M. Automated refactoring using design differencing. 16th European Conference on Software

Maintenance and Reengineering, 2012.
6. Bradbury J, Cordy J, Dingel J, Wermelinger M. A classification of formal specifications for dynamic software

architectures. International Workshop on Self-Managed Systems, 2004.
7. Oreizy P, Gorlick M, Taylor RN, Heimbigner D, Johnson G, Medvidovic N, Quilici A, Rosenblum DS, Wolf A. An

architecture-based approach to self-adaptive software. IEEE Journal of Intelligent Systems and Their Applications.
8. Chapin N, Hale JE, Kham KM, Ramil JF, Tan WG. Types of software evolution and software maintenance. Journal

of Software Maintenance Research and Practice 2001; 13(1).
9. Jamshidi P, Ghafari M, Ahmad A, Pahl C. A framework for classifying and comparing architecture centric software

evolution. 17th European Conference on Software Maintenanace and Reengineering, 2013.
10. Williams BJ, Carver JC. Characterizing software architecture changes: a systematic review. Information and

Software Technology 2010; 52(1):31–51.
11. Mens K, Mens T, Wouters B, Wuyts R. Managing unanticipated evolution of software architectures. Workshop on

Object-Oriented Technology, LNCS, 1999.
12. Garlan D, Cheng S, Huang A, Schmerl B, Steenkiste P. Rainbow: architecture-based self-adaptation with reusable

infrastructure. IEEE Computer 2004; 37:46–54.
13. Barnes JM, Garlan D, Schmerl B. Evolution styles: foundations and models for software architecture evolution.

Journal of Software and Systems Modeling 2012. DOI: 10.1007/s10270-012-0301-9
14. Breivold HP, Crnkovic I, Larsson M. A systematic review of software architecture evolution research. Information

and Software Technology 2012; 54(1):16–40.
15. Ganek AG, Corbi TA. The dawning of the autonomic computing era. IBM Systems Journal 2003; 42(1):5–18
16. Baresi L, Nitto ED, Ghezzi C. Toward open-world software: issue and challenges. IEEE Computer 2006:36–43.
17. Li Z, Liang P, Avgeriou P. Application of knowledge-based approaches in software architecture: a systematic

mapping study. In Information and Software Technology 2013; 55(5):777–794.
18. Babar MA, Dingsøyr T, Lago P, Vliet HV. Software architecture knowledge management: theory and practice,

Springer Heidelberg, 2009.
19. Joint 10th Working IEEE/IFIP Conference on Software Architecture and 6th European Conference on Software

Architecture. Available from: http://www.wicsa.net/ [Accessed on 22 February 2013]
20. Workshop on sharing and reusing architectural knowledge. Available from: http://www.shark-workshop.org/

[Accessed on 22 February 2013]

APPENDIX
(Continued).

CLASSIFICATION AND COMPARISON OF AERK 689

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr

http://sdqweb.ipd.kit.edu/publications/pdfs/stammel2011a.pdf


21. WICSA Wiki. Available from: http://wwwp.dnsalias.org/wiki/WICSA_2011. [Accessed on 22 February 2013]
22. Goaer OL. Tamzalit D, Oussalah M, Seriai AD. Evolution shelf: reusing evolution expertise within component-based

software architectures. IEEE International Computer Software and Applications Conference, IEEE: Los Alamitos
2008; 311–318.

23. HoekA, RakicM, Roshandel R,Medvidovic N. Taming architectural evolution. In Joint 8th European Software Engineer-
ing Conference and 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Vienna:
Austria, 2001.

24. Brereton P, Kitchenham B, Budgen D, Turner M, Khalil M. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of Systems and Software 2007; 80(4):571–583.

25. Buckley J, Mens T, Zenger M, Rashid A, Kniesel G. Towards a taxonomy of software change. Journal of Software
Maintenance and Evolution: Research and Practice 2005:309–332.

26. Jamshidi P, Ahmad A, Pahl C. Cloud migration research: a systematic review. IEEE Transactions on Cloud
Computing, 2013.

27. Côté I, Heisel M, Wentzlaff I. Pattern-based evolution of software architectures. In European Conference on
Software Architecture, 2007: 29–43.

28. Gui N, De Florio V. Towards meta-adaptation support with reusable and composable adaptation components. In
IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems, IEEE ,2012.

29. Dong X, Godfrey MW. Identifying architectural change patterns in object-oriented systems. 16th IEEE International
Conference on Program Comprehension, Amsterdam: The Netherlands, 2008.

30. Ahmad A, Jamshidi P, Pahl C. Graph-based pattern identification from architecture change logs. In 10th Interna-
tional Workshop on System/Software Architectures, CAiSE workshops: Gdansk, Poland, 2012.

31. Ahmad A, Jamshidi P, Arshad M, Pahl C. Graph-based implicit knowledge discovery from architecture change logs.
In 7th Workshop on SHaring and Reusing Architectural Knowledge, WICSA/ECSA Companion Volume: Helsinki,
Finland, 2012.

32. Bengtsson P, Bosch J. Architecture level prediction of software maintenance. In 3rd European Conference on
Software Maintenance and Reengineering, the Netherlands, 1999.

33. Lassing N, Rijsenbrij D, Vliet H. How well can we predict changes at architecture design time. Journal of Systems
and Software 2003; 65(2):141–153.

34. Ahmad A, Jamshidi P. A classification and comparison of software architecture evolution reuse-knowledge.
Available from: http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html.

35. Stammel J, Durdik Z, Krogmann K, Weiss R, Koziolek H. Software evolution for industrial automation systems:
literature overview. Karlsruhe Reports in Informatics 2011. Available from: http://sdqweb.ipd.kit.edu/publications/
pdfs/stammel2011a.pdf, [Accessed on 12 March 2013]

36. Garg AX, Hackam D, Tonelli M. Systematic review and meta-analysis: when one study is just not enough. Clinical
Journal of the American Society of Nephrology 2008; 3(1):253–260.

37. Bennett KH, Rajlich V. Software maintenance and evolution: a roadmap. In ICSE’2000 - Future of Software
Engineering, Limerick, 2000, 73–87.

38. Slyngstad OPN, Conradi R, Babar MA, Clerc V, van Vliet H. Risks and risk management in software architecture
evolution: an industrial survey. In 15th Asia-Pacific Software Engineering Conference, 2008.

39. Zhang H, Babar MA. Systematic reviews in software engineering: an empirical investigation. Information and
Software Technology 2013; 5(7):1341–1354.

40. Petticrew M, Roberts H. Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell: Oxford, 2006.
41. Kazman R, Woods S, Carriere J. Requirements for integrating software architecture and reengineering models:

CORUM II. In Working Conference on Reverse Engineering, 1998; 154–163.
42. Winter A, Ziemann J. Model-based migration to service-oriented architectures. In International Workshop on SOA

Maintenance and Evolution, In H. Sneed (ed.). CSMR 2007 Workshops, 2007; 107–110.
43. Razavian M, Lago P. Towards a conceptual framework for legacy to SOA migration. In Service-Oriented Comput-

ing. ICSOC/ServiceWave 2009 Workshops, WESOA 2009.
44. Ulrich WM, Newcomb P. Information Systems Transformation: Architecture-Driven Modernization Case Studies.

Morgan Kaufmann Publishers Inc: Elsevier, 2010. ISBN: 978-0-12-374913-0
45. Dancy E, Cordy JR, James R. STAC: software tuning panels for autonomic control. In 2006 conference of the Center

for Advanced Studies on Collaborative Research. 2006; 146–160.
46. Ahmad A, Jamshidi P, Pahl C. A framework for acquisition and application of software architecture evolution

knowledge. ACM SIGSOFT Software Engineering Notes 2013; 38(4).
47. Brinkkemper S. Method engineering: engineering of information systems development methods and tools. In

Information and Software Technology, 1996; 38(4):275–280.
48. Barnes JM, Garlan D. Challenges in developing a software architecture evolution tool as a plug-in. In 3rd Workshop

on Developing Tools as Plugin-Ins, ICSE WorkshopsL: USA, 2013.
49. Pahl C, Giesecke S, Hasselbring W. Ontology-based modelling of architectural styles. Information and Software

Technology 2009; (12):1739–1749.
50. Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: abstraction and reuse of object-oriented design. In

Object-Oriented Programming (ECOOP), 1993.

690 A. AHMAD, P. JAMSHIDI AND C. PAHL

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr

http://wwwp.dnsalias.org/wiki/WICSA_2011.
http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html
http://sdqweb.ipd.kit.edu/publications/pdfs/stammel2011a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/stammel2011a.pdf


AUTHORS’ BIOGRAPHIES

Aakash Ahmad is a PhD candidate in Software Engineering at Lero—the Irish Software
Engineering Research Centre, Dublin City University, Ireland. He received the BSc degree
in Software Engineering from the International Islamic University, Islamabad, Pakistan. He
was a tutor in Dublin City University, Ireland, and a software engineer at Elixir Technol-
ogies, Pakistan. His research interests include architecture-centric software evolution,
and acquisition and application of reuse knowledge and expertise to evolve software
systems.

Pooyan Jamshidi is a PhD candidate in the School of Computing, Faculty of Engineering
and Computing at Dublin City University. He received the BS and MS degrees in Com-
puter Science and Systems Engineering from Amirkabir University of Technology (Tehran
Polytechnic) in 2003 and 2006, respectively. He is currently with IC4–The Irish Centre for
Cloud Computing and Commerce. His general research interests are in the field of software
engineering and his focus lies predominantly in the areas of software architecture, software
evolution and self-adaptive software. He is a reviewer for five software engineering
journals and conferences.

Dr. Claus Pahl is a senior lecturer at the School of Computing at Dublin City University.
He is the architecture theme lead at the National Cloud Computing Technology Centre IC4.
His research focuses on software architecture and cloud service engineering. His specific
interests include dynamic architectures (dynamic context dependent composition, service
models at runtime; constraints monitoring), business process and service architecture inte-
gration (layered architectures for process and architecture configuration), and mediation
and integration in cloud computing (interoperability for on-demand architectures;
multitenancy SOA and policy-based governance). He has published more than 240 papers.
He is a reviewer for more than 30 journals and helped organizing more than 100 confer-
ences and workshops. He is on the editorial board of four journals, and he has acted as a
panel member and an evaluator for various research schemes worldwide. He is a member
of the IEEE.

CLASSIFICATION AND COMPARISON OF AERK 691

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:654–691
DOI: 10.1002/smr


