
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 1

Whence to Learn? Transferring Knowledge
in Configurable Systems using BEETLE

Rahul Krishna, Vivek Nair, Pooyan Jamshidi, Tim Menzies, IEEE Fellow

Abstract—As software systems grow in complexity and the space of possible configurations increases exponentially, finding the near-optimal configuration
of a software system becomes challenging. Recent approaches address this challenge by learning performance models based on a sample set of
configurations. However, collecting enough sample configurations can be very expensive since each such sample requires configuring, compiling, and
executing the entire system using a complex test suite. When learning on new data is too expensive, it is possible to use Transfer Learning to “transfer”
old lessons to the new context. Traditional transfer learning has a number of challenges, specifically, (a) learning from excessive data takes excessive time,
and (b) the performance of the models built via transfer can deteriorate as a result of learning from a poor source. To resolve these problems, we propose
a novel transfer learning framework called BEETLE, which is a “bellwether”-based transfer learner that focuses on identifying and learning from the most
relevant source from amongst the old data. This paper evaluates BEETLE with 57 different software configuration problems based on five software systems
(a video encoder, an SAT solver, a SQL database, a high-performance C-compiler, and a streaming data analytics tool). In each of these cases, BEETLE
found configurations that are as good as or better than those found by other state-of-the-art transfer learners while requiring only a fraction (17 th) of the
measurements needed by those other methods. Based on these results, we say that BEETLE is a new high-water mark in optimally configuring software.

Index Terms—Performance Optimization, SBSE, Transfer Learning, Bellwether.

F

1 INTRODUCTION

A problem of increasing difficulty in modern software is
finding the right set of configurations that can achieve the
best performance. As more functionality is added to the
code, it becomes increasingly difficult for users to under-
stand all the options a software offers [1]–[12]. It is hard to
overstate the importance of good configuration choices and
the impact poor choices can have. For example, it has been
reported that for Apache Storm, the throughput achieved
using the worst configuration was 480 times slower than that
achieved by the best configuration [3].

Recent research has attempted to address this problem
usually by creating accurate performance models that pre-
dict performance characteristics. While this approach is cer-
tainly cheaper and more effective than manual configuration
it still incurs the expense of extensive data collection. This is
undesirable, since the data collection must be repeated if the
software is updated or the workload of the system changes.

Rather than learning new configurations afresh, in this
paper, we ask if we can learn from existing configurations.
Formally, this is called “transfer learning”; i.e., the transfer
of information from selected “source” software configura-
tions running on one environment to learn a model for
predicting the performance of some “target” configurations
in a different environment. Transfer learning has been exten-
sively explored in other areas of software analytics [13]–[18].
This is a practical possibility since often when a software is
being deployed in a new environment , there are examples
of the system already executing under a different environ-

• Rahul Krishna is with the Department of Computer Science, Columbia University,
New York, NY. E-mail: i.m.ralk@gmail.com.

• Vivek Nair was with the Department of Computer Science, North Carolina State
University, Raleigh, NC. E-mail: vivekaxl@gmail.com.

• Tim Menzies is with the Department of Computer Science, North Carolina State
University, Raleigh, NC. E-mail: tim.menzies@gmail.com

• P. Jamshidi is with the Department of Computer Science and Engineering, University
of South Carolina, Columbia, SC. E-mail: pooyan.jamshidi@gmail.com

Manuscript received December XX, 2019.

ment. To the best of our knowledge, this paper is among the
earliest studies to apply transfer learning for performance
optimization. Our proposed method is significantly faster
than any current state-of-the-art methods in identifying
near-optimum configurations for a software system.

Transfer learning can only be useful in cases where the
source environment is similar to the target environment. If
the source and the target are not similar, knowledge should
not be transferred. In such situations, transfer learning can
be unsuccessful and can lead to a negative transfer. Prior
work on transfer learning focused on “What to transfer” and
“How to transfer”, by implicitly assuming that the source and
target are related to each other. However, those work failed
to address “From where (whence) to transfer” [19]. Jamshidi et
al. [20] alluded to this and explained when transfer learning
works but, did not provide a method which can help in
selecting a suitable source.

The issue of identifying a suitable source is a com-
mon problem in transfer learning. To address this, some
researchers [18], [21]–[23] have recently proposed the use
of the bellwether effect, which states that:

“When analyzing a community of software data,
there is at least one exemplary source data, called
bellwether(s), which best defines predictors for all
the remaining datasets . . . ”

Inspired by the success of bellwethers in other areas, this
paper defines and evaluates a new transfer learner for
software configuration called Bellwether Transfer Learner
(henceforth referred to as BEETLE). BEETLE can perform
knowledge transfer using just a few samples from a care-
fully identified source environment(s).

For evaluation, we explore five real-world software sys-
tems from different domains– a video encoder, a SAT solver,
a SQL database, a high-performance C-compiler, and a
streaming data analytics tool (measured under 57 enviro-
ments overall). In each case, we discovered that BEETLE
found configurations as good as or better than those found

ar
X

iv
:1

91
1.

01
81

7v
3

 [
cs

.S
E

]
 2

5
M

ar
 2

02
0

mailto:i.m.ralk@gmail.com
mailto:vivekaxl@gmail.com
mailto:tim.menzies@gmail.com
mailto:pooyan.jamshidi@gmail.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 2

()

Fig. 1: Traditional Transfer Learning compared with using
bellwethers to discover near optimal configurations.

by other state-of-the-art transfer learners while requiring
only 1

7 -th of the measurements needed by those other meth-
ods. Reducing the number of measurements is an important
consideration since collecting data in this domain can be
computationally and monetarily expensive.

Overall, this work makes the following contributions:
1) Source selection: We show that the bellwether effect exists
in performance optimization and that we can use this to
discover suitable sources (called bellwether environments)
to perform transfer learning (see §7).
2) Cheap source selection: BEETLE, using bellwethers, evalu-
ates at most ≈ 10% of the configuration space (see §4).
3) Simple Transfer learning using Bellwethers: We develop a
novel transfer learning algorithm using bellwether called
BEETLE that exploits the bellwether environment to con-
struct a simple transfer learner (see §4).
4) More effective than non-transfer learning: We show that
using the BEETLE is better than non-transfer learning ap-
proaches. It is also lot more economical (see §7).
5) More effective than state-of-the-art methods: Configurations
discovered using the bellwether environment are better than
the state-of-the-art methods [24], [25] (see §7).
6) Reproduction Package: To assist other researchers, a repro-
duction package with all our scripts and data are available
online (see https://git.io/fjsky).

The rest of this article is structured as follows: The
remainder of this section presents the research questions
asked here (§1.1) answered in this paper. §2 presents some
motivation for this work. §3 describes the problem formu-
lation and explains the concept of Bellwethers. §4 describes
BEETLE followed by a quick overview of the prior work
in transfer learning in performance configuration optimiza-
tion in Section §5. In §6, we present experimental setup
and followed by answers to research questions in §7. In
§8, we discuss our findings further and answer some ad-
ditional questions pertaining to our results. §9 discusses
some threats to validity, related work and conclusion are
presented in §10 and §11 respectively.

1.1 Research questions

RQ1: Does there exist a Bellwether Environment? First,
we ask if there exist bellwether environments to train trans-
fer learners for performance optimization. We hypothesize
that, if these bellwether environments exist, we can improve
the efficacy of transfer learning.

Result: We find that bellwether environments are preva-
lent in performance optimization. That is, in each of the
software systems, there exists at least one environment that
can be used to construct superior transfer learners.

RQ2: How many performance measurements are required
to discover bellwether environments? Having established
that bellwether environments are prevalent, the purpose of
this research question is to establish how many performance
measurements are needed in each of the environments to
discover these bellwether environments.
Result: We can discover a potential bellwether environ-
ment by measuring as little as 10% of the total configura-
tions across all the software system.

RQ3: How does BEETLE compare with other non-
transfer-learning based methods? The alternative to trans-
fer learning is just to use the target data to find the near-
optimal configurations. In the literature are many examples
of this “non-transfer” approach [7], [10], [12], [26] and for
our comparisons, we used the current state-of-the-art per-
formance optimization model proposed by Nair et al. [10].

Result: Our experiments demonstrate that transfer learn-
ing using bellwethers (BEETLE) outperforms other meth-
ods that do not use transfer learning both in terms of cost
and the quality of the model.

RQ4: How does BEETLE compare to state-of-the-art trans-
fer learners? The final research question compares BEETLE
with two other state-of-the-art transfer learners used com-
monly in performance optimization (for details see §5). The
purpose of this research question is to determine if a simple
transfer learner like BEETLE with carefully selected source
environments can perform as well as other complex transfer
learners that do not perform any source selection.

Result: We show that a simple transfer learning using bell-
wether environment (BEETLE) just as good as (or better
than) current state-of-the-art transfer learners.

2 MOTIVATION

With the appearance of continuous software engineering
and devops, configurability has become a primary concern
of software engineers. System administrators today develop
and use different versions software programs under running
several different workloads and in numerous environments.
In doing so, they try to apply software engineering methods
to best configure these software systems. Despite their best
efforts, the available evidence is that they need to be better
assited in making all the configuration decisions. Xu et
al. [1] reports that, when left to their own judgementments,
developers ignore up to 80% of configuration options, which
exposes them to many potential problems. For this reason,
the research community is devoting a lot of effort to con-
figuration studies, as witnessed by many recent software
engineering research publications [4]–[10], [12], [27]. For
details, see §10 for the additional related work.

Without automatic support (e.g., with systems like BEE-
TLE), humans find it difficult to settle on their initial choice
for software configurations. The available evidence [2], [3],
[28] shows that system administrators frequently make poor
configuration choices. Typically, off-the-shelf defaults are

https://git.io/fjsky

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 3

used, which often behave poorly. There are various ex-
amples presented in the literature which have established
that choosing default configuration can lead to sub-optimal
performance. For instance, Van Aken et al.report that the
default MySQL configurations in 2016 assume that it will
be installed on a machine that has 160MB of RAM (which,
at that time, was incorrect by, at least, an order of mag-
nitude) [2]. Also, Herodotou et al. [28] report that default
settings for Hadoop results in the worst possible performance.

Traditional approaches to finding good configuration are
very resource intensive. A typical approach uses sensitivity
analysis [29], where performance models are learned by
measuring the performance of the system under a limited
number of sampled configurations. While this approach is
cheaper and more effective than manual exploration, it still
incurs the expense of extensive data collection about the
software [3], [4], [7], [8], [10], [12], [26], [27], [30]. This is
undesirable since this data collection has to be repeated
if ever the software is updated or the environment of the
system changes abruptly. While we cannot tame the pace
of change in modern software systems, we can reduce the
data collection effort required to react to that change. The
experiments of this paper make the case that BEETLE scales
to some large configuration problems, better than the prior
state of the art. Further, it does so using fewer measurements
than existing state-of-the-art methods.

Further, we note that BEETLE is particularly recom-
mended in highly dynamic projects where the environments
keep changing. When context changes, so to must the solu-
tions applied by software engineers. When frequently re-
computing best configurations, it becomes vitally important
that computation cost is kept to a minimum. Amongst
the space of known configuration tools, we most endorse
BEETLE for very dynamic environments. We say this since,
of all the systems surveyed here, BEETLE has the lowest
CPU cost (and we conjecture that this is so since BEETLE
makes the best use of old configurations).

As a more concerete example, consider an organization
that runs, say, N heavy Apache Spark workloads on the
cloud. To optimize the performance of Apache Spark on
the given workloads, the DevOps Team need to find the
optimal solutions for each of these workloads, i.e., conduct
performance optimization N times. This setup has two
major shortcomings: hardware change and workload change.

Hardware Change: Even though the DevOps engineer of a
software system performs a performance optimization for a
specific workload in its staging environment, as soon as the
software is moved to the production environment the opti-
mal configuration found previously may be inaccurate. This
problem is further accentuated if the production environ-
ment changes due to the ever-expanding cloud portfolios. It
has been reported that cloud providers expand their cloud
portfolio more than 20 times in a year [31].

Workload Change: The developers of a database system
can optimize the system for a read-heavy workload, how-
ever, the optimal configuration may change once the work-
load changes to, say, a write-heavy counterpart. The reason
is that if the workload changes, different functionalities of
the software might get activated more often and so the
nonfunctional behavior changes too. This means that as
soon as a new workload is introduced (new feature in

the organization's product) or if the workload changes, the
process of performance optimization needs to be repeated.

Given the fragility of traditional performance optimiza-
tion, it is imperative that we develop a method to learn
from our previous experiences and hence reduce the burden
of having to find optimum configurations ad nauseam.

3 DEFINITIONS AND PROBLEM STATEMENT

Configuration: A software system, S , may offer a number
of configuration options that can be changed. We denote
the total number of configuration options of a software
system S as N . A configuration option of the software
system can either be a (1) continuous numeric value or a
(2) categorical value. This distinction is very important since
it impacts the choice of machine learning algorithms. The
configuration options in all software systems studied in this
paper are a combination of both categorical and continuous in
nature. The learning algorithm used in this paper namely,
Regression Trees, are particularly well suited to handle such
a combination of continuous and categorical data.

A configuration is represented by ci, where i represents
the ith configuration of a system. A set of all configurations
is called the configuration space, denoted as C. Formally, C is
a Cartesian product of all possible options C = Dom(c1) ×
Dom(c2) × ... × Dom(cN), where Dom(ci) is either R (Real
Numbers) or B (Catergorical/Boolean value) and N is the
number of configuration options.

ATOMIC USE_LFS SECURE LATENCY (µs)
c1 0 0 0 100
c2 0 0 1 150
...

...
...

...
...

cN 1 1 1 400

Fig. 2: Some configuration options for SQLite.

As a simple example, consider a subset of configuration
options from SQLite, i.e., S ≡ SQLite. This is shown
in Fig. 2. The subset of SQLite offers three configuration
options namely, ATOMIC (atomic delete), USE_LFS (use
large file storage), and SECURE (secure delete), ie., N = 3.
The last column contains the latency in µs when various
combinations of these options are chosen.
Environment: As defined by Jamshidi et al. [20], the differ-
ent ways a software system is deployed and used is called its
environment (e). The environment is usually defined in terms
of: (1) workload (w): the input which the system operates
upon; (2) hardware (h): the hardware on which the system
is running; and (3) version (v): the state of the software.

Note that, other environmental changes might be pos-
sible (e.g., JVM version used, etc.). For example, consider
software system Apache Storm, here we must ensure that
an appropriate JVM is installed in an environment before it
can be deployed in that environment. Indeed, the selection
of one version of a JVM over another can have a profound
performance impact. However, the perceived improvement
in the performance is due to the optimizations in JVM, not
the original software system being studied. Therefore, in this
paper, we do not alter these other factors which do not have
a direct impact on the performance of the software system.
The following criteria is used to define an environment:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 4

1) Environmental factors of the software systems that we
can vary in the deployment stack of the system. This pre-
vents us from varying factors such as the JVM version,
CPU frequency, system software, etc., which define the
deployment stack and not the software system.
2) Common changes developers choose to alter in the soft-
ware system. In practice, it is these factors that affect the
performance of systems the most [20], [24], [25], [32].
3) Factors that are most amenable for transfer learning. Pre-
liminary studies have shown that factors such as workload,
hardware, and software version lend themselves very well
to transfer learning [20], [25].
For a more detailed description of the factors that were
changed and those that were left unchanged, see Table 1.

Formally, we say an environment is e = {w, h, v} where
w ⊆ W , h ⊆ H , and v ⊆ V . Here, W,H, V are the space
of all possible hardware changes H ; all possible software
versions V , and all possible workload changesW . With this,
the environment space is defined as E ⊂ {W×H×V }, i.e., a
subset of environmental conditions e for various workloads,
hardware, and environments.
Performance: For each enviroment e, the instances in our
data are of the form {(c1, y1), ..., (cN , yN)}, where ci is a
vector of configurations of the i-th example and it has a
corresponding performance measure yi ∈ YS,c,e associated
with it. We denote the performance measure associated with
a given configuration (ci) by y = f(ci). We consider the
problem of finding the near-optimal configurations (c∗) such
that f(c∗) is better than other configurations in CA,e, i.e.,

f(c∗) ≤ f(c) ∀c ∈ CA,h,w,v \ c∗ for min objective
f(c∗) ≥ f(c) ∀c ∈ CA,h,w,v \ c∗ for max objective

Bellwethers: In the context of performance optimization, the
bellwether effect states that: For a configurable system, when
performance measurements are made under different environ-
ments, then among those environments there exists one exemplary
environment, called the bellwether, which can be used determine
near optimum configuration for other environments for that sys-
tem. We show that, when performing transfer learning, there
are exemplar source environments called the bellwether en-
vironment(s) (B = es1, es2, ..., esn ⊂ E), which are the best
source environment(s) to find near-optimal configuration
for the rest of the environments (∀e ∈ E \ B).
Problem Statement: The problem statement of this paper:

Find a near-optimal configuration for a target environ-
ment (Set), by learning from the measurements (〈c, y〉)
for the same system operating in different source envi-
ronments (Ses).

In other words, we aim to reuse the measurements
from a system operating in an environment to optimize the
same system operating in the different environment thereby
reducing the number of measurements required to find the
near-optimal configuration.

4 BEETLE: BELLWETHER TRANSFER LEARNER

This section describes BEETLE, a bellwether based approach
that finds the near-optimal configuration using the knowl-
edge in the “bellwether” environment. BEETLE can be
separated into two main steps: (i) Discovery: finding the
bellwether environment, and (ii) Transfer: using the bell-
wether environment to find the near-optimal configuration

for target environments. These steps will are explained in
greater detail in §4.1 and §4.2. We outline it below,
1) Discovery: Leverages the existence of the bellwether effect
to discover which of the available environments are best
suited to be a source enviroment (known as the bellwether
environment). To do this, BEETLE uses a racing algorithm to
sequentially evaluate candidate environments [33]. In short,
a) A fraction (about 10%) of all available data is sampled. A

prediction model is built with these sampled datasets.
b) Each enviroment is used as a source to build a prediction

model and all the others are used as targets in a round-
robin fashion.

c) Performance of all the enviroments are measured and are
statistically ranked from the best source environemnt to
the worst. Environments with a poor performance (i.e.,
those ranked last) are eliminated.

d) For the remaining enviroments, another 10% of the sam-
ples are added and the steps (a)–(c) are repeated.

e) When the ranking order doesn’t change for a fixed num-
ber of repeats, we terminate the process and nominate the
best ranked enviroment(s) as the bellwether.

2) Transfer: Next, to perform transfer learning, we just use
these bellwether environments to train a performance pre-
diction model with regression trees [34].
We conjecture that once a bellwether source environment is
identified, it is possible to build a simple transfer model
without any complex methods and still be able to discover
near-optimal configurations in a target environment.

4.1 Discovery: Finding Bellwether Environments

In the previous work on bellwethers [18], the discovery
process involved a round-robin experimentation comprised
of the following steps:
1) Pick an enviroment ei from the space of all available
enviroments, i.e., ei ∈ E .
2) Use ej as a source to build a prediction model.
3) Using all the other enviroments ej ∈ E and ej 6= ei as the
target, determine the prediction performance of ei.
4) Next, repeat the steps by choosing a different ei ∈ E
5) Finally, rank the performances of all the enviroments and
pick the best ranked enviroment(s) as bellwether(s).

The above methodology is a form of an exhaustive
search. While it worked for the relatively small datasets in
[18], [21], the amount of data in this paper is sufficiently
large (see Table 1) that scoring all candidates using every
sample is too costly. More formally, let us say that we
have M candidate enviroments with N measurements each.
The classical approach, described above, will construct M
models. If we assume that the model construction time is a
function of number of samples f(N), then for one round in
the round-robin, the computation time will O(M · f(N)).
Since this is repeated M times for each enviroment, the
total computational complexity is O(M2 · f(n)). When M
and/or N is/are extremely large, it becomes necessary to
seek alternative methods. Therefore, in this paper, we use a
racing algorithm to achieve computational speedups.

Instead of evaluating every available instance to deter-
mine the best source enviroment, Racing algorithms take the
following steps:
• Sample a small fraction of instances from the original
enviroments to minimize computational costs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 5

(a) Elimination of non-bellwether environments

(b) An example of Discovery

(c) An example of Transfer

1 def find_bellwether(sources, frac,
2 budget, thersh, lives):
3 """ Find the bellwether Environment
4 Returns
5 -------
6 bellwether: List
7 The best ranked source(s)
8 """
9 while lives > 0 and cost < budget:

10 # Sample configurations
11 for i, src in enumerate(sources):
12 sampled_source += add_sample(src, frac)
13 # Estimate cost (no. of samples)
14 cost += get_cost(sampled_source)
15 # Get current performance rankings
16 cur_ranks = get_pref_rankings(sampled)
17 if cur_ranks != prev_ranks:
18 # Remove non-bellwether environments
19 sources = remove_non_bellw(
20 sampled_source, cur_ranks)
21 else:
22 # Lose a life if ranks don't change
23 lives -= 1
24 prev_ranks = cur_ranks # Update ranks
25 # Return the best ranked source
26 return source[cur_ranks[0]]

(d) Pseudocode for Discovery

 1 def BEETLE(sources, target, budget):
 2 """ Bellwether Transfer Learner
 3

 4
Returns

 5

 6
best_config: List

 7 The predicted best configuration
 8 """
 9 bellwether = find_bellwether(sources, frac,
10 budget, thersh, lives)
11 # If there are multiple bellwethers, pick
12 # one randomly
13 if len(bellwether) > 1:
14 bellwether = random.choice(bellwether)
15 # Train a regression tree model
16 prediction_model = regTree.train(bellwether)
17 # Find the best configuration in the target
18 best_config = prediction_model.best(target)
19 # Return the best config
20 return best_config

(e) Pseudocode for Transfer

Fig. 3: BEETLE framework and Pseudocode.

• Evaluate the performance of enviroments statistically.
• Discarded the enviroments with the poorest performance.
• Repeated the process with the remaining datasets with
slightly larger sample size.

Figure 3(a) shows how BEETLE eliminates inferior envi-
ronments at every iteration (thus reducing the overall num-
ber of environments evaluated). Since each iteration only
uses a small sample of the available data, the model building
time also reduces significantly. It has been shown that racing
algorithms are extremely effective in model selection when
the size of the data is arbitrarily large [33], [35].

In Figure 3(b), we illustrate the discovery of the bell-
wether environments with an example. Here, there are two
groups of environments:
(i) Group 1: Environments e1, e2, ..., e7, for which perfor-

mance measurements have been gathered. One or more
these environment(s) are potentially bellwether(s).

(ii) Group 2: Environments e8, e9, ..., e12, these represent the

target environments, for which need to determine an
optimal configuration.
In the discovery process, BEETLE’s objective is to find

bellwethers from among the environments in Group 1. And,
later in the Transfer phase, we use the bellwether enviro-
ments to find the near-optimal configuration for the target
environments from Group 2.Note that, for the enviroments
in Group 2, we do have to make any measurements regarding
it’s performance. Having found bellwether enviroment(s)
from Group 1, it is sufficient to just use the bellwether
enviroment(s) to predict the optimal configurations for the
enviroments in Group 2.

Figure 3(d) outlines a pseudocode for the algorithm used
to find bellwethers. The key steps are listed below:
• Lines 3–5: Randomly sample a small subset of configura-
tions from the source environments. The size of the subset
(of configurations) is controlled by a predefined parameter
frac, which defines the percent of configurations to be sam-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 6

pled in each iteration.
• Line 6–7: Calculate sampling cost for the configurations.
• Line 8–9: Use the sampled configurations from each envi-
ronment as a source build a prediction model with regression
trees. For all the remaining enviroments, this regression
tree model is used to predict for optimum configuration.
After using every enviroment as a source, the environments
are ranked from best to worst using the evaluation criteria
discussed in §6.2.
• Line 10–14: We check to see if the rankings of the enviro-
ments have changed since the last iteration. If not, then a
“life” is lost. We go back to Line 3 and repeat the process.
When all lives are expired, or we run out of the budget,
the search process terminates. This acts as an early stopping
criteria, we need not sample more data if those samples do
not help in improving the outcome.
• Line 15–17: If there is some change in the rankings, then
new configuration samples are informative and the envi-
ronments that are ranked last are eliminated. These environ-
ments are not able to find near-optimal configurations for
the other environments and therefore cannot be bellwethers.
• Line 18: Once we have exhausted all the lives or the
sampling budget, we simply return the source project with
the best rank. These would be the bellwether enviroments.

On line 6–7 we measure the sampling cost. In our case,
we use the number of samples as a proxy for cost. This
is because each measurement consumes computational re-
sources, which in turn has a monetary cost. Therefore, it
is a commonplace to set a budget and sample such that
the budget is honored. Our choice of using the number
of measurements as a cost measure was an engineering
judgment; this can be replaced by any user-defined cost
function such as (1) the actual cost, or (2) the wallclock
time. The accuracy of either of the above is dependent on
the business context. If one is either constrained by the
runtime or there is a large variance in the measurements
of time per configuration, then the wallclock time might be
a more reasonable measure. On the other hand, if the cost
of measurements is the limiting factor, it makes sense to use
the actual measurement cost. Using the number of samples
encompasses these two factors since it both costs more
money and takes time to obtain more samples. In the ideal
case, we would like to have performance measurements for
all possible configurations of a software system. But this is
not practical because certain systems have over 250 unique
configurations (see Table 1).

It is entirely possible for the FindBellwether method to
identify multiple bellwethers (e.g., in the case of Figure 3(b)
the bellwethers were e1 and e2). When mutliple bellwethers
are found, we may use (a) any one of the bellwether envi-
roments at random, (b) use all the enviroments, or (c) use
heuristics based on human intuition. In this paper, we pick
one enviroment from among the bellwethers at random.
As long as the chosen project is among the bellwether
enviroments, the results remain unchanged.

The BEETLE approach assumes that a fixed set of envi-
roments exist from which we pick one or more bellwethers.
But, approach would work just as well where new measure-
ments from new enviroments are added. Specifically, when
more environments are added into a project, it is possible
that the newly added environment could be the bellwether.

Therefore, we recommend repeating FindBellwether method
prior to using the new enviroment. Note that, repeating
FindBellwether for new enviroments would add minimal
computational overhead since the measurements have al-
ready been made for the new enviroments. Also note that,
this approach of revisiting FindBellwether on availability
of new data, has been previously been proposed in other
domains in software engineering [18], [21].

4.2 Transfer: Using the Bellwether Environments

Once the bellwether environment is identified, it can be
used to find the near-optimal configurations of target en-
vironments. As shown in Figure 3(c), FindBellwether elimi-
nates enviroments that are not potentially bellwethers and
returns only the candidate bellwether enviroments. For the
remaining target enviroments, we use the model built with
the bellwether enviroments to identify the near optimal
configurations.

Figure 3(e) outlines the pseudocode used to perform the
transfer. The key steps are listed below:
• Line 9-10: We use the FindBellwether from Figure 3(d) to
identify the bellwether enviroments.
• Line 13-14: If there exists more than one bellwether, we
randomly chose one among them be used as the bellwether
enviroment.
• Line 15-16: The configurations from the bellwether and
their corresponding performance measures are used to build
a prediction model using regression trees.
• Line 17-18: Predict the performances of various configura-
tions from the target enviroment.
• Line 19-20: Return the best configuration for the target.

Note that, on Line 10, we use regression trees to make pre-
dictions. It has been the most preferred prediction algorithm
in this domain [7], [10], [26]. This is primarily because much
of the data used in this domain are a mixture numerical and
categorical attributes. Given configuration measurement in
the form {(ci, yi)}, ci is a vector of categorical/numeric
values and yi is a continuous numeric value. For such
data, regression trees are the best suited prediction algo-
rithms [12], [24], [27], [30].

In terms of computational complexity in comparison
with previous methods [18], [21], BEETLE offers notici-
ble speedups. Given that we have M enviroments and n
measurements in each enviroment, we may categorize the
speedups into the following cases:
• Best Case: Here, we expect the racing algorithm of BEETLE
to eliminate atleast half of the non-bellwether enviroments
at every iteration. This gives us a recurrence relation of
T (M) = T (M/2) + f(n), which gives us a best case
complexity of O(log2 (M) · f (n)).
• Worst Case: Here, we expect the racing algorithm of
BEETLE to eliminate just one non-bellwether enviroment
at every iteration. This gives us a recurrence relation of
T (M) = T (M − 1) + f(n), which gives us a worst case
complexity of O(M 2 · f (n)). Note that this worst case is
same as the complexity of [18], [21].
In practice, we note that the average case speedup
is somewhere in between that of the best case (i.e.,
O(log2 (M) · f (n))) and the worst case (i.e., O(M 2 · f (n))).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 7

5 OTHER TRANSFER LEARNING METHODS

This section describes the methods we use to compare
BEETLE against. These alternatives are (a) two state-of-the-
art transfer learners for performance optimization: Valov et
al. [24] and Jamshidi et al. [25]; and (b) a non-transfer learner:
Nair et al. [12].

5.1 Transfer Learning with Linear Regression

Valov et al. [24] proposed an approach for transferring
performance models of software systems across platforms
with different hardware settings. The method consists of the
following two components:
• Performance prediction model: The configurations on a
source hardware are sampled using Sobol sampling. The
number of configurations is given by T × Nf , where
T = 3, 4, 5 is the training coefficient and Nf is the number
of configuration options. These configurations are used to
construct a Regression Tree model.
• Transfer Model: To transfer the predictions from the source
to the target, a linear regression model is used since it
was found to provide good approximations of the transfer
function. To construct this model, a small number of random
configurations are obtained from both the source and the
target. Note that this is a shortcoming since, without making
some preliminary measurements on the target, one cannot
begin to perform transfer learning.

5.2 Transfer Learning with Gaussian Process

Jamshidi et al. [25] took a slightly different approach to
transfer learning. They used Multi-Task Gaussian Processes
(GP) to find the relatedness between the performance mea-
sures in source and the target. The relationships between
input configurations were captured in the GP model using
a covariance matrix that defined the kernel function to
construct the Gaussian processes model. To encode the rela-
tionships between the measured performance of the source
and the target, a scaling factor is used with the above kernel.
The new kernel function is defined as follows:

k(s, t, f(s), f(t)) = kt(s, t)× kxx(f(s), f(t)), (1)

where kt(s, t) represents the multiplicative scaling factor.
kt(s, t) is given by the correlation between source f(s) and
target f(t) function, while kxx is the covariance function for
input environments (s & t). The essence of this method is
that the kernel captures the interdependence between the
source and target environments.

5.3 Non-Transfer Learning Performance Optimization

A performance optimization model with no transfer was
proposed by Nair et al. [12] in FSE ’17. It works as follows:
1) Sample a small set of measurements of configurations
from the target environment.
2) Construct performance model with regression trees.
3) Predict for near-optimal configurations.
The key distinction here is that unlike transfer learners,
that use a different source environment to build to predict
for near-optimal configurations in a target environment, a
non-transfer method such as this uses configurations from
within the target environment to predict for near-optimal
configurations.

6 EXPERIMENTAL SETUP

6.1 Subject Systems

In this study, we selected five configurable software systems
from different domains, with different functionalities, and
written in different programming languages. We selected
these real-world software systems since their characteristics
cover a broad spectrum of scenarios. Briefly,
• SPEAR is an industrial strength bit-vector arithmetic deci-
sion procedure and Boolean satisfiability (SAT) solver. It is
designed for proving software verification conditions, and it
is used for bug hunting. It consists of a binary configuration
space with 14 options with 214 or 16384 configurations. We
measured how long it takes to solve an SAT problem in all
214 configurations in 10 environments.
• X264 is a video encoder that compresses video files
and has 16 configurations options to adjust output quality,
encoder types, and encoding heuristics. Due to the cost
of sampling the entire configuration space, we randomly
sample 4000 configurations in 21 environments.
• SQLITE is a lightweight relational database management
system, which has 14 configuration options to change in-
dexing and features for size compression. Due to the cost
of sampling and a limited budget, we use 1000 randomly
selected configurations in 15 different environments.
• SAC is a compiler for high-performance computing. The
SaC compiler implements a large number of high-level
and low-level optimizations to tune programs for efficient
parallel executions. It has 50 configuration options to control
optimization options. We measure the execution time of the
program for 846 configurations in 5 enviroments.
• STORM is a distributed stream processing framework
which is used for data analytics. We measure the latency
of the benchmark in 2,048 randomly selected configurations
in 4 environments.

Table 1 lists the details of the software systems used in
this paper. Here, |N | is the number of configuration options
available in the software system. If the options for each
configuration is binary, then there can be as much as 2|N |

possible configurations for a given system1, since it is not
possible for us measure the performance of all possible
configurations, we measure the performance of a subset
of the 2|N | samples, this subset is denoted by |C|. The
performance of each of the |C| configurations are measured
under different hardware (H), workloads (W), and software
versions (V). A unique combination of H,W, V constitutes
an enviroment which is denoted by E. Note that, measuring
the performance of |C| configurations in each of the |E|
enviroments can be very costly and time consuming. There-
fore, instead of all combinations of H×W ×V , we measure
the performance in only a subset of the enviroments (the
total number is denoted by |E|).
6.2 Evaluation Criterion

Typically, performance models are evaluated based on ac-
curacy or error using measures such as Mean Magnitude of
Relative error (abbrv. MMRE) which is given by:

MMRE =
|predicted− actual|

actual
· 100

1. On the other hand, if there are |o| possible options, then there may be |o|N
possible configurations.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 8

1 def LinearTransform(source, target,
2 training_coef, budget):
3 # Construct a prediction model
4 prediction_model = regTree.train(source,
5 training_coef)
6 # Sample random measurements
7 s_samp = source.sample(budget)
8 t_samp = target.sample(budget)
9 # Get performance measurements

10 s_perf = get_perf(s_samp)
11 t_perf = get_perf(t_samp)
12 # Train a transfer model with LR
13 transfer_model = linear_model.train(s_perf,
14 t_perf)
15 return prediction_model, transfer_model

(a) Linear Transformation Transfer [26].

1 def GPTransform(source, target,
2 src_budget, tgt_budget):
3 # Sample random configurations
4 s_some = source.sample(src_budget)
5 t_some = target.sample(tgt_budget)
6 # Get performance measurements
7 s_perf = get_perf(s_some)
8 t_perf = get_perf(t_some)
9 # Compute correlation and covariance

10 perf_correlation = get_corr(s_perf, t_perf)
11 input_covariance = get_covar(s_some, t_some)
12 # Construct a kernel
13 kernel = input_covariance * perf_correlation
14 # Train the Gaussian Process model
15 learner = GaussianProcessRegressor(kernel)
16 prediction_model = learner.train(s_some)
17 return prediction_model

(b) Gaussian Process Transformation Transfer [27].

Fig. 4: Pseudocodes of other transfer learning methods.
System Language {|C|,N , |E|} H W V Unchanged
x264 C, As-

sembly
4000, 16, 21 NUC/4/1.30/15/SSD

NUC/2/2.13/7/SSD
Station/2/2.8/3/SCSI,
AWS/1/2.4/1.0/SSD,
AWS/1/2.4/0.5/SSD,
Azure/1/2.4/3/SCSI

8/2, 32/11, 128/44 r2389, r2744 Memory, CPU, background
services

SPEAR C, As-
sembly

16384, 14, 10 NUC/4/1.30/15/SSD,
NUC/2/2.13/7/SSD,
Station/2/2.8/3/SCSI,
AWS/1/2.4/1.0/SSD,
AWS/1/2.4/0.5/SSD,
Azure/1/2.4/3/SCSI

(in #variables/#clauses),
774/5934, 1008/7728,
1554/11914, 978/7498

1.2, 2.7 Memory, CPU, background
services

SQLite C 1000, 14, 15 NUC/4/1.30/15/SSD,
NUC/2/2.13/7/SSD,
Station/2/2.8/3/SCSI,
AWS/1/2.4/1.0/SSD,
AWS/1/2.4/0.5/SSD,
Azure/1/2.4/3/SCSI

write–seq, read–batc, read–
rand, read–seq

3.7. 6.3,
3.19.0.0

Memory, CPU, background
services

SaC C 846, 50, 5 NUC/4/1.30/15/SSD,
NUC/2/2.13/7/SSD,
Station/2/2.8/3/SCSI,
AWS/1/2.4/1.0/SSD,
AWS/1/2.4/0.5/SSD,
Azure/1/2.4/3/SCSI

random matrix generator,
particle filtering, differen-
tial, equation solver, k-
means, optimal matching,
nbody, simulation, conju-
gate, gradient, garbage col-
lector.

1.0.0 Memory, CPU, background
services

Storm Clojure 2048, 12, 4 NUC/4/1.30/15/SSD,
NUC/2/2.13/7/SSD,
Station/2/2.8/3/SCSI,
AWS/1/2.4/1.0/SSD,
AWS/1/2.4/0.5/SSD,
Azure/1/2.4/3/SCSI

WordCount, RollingCount,
RollingSort, SOL

Storm 0.9.5
+ Zookeeper
3.4.11

JVM machine, Zookeeper
Options, Memory, CPU,
background services

TABLE 1: Overview of the real-world subject systems. |C|:Number of Configurations sampled per environment, N=Number
of configuration options, |E|: Number of Environments, |H|: Hardware, |W |: Workloads, and |V |: Versions.

It has recently been shown that exact measures like MMRE
can be somewhat misleading to assess configurations [12],
[27], [36]. An alternative is to use rank-based metrics that
compute the difference between the relative rankings of the
performance scores [12], [27]. The key intuition behind
relative rankings is that the raw accuracy (as measured by
MMRE) is less important than the rank-ordering of con-
figurations from best to worst. As long as a model can
preserve the order of the rankings of the configurations, it is
still possible to determine which configuration is the most
optimum. We can quantify this by measuring the differences
in ranking between the actual rank and the predicted rank.
More formally, rank-difference Rδ is measured as:

Rδ = |Rank(Predicted)− Rank(Actual)|

We note that rank difference is still not particularly infor-
mative. This is because it ignores the distribution of perfor-
mance scores and a small difference in performance measure can
lead to a large rank difference and vice-versa [37].

To illustrate the challenges with Rδ and MMRE, con-
sider the example in Fig. 5 where we are trying to find a
configuration with the minimum value. Here, although the
difference between the predicted value and the actual value
is only 0.02, the rank difference Rδ is 90. But this does not
tell us if Rδ = 90 is good or bad. While, in the same Fig. 5,
when we calculate MMRE we get an error of only 22%, this
may convey a false sense of accuracy. In the same example,
let us say that the maximum value permissible is 0.11,
then according to Fig. 5, our predicted value for the best
performance (which recall is supposed to the lowest) is the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 9

Value Rank
Actual 0.09 100
Predicted 0.11 10
Difference 0.02 90

MMRE =
0.11− 0.09

0.09
× 100 = 22%

Rδ = |10− 100| = 90

Now, let’s say the min = 0.09 and max = 0.11. Then,

NAR =
0.11− 0.09

0.11− 0.09
× 100 = 100%

Fig. 5: A contrived example to illustrate the challenges
with MMRE and rank based measures

highest permissible value of 0.11.
Therefore, to obtain a realistic estimate of optimality of

a configuration, in this paper, we propose a measure called
Normalized Absolute Residual (NAR) inspired by Generational
Distance or Inverted Generation Distance used commonly is
search based software engineering [38]–[40]. It represents
the ratio of (a) difference between the actual performance
value of the optimal configuration and the predicted per-
formace value of the optimal configuration, and (b) The
absolute difference between the maximum and minimum
possible performace values. Formally:

NAR =
|min(f(c))− f(c∗)|

max(f(c))−min(f(c))
· 100 (2)

Where min(f(c)) is the value of the true minima of con-
figuration c, f(c∗) is the predicted value of the minima,
and max(f(c)) is the largest performance value of a con-
figuration. This measure is equivalent to Absolute Residual
between predicted and actual, normalized to lie between
0% to 100% (hence the name Normalized Absolute Residual or
NAR). According to this formulation, the lower the NAR,
the better. Reflecting back on Fig. 5, we see that the NAR
is 100% which is exact what is expected when a predicted
“minima” (0.11) is equal to the actual “maxima” (also 0.11).

6.3 Statistical Validation

Our experiments are all subjected to inherent randomness
introduced by sampling configurations or by a different
source and target environments. To overcome this, we use
30 repeated runs, each time with a different random number
seed. The repeated runs provide us with sufficiently large
sample size for statistical comparisons. Each repeated run
collects the values of NAR.

To rank these 30 numbers collected as above, we use the
Scott-Knott test recommended by Mittas and Angelis [41]:
• A list of treatments, sorted by their mean value, are
split at the point that maximizes the expected value of the
difference in their mean before after the split.
• That split is accepted if, between the two splits, (a) there
is a statistically significant difference using a hypothesis test
H, and (b) the difference between the two splits is not due
to a small effect.
• Recurse on both splits if the split is acceptable.
• Once no more splits are found, they are “ranked” smallest
to largest (based on their median value).
In our work, in order to judge the statistical significance
we use a non-parametric bootstrap test with 95% confi-
dence [42]. Also, to make sure that the statistical significance

is not due to the presence of small effects, we use an A12
test [43]. Briefly, the A12 test measures the probability that
one split has a lower NAR values than another. If the two
splits are equivalent, then A12 = 0.5. Likewise if A12 ≥ 0.6,
then 60% of the times, values of one split are significantly
smaller that the other. In such a case, it can be claimed that
there is a significant effect to justify the hypothesis test. We
use these two tests (bootstrap and A12) since these are non-
parametric and have been previously demonstrated to be
informative [44]–[49].

7 RESULTS

RQ1: Does there exist a Bellwether Environment?
Purpose: The first research question seeks to establish the
presence of bellwether environments within different envi-
ronments of a software system. If there exists a bellwether
environment, then identifying that environment can greatly
reduce the cost of finding a near-optimal configuration for
different environments.
Approach: For each subject software system, we use the
environments to perform a pair-wise comparison as follows:
1) We pick one environment as a source and evaluate all
configurations to construct a regression tree model.
2) The remaining environments are used as targets. For
every target environment, we use the regression tree model
constructed above to predict for the best configuration.
3) Then, we measure the NAR of the predictions (see §6.2).
4) Afterwards, we repeat steps 1, 2, and 3 for all the other
source environments and gather the outcomes.
We repeat the whole process above 30 times and use the
Scott-Knott test to rank each environment best to worst.
Result: Our results are shown in Fig. 6. Overall, we find
that there is always at least one environment (the bellwether
environment) in all the subject systems, that is much su-
perior to others. Note that, STORM is an interesting case,
where all the environments are ranked 1, which means
that all the environments are equally useful as a bellwether
environment —in such cases, any randomly selected envi-
ronment could serve as a bellwether. Further, we note that
the variance in the bellwether environments are much lower
compared to other environments. Low variance indicates
the low median NAR is not an effect of randomness in
our experiments and hence increases our confidence in the
existence of bellwethers.

Please note, in this specific experiment, we use all mea-
sured configurations (i.e., 100% of |C| in Table 1) to deter-
mine if bellwethers exist. This ensures that the existence of
bellwethers is not biased by how we sampled the config-
uration space. Later, in RQ2, we will restrict our study to
determine what fraction of the samples would be adequate
to find the bellwethers.

One may be tempted to argue that the answer to this
question trivially could be answered as ”yes” since it is
unlikely that all environments exhibit identical performance
and there will always be some environment that can make
better predictions. However, observe that the environments
ranked first performs much better than the rest (with certain
exceptions), and hence, the difference between the bell-
wether environment and others is not coincidental. Further,
by exhaustively comparing the performance of all available
environments, we demonstrate that it is ill advised to ran-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 10

X264

Rank Dataset Median IQR
1 x264 18 0.35 1.82 s
1 x264 9 0.35 1.62 s
2 x264 10 0.94 8.25 s
2 x264 7 0.94 8.25 s
2 x264 11 1.62 7.46 s
3 x264 16 2.33 12.18 s
3 x264 2 2.33 12.18 s
3 x264 6 2.82 5.35 s
3 x264 20 3.65 13.74 s
4 x264 19 6.95 41.97 s
4 x264 17 13.61 32.32 s
4 x264 13 16.42 51.65 s
4 x264 15 20.14 50.68 s
5 x264 14 27.24 42.74 s
5 x264 0 28.63 49.77 s

SAC

Rank Dataset Median IQR
1 sac 6 0.27 0.14 s
2 sac 4 0.96 4.26 s
2 sac 8 1.04 3.67 s
2 sac 9 2.29 4.98 s
3 sac 5 10.8 89.65 s

STORM
Rank Dataset Median IQR
1 storm feature9 0.0 0.0 s
1 storm feature8 0.0 0.0 s
1 storm feature6 0.0 0.01 s
1 storm feature7 0.01 0.04 s

SPEAR
Rank Dataset Median IQR
1 spear 7 0.1 0.1 s
1 spear 6 0.1 0.2 s
1 spear 1 0.1 0.1 s
1 spear 9 0.1 0.5 s
1 spear 8 0.1 0.2 s
1 spear 0 0.1 0.91 s
2 spear 5 0.28 0.3 s
3 spear 4 0.6 1.17 s
4 spear 2 1.09 5.31 s
5 spear 3 1.89 4.48 s

SQLITE

Rank Dataset Median IQR
1 sqlite 17 0.8 1.13 s
1 sqlite 59 2.0 3.44 s
1 sqlite 19 2.0 4.88 s
2 sqlite 44 1.96 6.91 s
2 sqlite 16 2.52 7.41 s
2 sqlite 73 2.82 7.24 s
2 sqlite 45 3.47 11.86 s
2 sqlite 10 3.88 6.92 s
2 sqlite 96 4.94 6.04 s
2 sqlite 79 5.64 5.24 s
2 sqlite 11 6.64 5.75 s
2 sqlite 52 6.84 7.95 s
2 sqlite 97 7.68 13.71 s
3 sqlite 18 13.17 54.68 s
3 sqlite 94 27.43 47.66 s

Fig. 6: Median NAR of 30 repeats. Median NAR is the normalized absolute residual values as described in Equation 2, and
IQR the difference between 75th percentile and 25th percentile found during multiple repeats. Lines with a dot in the middle
(s), show the median as a round dot within the IQR. All the results are sorted by the median NAR: a lower median value
is better. The left-hand column (Rank) ranks the various techniques where lower ranks are better. Overall, we find that there
is always at least one environment, denoted in light gray , that is much superior (lower NAR) to others.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

16 12 8 4 4 8 12 16

SQLITE

Win Loss

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

16 12 8 4 0 0 4 8 12 16

x264

Win Loss

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

12 8 4 4 8 12

SPEAR

Win Loss

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

7 3 1 3 7 10

STORM

Win Loss

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

6 4 2 2 3 7

SAC

Win Loss

Fig. 7: Win/Loss analysis of learning from the bellwether environment and target environment using Scott Knott. The x-axis
represents the % of available samples used to build a model. The y-axis is the count.

TABLE 2: Effectiveness of source selection method.

Subject System 100% Samples FindBellwether Difference (∆%)

Median IQR Median IQR Median IQR

SQLite 0.8 1.13 1.8 2.48 1.0 1.35
Spear 0.1 0.1 0.1 0 0.0 0.0
x264 0.35 1.62 0.9 1.06 0.55 0.16

Storm 0.0 0.0 0.0 0.0 0.0 0.0
SaC 0.27 0.14 0.63 7.4 0.36 6.9

domly pick any available source lest we risk choosing a sub-
optimal configuration setting.

Result: In each subject system, there exist bellwether en-
vironment(s) which can be used to find the near-optimal
configurations for the rest of the environments.

RQ2: How many measurements are required to discover
bellwether environments?
Purpose: The bellwether environments found in RQ1 re-
quired us to use 100% of the measured performance values
from all the environments2. Sampling all configurations
may not be practical, since that may take an extremely
long time [20]. Thus, we ask if we can find the bellwether
environments sooner using fewer samples. Further, we ask
how many such samples are required.
Approach: We used the racing algorithm discussed in Sec-
tion §4.1 to incrementally sample the configurations until
a bellwether environment has been discovered. It works as
follows:
1) We start from 1% of configurations from each environ-
ment and assume that every environment is a potential

2. Note, except for SPEAR, we only have measured a subset of all possible
configuration space since we were limited by the time and the cost required to
make exhaustive measurements

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 11

bellwether environment.
2) Then, we increment the number of configurations in
steps of 1% and measure the NAR values.
3) We rank the environments and eliminate those that do
not show much promise.
4) We repeat the above steps until we cannot eliminate any
more environments.

When the above discover process terminates, we note that
only a fraction of the available samples are used to discover
the bellwether. We measure the number of samples required
for estimating the bellwether. Further, to understand if the
smaller sample size is sufficient to identify a near-optimal
configuration, we compare the performance of the discov-
ered bellwether environment with 100% with the predicted
bellwether environment using a smaller sample size.
Result: Table 2 summarizes our findings. We find:
• In all 5 cases, the racing algorithm for finding bellwether
terminated after using the following percentage of samples:
1) x264: 10.21% of 4000 samples
2) SQLite: 11.42% of 1000 samples
3) Spear: 13.79% of 16384 samples
4) SaC: 15.4% of 846 samples
5) Storm: 17.40% of 2048 samples
• Further, from Table 2, when compared with the NAR
values obtained with using all 100% of the available samples
(Columns 2 and 3) to the NAR values when using only the
fraction required to find the bellwether using the racing
algorithm (Columns 4 and 5), we see that the difference
which is formally is given by ∆% = |NAR100% −NAR10%|
is very minimal. We note that these differences (Delta%) are:
1) 1% in SQLite;
2) 0% in Spear and Storm;
3) 0.55% in x264; and
4) 0.36% in SaC
These results are most encouraging in that we need only
about 10% of the samples to determine the bellwether:

Result: The bellwether environment can be recognized
using only a fraction of the measurements (under 10%). En-
couragingly, the identified bellwether environments have
similar NAR values to the bellwether environment with
100% of samples.

RQ3: How does BEETLE compare with other non-
transfer-learning based methods?
Purpose: We explore how BEETLE compares to a non-
transfer learning approach. For our experiment, we use
the non-transfer performance optimizer proposed by Nair
et al. [12]. Both BEETLE and Nair et al.’s methods seek
to achieve the same goal—find the optimal configuration
in a target environment. BEETLE uses configurations from
a different source to achieve this, whereas the non-transfer
learner uses configurations from within the target. Please note
BEETLE can use anywhere between 0%–100% of the config-
urations from the bellwether environment. In the previous
RQs, we showed that 10% was adequate when using the
bellwether environment.
Approach: Our setup involves evaluating the Win/Loss ra-
tio of BEETLE to the non-transfer learning algorithm while
predicting for the optimal configuration. Comparing against
true optima, we define “win” as cases where BEETLE has a
better (or same) NAR as the non-transfer learner. If the non-

Fig. 8: Trade-off between the quality of the configurations
and the cost to build the model for X264. The cost to find
a good configuration using bellwethers is much lower than
that of non-transfer-learning methods.

transfer learner has a better NAR, that counts as a “loss”.
Result: Our results are shown in Figs. 7 and 8. In Fig. 7, the
x-axis represents the number of configurations (expressed
in %) to train the non-transfer learner and BEETLE, and the
y-axis represents the number of wins/losses. We observe:
• Better performance: In 4

5 systems, BEETLE “wins” signif-
icantly more than it “losses”. This means that BEETLE is
better than (or similar to) non-transfer learning methods.
• Lower cost: Regarding cost, we note that BEETLE outper-
forms the non-transfer learner significantly, “winning” at
configurations of 10% to 100% of the original sample size.
Further, when we look at the trade-off between performance
and number of measurements in Fig. 8, we note that BEE-
TLE achieves a NAR close to zero with around 100 samples.
Also, the non-transfer learning method of Nair et al. [12] has
significantly larger NAR while also requiring more samples.

Result: BEETLE performs better than (or same as) a non-
transfer learning approach. BEETLE is also cost/time effi-
cient as it requires far fewer measurements.

RQ4: How does BEETLE compare to state-of-the-art
methods?
Purpose: The main motivation of this work is to show that
the source environment can have a significant impact on
transfer learning. In this research question, we seek to com-
pare BEETLE with other state-of-the-art transfer learners by
Jamshidi et al. [25] and Valov et al. [24].
Approach: We perform transfer learning the methods pro-
posed by Valov et al. [24] and Jamshidi et al. [25] (see §5).
Then we measure the NAR values and compare them statis-
tically using Skott-Knott tests. Finally, we rank the methods
from best to worst based on their Skott-Knott ranks.
Result: Our results are shown in Fig. 9. In this figure, the
best transfer learner is ranked 1. We note that in 4 out of 5
cases, BEETLE performs just as well as (or better than) the
state-of-the-art. This result is encouraging in that it points to
a significant impact on choosing a good source environment
can have on the performance of transfer learners. Further,
in Fig. 10 we compare the number of performance measure-
ments required to construct the transfer learners (note the
logarithmic scale on the vertical axis). Here, we note that
BEETLE uses an order of magnitude fewer samples (≈13%
on average) that the other methods. The total number of
available samples for each software system is shown in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 12

SAC
Rank Learner Median IQR
1 Jamshidi et al. [25] 1.58 5.39 s
2 BEETLE 6.89 99.1 s
2 Valov et al. [24] 6.99 99.24 s

SPEAR
Rank Learner Median IQR
1 Jamshidi et al. [25] 0.70 1.29 s
1 BEETLE 0.79 1.40 s
1 Valov et al. [24] 1.11 1.98 s

SQLITE

Rank Learner Median IQR
1 BEETLE 5.41 9.28 s
2 Valov et al. [24] 6.96 12.91 s
3 Jamshidi et al. [25] 18.51 50.85 s

STORM
Rank Learner Median IQR
1 BEETLE 0.04 0.06 s
1 Jamshidi et al. [25] 0.86 20.69 s
2 Valov et al. [24] 2.47 53.98 s

X264
Rank Learner Median IQR
1 BEETLE 8.67 27.01 s
2 Valov et al. [24] 16.99 41.24 s
3 Jamshidi et al. [25] 43.58 28.39 s

Fig. 9: Comparison between state-of-the-art transfer learners
and BEETLE. The best transfer learner is shaded gray . The
“ranks” shown in the left-hand-side column come from the
statistical analysis described in §6.3.

1

10

100

1000

10000

SaC
(15.4%)

SPEAR
(13.79%)

SQLite
(11.42%)

Storm
(17.42%)

x264
(10.21%)

N
o.

 M
ea

su
re

m
en

ts

BEETLE Jamshidi et al. & Valov et al.

Fig. 10: Number of samples required by BEETLE (in
light gary) v/s the other two state-of-the-art transfer learners

(in gray). Note: The other two transfer learners require that
all available data be used for transfer learning therefore the
chart shows one bar for both transfer learners.

the second column of Table 1 (see values corresponding to
|C|). Based on these results, we note that BEETLE requires
far fewer measurements compared to the other transfer-
learning methods. That is,

Result: BEETLE performs just as well as (or better than)
other state-of-the-art transfer learners for performance op-
timization using far fewer measurements.

8 DISCUSSION

This section addresses some additional questions that may
arise with regards to BEETLE’s real-world applicability.
What is the effect of BEETLE on the day to day business
of a software engineer? From an industrial perspective,
BEETLE can be used in at least the following ways:
• Consider an organization which has to optimize their soft-
ware system for different clients (who have different work-
load and hardware—different AWS subscriptions). While

on-boarding new clients, the company might not be able
to afford to invest extensive resources in finding the near-
optimal configuration to appease the client. State-of-the-art
transfer learning techniques would expect the organization
to provide a source workload (or environment) for this task.
But without a subject matter expert (SME) with the relevant
knowledge, it is hard for humans to select a suitable source.
BEETLE removes the need for such SMEs since it automates
source selection, along with transferring knowledge between the
source and the target environment.
• Consider an organization, which needs to migrate all
their workload from a legacy platform to a different cloud
platform (e.g., AWS to AZURE or vice versa). Such an
organization now has many workloads that they need to
optimize; however, they lack experience and performance
measurements, on the new platform to accomplish this goal.
In such cases, BEETLE provides a way to discover an ideal source
to transfer knowledge to enable efficient migration of workloads.
How complex is BEETLE compared to other methods?
BEETLE is among the easiest transfer learning methods
currently available. In comparison with the state-of-the-art
methods studied here, we require only few measurements
of software systems running under different environments,
we can build a findbellwether method that comprises of an
all-pairs round-robin comparison followed by elimination
of poorly performing enviroments. Then, transfer learning
uses one of many off-the-shelf machine learners to build a
prediction model (here we use Regression Trees). In this pa-
per, we demonstrate that this method is just as powerful as
other methods while being an order of magnitude cheaper
in terms of the number of measurements required.
What are the impact of different hyperparameter choices?
With all the transfer learners and predictors discussed here,
there are a number of internal parameters that may (or may
not) have a significant impact on the outcomes of this study.
We identify two key hyperparameters that affect BEETLE
namely, Budget and Lives. As shown in Figure 3(d), both
these hyperparameters determine when to stop sampling
the source and declare the bellwethers. These bellwethers
subsequently affect transfer learning. To study the effect of
these hyperparameters, we plot the trade-off between the
budget and lives versus NAR. This is shown in Fig. 11. Here,
• Budget: There is discernible impact of larger budget on the

Fig. 11: The trade-off between the budget of the search, the
number of lives, and the NAR (quality) of the solutions
for x264. Performance depends on the budget and number
of lives, i.e., as the budget increases the NAR value
decreases; likewise, as the number lives increases, the
NAR improves.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 13

performance of bellwethers. We note that the performance
is directly related to the budget, i.e., as the budget increases
the NAR value decreases (lower NAR values are better).
This is to be expected, an increased budget permits an larger
sample to construct transfer learners, thereby improving the
likelihood of finding a near optimal solution.
• Lives: Although lower lives seems to correspond to larger
NAR (worse). The relationship between the number of lives
and NAR is less pronounced than that between Budget and
NAR. That said, we noted that having 5 or lives generally
corresponds to better NAR values. Thus, in all the experi-
ments in this paper, we use 5 lives as default.
Is BEETLE applicable in other domains? In principle, yes.
BEETLE could be applied to any transfer learning applica-
tion, where the choice of the source data impacts the perfor-
mance of transfer learning. This can be applied to problems
such as configuring big data systems [3], finding suitable
cloud configuration for a workload [50], [51], configuring
hyperparameters of machine learning algorithms [52], [53],
runtime adaptation of robotic systems [25]. In these applica-
tions, the correct choice of source datasets using bellwethers
can help to reduce the amount of time it takes to discover a
near-optimal configuration setting.
Can BEETLE identify bellwethers in completely dissimi-
lar environments? In theory, yes. Given a software system,
BEETLE currently looks for an environment which can be
used to find a near-optimal configuration for a majority
of other environments for that software system. Therefore,
given performance measurements in various environments,
BEETLE can assist in discovering a suitable source environ-
ment to transfer knowledge across environments comprised
of different hardware, software versions, and workloads.
When are bellwethers ineffective? The existence of bell-
wethers depends on the following:
• Metrics used: Finding bellwether using metrics that are
not justifiable, may be unsuccessful, for example, discover-
ing bellwethers in performance optimization, by measuring
MMRE instead of NAR may fail [12].
• Different Software System: Bellwethers of a certain software
system ‘A’ may not work for software system ‘B.’ In other
words, it cannot be used for cases where the configuration
spaces across environment are not consistent.
• Different Performance Measures: Bellwether discovered for
one performance measure (time) may not work for other
performance measures (throughput).

9 THREATS TO VALIDITY

As with any empirical study, biases can affect the final
results. Therefore, any conclusions of this work must be
considered with the following issues in mind:
• Evaluation Bias: In RQ2, RQ3 and RQ4, we have shown the
performance of BEETLE by comparing them using statistical
tests on their NAR to draw conclusions regarding their
performance when compared to other transfer learning and
non-transfer-learning learning methods. While those results
are true, the conclusions are scoped by the evaluation met-
rics we used to write this paper (i.e., NAR). It is possible that
with other measurements, there may be slightly different
conclusions. This is to be explored in future research.
• Construct Validity: At various places in this report, we
made engineering decisions about (e.g.) choice of machine

learning models (in our case decision tree regression), step-
size for incremental sampling, etc. While these decisions
were made using advice from the literature, we acknowl-
edge that other constructs might lead to other conclusions.
• External Validity: For this study, we have selected a di-
verse set of subject systems, and a large number of en-
vironment changes from the data collected by Jamshidi et
al. [20] for their studies. The performance measures were
gathered on known software environments such as AWS,
Azure, and NUC. There is a possibility that measurement
of other performance measures or availability of additional
performance measures may result in a different outcome.
Therefore, one has to be careful when generalizing our
findings to other subject systems and environment changes.
Even though we tried to run our experiment on a variety of
software systems from different domains, we do not claim
that our results generalize beyond the specific case studies
explored here. That said, to enable reproducibility, we have
shared our scripts and the gather performance data.
• Statistical Validity: To increase the validity of our results,
we applied Scott-Knott tests (which in turn comprises of two
statistical tests, bootstrap, and the a12). Hence, anytime in
this paper, we reported that “X was different from Y”, then
that report was based on Scott-Knott tests.
• Sampling Bias: Our conclusions are based on the perfor-
mance measure of the five software systems collected by
Jamshidi et al. [20] for their studies. Different initial samples
may have lead to different conclusions. That said, we note
that our samples are sufficiently large, so we have some
confidence that these samples represent an interesting range
of configurations and their performances. As evidenced by
our results that are remarkably stable over 30 repeated runs.
• Learner Bias: There are various models used in perfor-
mance optimization such as Gaussian Process [25], Re-
gression Trees [7], [26], [27], and Bagging, Random Forest,
and Support Vector Machines (SVMs) [5]. It is possible
that changing the learner used may change our findings.
However, we strive to minimize the uncertainty by choosing
Decision Tree Regressor, which is the machine learning al-
gorithm that has most consistently been used in the domain
of performance modeling and optimization [7], [26], [27].
Further, we have made available our replication package
that enables one to replace Decision Tree with any other
machine learning model quickly.

10 RELATED WORK

Performance Optimization: Modern software systems come
with a large number of configuration options. For example,
in APACHE (a popular web server) there are around 600 dif-
ferent configuration options and in HADOOP, as of version
2.0.0, there are around 150 different configuration options,
and the number of options is constantly growing [1]. These
configuration options control the internal properties of the
system such as memory and response times. Given the large
number of configurations, it becomes increasingly difficult
to assess the impact of the configuration options on the sys-
tem’s performance. To address this issue, a common practice
is to employ performance prediction models to estimate the
performance of the system under these configurations [26],
[32], [54]–[57]. To leverage the full benefit of a software
system and its features, researchers augment performance

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 14

prediction models to enable performance optimization [8], [12].
Performance optimization is an essential challenge in

software engineering. As shown in the next few para-
graphs, this problem has attracted much recent research
interest. Approaches that use meta-heuristic search algo-
rithms to explore the configuration space of Hadoop for
high-performing configurations have been proposed [9]. It
has been reported that such meta-heuristic search can find
configurations options that perform significantly better than
baseline default configurations. In other work, a control-
theoretic framework called SmartConf to automatically set
and dynamically adjust performance-sensitive configura-
tions to optimize configuration options [58]. For the specific
case of deep learning clusters, a job scheduler called Optimus
has been developed to determine configuration options that
optimize training speed and resource allocations [59]. Per-
formance optimization has also been extensively explored
in other domains such as Systems Research [60], [61] and
Cloud Computing [11], [50], [51], [62], [63].

Much of the performance optimization tasks introduced
above require access to measurements of the software sys-
tem under various configuration settings. However, obtain-
ing these performance measurements can cost a significant
amount of time and money. For example, in one of the
software systems studied here (X264), it takes over 1536
hours to obtain performance measurements for 11 out the
16 possible configuration options [24]. This is in addition
to other time-consuming tasks involved in commissioning
these systems such as setup, tear down, etc. Further, making
performance measurements can cost an exorbitant amount
of money, e.g, it cost several thousand dollars to obtain of
2048 configurations on X264 deployed in AWS c4.large.
Transfer Learning: When a software system is deployed
in a new environment, not every user can afford to repeat
the costly process of building a new performance model to
find an optimum configuration for that new environment.
Instead, researchers propose the use of transfer learning
to reuse the measurements made for previous environ-
ments [24], [25], [64], [65]. Jamshidi et al. [25], conducted
a preliminary exploratory study of transfer learning in per-
formance optimization to identify transferable knowledge
between a source and a target environment, ranging from
easily exploitable relationships to more subtle ones. They
demonstrated that information about influential configura-
tion options could be exploited in transfer learning and that
knowledge about performance behavior can be transferred.

Following this, a number of transfer learning methods
were developed to predict for the optimum configurations
in a new target environment, using the performance mea-
sures of another source environment as a proxy. Several
researchers have shown that transfer learning can decrease
the cost of learning significantly [20], [24], [25], [64].

All transfer learning methods place implicit faith in
the quality of the source. A poor source can significantly
deteriorate the performance of transfer learners.
Source Selection with Bellwethers: It is advised that the
source used for transfer learning must be chosen with care
to ensure optimum performance [53], [66], [67]. An incorrect
choice of the source may result in the all too common nega-
tive transfer phenomenon [53], [68]–[70]. A negative transfer
can be particularly damaging in that it often leads to per-

formance degradation [20], [53]. A preferred way to avoid
negative transfer is with source selection. Many methods have
been proposed for identifying a suitable source for transfer
learning [18], [21], [53]. Of these, source selection using the
bellwether effect is one of the simplest. It has been effective
in several domains of software engineering [18], [22], [23].

Besides negative transfer, previous approaches suffer
from a lack of scalability. For example, Google Visor [65]
Jamshidi et al. [25] rely on a Gaussian process which known
to not scaling to large amounts of data in high dimensional
spaces [71] Accordingly, in this work, we introduce the
notion of source selection with bellwether effect for transfer
learning in performance optimization. With this, we develop
a Bellwether Transfer Learner called BEETLE. We show that,
for performance optimization, BEETLE can outperform both
non-transfer and the transfer learning methods.

11 CONCLUSION

Our approach, BEETLE, exploits the bellwether effect—
there are one or more bellwether environments which can
be used to find good configurations for the rest of the
environments. We also propose a new transfer learning
method, called BEETLE, which exploits this phenomenon.
As shown in this paper, BEETLE can quickly identify the
bellwether environments with only a few measurements
(≈ 10%) and use it to find the near-optimal solutions in the
target environments. Further, after extensive experiments
with five highly-configurable systems demonstrating, we
show that BEETLE:
• Identifies suitable sources to construct transfer learners;
• Finds near-optimal configurations with only a small num-
ber of measurements (an average of 13.5% ≈ 1

7

th
of the

available number of samples);
• Performs as well as non-transfer learning approaches; and
• Performs as well as state-of-the-art transfer learners.
Based on our experiments, we demonstrate our initial
problem–“whence to learn?” is an important question, and,

A good source with a simple transfer learner is better
than source agnostic complex transfer learners.

REFERENCES

[1] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey, you have
given me too many knobs!: understanding and dealing with over-designed
configuration in system software,” in Foundations of Software Engineering.
ACM, 2015.

[2] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in Inter-
national Conference on Management of Data. ACM, 2017.

[3] P. Jamshidi and G. Casale, “An uncertainty-aware approach to optimal
configuration of stream processing systems,” in Symposium on the Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems. IEEE,
2016.

[4] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in International Conference on Software Engi-
neering. IEEE, 2012.

[5] P. Valov, J. Guo, and K. Czarnecki, “Empirical comparison of regression
methods for variability-aware performance prediction,” in Proceedings of the
19th International Conference on Software Product Line. ACM, 2015.

[6] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-influence
models for highly configurable systems,” in FSE’15, 2015.

[7] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czarnecki, “Cost-efficient
sampling for performance prediction of configurable systems (t),” in Inter-
national Conference on Automated Software Engineering. IEEE, 2015.

[8] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding near-optimal con-
figurations in product lines by random sampling,” in Foundations of Software
Engineering. ACM, 2017.

[9] C. Tang, K. Sullivan, and B. Ray, “Searching for high-performing software
configurations with metaheuristic algorithms,” in Proceedings of the 40th
International Conference on Software Engineering. ACM, 2018.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 15

[10] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Faster discovery of faster
system configurations with spectral learning,” Automated Software Engineer-
ing, 2017.

[11] C.-J. Hsu, V. Nair, T. Menzies, and V. Freeh, “Micky: A cheaper alternative
for selecting cloud instances,” IEEE Cloud, 2018.

[12] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using bad learners to find
good configurations,” Foundations of Software Engineering, 2017.

[13] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in International
Conference on Software Engineering. IEEE, 2013.

[14] E. Kocaguneli and T. Menzies, “How to find relevant data for effort estima-
tion?” in Empirical Software Engineering and Measurement. IEEE, 2011.

[15] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort
estimation,” Empirical Software Engineering, 2015.

[16] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value
of cross-company and within-company data for defect prediction,” Empirical
Software Engineering, 2009.

[17] F. Peters, T. Menzies, and L. Layman, “LACE2: Better privacy-preserving
data sharing for cross project defect prediction,” in International Conference
on Software Engineering, 2015.

[18] R. Krishna and T. Menzies, “Bellwethers: A baseline method for transfer
learning,” IEEE Transactions on Software Engineering, 2018.

[19] S. J. Pan and Q. Yang, “A survey on transfer learning,” Transactions on
knowledge and data engineering, 2010.

[20] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agarwal,
“Transfer learning for performance modeling of configurable systems: An
exploratory analysis,” in International Conference on Automated Software Engi-
neering. IEEE Press, 2017.

[21] R. Krishna, T. Menzies, and W. Fu, “Too much automation? the bellwether
effect and its implications for transfer learning,” in International Conference
on Automated Software Engineering. ACM, 2016.

[22] S. Mensah, J. Keung, S. G. MacDonell, M. F. Bosu, and K. E. Bennin,
“Investigating the significance of bellwether effect to improve software effort
estimation,” in International Conference on Software Quality, Reliability and
Security, QRS. IEEE, 2017.

[23] S. Mensah, J. Keung, M. F. Bosu, K. E. Bennin, and P. K. Kudjo, “A stratifi-
cation and sampling model for bellwether moving window,” in International
Conference on Software Engineering and Knowledge Engineering, 2017.

[24] P. Valov, J.-C. Petkovich, J. Guo, S. Fischmeister, and K. Czarnecki, “Transfer-
ring performance prediction models across different hardware platforms,”
in International Conference on Performance Engineering. ACM, 2017.

[25] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar, “Transfer
learning for improving model predictions in highly configurable software,”
in Symposium on Software Engineering for Adaptive and Self-Managing Systems.
IEEE, 2017.

[26] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski, “Variability-
aware performance prediction: A statistical learning approach,” in Interna-
tional Conference on Automated Software Engineering. IEEE, 2013.

[27] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster
configurations using flash,” Transactions on Software Engineering (Accepted),
2018.

[28] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu,
“Starfish: a self-tuning system for big data analytics.” in Conference on
Innovative Data Systems Research, 2011.

[29] A. Saltelli, K. Chan, E. M. Scott et al., Sensitivity analysis. Wiley New York,
2000, vol. 1.

[30] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czarnecki,
A. Wasowski, and H. Yu, “Data-efficient performance learning for config-
urable systems,” Empirical Software Engineering, 2017.

[31] AWS EC2 Document History, http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/DocumentHistory.html.

[32] P. Valov, J. Guo, and K. Czarnecki, “Empirical comparison of regression
methods for variability-aware performance prediction,” in International Con-
ference on Software Product Line. ACM, 2015.

[33] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A racing algorithm
for configuring metaheuristics,” in Proceedings of the 4th Annual Conference on
Genetic and Evolutionary Computation, 2002.

[34] L. Breiman, Classification and regression trees. Routledge, 2017.
[35] P.-L. Loh and S. Nowozin, “Faster hoeffding racing: Bernstein races via jack-

knife estimates,” in International Conference on Algorithmic Learning Theory.
Springer, 2013.

[36] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study
of the model evaluation criterion mmre,” IEEE Transactions on Software
Engineering, 2003.

[37] C. Trubiani, P. Jamshidi, J. Cito, W. Shang, Z. M. Jiang, and M. Borg,
“Performance issues? hey devops, mind the uncertainty!” IEEE Software,
2018.

[38] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, “A practical guide to select
quality indicators for assessing pareto-based search algorithms in search-
based software engineering,” in ICSE’16. IEEE, 2016.

[39] J. Chen, V. Nair, R. Krishna, and T. Menzies, “” sampling” as a baseline
optimizer for search-based software engineering,” Transactions on Software
Engineering, 2018.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary
computation, vol. 6, no. 2, 2002.

[41] N. Mittas and L. Angelis, “Ranking and clustering software cost estimation
models through a multiple comparisons algorithm,” Transactions on Software
Engineering, 2013.

[42] R. J. Tibshirani and B. Efron, An introduction to the bootstrap. Chapman and
Hall New York, 1993, vol. 57.

[43] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal of
Educational and Behavioral Statistics, 2000.

[44] N. L. Leech and A. J. Onwuegbuzie, “A call for greater use of nonparametric
statistics.” in Annual Meeting of the Mid-South Educational Research Association.
ERIC, 2002.

[45] S. Poulding and J. A. Clark, “Efficient software verification: Statistical testing
using automated search,” Transactions on Software Engineering, 2010.

[46] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess
randomized algorithms in software engineering,” in ICSE’11, 2011.

[47] M. J. Shepperd and S. G. MacDonell, “Evaluating prediction systems in
software project estimation,” Information & Software Technology, 2012.

[48] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg, “A systematic
review of effect size in software engineering experiments,” Information &
Software Technology, 2007.

[49] E. Kocaguneli, T. Zimmermann, C. Bird, N. Nagappan, and T. Menzies,
“Distributed development considered harmful?” in International Conference
on Software Engineering, 2013.

[50] C.-J. Hsu, V. Nair, T. Menzies, and V. W. Freeh, “Scout: An Expe-
rienced Guide to Find the Best Cloud Configuration,” arXiv preprint
arXiv:1803.01296, 2018.

[51] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Low-level augmented
bayesian optimization for finding the best cloud vm,” International Conference
on Distributed Computing Systems, 2018.

[52] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it really
necessary?” Information and Software Technology, 2016.

[53] M. J. Afridi, A. Ross, and E. M. Shapiro, “On automated source selection
for transfer learning in convolutional neural networks,” Journal of Pattern
Recognition, 2018.

[54] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De Boss-
chere, “Performance prediction based on inherent program similarity,” in
International Conference on Parallel Architectures and Compilation Techniques.
IEEE, 2006.

[55] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artificial Intelligence, 2014.

[56] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel, “Practical performance
models for complex, popular applications,” in ACM SIGMETRICS Perfor-
mance Evaluation Review. ACM, 2010.

[57] D. Westermann, J. Happe, R. Krebs, and R. Farahbod, “Automated inference
of goal-oriented performance prediction functions,” in International Confer-
ence on Automated Software Engineering. ACM, 2012.

[58] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijantoro,
“Understanding and auto-adjusting performance-sensitive configurations,”
in Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2018.

[59] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient dynamic
resource scheduler for deep learning clusters,” in Proceedings of the Thirteenth
EuroSys Conference. ACM, 2018.

[60] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang,
“Bestconfig: tapping the performance potential of systems via automatic
configuration tuning,” in Symposium on Cloud Computing. ACM, 2017.

[61] S. W. C. Li, H. H. S. Lu, W. Sentosa, and A. I. Kistijantoro, “Understanding
and auto-adjusting performance-sensitive configurations,” 2018.

[62] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang,
“Cherrypick: Adaptively unearthing the best cloud configurations for big
data analytics.” in Symposium on Networked Systems Design and Implementa-
tion, 2017.

[63] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz,
“Selecting the best vm across multiple public clouds: A data-driven per-
formance modeling approach,” in Symposium on Cloud Computing. ACM,
2017.

[64] H. Chen, W. Zhang, and G. Jiang, “Experience transfer for the configuration
tuning in large-scale computing systems,” Transactions on Knowledge and Data
Engineering, 2011.

[65] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2017.

[66] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” in Advances in neural information processing
systems, 2014.

[67] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features
with deep adaptation networks,” in International Conference on Machine
Learning, 2015.

[68] S. Ben-David and R. Schuller, “Exploiting task relatedness for multiple task
learning,” in Learning Theory and Kernel Machines. Springer, 2003.

[69] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, “To transfer
or not to transfer,” in NIPS 2005 workshop on TL, 2005.

[70] S. J. Pan and Q. Yang, “A survey on transfer learning,” Transactions on
knowledge and data engineering, 2010.

[71] C. E. Rasmussen, “Gaussian processes in machine learning,” in Advanced
lectures on machine learning. Springer, 2004.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/DocumentHistory.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/DocumentHistory.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SUBMITTED MAY ‘19 16

Rahul Krishna is a post doctoral researcher in Com-
puter Science at Columbia University. He received his
Ph.D. in NC State University. His current research ex-
plores ways to use machine learning to generate ac-
tionable insights for building reliable software systems.
His other research interests include program analysis,
artificial intelligence, and security. See http://rkrsn.us for
more details.

Pooyan Jamshidi is an Assistant Professor at the
University of South Carolina. Pooyans general re-
search interests are at the intersection of systems/-
software and machine learning. He directs the AISys
Lab (https://pooyanjamshidi.github.io/AISys/), where he
investigates the development of novel algorithmic and
theoretically principled methods for machine learning
systems. Prior to his current position, he was a research
associate at Carnegie Mellon University and Imperial
College London, where he primarily worked on trans-
fer learning for performance understanding of highly-
configurable systems.

Vivek Nair graduated with a Ph.D. from the Depart-
ment of Computer Science at North Carolina State
University. His primary interest lies in exploring pos-
sibilities of using multiobjective optimization to solve
problems in Software Engineering. At NCSU, he was
working on performance prediction models of highly
configurable systems. He received his master’s degree
and worked in the mobile industry for two years before
returning to graduate school. For more details, visit
http://vivekaxl.com.

Tim Menzies (IEEE Fellow) is a Professor in CS at
NcState. His research interests include software engi-
neering (SE), data mining, artificial intelligence, search-
based SE, and open access science. http://menzies.us

http://rkrsn.us
https://pooyanjamshidi.github.io/AISys/
http://vivekaxl.com
http://menzies.us

	1 Introduction
	1.1 Research questions

	2 Motivation
	3 Definitions and Problem Statement
	4 BEETLE: Bellwether Transfer Learner
	4.1 Discovery: Finding Bellwether Environments
	4.2 Transfer: Using the Bellwether Environments

	5 Other Transfer Learning Methods
	5.1 Transfer Learning with Linear Regression
	5.2 Transfer Learning with Gaussian Process
	5.3 Non-Transfer Learning Performance Optimization

	6 Experimental Setup
	6.1 Subject Systems
	6.2 Evaluation Criterion
	6.3 Statistical Validation

	7 Results
	8 Discussion
	9 Threats To Validity
	10 Related Work
	11 Conclusion
	References
	Biographies
	Rahul Krishna
	Pooyan Jamshidi
	Vivek Nair
	Tim Menzies

