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Abstract—Finding optimal configurations for Stream Process-
ing Systems (SPS) is a challenging problem due to the large
number of parameters that can influence their performance
and the lack of analytical models to anticipate the effect of a
change. To tackle this issue, we consider tuning methods where an
experimenter is given a limited budget of experiments and needs
to carefully allocate this budget to find optimal configurations.
We propose in this setting Bayesian Optimization for Config-
uration Optimization (BO4CO), an auto-tuning algorithm that
leverages Gaussian Processes (GPs) to iteratively capture pos-
terior distributions of the configuration spaces and sequentially
drive the experimentation. Validation based on Apache Storm
demonstrates that our approach locates optimal configurations
within a limited experimental budget, with an improvement of
SPS performance typically of at least an order of magnitude
compared to existing configuration algorithms.

I. INTRODUCTION

We live in an increasingly instrumented world, where a large
number of heterogeneous data sources typically provide con-
tinuous data streams from live stock markets, video sources,
production line status feeds, and vital body signals [12]. Yet,
the research literature lacks automated methods to support
the configuration (i.e., auto-tuning) of the underpinning SPSs.
One possible explanation is that, “big data” systems such
as SPSs often combine emerging technologies that are still
poorly understood from a performance standpoint [18], [40]
and therefore difficult to holistically configure. Hence there is
a critical shortage of models and tools to anticipate the effects
of changing a configuration in these systems. Examples of
configuration parameters for a SPS include buffer size, heap
sizes, serialization/de-serialization methods, among others.

Performance differences between a well-tuned configuration
and a poorly configured one can be of orders of magnitude.
Typically, administrators use a mix of rules-of-thumb, trial-
and-error, and heuristic methods for setting configuration pa-
rameters. However, this way of testing and tuning is slow, and
require skillful administrators with a good understanding of
the SPS internals. Furthermore, decisions are also affected by
the nonlinear interactions between configuration parameters.

In this paper, we address the problem of finding optimal
configurations under these requirements: (i) a configuration
space composed by multiple parameters; (ii) a limited budget
of experiments that can be allocated to test the system; (iii)
experimental results affected by uncertainties due to measure-
ment inaccuracies or intrinsic variability in the system process-
ing times. While the literature on auto-tuning work is abundant
with existing solutions for databases, e-commerce and batch
processing systems that address some of the above challenges

(e.g., rule-based [21], design of experiment [35], model-based
[24], [18], [40], [31], search-based [38], [27], [34], [10], [1],
[39] and learning-based [3]), this is the first work to consider
the problem under such constraints altogether.

In particular, we present a new auto-tuning algorithm called
BO4CO that leverages GPs [37] to continuously estimate the
mean and confidence interval of a response variable at yet-to-
be-explored configurations. Using Bayesian optimization [30],
the tuning process can account for all the available prior
information about a system and the acquired configuration
data, and apply a variety of kernel estimators [23] to locate
regions where optimal configuration may lie. To the best of
our knowledge, this is the first time that GPs are used for
automated system configuration, thus a goal of the present
work is to introduce and apply this class of machine learning
methods into system performance tuning.

BO4CO is designed keeping in mind the limitations of
sparse sampling from the configuration space. For example,
its features include: (i) sequential planning to perform ex-
periments that ensure coverage of the most promising zones;
(ii) memorization of past-collected samples while planning
new experiments; (iii) guarantees that optimal configurations
will be eventually discovered by the algorithm. We show
experimentally that BO4CO outperforms previous algorithms
for configuration optimization. Our real configuration datasets
are collected for three different SPS benchmark systems,
implemented with Apache Storm, and using 5 cloud clusters
worth several months of experimental time.

The rest of this paper is organized as follows. Section II
discusses the motivations. The BO4CO algorithm is introduced
in Section III and then validated in Section IV. Finally, Section
V discusses the applicability of BO4CO in practice, Section VI
reviews state of the art and Section VII concludes the paper.

II. PROBLEM AND MOTIVATION

A. Problem statement

In this paper, we focus on the problem of optimal system
configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which takes values in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as “level of parallelism” or (ii) categorical variable
such as “messaging frameworks” or Boolean parameter such
as “enabling timeout”. Throughout the paper, by the term
option, we mean possible values that can be assigned to a
parameter. The configuration space is thus X = Dom(X1)×
· · ·×Dom(Xd), which is the Cartesian product of the domains
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Fig. 1: WordCount topology architecture.

of d parameters of interest. We assume that each configuration
x ∈ X is valid and denote by f(x) the response measured on
the SPS under that configuration. Throughout, we assume that
f is latency, however other response metrics (e.g., throughput)
may be used. The graph of f over configurations is called
the response surface and it is partially observable, i.e., the
actual value of f(x) is known only at points x that has been
previously experimented with. We here consider the problem
of finding an optimal configuration x∗ that minimizes f over
the configuration space X with as few experiments as possible:

x∗ = arg min
x∈X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⊂ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + εi. Note
that since the response surface is only partially-known, finding
the optimal configuration is a blackbox optimization problem
[23], [29], which is also subject to noise. In fact, the problem
of finding a optimal solution of a non-convex and multi-modal
response surface (cf. Figure 2) is NP-hard [36]. Therefore, on
instances where it is impossible to locate a global optimum,
BO4CO will strive to find the best possible local optimum
within the available experimental budget.

B. Motivation

1) A running example: WordCount (cf. Figure 1) is a
popular benchmark SPS. In WordCount a text file is fed
to the system and it counts the number of occurrences of
the words in the text file. In Storm, this corresponds to the
following operations. A Processing Element (PE) called Spout
is responsible to read the input messages (tuples) from a data
source (e.g., a Kafka topic) and stream the messages (i.e.,
sentences) to the topology. Another PE of type Bolt called
Splitter is responsible for splitting sentences into words, which
are then counted by another PE called Counter.

2) Nonlinear interactions: We now illustrate one of the
inherent challenges of configuration optimization. The metric
that defines the surface in Figure 2 is the latency of individual
messages, defined as the time since emission by the Kafka
Spout to completion at the Counter, see Figure 1. Note that
this function is the subset of wc(6D) in Table I when the level
of parallelism of Splitters and Counters is varied in [1, 6] and
[1, 18]. The surface is strongly non-linear and multi-modal and
indicates two important facts. First, the performance difference
between the best and worst settings is substantial, 65%, and
with more intense workloads we have observed differences in
latency as large as 99%. Next, non-linear relations between the
parameters imply that the optimal number of counters depends
on the number of Splitters, and vice-versa. Figure 3 shows this
non-linear interaction [31] and demonstrates that if one tries
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to minimize latency by acting just on one of these parameters
at the time, the resulting configuration may not lead to a global
optimum, as the number of Splitters has a strong influence on
the optimal counters.

3) Sparsity of effects: Another observation from our ex-
tensive experiments with SPS is the sparsity of effects. More
specifically, this means low-order interactions among a few
dominating factors can explain the main changes in the re-
sponse function observed in the experiments. In this work we
assume sparsity of effects, which also helps in addressing the
intractable growth of the configuration space [19].

Methodology. In order to verify to what degree the sparsity
of effects assumption holds in SPS, we ran experiments
on 3 different benchmarks that exhibit different bottlenecks:
WordCount (wc) is CPU intensive, RollingSort (rs) is mem-
ory intensive, and SOL (sol) is network intensive. Different
testbed settings were also considered, for a total of 5 datasets,
as listed in Table I. Note that the parameters we consider
here are known to significantly influence latency, as they have
been chosen according to professional tuning guides [26] and
also small scale tests where we varied a single parameter to
make sure that the selected parameters were all influential.
For each test in the experiment, we run the benchmark for 8
minutes including the initial burn-in period. Further details
on the experimental procedure are given in Section IV-B.
Note that the largest dataset (i.e., rs(6D)) has required alone
3840 × 8/60/24 = 21 days, within a total experimental time
of about 2.5 months to collect the datasets of Table I.



TABLE I: Sparsity of effects on 5 experiments where we have varied
different subsets of parameters and used different testbeds. Note that
these are the datasets we experimentally measured on the benchmark
systems and we use them for the evaluation, more details including
the results for 6 more experiments are in the appendix.

Topol. Parameters Main factors Merit Size Testbed

1 wc(6D)
1-spouts, 2-max spout,
3-spout wait, 4-splitters,
5-counters, 6-netty min wait

{1, 2, 5} 0.787 2880 C1

2 sol(6D)
1-spouts, 2-max spout,
3-top level, 4-netty min wait,
5-message size, 6-bolts

{1, 2, 3} 0.447 2866 C2

3 rs(6D)
1-spouts, 2-max spout,
3-sorters, 4-emit freq,
5-chunk size, 6-message size

{3} 0.385 3840 C3

4 wc(3D) 1-max spout, 2-splitters,
3-counters {1, 2} 0.480 756 C4

5 wc(5D)
1-spouts, 2-splitters,
3-counters,
4-buffer-size, 5-heap

{1} 0.851 1080 C5
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Fig. 4: Noisy experimental measurements. Note that + here
means that wc is deployed in a multi-tenant environment
with other topologies and as a result not only the latency is
increased but also the variability became greater.

Results. After collecting experimental data, we have used
a common correlation-based feature selector1 implemented in
Weka to rank parameter subsets according to a heuristic. The
bias of the merit function is toward subsets that contain pa-
rameters that are highly correlated with the response variable.
Less influential parameters are filtered because they will have
low correlation with latency, and a set with the main factors
is returned. For all of the 5 datasets, we list in Table I the
main factors. The analysis results demonstrate that in all the 5
experiments at most 2-3 parameters were strongly interacting
with each other, out of a maximum of 6 parameters varied
simultaneously. Therefore, the determination of the regions
where performance is optimal will likely be controlled by such
dominant factors, even though the determination of a global
optimum will still depends on all the parameters.

4) Measurement uncertainty: We now illustrate measure-
ment variabilities, which represent an additional challenge for
configuration optimization. As depicted in Figure 4, we took

1The most significant parameters are selected based on the following merit
function [9], also shown in Table I:

mps =
nrlp√

n+ n(n− 1)rpp
, (2)

where rlp is the mean parameter-latency correlation, n is the number of
parameters, rpp is the average feature-feature inter-correlation [9, Sec 4.4].

different samples of the latency metric over 2 hours for five
different deployments of WordCount. The experiments run
on a multi-node cluster on the EC2 cloud. After filtering the
initial burn-in, we computed averages and standard deviation
of the latencies. Note that the configuration across all 5
settings is similar, the only difference is the number of co-
located topologies in the testbed. The data in boxplots illustrate
that variability can be small in some settings (e.g., wc),
while they can be large in some other experimental setups
(e.g., 2wc+rs+sol). In traditional techniques such as design
of experiments, such variability is addressed by repeating
experiments multiple times and obtaining regression estimates
for the system model across such repetitions. However, we
here pursue the alternative approach of relying on GP models
to capture both mean and variance of measurements within
the model that guides the configuration process. The theory
underpinning this approach is discussed in the next section.

III. BO4CO: BAYESIAN OPTIMIZATION FOR
CONFIGURATION OPTIMIZATION

A. Bayesian Optimization with Gaussian Process prior

Bayesian optimization is a sequential design strategy that
allows us to perform global optimization of blackbox functions
[30]. The main idea of this method is to treat the blackbox
objective function f(x) as a random variable with a given prior
distribution, and then perform optimization on the posterior
distribution of f(x) given experimental data. In this work,
GPs are used to model this blackbox objective function at each
point x ∈ X. That is, let S1:t be the experimental data collected
in the first t iterations and let xt+1 be a candidate configuration
that we may select to run the next experiment. Then BO4CO
assesses the probability that this new experiment could find
an optimal configuration using the posterior distribution:

Pr(ft+1|S1:t,xt+1) ∼ N (µt(xt+1), σ2
t (xt+1)),

where µt(xt+1) and σ2
t (xt+1) are suitable estimators of the

mean and standard deviation of a normal distribution that is
used to model this posterior. The main motivation behind the
choice of GPs as prior here is that it offers a framework in
which reasoning can be not only based on mean estimates
but also the variance, providing more informative decision
makings. The other reason is that all the computations in this
framework are based on linear algebra.

Figure 5 illustrates the GP-based Bayesian optimization
using a 1-dimensional response surface. The curve in blue is
the unknown true posterior distribution, whereas the mean is
shown in green and the 95% confidence interval at each point
in the shaded area. Stars indicate measurements carried out in
the past and recorded in S1:t (i.e., observations). Configuration
corresponds to x1 has a large confidence interval due to lack of
observations in its neighborhood. Conversely, x4 has a narrow
confidence since neighboring configurations have been exper-
imented with. The confidence interval in the neighborhood of
x2 and x3 is not high and correctly our approach does not
decide to explore these zones. The next configuration xt+1,
indicated by a small circle right to the x4, is selected based
on a criterion that will be defined later.
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imental suite are integrated via (iii) a data broker. The in-
tegrated solution is available: https://github.com/dice-project/
DICE-Configuration-BO4CO.

B. BO4CO algorithm

BO4CO’s high-level architecture is shown in Figure 6 and
the procedure that drives the optimization is described in Al-
gorithm. We start by bootstrapping the optimization following
Latin Hypercube Design (lhd) to produce an initial design
D = {x1, . . . ,xn} (cf. step 1 in Algorithm 1). Although other
design approaches (e.g., random) could be used, we have cho-
sen lhd because: (i) it ensures that the configuration samples
in D is representative of the configuration space X, whereas
traditional random sampling [22], [11] (called brute-force)
does not guarantee this [25]; (ii) another advantage is that
the lhd samples can be taken one at a time, making it efficient
in high dimensional spaces. After obtaining the measurements
regarding the initial design, BO4CO then fits a GP model to
the design points D to form our belief about the underlying
response function (cf. step 3 in Algorithm 1). The while loop in
Algorithm 1 iteratively updates the belief until the budget runs
out: As we accumulate the data S1:t = {(xi, yi)}ti=1, where
yi = f(xi) + εi with ε ∼ N (0, σ2), a prior distribution Pr(f)
and the likelihood function Pr(S1:t|f) form the posterior
distribution: Pr(f |S1:t) ∝ Pr(S1:t|f) Pr(f).

A GP is a distribution over functions [37], specified by its
mean (see Section III-E2), and covariance (see Section III-E1):

y = f(x) ∼ GP(µ(x), k(x,x′)), (3)

Algorithm 1 : BO4CO
Input: Configuration space X, Maximum budget Nmax, Re-

sponse function f , Kernel function Kθ, Hyper-parameters
θ, Design sample size n, learning cycle Nl

Output: Optimal configurations x∗ and learned model M
1: choose an initial sparse design (lhd) to find an initial

design samples D = {x1, . . . ,xn}
2: obtain performance measurements of the initial design,
yi ← f(xi) + εi,∀xi ∈ D

3: S1:n ← {(xi, yi)}ni=1; t← n+ 1
4: M(x|S1:n,θ)← fit a GP model to the design . Eq.(3)
5: while t ≤ Nmax do
6: if (t mod Nl = 0) θ ← learn the kernel hyper-

parameters by maximizing the likelihood
7: find next configuration xt by optimizing the selection

criteria over the estimated response surface given the data,
xt ← argmaxxu(x|M,S1:t−1) . Eq.(9)

8: obtain performance for the new configuration xt, yt ←
f(xt) + εt

9: Augment the configuration S1:t = {S1:t−1, (xt, yt)}
10: M(x|S1:t,θ)← re-fit a new GP model . Eq.(7)
11: t← t+ 1
12: end while
13: (x∗, y∗) = minS1:Nmax

14: M(x)

where k(x,x′) defines the distance between x and x′. Let us
assume S1:t = {(x1:t, y1:t)|yi := f(xi)} be the collection of
t observations. The function values are drawn from a multi-
variate Gaussian distribution N (µ,K), where µ := µ(x1:t),

K :=

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

 (4)

In the while loop in BO4CO, given the observations we
accumulated so far, we intend to fit a new GP model:[

f1:t

ft+1

]
∼ N (µ,

[
K + σ2I k
kᵀ k(xt+1,xt+1)

]
), (5)

where k(x)ᵀ = [k(x,x1) k(x,x2) . . . k(x,xt)] and I
is identity matrix. Given the Eq. (5), the new GP model can
be drawn from this new Gaussian distribution:

Pr(ft+1|S1:t,xt+1) = N (µt(xt+1), σ2
t (xt+1)), (6)

where

µt(x) = µ(x) + k(x)ᵀ(K + σ2I)−1(y − µ) (7)
σ2
t (x) = k(x,x) + σ2I − k(x)ᵀ(K + σ2I)−1k(x) (8)

These posterior functions are used to select the next point xt+1

as detailed in Section III-C.

C. Configuration selection criteria
The selection criteria is defined as u : X → R that selects

xt+1 ∈ X, should f(·) be evaluated next (step 7):

xt+1 = argmax
x∈X

u(x|M,S1:t) (9)

https://github.com/dice-project/DICE-Configuration-BO4CO
https://github.com/dice-project/DICE-Configuration-BO4CO


0 2000 4000 6000 8000 10000
Iteration

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

K
a

p
p

a

ǫ=1
ǫ=0.1
ǫ=0.01

Fig. 7: Change of κ value over time: it begins with a small
value to exploit the mean estimates and it increases over time
in order to explore.

Although several different criteria exist in the literature (see
[30]), BO4CO uses Lower Confidence Bound (LCB) [30]. LCB
selects the next configuration by trade-off between exploitation
and exploration:

uLCB(x|M,S1:n) = argmin
x∈X

µt(x)− κσt(x), (10)

where κ can be set according to the objectives. For instance,
if we require to find a near optimal configuration quickly we
set a low value to κ to take the most out of the initial design
knowledge. However, if we want to skip local minima, we
can set a high value to κ. Furthermore, κ can be adapted over
time to benefit from the both [17]. For instance, κ can start
with a reasonably small value to exploit the initial design and
increase over time to do more explorations (cf. Figure 7).

D. Illustration
The steps in Algorithm 1 are illustrated in Figure 8. Firstly,

an initial design based on lhd is produced (Figure 8(a)).
Secondly, a GP model is fit to the initial design (Figure 8(b)).
Then, the model is used to calculate the selection criteria
(Figure 8(c)). Finally, the configuration that maximizes the
selection criteria is used to run the next experiment and provide
data for refitting a more accurate model (Figure 8(d)).

E. Model fitting in BO4CO
In this section, we provide some practical considerations to

make GPs applicable for configuration optimization.
1) Kernel function: In BO4CO, as shown in Algorithm

1, the covariance function k : X × X → R dictates the
structure of the response function we fit to the observed data.
For integer variables (cf. Section II-A), we implemented the
Matérn kernel [37]. The main reason behind this choice is that
along each dimension in the configuration response functions
different level of smoothness can be observed (cf. Figure 2).
Matérn kernels incorporate a smoothness parameter ν > 0 that
permits greater flexibility in modeling such functions [37]. The
following is a variation of the Matérn kernel for ν = 1/2:

kν=1/2(xi,xj) = θ20 exp(−r), (11)

where r2(xi,xj) = (xi − xj)ᵀΛ(xi − xj) for some positive
semidefinite matrix Λ. For categorical variables, we imple-
mented the following [14]:

kθ(xi,xj) = exp(Σd`=1(−θ`δ(xi 6= xj))), (12)

where d is the number of dimensions (i.e., the number of con-
figuration parameters), θ` adjust the scales along the function
dimensions and δ is a function gives the distance between
two categorical variables using Kronecker delta [14], [30].
TL4CO uses different scales {θ`, ` = 1 . . . d} on different
dimensions as suggested in [37], [30], this technique is called
Automatic Relevance Determination (ARD). After learning the
hyper-parameters (step 6), if the `-th dimension turns out to
be irrelevant, then θ` will be a small value, and therefore, will
be discarded. This is particularly helpful in high dimensional
spaces, where it is difficult to find the optimal configuration.

2) Prior mean function: While the kernel controls the
structure of the estimated function, the prior mean µ(x) :
X → R provides a possible offset for our estimation. By
default, this function is set to a constant µ(x) := µ, which is
inferred from the observations [30]. However, the prior mean
function is a way of incorporating the expert knowledge, if
it is available, then we can use this knowledge. Fortunately,
we have collected extensive experimental measurements and
based on our datasets (cf. Table I), we observed that typically,
for Big Data systems, there is a significant distance between
the minimum and the maximum of each function (cf. Figure
2). Therefore, a linear mean function µ(x) := ax+ b, allows
for more flexible structures, and provides a better fit for the
data than a constant mean. We only need to learn the slope
for each dimension and an offset (denoted by µ` = (a, b)).

3) Learning parameters: marginal likelihood: This section
describe the step 7 in Algorithm 1. Due to the heavy compu-
tation of the learning, this process is computed only every Nl
iterations. For learning the hyper-parameters of the kernel and
also the prior mean functions (cf. Sections III-E1 and III-E2),
we maximize the marginal likelihood [30] of the observations
S1:t. To do that, we train GP model (7) with S1:t. We optimize
the marginal likelihood using multi-started quasi-Newton hill-
climbers [28]. For this purpose, we use the off-the-shelf gpml
library presented in [28]. Using the kernel defined in (12), we
learn θ := (θ0:d, µ0:d, σ

2) that comprises the hyper-parameters
of the kernel and mean functions. The learning is performed
iteratively resulting in a sequence of θi for i = 1 . . . bNmax

N`
c.

4) Observation noise: The primary way for determining the
noise variance σ in BO4CO is to use historical data: In Section
II-B4, we have shown that such noise can be measured with a
high confidence and the signal-to-noise ratios shows that such
noise is stationary. The secondary alternative is to learn the
noise variance sequentially as we collect new data. We treat
them just as any other hyper-parameters, see Section III-E3.

IV. EXPERIMENTAL RESULTS

A. Implementation

From an implementation perspective, BO4CO consists of
three major components: (i) an optimization component (cf.
left part of Figure 6), (ii) an experimental suite (cf. right part
of Figure 6) integrated via a (iii) data broker. The optimization
component implements the model (re-)fitting (7) and criteria
optimization (9) steps in Algorithm 1 and is developed in Mat-
lab 2015b. The experimental suite component implements the
facilities for automated deployment of topologies, performance
measurements and data preparation and is developed in Java.
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Fig. 8: Illustration of configuration parameter optimization: (a)
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The optimization component retrieves the initial design per-
formance data and determines which configuration to try next
using the procedure explained in III-C. The suite then deploys
the topology under test on a testing cluster. The performance of
the topology is then measured and the performance data will be
used for model refitting. We have released the code and data:
https://github.com/dice-project/DICE-Configuration-BO4CO.

In order to make BO4CO more practical and relevant for
industrial use, we considered several implementation enhance-
ments. In order to perform efficient GP model re-fitting, we
implemented a covariance wrapper function that keeps the
internal state for caching kernels and its derivatives, and can
update kernel function by a single element. This was particu-
larly helpful for learning the hyper-parameters at runtime.

B. Experimental design
1) Topologies under test and benchmark functions: In

this section, we evaluate BO4CO using 3 different Storm
benchmarks: (i) WordCount, (ii) RollingSort, (iii) SOL.
RollingSort implements a common pattern in real-time data
analysis that performs rolling counts of incoming messages.
RollingSort is used by Twitter for identifying trending topics.
SOL is a network intensive topology, where the incoming
messages will be routed through an inter-worker network.

WordCount and RollingSort are standard benchmarks and
are widely used in the community, e.g., research papers [7]
and industry scale benchmarks [13]. We have conducted all
the experiments on 5 cloud clusters and with different sets of
parameters resulted in datasets in Table I.

We also evaluate BO4CO with a number of benchmark
functions, where we perform a synthetic experiment inside
MATLAB in which a measurement is just a function eval-
uation: Branin(2D), Dixon-Szego(2D), Hartmann(3D) and
Rosenbrock(5D). These benchmark functions are commonly
used in global optimization and configuration approaches
[38], [34]. We particularly selected these because: (i) they
have different curvature and (ii) they have multiple global
minimizers, and (iii) they are of different dimensions.

2) Baseline approaches: The performance of BO4CO is
compared with the 5 outstanding state-of-the-art approaches
for configuration optimizations: SA [8], GA [1], HILL [38],
PS [34] and Drift [33]. They are of different nature and
use different search algorithms: simulated annealing, genetic
algorithm, hill climbing, pattern search and adaptive search.

3) Experimental considerations: The performance statistics
regarding each specific configuration has been collected over
a window of 5 minutes (excluding the first two minutes of
burn-in and the last minute of cluster cleaning). The first
two minutes are excluded because the monitoring data are
not stationary, while the last minute is the time given to the
topology to fully process all messages. We then shut down the
topology, clean the cluster and move on to the next experiment.
We also replicated each runs of algorithms for 30 times in
order to report the comparison results. Therefore, all the results
presented in this paper are the mean performance over 30 runs.

4) Cluster configuration: We conducted all the experiments
on 5 different multi-node clusters on three various cloud plat-
forms. The reason behind this decision was twofold: (i) saving
time in collecting experimental data by running topologies in
parallel as some of the experiments supposed to run for several
weeks, see Section II-B3. (ii) replicating the experiment with
different processing node.

C. Experimental analysis
In the following, we evaluate the performance of each

approach as a function of the number of evaluations. So for
each case, we report performance using the absolute distance
of the minimum function value from the global minimum.
Since we have measured all combinations of parameters in
our datasets, we can measure this distance at each iteration.

1) Benchmark functions global optimization: The results
for Branin in Figure 10(a) show that BO4CO outperforms the
other approaches with three orders of magnitude, while this
gap is only an order of magnitude for Dixon as in Figure 10(b).
This difference can be associated to the fact that Dixon surface
is more rugged than Branin [36]. For Branin, BO4CO finds
the global minimum within the first 40 iterations, while even
SA stalls on a local minimum. The rest, including GA, HILL,
PS perform similarly to each other throughout the experiment
and reach a local minimum, which BO4CO finds only within
the first 10 iterations. For Dixon, BO4CO gets close to the
global minimum within the first 20 iterations, while the best
performers (i.e., PS and HILL) approach to points an order of

https://github.com/dice-project/DICE-Configuration-BO4CO
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Fig. 10: Branin(2D), Dixon(2D) test function optimization.
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Fig. 11: Distance to the three Branin’s minimizers.

magnitude away comparing with BO4CO. Branin function has
3 global minimizers at x∗1 = (π, 12.27), x∗2 = (π, 2.27), x∗3 =
(9.42, 2.47), interestingly comparing to baselines, BO4CO gets
close to all minimizers (cf. Figure 11). Therefore, BO4CO
gains information on all minimizers as opposed to baselines.

The results for Hartmann in Figure 12(a) show that BO4CO
decreases the absolute error quickly after 20 iterations, but
only approaches to the global minimum after 120 iterations.
Neither of the baseline approaches get close to the global
minimum even after 150 iterations. The good performance
of BO4CO is also confirmed in the case of Rosenbrock, as
shown in Figure 12(b). BO4CO finds the optimum in such
large space only after 60 iterations, while GA, HILL, PS and
Drift perform poorly with an error of three orders of magnitude
higher than our approach. However, SA performs well with an
order of magnitude away from the ones found by BO4CO.

2) Storm configuration optimization: We now discuss the
results of BO4CO on the Storm datasets in Table I: SOL(6D),
RollingSort(6D), WordCount(3D,5D).

The results for SOL in Figure 13(a) show that BO4CO
decreases the optimality gap within the first 10 iterations and
decreases this gap until iteration 200 and does not get trapped
into a local minimum. Instead, baseline approaches like Drift
and GA get trapped into a local minimum in early iterations,
while HILL and PS get stuck some iterations later at 120.
Among the baselines, SA performs the best and it decreases
the optimality gap in the first 70 iterations, however, it gets
stuck to a local optimum thereafter.

The results for RollingSort in Figure 13(b) are similar to
the SOL ones. BO4CO decreases the error considerably in
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Fig. 12: Hartmann(3D), Rosenbrock(5D) optimization.
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Fig. 13: SOL(6D), RollingSort(6D) optimization.

the first 50 iterations, while the baseline approaches, except
SA and HILL, perform poorly in that period. However, during
iterations 100-200, the rests, except GA and Drift, find con-
figuration with close performance as the ones BO4CO finds.

For WordCount (Figure 14(a,b)) the results are different.
BO4CO outperforms the best baseline performer, i.e., SA, by
an order of magnitude, while the others by at least two orders
of magnitude. Among the baselines, SA performs the best
for WordCount(3D), while for WordCount(5D) dataset, HILL
and PS performs better in the first 50 iterations.

Summarizing, while the results for the Storm benchmarks
are consistent with the ones we observed for the benchmark
functions, it shows a clear gain in favor of BO4CO, with at
least an order of magnitude in the initial iterations. In each
case, BO4CO finds a better configuration much more quickly
than baselines. As opposed to the benchmark functions, SA
consistently outperforms the rest of baseline approaches. To
highlight this achievement, note that 50 iterations for a dataset
like SOL (6D) is only 1% of the total number of possible tests
for finding the optimum configurations and identifying such
configurations with a latency close to the global optimum can
save a considerable time and cost.

D. Sensitivity analysis

1) Prediction accuracy of the learned GP model: Since
BO4CO does not uniformly sample the configuration space
(cf. Figure 5,8), we speculated that the GP models trained
in BO4CO are not useful for predicting the performance of
configurations that have not been experimented. However,
when we compared the GP model on the WordCount, it
was much more accurate than the ones of polynomial re-
gressions (see Figure 15). This shows a clear advantage over
design of experiments (DoE), which normally uses first-order
and second-order polynomials. The root mean squared error
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Fig. 14: WordCount(3D,5D) configuration optimization.
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BO4CO’s GP fit after 100 iterations vs multivariate polynomial
regression models for WordCount(3D) dataset.

(RMSE) for Branin and Dixon in 16(a) clearly show that the
GP models can provide accurate predictions after 20 iterations.
This fast learning rate can be associated to the power of
GPs for regressions [37]. We further compared the prediction
accuracy of the GP models trained in BO4CO with several
machine learning models (including M5Tree, Regression
Tree, LWP, PRIM [37]) in Figure 16(b) and we observed
that the GP model predictions were more accurate, while the
accuracy of other models either did not improve (e.g., M5Tree)
or was deteriorated (e.g., PRIM, polyfit5) due to over-fitting.

2) Exploitation vs. exploration: In (10), κ adjusts the
exploitation-exploration: small κ means high exploitation,
while a large κ means a high exploration. The results in Figure
17(a) show that using a relatively high exploration (i.e., κ = 8)
performs better up to an order of magnitude comparing with
high exploitations (i.e., κ = 0.1). However, for κ = 0.1, 1
exploiting the mean estimates improves the performance at
early iterations comparing with higher explorations cases as in
κ = 6. This observation motivated us to tune κ dynamically by
using a lower value at early iterations to exploit the knowledge
gained through the initial design and set a higher value later
on, see Section III-C. The result for WordCount in Figure
17(b) confirms that adaptive κ improves the performance
considerably over constant κ. Figure 18 shows that when we
increase κ with a higher rate (cf. Figure 7), it will improve
the performance. However, the results in Figure 17(a) suggest
using a high value of exploration, this should not be set to
an extreme where this makes the mean estimates ineffective.
As in Figure 17(a), it performs 4 orders of magnitude worse
when we ignore the mean estimates (i.e., µt := 0).

3) Bootstrapping vs no bootstrapping: BO4CO uses lhd
design in order to bootstrap the search process. The results for
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Fig. 17: Exploitation vs exploration (a) Branin, (b) wc(6D).

Hartmann and WordCount in Figure 19(a,b) confirms that
this choice provides a good opportunity in order to explore
along all dimensions and not to trap into local optimum
thereafter. However, the results in Figure 19(b) suggest that
a high number of initial design may deteriorate the goal of
finding the optimum early.

V. DISCUSSIONS

A. Computational and memory requirements

The exact inference BO4CO uses for fitting a GP model
to the t observed data is O(t3) because of inversion of
kernel K−1 in (7). We could in principle compute the
Cholesky decomposition and use it for subsequent predic-
tions, which would lower the complexity to O(t2). However,
since in BO4CO we learn the kernel hyper-parameters every
N` iterations, Cholesky decomposition must be re-computed,
therefore the complexity is in principle O(t2 × t/N`), where
the additional factor of t/N` counts the expected number of
iterations. Figure 20 provides the computation time for finding
the next configuration in Algorithm 1 for 5 datasets in Table
I. The time is measured running BO4CO on a MacBook Pro
with 2.5 GHz Intel Core i7 CPU and 16GB of Memory.
The computation time in larger datasets (RollingSort(6D),
SOL(6D), WordCount(6D)) is higher than those with less
data and lower dimensions (WordCount(3,5D)). Moreover,
the computation time increases over time since the matrix size
for Cholesky inversion gets larger.

BO4CO requires to store 3 vectors of size |X| for mean,
variance and LCB estimates and a matrix of size |S1:t|×|S1:t|
for K and of size |S1:t| for observations, making the memory
requirement of O(3|X|+ |S1:Nmax |(|S1:Nmax |+ 1)) in total.
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B. BO4CO in practice
Extensibility. We have integrated BO4CO with continuous

integration, delivery, deployment and monitoring tools in a
DevOps pipeline as a part of H2020 DICE project. BO4CO
performs as the configuration tuning tool for Big Data systems.

Usability. BO4CO is easy to use, end users only need to
determine the parameters of interests as well as experimental
parameters and then the tool automatically sets the optimized
parameters. Currently, BO4CO supports Apache Storm and
Cassandra. However, it is designed to be extensible.

Scalability. The scalability bottleneck is experimentation.
The running time of the cubic algorithm is of the order of
milliseconds (cf. Figure 20). Each of these experiments takes
more than 10 minutes, orders of magnitude over BO4CO.

VI. RELATED WORK

There exist several categories of approaches to address the
system configuration problem, as listed in Table II.

Rule-based: In this category, domain experts create a repos-
itory of rules that is able to recommend a good configuration.
e.g., IBM DB2 Configuration Advisor [21]. The Advisor asks
administrators a series of questions, e.g., does the workload
is CPU or memory intensive? Based on the answers, it
recommends a configuration. However, for multi-dimensional
spaces such as SPS in which the configuration parameters have
unknown non-linear relationship, this approach is naive [34].

Design of experiments: DoE conducts exhaustive experi-
ments for different combinations of parameters in order to find
influential factors [9]. Although DoE is regarded as a classical
approach for application configuration, in multi-dimensional
spaces performing naive experiments without any sequential
feedback from real environment is infeasible and costly.
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Fig. 20: Runtime overhead of BO4CO (excluding the experi-
ment time) is in the scale of few hundred milliseconds.

Model-based: This category conducts a series of experi-
ments where each runs the system using a chosen configu-
ration to observe its performance. Each experiment produces
a (x, f(x)) sample. A (statistical) model can then be trained
from these samples and used to find good configurations.
However, an exhaustive set of experiments, usually above the
limited budget, need to be conducted to provide a represen-
tative data sets, otherwise the prediction based on the trained
model will not be reliable (cf. Figure 15). White box [24] and
black box models [18], [40], [31] have been proposed.

Search-based: In this approach, also known as sequential
design, experiments can be performed sequentially where the
next set of experiments is determined based on an analysis
of the previous data. In each iteration a (statistical) model
is fitted to the data and this model guides the selection of
the next configuration. Evolutionary search algorithms such
as simulated annealing, recursive random search [39], genetic
algorithm [1], hill climbing [38], sampling [31] and Covari-
ance Matrix Adaptation [29] have been adopted.

Learning-based: There exists some approaches that employ
offline and online learning (e.g., reinforcement learning) to
enable online system configuration adaptation [3]. The ap-
proaches in this category, as opposed to the other approaches,
try to find optimum configurations and adapt it when the
situations has been changed at runtime. However, the main
shortcoming is the learning that may converge very slowly
[17]. The learning time can be shortened if the online learning
entangled with offline training [3]. This can be even further
improved if we discover the relationship between parameters
(e.g., [41], [5]) and exploit such knowledge at runtime.

Knowledge transfer: There exist some approaches that re-
duce the configuration space by exploiting some knowledge
about configuration parameters. Approaches like [5] use the
dependence between the parameters in one system to facilitate
finding optimal configuration in other systems. They embed
the experience in a well-defined structure like Bayesian net-
work through which the generation of new experiments can
be guided toward the optimal region in other systems.

Concluding remarks: Software and systems community is
not the only community that has tackled such problem. For
instance, there exists interesting theoretical methods, e.g. best
arm identification problem for multi-armed bandit [4], that
has been applied for optimizing hyper-parameters of machine
learning algorithms, e.g. supervised learning [16]. More so-
phisticated methods based on surrogate models and meta-



TABLE II: Systems configuration (auto-tuning) approaches.

Category Empirical Black box Interactions Approaches

Rule-based No No No [21]
DoE Yes Yes Yes [35]
Model (white-box) Partially No No [24]
Model (blackbox) Yes Yes Yes [18], [40], [31]
Search (sequential) Yes Yes Yes [38], [27], [8]
Search (evol.) Partially Yes Yes [10], [1], [39]
Space reduction Yes Yes Yes [41]
Online learning Yes Yes No [3]
Knowledge transfer Yes Yes Yes [5]

Empirical column describes whether the configuration is based on real data.
Interactions describes whether the non-linear interactions can be supported.

learning have reported better results in different areas, e.g., in
propositional satisfiability problem [15], convolutional neural
networks [32], vision architectures [2], and more recently in
deep neural networks [6].

VII. CONCLUSIONS

This paper proposes BO4CO, an approach for locating
optimal configurations using ideas of carefully choosing where
to sample by sequentially reducing uncertainty in the response
surface approximation in order to reduce the number of
measurements. BO4CO sequentially gains knowledge about
the posterior distribution of the minimizers. We experimentally
demonstrate that BO4CO is able to locate the minimum of
some benchmark functions as well as optimal configurations
within real stream datasets accurately compared to five base-
line approaches. We have carried out extensive experiments
with three different stream benchmarks running on Apache
Storm. The experimental results demonstrate that BO4CO
outperforms the baselines in terms of distance to the optimum
performance with at least an order of magnitude. We have also
provided some evidence that the learned model throughout the
search process can be also useful for performance predictions.
As a future work, since in the DevOps context several versions
of a system are continuously delivered, we will use the notion
of knowledge transfer [20], [5] to accelerate the configuration
tuning of the current version under test.
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