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Abstract

Modern computing platforms are highly-configurable with hundreds of interact-
ing configuration options. However, configuring these systems is challenging.
Erroneous configurations can cause unexpected non-functional faults resulting
in significant performance degradation in non-functional system properties like
latency, energy consumption, heat dissipation, etc. This paper proposes CADET
(short for Causal Debugging Toolkit)—a method that enables users to identify,
explain, and fix the root cause of non-functional faults early and in a principled
fashion. CADET builds a causal model by observing the performance of the
system under different configurations. Then, it uses causal path extraction followed
by counterfactual reasoning over the causal model to (a) identify the root causes
of non-functional faults, (b) estimate the effects of various configuration options
on the non-functional system properties, and (c) prescribe candidate repairs to
the relevant configuration options to fix the non-functional faults. We evaluate
CADET on 5 highly-configurable software systems deployed on 3 NVIDIA Jetson
hardware platforms. We compare CADET with four state-of-the-art machine
learning (ML)-based debugging approaches. The experimental results indicate
that CADET can find repairs for faults with (on average) 8% better accuracy
in multiple non-functional properties 7× faster than the next best performance
debugging method.

1 Introduction
Modern computer systems are composed of multiple components, each of which are highly-
configurable, and are increasingly being deployed on heterogeneous hardware platforms (e.g.,
System-on-a-Chip, System-on-Module, IoT devices, cloud platforms) with different deployment
configurations (local, distributed, multi-cloud). For example, most modern ML systems, cyber-
physical systems, self-driving cars, robotics, and big data systems have such characteristics. The
configuration space in such systems is combinatorially large with thousands of software and hardware
configuration options that interact non-trivially with one another [1, 2, 3]. Unfortunately, configuring
these systems to achieve specific goals is challenging and error-prone. Incorrect configurations
(misconfigurations) happen as a result of unexpected interactions between software and hardware
configuration options across the system stack resulting in non-functional faults, i.e., faults in terms
of non-functional system properties such as latency, energy consumption, and/or heat dissipation.
These non-functional faults—unlike regular software bugs—do not cause the system to crash or
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exhibit an obvious misbehavior [4, 5, 6]. Instead, misconfigured systems remain operational while
being compromised, resulting in severe performance degradation in latency, energy consumption,
and/or heat dissipation [7, 8, 9, 10]. The sheer number of modalities of software deployment is so
large that exhaustively testing every conceivable software and hardware configuration is impossible.
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Figure 1: Observational data (in Fig. 1a) (incor-
rectly) shows that high GPU growth leads to high
latency. The trend is reversed when the data is seg-
regated by swap memory (Fig. 1b). Causal model
constructed on the observational data indicates that
GPU growth indirectly influences latency via swap
memory (Fig. 1c).

Consequently, identifying the root cause of non-
functional faults is notoriously difficult [11]
with as much as 99% of them going unno-
ticed or unreported for extended durations [12].
Non-functional faults have tremendous mone-
tary repercussions costing companies worldwide
an estimated $5 trillion in 2018 and 2019 [13].
They also dominate discussions on online fo-
rums where some developers are quite vocal in
expressing their dissatisfaction [14, 15]. There-
fore, we seek methods that can identify, explain,
and fix the root cause of non-functional faults
early and in a principled fashion.

Existing work. Much recent work has focused
on configuration optimization aimed at finding
a near-optimal configuration that optimizes a performance objective [16, 17, 18, 19]. Finding the
optimum configuration using push-button optimization approaches are not applicable here because we
tackle an essentially different problem—to find and repair the root causes of an already observed non-
functional fault. The global optima do not give us any information about the underlying interactions
between the faulty configuration options that caused the non-functional fault. This information is
sought after by developers seeking to address these non-functional faults [4, 20].

Some previous works have used ML-based performance modeling in fixed [21, 22, 23, 24, 25, 26,
27] and variable environments [28, 29, 30, 31]. Several works attempted to debug systems using
noisy logs [32], anomaly diagnosis [33, 34], sampling [2], data-driven approaches [35, 36, 37, 38],
explanation tables [39], query-based diagnosis [40], statistical debugging and association rule mining
based approaches [41, 42, 43, 44, 45, 46], and similarity analysis [47]. These approaches are
adept at describing if certain configuration options influence performance, however, they lack the
mathematical language to express how or why the configuration options affect performance. Without
this knowledge, we risk drawing misleading conclusions. They also require significant time to
gather the training samples, and this time grows exponentially with the number of configurations [48,
1]. Recent work has employed causal inference for detecting functional bugs (Holmes [49]) and
intermittent failures of databases (AID [50]). These works are orthogonal to performance debugging
of highly-configurable systems.

Limitations of existing work. In Fig. 1, we present an example to help illustrate the limitations of
the current techniques. Here, the observational data gathered so far indicates that a configuration
option GPU growth is positively correlated with increased latency (as in Fig. 1a). A black-box
ML-model built on this data will, with high confidence, predict that larger GPU growth leads to larger
latency. However, this is counter-intuitive because higher GPU growth should, in theory, reduce
latency not increase it. When we segregate the same data on swap memory (as in Fig. 1b), we see
that there is indeed a general downward trend for latency, i.e., within each group of swap memory,
as GPU growth increases the latency decreases. We expect this because GPU growth controls how
much memory the GPU can “borrow” from the swap memory. Depending on resource pressure
imposed by other host processes, a resource manager may arbitrarily re-allocate some swap memory;
this means the GPU borrows proportionately more/less swap memory thereby affecting the latency
correspondingly. This is reflected by the data in Fig. 1b. If the ML-based model were to consult the
available data (from Fig. 1a) unaware of such underlying causal structure, these models would be
incorrect. With thousands of configurations, inferring such nuanced information from optimization or
ML-based approaches would require a considerable amount of measurements and extensive domain
expertise which can be impractical, if not impossible, to possess in practice.

Our approach. In this paper, we propose the use of causal models [51, 52] to express the complex
interactions between the configuration options and the performance objectives with causal models—a
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Figure 2: Overview of CADET.

rich graphical representation that can be learned from performance data and that can be reasoned
upon using the mathematics of causal inference. To this end, we design, implement and evaluate
CADET that uses causal structural discovery algorithms [53, 54] to construct a causal model using
observational data. Then, it uses counterfactual reasoning [55] over the causal model to (a) identify
the root causes of non-functional faults, (b) estimate the effects of various configurable parameters
on the non-functional properties(s), and (c) prescribe candidate repairs to the relevant configuration
options to fix the non-functional fault. In the example of Fig. 1, CADET constructs a causal model
from observational data (as in Fig. 1c). This causal model indicates that GPU growth indirectly
influences latency (via a swap memory) and that the configuration options may be affected by
certain other factors, e.g., resource manager allocating resources for other processes running on
the host. CADET uses counterfactual questions such as, “what is the effect of GPU growth on
latency if the available swap memory was 2Gb?” to diagnose the faults and recommend changes
to the configuration options to mitigate these faults. We evaluate CADET on 5 real-world highly
configurable software systems including image recognition using Xception [56], natural language
processing (NLP) using BERT [57], speech recognition using DeepSpeech [58], database management
system using SQLite [59], and video encoder using x264 [60] deployed on 3 architecturally different
NVIDIA Jetson devices such as TX1, TX2 and XAVIER [61, 62]. The key reason we evaluated
these systems is that they expose numerous intrinsic non-linear interactions between options that
are beyond the visibility of software developers who use them. We compare CADET with state-of-
the-art ML-based performance debugging approaches including DELTADEBUGGING [63], CBI [41],
BUGDOC [42], and ENCORE [43]. Overall, we find that CADET is (on average) 7× faster in
detecting the root cause of non-functional faults with 8% better accuracy and recommending fixes
with 11% higher gain from the corresponding fault when compared to the next best ML-based
approaches in some cases. We also present a real-world case study where we demonstrate that
CADET finds repair with 14% higher gain than the experts’ advice in 24 minutes. The dataset and
the scripts to reproduce our findings are available in https://github.com/softsys4ai/CADET.

2 Motivation — A Real-World Example

We present an instance of a non-functional fault that was reported in the NVIDIA developer forum 2.
Here, a developer notices some strange behavior when trying to transplant their code for real-time
computation of depth information from stereo-cameras for object detection from NVIDIA Jetson
TX1 to TX2. Since TX2 has twice the compute power as TX1, the developer expects to have at
least 30% – 40% lower latency in TX2. However, the developer observed that TX2 had 4× the
latency as TX1. To solve this problem, the developer solicits advice from the developer forums. After
discussions spanning two days, the developer learns that she/he has made several misconfigurations:

• Wrong compilation flags: The compilation does not take into account the microarchitectural
differences between the two platforms that may be fixed by setting the -gencode=arch parameter and
compiling the code dynamically by disabling the CUDA_USE_STATIC flag. TX1 is based on Maxwell
microarchitecture, while TX2 is based on Pascal microarchitecture. These two microarchitectures
have significant differences in terms of power usage and compute speed [64].

• Wrong CPU/GPU clock frequency: The hardware configuration is set incorrectly. These may
be fixed by setting the configuration -nvpmodel=MAX-N which changes the CPU and GPU clock
settings. The Max-N setting in TX2 provides almost twice the performance of TX1 [65] due to
increased clock speeds and TX2’s use of 128-bit memory bus width versus the 64-bit in TX1 [64].

2https://forums.developer.nvidia.com/t/50477
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Figure 3: From observational data to fully connected, skeleton graph, and partial ancestral graph (PAG).

• Wrong fan modes: The fan modes need to be configured correctly to account for higher CPU/GPU
clock speeds. Otherwise, TX2 will thermal throttle the CPU and GPU to prevent overheating [66]
and invariably increasing the latency [67].

This is only one of many examples in a single system, in which misconfigurations severely impact the
non-functional properties of the system. Examples abound from many other systems and domains,
including IoT (e.g. Amazon Alexa) [68, 69] and production-scale cloud-based systems [11].

3 CADET: Causal Debugging Toolkit
This section presents a brief description of CADET (outlined in Fig. 2). We gather a few dozen
samples of observational data, by measuring the non-functional properties of the system (e.g., latency,
etc) under different configuration settings (see 1 in Fig. 2) to construct a graphical causal model using
the observational data (see 2 in Fig. 2). Then, we find paths that lead from configuration options to
latency, energy consumption, and thermal output (see 3 in Fig. 2). Next, a query engine generates
several counterfactual queries (what-if questions) about specific changes to each configuration option
(see 4 in Fig. 2) and finds which of these queries has the highest causal effect on remedying the
non-functional fault(s). Finally, we generate and evaluate the new configuration to assert if the newly
generated configuration mitigates the non-functional fault(s). If not, we repeat the process by adding
this to the current observational data.

Causal structure discovery. In this stage, we express the relationships between configuration
options (e.g., CPU freq, etc.) and the non-functional properties (e.g., latency, etc) using a causal
model. A causal model is a acyclic directed mixed graph (hereafter, ADMG) [70, 71]. The nodes
of the ADMG have the configuration options and the non-functional properties (e.g., latency, etc).
Additionally, we enrich the causal graph by including several nodes that represent the status of
internal system events, e.g., resource pressure (as in Fig. 1). Unlike configuration options, these
system events cannot be modified. However, they can be observed and measured to understand
how the causal-effect of changing configurations propagates to latency, energy consumption, or heat
dissipation, e.g., resource pressure in Fig. 1 determines how GPU growth affects latency. To build
the causal model we gather two dozen samples of observational data (resembling Table 3a). To
convert observational data into a causal graph, we use a prominent structure discovery algorithm
called Fast Causal Inference (hereafter, FCI) [53]. We picked FCI because it accommodates for
the existence of unobserved confounders [53, 72, 73]. This is important because we do not assume
absolute knowledge about the configuration space, hence there could be certain configurations we
could not modify or system events we have not observed. First, we build a dense graph by connecting
all pairs of variables with an undirected edge (as seen in Fig. 3b). Next, we use Fisher’s exact test [74]
to evaluate the independence of all pairs of variables conditioned on all remaining variables. Pruning
edges between the independent variables results in a skeleton graph as shown in Fig. 3c. Next, we
orient undirected edges using edge orientation rules [53, 72, 73, 75] to produce a partial ancestral
graph (as in Fig. 3d). We compare all the partially directed edges from the FCI’s PAG (Fig. 3d) with
their corresponding counterparts from NOTEARS’ DAG (Fig. 3e). The final causal model would be
an ADMG that resembles Fig. 3f.

Causal path extraction. In this stage, we extract paths from the causal graph (referred to as causal
paths) and rank them based on their average causal effect on latency, energy consumption, and heat
dissipation (our three non-functional properties). A causal path is a directed path originating from
either the configuration options or the system events and terminating at a non-functional property
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(i.e., latency, energy consumption, or heat dissipation). To discover causal paths, we backtrack from
the nodes corresponding to each non-functional property until we reach a node with no parents. For
example, from Fig. 3f, we can extract two paths: (1) GPU growth swap memory Latency,
and (2) Resource Pressure swap memory Latency.

A complex causal graph can result in a large number of causal paths. Therefore, we rank the paths in
descending order from ones having the highest causal effect to ones having the lowest causal effect
on each non-functional property. For further analysis, we use paths with the highest causal effect.
To rank the paths, we measure the causal effect of changing the value of one node (say GPU growth
or X) on its successor in the path (say swap memory or Z). We express this with the do-calculus
notation such as E [Z | do (X = x)] that represents the expected value of Z (swap memory) if we set
the value of the node X (GPU growth) to x. To compute the average causal effect (ACE) of X → Z
(i.e., GPU growth swap memory), we find the average over all permissible values the node X
(GPU growth) can take, i.e., ACE (Z,X) = 1

N ·
∑
∀a,b∈X E [Z | do (X = b)] − E [Z | do (X = a)].

Here, N represents the total number of values X (GPU growth) can take. If changes in GPU growth
result in a large change in swap memory, then the ACE (Z,X) will be larger, indicating that GPU
growth on average has a large causal effect on swap memory. The prior equation can be extended to
the compute causal effect of a path PACE .

Repairing non-functional faults. In this stage, we use the topK paths with the largest PACE values
to: (a) identify the root cause of non-functional faults; and (b) prescribe ways to fix the non-functional
faults. When experiencing non-functional faults, a developer may ask specific queries to CADET and
expect an actionable response. For this, we translate the developer’s queries into formal probabilistic
expressions that can be answered using the causal paths. We use counterfactual reasoning to generate
these probabilistic expressions. To understand query translation, we use the example causal graph
of Fig. 3f where a developer observes a latency fault and has the following questions:

ä “What is the root cause of my latency fault?” To identify the root cause of a non-functional
fault we must identify which configuration options have the most causal effect on the performance
objective. For this, we use the steps outlined above to extract the paths from the causal graph and rank
the paths based on their average causal effect (i.e., PACE from) on latency. For example, in Fig. 3f we
may return the path (say) GPU growth swap memory Latency and the configuration options
GPU growth and swap memory both being probable root causes.

ä “How to improve my latency?” To answer this query, we first find the root cause as described
above. Next, we discover what values each of the configuration options must take so that the
new latency is better (low latency) than the fault (high latency). For example, we consider the
causal path GPU growth swap memory Latency, we identify the permitted values for the
configuration options GPU growth and swap memory that can result in a low latency (Y LOW) that
is better than the fault (Y HIGH). For this, we formulate a counterfactual expression of the form
Pr(Y LOW

repair|¬repair, Y HIGH
¬repair) that measures the probability of “fixing” the latency fault with a

“repair” (Y LOW
repair) given that with no repair we observed the fault (Y HIGH

¬repair). In our example, the
repairs would resemble GPU growth =0.66 or GPU growth =0.66, swap memory =4Gb, etc. We
generate a repair set (R) which contains the set of changes where the configurations GPU growth
and swap memory are set to all permissible values, Next, we compute the individual treatment effect
(ITE) on the latency (Y ) for each repair in the repair setR. In our case, for each repair r ∈ R, ITE
is ITE(r) = Pr(Y LOW

r | ¬r, Y HIGH
¬r )− Pr(Y HIGH

r | ¬r, Y LOW
¬r ). ITE measures the difference between

the probability that the latency is low after a repair r and the probability that the latency is still high
after a repair r. To find the most useful repair (Rbest ), we find the repair with the largest (positive)
ITE, i.e., Rbest = argmax∀r ∈ R [ITE(r)]. This provides the developer with a possible repair for
the configuration options that can fix the latency fault.

Incremental learning. In this stage, we generate a new configuration using the recommended
repairs from the Rbest value. We reconfigured the system with the new configuration and we
observe the system behavior. If the new configuration resolves the non-functional fault, we return the
recommended repairs to the developer. Since the causal model uses limited observational data, there
may be a discrepancy between the actual performance of the system after the repair and the value of
the estimation fromRbest derived from the current version of the causal graph. The more accurate
the causal graph, the more accurate the recommended configuration will be [53, 72, 73, 75, 76].
Therefore, in case our repairs do not fix the faults, we update the observational data with this new
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configuration and repeat the process. Over time, the estimations of the causal effects will become
more accurate. We terminate the incremental learning once we achieve the desired performance.

4 Case Study: Latency Fault in TX2
This section revisits the real-world latency fault previously discussed in §2. For this study, we
reproduce the developers’ setup to assess how effectively CADET can diagnose the root-cause of
the misconfigurations and fix them. For comparison, we use BUGDOC (an ML-based diagnosis
tool) and the recommendations by the domain experts on the forum. Fig. 4 illustrates our findings.
We find that CADET could diagnose the root cause of the misconfiguration and recommends a fix
within 24 minutes. Using the recommended configuration fixes from CADET, we achieved a frame
rate of 26 FPS (53% better than TX1 and 6.5× better than the fault). This exceeds the developers’
initial expectation of 30− 40% (or 22− 24 FPS). BUGDOC performed worse than CADET (21%
improvement over TX1) while taking 3.5 hours (time mostly spent on collecting training samples
to train internal decision tree) and changed several unrelated configurations (depicted by Ë ) not
endorsed by the domain experts.

Problem [77]: For a real-time scene detec-
tion task, TX2 (faster platform) only pro-
cessed 4 frames/sec whereas TX1 (slower
platform) processed 17 frames/sec, i.e., the
latency is 4× worse on TX2.
Observed Latency (frames/sec): 4 FPS
Expected Latency (frames/sec): 22-24 FPS
(30-40% better)
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Figure 4: Using CADET on the real-world
example from §2. CADET is better and
faster than other methods.

Why CADET works better (and faster)?

CADET discovers the misconfigurations by constructing
a causal model (a simplified version of this is shown in
Fig. 4). This causal model rules out irrelevant configura-
tion options and focuses on the configurations that have
the highest (direct or indirect) causal effect on latency, e.g.,
we found the root cause CUDA STATIC in the causal graph
which indirectly affects latency via context-switches (an
intermediate system event); this is similar to other relevant
configurations that indirectly affected latency (via energy
consumption). Using counterfactual queries, CADET can
reason about changes to configurations with the highest
average causal effect (last column in Fig. 4). The counter-
factual reasoning occurs with no additional measurements,
significantly speeding up inference.

Together, the causal model and the counterfactual reason-
ing enable CADET to pinpoint the configuration options
that were misconfigured and recommend a fix for them
promptly. As shown in Fig. 4, CADET accurately finds all
the configuration options recommended by the forum (de-
picted by Ë in Fig. 4). Further, CADET recommends
fixes to these options that result in 14% better latency
than the recommendation by domain experts in the forum.
More importantly, CADET takes only 24 minutes (vs. 2
days of forum discussion) without modifying unrelated
configurations.

5 Evaluation
Experimental Setup. This study uses three NVIDIA Jet-
son platforms: TX1, TX2, and XAVIER and five software
systems on each platform: (1) An image recognition sys-
tem with Xception to classify 5000 images from the CI-
FAR10 dataset [78]; (2) an NLP system with BERT to perform sentiment analysis on 10000 reviews
from the IMDb dataset [79]; (3) An RNN based voice recognition system with DeepSpeech on 5
seconds long audio files; (4) SQLite, a database management system, to perform read, write, and
insert operations; and (5) x264 video encoder to encode a video file of size 11MB with a resolution
of 1920 x 1080. We use 28 configuration options that include 10 software options, 8 OS/Kernel
options, and 10 hardware options. We curate a non-functional faults dataset, called the JETSON
FAULTS dataset, and ground truth for each observed non-functional faults for each of the software
and hardware system used in our study. We create a ground-truth data by measuring configurations
for a fixed budget of 24 hours and identifying their root-causes manually for each fault by selecting
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the configuration with the highest performance gain from the fault. By definition, non-functional
faults have latency, energy consumption, and heat dissipation that take tail values [11, 80], i.e., they
are worse than the 99th percentile. We filter our data set to find the configurations that result in tail
values for latency, energy consumption, and/or heat dissipation and label these configurations as
‘faulty’. We evaluate the predicted root-causes in terms of accuracy (Jaccard similarity). To compute
accuracy, we compare the set of configuration options identified by CADET to be the root cause with
the true root-cause obtained from the ground truth data. To assess the quality of fixes, we measure the
percentage improvement (gain %) after applying the recommended repairs using ∆gain. We prefer
higher accuracy and gain.

Table 1: Efficiency of CADET compared to other ap-
proaches. Cells highlighted in blue indicate maximum
improvement over faults. CADET achieves better per-
formance overall and is much faster.
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Results. We compare CADET with four
state-of-the-art ML-based methods for fault di-
agnostics, namely: DELTADEBUGGING [63],
CBI [41], BUGDOC [42], and ENCORE [43].
For all methods, we set a maximum budget of
4 hours. All methods require some initial ob-
servational data to operate. Within the budget,
CADET samples 25 initial observational data
to incrementally generate, evaluate, and update
the causal model with candidate repairs. Other
methods require a large and diverse pool of ob-
servational data for training. However, collect-
ing observational data is expensive and time-
consuming. Therefore, we use the entire bud-
get of 4 hours to generate random configuration
samples to train ML-based methods. We as-
sess the effectiveness of diagnostics for “single-
objective” non-functional faults, i.e., faults that
occur only in one of latency, energy consumption, or heat dissipation. For brevity, we evaluate
latency faults in TX2, energy consumption faults in XAVIER, and heat dissipation faults in TX1. Our
findings generalize over other hardware. Table 1 summarizes the effectiveness of CADET over other
ML-based fault diagnosis approaches. We observe the following:

• Accuracy and gain. CADET significantly outperforms ML-based methods in all cases. For
example, in SQLite database management system on TX2, CADET achieves 14% more accuracy
compared to BUGDOC (best among the remaining ML-based approaches). We observe similar trends
in energy faults, i.e., CADET outperforms other methods in all cases. CADET can recommend
repairs for faults that significantly improves latency and energy usage. Applying the changes to the
configurations recommended by CADET increases the performance drastically. We observed latency
gains as high as 81% (22% more than BUGDOC) on TX2 and energy gain of 83% (32% more than
BUGDOC) on XAVIER for image recognition.

• Wallclock time. CADET can resolve misconfiguration faults significantly faster than ML-based
approaches. In Table 1, the last two columns indicate the time taken (in hours) by each approach to
diagnosing the root cause. We find that while other approaches use the entire budget of 4 hours to
diagnose and resolve the faults, CADET can do so significantly faster before the maximum budget is
exhausted, e.g., CADET is 40× faster in diagnosing and resolving faults in energy usage for x264
deployed on XAVIER and 20× faster in diagnosing latency faults for NLP task on TX2. ML-based
methods require a large number of initial observational data for training. They spend most of their
allocated 4-hour budget on gathering these training samples. In contrast, CADET starts with only 25
samples and uses incremental learning to judiciously update the casual graph with new configurations
until a repair has been found.

Discussion. Table 1 shows that image recognition, NLP and speech recognition deep neural
network (DNN) systems had the most improvements with CADET compared to x264 and SQLite.
Misconfigurations affecting the onboard GPU lead to severe degradation in latency and energy
usage. Since DNN relies on GPU to optimize the operations, it must be configured appropriately to
leverage the full hardware potential. Other applications were less sensitive to such misconfigurations.
Further, all methods found it difficult to discover and resolve thermal faults. While CADET
outperformed other methods, the overall accuracy, and gain were lower than those for latency and
energy consumption faults. We believe there are two reasons for this: (1) The workloads exercised in
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this work did not significantly heat the system; and (2) the thermal measurements were taken in a
controlled environment (indoor in a stable temperature), as a result, the variance temperature was
relatively lower.

6 Conclusion
Modern computer systems are highly-configurable with thousands of interacting configuration
options with complex performance behavior. Misconfigurations in these systems can elicit complex
interactions between software and hardware configuration options resulting in non-functional faults.
We propose CADET (short for Causal Debugging Toolkit), a novel approach for diagnostics that
learns and exploits the causal structure of configuration options, system events, and performance
metrics. Our evaluation shows that CADET effectively and quickly diagnoses the root cause of
non-functional faults and recommends high-quality repairs to mitigate these faults.
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