

Motivation

The study focuses on three key research questions:

- **RQ1**: Is there anything special about the robustness of contrastive learning representations?
- **RQ2:** How does the incorporation of label information affect the robustness of contrastive learning representations?
- **RQ3**: How does adversarial training affect the learned representations in supervised and contrastive learning?

Incorporating label information into CL enhances the robustness of representations

- Both SCL and SL exhibit clearer class boundaries compared to CL. Incorporating label information in the semi-supervised learning schemes (SL+CL and SCL+CL) enhances the separation of classes, indicating increased robustness against adversarial perturbations.

Adversarial Training: Direct Comparison

Rethinking Robust Contrastive Learning from the Adversarial Perspective

Fatemeh Ghofrani, Mehdi Yaghouti, Pooyan Jamshidi

University of South Carolina

Adversarially trained networks exhibit significant similarities between adversarial and clean representations

- Networks trained through adversarial training exhibit significant similarities between adversarial and clean representations.
- Full AT significantly enhances long-range similarities and improves both standard and adversarial accuracy in CL.
- Slight differences in representations and performance are observed in the SCL and SL under AT and Full AT scenarios.

Increasing the similarity between adversarial and clean representations improves robustness

- Comparing clean and adversarial representations in different layers of the model reveals significant dissimilarity in standard-trained networks.
- Adversarial training reduces this divergence, leading to similar representations for clean and adversarial examples in robust networks.

J.180

Adversarial training promotes similarity in adversarial representations across various learning schemes

- last layers.

Adversarial training promotes the emergence of long-range similarities between layers

Summary

• CL without labels is less robust than other learning schemes in standard training, but incorporating supervised cross-entropy or supervised contrastive loss enhances robustness by utilizing label information. • Full adversarial fine-tuning enhances the robustness of representations **learned by CL**, but it is ineffective in SCL or standard SL schemes. Adversarial training promotes the convergence of representations towards a universal set, leading to the increased similarity between adversarial and clean representations and improved robustness, particularly at the network's