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Motivation

The study focuses on three key research questions:

RQ1: Is there anything special about the robustness of contrastive learning

representations?

RQ2: How does the incorporation of label information affect the robustness

of contrastive learning representations?

RQ3: How does adversarial training affect the learned representations in

supervised and contrastive learning?

Methodology

Representation Learning schemes:
Contrastive Learning (CL)

Supervised Contrastive Learning (SCL)

Supervised Learning (SL)

Training Scenarios:

Scenarios Pretraining Phase Finetuning Phase

ST Standard Training Standard Training (with fixed θb)

AT Adversarial Training Standard Training (with fixed θb)

Partial-AT Adversarial Training Partial Adversarial Training (with fixed θb)

Full-AT Adversarial Training Full Adversarial Training
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Incorporating label information into CL enhances the
robustness of representations

0 1 2 3 40

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

CIFAR-10

0 1 2 3 4
0

20

40

60

CIFAR-100
CL
SCL
SL
CL+SCL
SL+SCL
SL+CL

PGD Perturbations (/255)

SL

SL+SCL

SCL

SL+CL

SCL+CL

CL

CL

SCLSL

Both SCL and SL exhibit clearer class boundaries compared to CL.

Incorporating label information in the semi-supervised learning schemes

(SL+CL and SCL+CL) enhances the separation of classes, indicating increased

robustness against adversarial perturbations.

Adversarial Training: Direct Comparison
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Adversarially trained networks exhibit significant similarities
between adversarial and clean representations
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SL/AT on Clean Examples
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Networks trained through adversarial training exhibit significant similarities

between adversarial and clean representations.

Full AT significantly enhances long-range similarities and improves both

standard and adversarial accuracy in CL.

Slight differences in representations and performance are observed in the SCL

and SL under AT and Full AT scenarios.

Increasing the similarity between adversarial and clean
representations improves robustness

0 20 40 60 80 100 120 140
Layers

0.2

0.4

0.6

0.8

1.0

CK
A

CL/ST
CL/AT

0 20 40 60 80 100 120 140
Layers

0.0

0.2

0.4

0.6

0.8

1.0

SCL/ST
SCL/AT

0 20 40 60 80 100 120 140
Layers

0.0

0.2

0.4

0.6

0.8

1.0

SL/ST
SL/AT

0 20 40 60 80 100 120 140
Layers

0.4

0.6

0.8

1.0

CK
A

CL/AT ( = 2
255 )

CL/AT ( = 8
255 )

CL/AT ( = 16
255 )

0 20 40 60 80 100 120 140
Layers

0.5

0.6

0.7

0.8

0.9

1.0

SCL/AT ( = 2
255 )

SCL/AT ( = 8
255 )

SCL/AT ( = 16
255 )

0 20 40 60 80 100 120 140
Layers

0.2

0.4

0.6

0.8

1.0

SL/AT ( = 2
255 )

SL/AT ( = 8
255 )

SL/AT ( = 16
255 )

Comparing clean and adversarial representations in different layers of the

model reveals significant dissimilarity in standard-trained networks.

Adversarial training reduces this divergence, leading to similar representations

for clean and adversarial examples in robust networks.

Adversarial training promotes the emergence of long-range
similarities between layers
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Adversarial training promotes similarity in adversarial
representations across various learning schemes
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Summary

CLwithout labels is less robust than other learning schemes in standard

training, but incorporating supervised cross-entropy or supervised

contrastive loss enhances robustness by utilizing label information.

Full adversarial fine-tuning enhances the robustness of representations

learned by CL, but it is ineffective in SCL or standard SL schemes.

Adversarial training promotes the convergence of representations towards

a universal set, leading to the increased similarity between adversarial and

clean representations and improved robustness, particularly at the network’s

last layers.
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