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Abstract

Deep Neural Networks (DNNs) have become an essential component in
many application domains including web-based services. A variety of
these services require high throughput and (close to) real-time features,
for instance, to respond or react to users’ requests or to process a stream
of incoming data on time. However, the trend in DNN design is toward
larger models with many layers and parameters to achieve more accurate
results. Although these models are often pre-trained, the computational
complexity in such large models can still be relatively significant, hin-
dering low inference latency. Implementing a caching mechanism is a
typical systems engineering solution for speeding up a service response
time. However, traditional caching is often not suitable for DNN-based
services. In this paper, we propose an end-to-end automated solution to
improve the performance of DNN-based services in terms of their com-
putational complexity and inference latency. Our caching method adopts
the ideas of self-distillation of DNN models and early exits. The proposed
solution is an automated online layer caching mechanism that allows
early exiting of a large model during inference time if the cache model in
one of the early exits is confident enough for final prediction. One of the
main contributions of this paper is that we have implemented the idea as
an online caching, meaning that the cache models do not need access to
training data and perform solely based on the incoming data at run-time,
making it suitable for applications using pre-trained models. Our exper-
iments results on two downstream tasks (face and object classification)
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show that, on average, caching can reduce the computational complex-
ity of those services up to 58% (in terms of FLOPs count) and improve
their inference latency up to 46% with low to zero reduction in accuracy.

Keywords: Deep Neural Networks, Software Performance, Caching, Early
Exits

1 Introduction

Deep Neural Networks (DNNs) are incorporated in real-world applications
used by a broad spectrum of industry sectors including healthcare (Shorten
et al, 2021; Fink et al, 2020), finance (Huang et al, 2020; Culkin, 2017), self-
driving vehicles (Swinney and Woods, 2021), and cybersecurity (Ferrag et al,
2020). These applications utilize DNNs in various fields such as computer
vision (Hassaballah and Awad, 2020; Swinney and Woods, 2021), audio signal
processing (Arakawa et al, 2019; Tashev and Mirsamadi, 2017),and natural
language processing (Otter et al, 2021). Many services in large companies such
as Google and Amazon have DNN-based back-end software (e.g., Google Lens
and Amazon Rekognition) with tremendous volume of queries per second.
For instance, Google processes over 99,000 searches every second (Mohsin,
2022) and spends a substantial amount of computation power and time at
their models’ run-time (Xiang and Kim, 2019). These services are often time-
sensitive, resource-intensive, and require high availability and reliability.

Now the question is how fast the current state-of-the-art (STOA) DNN
models are at inference time and to what extent they can provide low latency
responses to queries. The SOTA model depends on the application domain and
the problem at hand. However, the trend in DNN design is indeed toward pre-
trained large-scale models due to their reduced training cost (only fine-tuning)
while providing dominating results (since they are huge models trained on an
extensive dataset).

One of the downsides of large-scale models (pre-trained or not) is their
high inference latency. Although the inference latency is usually negligible per
instance, as discussed, a relatively slow inference can jeopardize a service’s
performance in terms of throughput when the QPS is high.

In general, in a DNN-based software development and deployment pipeline,
the inference stage is part of the so called “model serving” process, which
enables the model to serve inference requests or jobs (Xiang and Kim, 2019) by
directly loading the model in the process or by employing serving frameworks
such as TensorFlow Serving (Olston et al, 2017) or Clipper (Crankshaw et al,
2017).

The inference phase is an expensive stage in a deep neural model’s life
cycle in terms of time and computation costs (Desislavov et al, 2021). There-
fore, efforts towards decreasing the inference cost in production have increased
rapidly throughout the past few years.
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From the software engineering perspective, caching is a standard practice
to improve software systems performance, which helps avoid redundant com-
putations. Caching is the process of storing recently observed information to
be reused when needed in the future, instead of re-computation (Wessels, 2001;
Maddah-Ali and Niesen, 2014). Caching is usually orthogonal to the underly-
ing procedure, meaning that it is applied by observing the inputs and outputs
of the target procedure and does not engage with the internal computations
of the cached function.

Caching effectiveness is best observed when the cached procedure often
receives duplicated inputs while in a similar internal state—for instance,
accessing a particular memory block, loading a web page, or fetching the books
listed in a specific category in a library database. It is also possible to adopt a
standard caching approach with DNNs (e.g., some work cache a DNN’s output
solely based on its input values (Crankshaw et al, 2017)). However, it would
most likely provide a meager improvement due to the high dimension and size
of the data (such as images, audios, texts) and low duplication among the
requests.

However, due to the feature extracting nature of the deep neural networks,
we can expect the inputs with similar outputs (e.g., images of the same person
or the same object) to have a pattern in the intermediate layers’ activation
values. Therefore, we exploit the opportunity to cache a DNN’s output based
on the intermediate layers’ activation values. This way, we can cache the
results not by looking at the raw inputs but by looking at their
extracted features in the intermediate layers within the model’s
forward-pass.

The intermediate layers often have even higher dimensions than the input
data. Therefore, we use shallow classifiers (Kaya et al, 2019) to replace the
classic cache storing and look-up procedures. A shallow classifier is a supple-
mentary model attached to an intermediate layer in the base model that uses
the intermediate layer’s activation values to infer a prediction. In the caching
method, training a shallow classifier on a set of samples mimics the procedure
of storing those samples in a cache storage, and inferring for a new sample
using the shallow classifier mimics the look-up procedure.

Caching is more problematic in regression models where the outputs are
continuous values. Specifically, it is less likely that two different samples have
the same outcome in a regression model compared to a classification one.
Therefore, the experiments in this research focus on classification models.
Thus, here we propose caching the predictions made by off-the-shelf classifica-
tion models using shallow classifiers trained using the samples and information
collected at inference time.

We first evaluate the rationality of our method in our first research ques-
tion by measuring how it affects the final accuracy of the given base models
and assessing the effectiveness of the parameters we introduce (tolerance and
confidence thresholds) as a knob to control the caching certainty.
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We further evaluate the method in terms of computational complexity and
inference latency improvements in the second and third research questions.
We measure this improvements by comparing the FLOPs count, memory con-
sumption, and inference latency for the original model vs. the cache-enabled
version that we build throughout this experiment. We observed up to 58%
reduction in FLOPs, up to 46% acceleration in inference latency while inferring
on CPU and up to 18% on GPU, with less than 2% drop in accuracy.

In the rest of the paper, we discuss our motivations in section 2, the back-
ground and related works in section 3, details of the method in section 4,
design and evaluation of the study in section 5, and lastly, we conclude the
discussions in section 6.

2 Motivation

Many real-world software services utilize deep neural models and, simultane-
ously, require low response time to meet their service level objectives (SLO).
This requirement usually leads to allocating expensive infrastructure and
hardware resources to the services (Velasco-Montero et al, 2019). The high
computational cost of DNNmodels directly affects the service provider in terms
of their delivery cost and the environment in terms of the carbon footprint of
the data centers running such services 24/7.

Countless high-traffic online platforms such as online stores, photo/video
sharing platforms, digital advertising platforms, and trading platforms use
neural networks within the process of serving their user requests. For instance,
displaying an online advertisement involves an online ad-click rate prediction
based on the user features (Gharibshah et al, 2020). Furthermore, online stores
also use deep learning classification models for various purposes, such as prod-
uct categorization, recommendation, product review sentiment analysis, and
customer churn rate prediction.

In terms of the traffic load, Google Lens for instance has reached an average
of 3 billion usages per month in 2021 (Maxham and Diaz, 2021). Employing a
variety of machine learning and deep learning models, Google spends billions
of dollars on data centers and infrastructure to process such volume of requests
(Spadafora, 2022). Thus, extensive work towards minimizing the energy foot-
print of the large-scale services has been done (Lo et al, 2014; Buyya and Gill,
2018).

On the other hand, the trend in DNNs deployment on resource-constrained
devices such as mobile and IoT devices has also been rising in the past few
years (Lin et al, 2020; Yoo, 2020). Various scenarios involve DNNs performing
on-device predictions where low inference latency and/or low compute con-
sumption is required. For instance, traffic sign classification in autonomous
vehicles (Zhang et al, 2020) requires low latency, and on-device voice command
recognition systems (Lin et al, 2018) and mobile visual assistants (Khaled et al,
2020) require low compute consumption.
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Moreover, using pre-trained off-the-shelf DNN models and adapting them
to new tasks using transfer learning is playing a fundamental role in enabling
practitioners in different areas to utilize DNNs (Shrestha et al, 2019; Abed
et al, 2020; Lee et al, 2020). However, the pre-trained models’ original training
data is not always available to the users. The absence of the training data can
be due to different reasons, such as the high volume or cost of the data, privacy
requirements, or intellectual property regulations. Accounting for such com-
mon cases, we restrict our method to use only the data collected at inference
time (test set). The inference data are unlabelled, meaning that their ground
truth labels are not available to the user. Hence, our method relies only on the
model’s internal values and final outputs and does not require access to the
ground truth labels.

DNNs compute performance improvement has received a considerable
amount of attention in terms of specialized hardware accelerators (Wang et al,
2019b; Dally et al, 2020; Deng et al, 2020), and framework-level optimizations
(Crankshaw et al, 2017; Shi and Chu, 2018). On the other hand, model com-
pression methods propose modifications to the model’s structure (i.e., weights
and connections) to reduce their compute complexity.

By applying one or more model compression methods, practitioners either
replace the modified model and lose a fixed amount of accuracy, or manage
multiple versions of the model with different accuracy and complexity. Having
multiple model versions, they select one for inference based on the current
workload (Taylor et al, 2018; Marco et al, 2020) or available resources (Guan
et al, 2018). However, our method optimizes the model while preserving its
original structure, allowing the user to enable/disable the optimization without
the overhead of managing and loading/offloading multiple model versions.

Considering the trends, requirements, and motivations discussed above,
we design the caching method to add one or more alternative exit paths in
the model with less computation required than the remaining layers in the
backbone, controlled by the shallow classifiers we train using only the inference
data.

3 Background and related works

In this section, we briefly review the background topics to the model inference
optimization problem. Following this background discussions, we introduce the
techniques used to build the caching procedure. Figure1 puts the discussed
background and related techniques into the picture.

3.1 Inference optimization

There are two perspectives addressing the model inference optimization
problem. The first perspective is interested in optimizing the model deploy-
ment platform and covers a broad range of optimization targets (Yu et al,
2021). These studies often target the deployment environments in resource-
constrained edge devices (Liu et al, 2021; Zhao et al, 2018) or resourceful
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Fig. 1 DNN inference optimization perspectives and solutions

cloud-based devices (Li et al, 2020). Others focus on hardware-specific opti-
mizations (Zhu and Jiang, 2018) and inference job scheduling (Wu et al,
2020).

The second perspective is focused on minimizing the model’s inference
compute requirements by compressing the model. Among model compression
techniques, model pruning (Han et al, 2015; Zhang et al, 2018; Liu et al, 2019),
model quantization (Courbariaux et al, 2015; Rastegari et al, 2016; Nagel et al,
2019), and model distillation (Bucila et al, 2006; Polino et al, 2018; Hinton
et al, 2015) are being extensively used. These ideas alleviate the model’s com-
putational complexity by pruning the weights, computing the floating-point
calculations at lower precision, and distilling the knowledge from a teacher
(more complex) model into a student (less complex) model, respectively. These
techniques modify the original model and often cause a fixed amount of loss
in the test accuracy.

3.2 Early Exits in DNNs

“Early exit” generally refers to an alternative path in a DNN model which
can be taken by a sample instead of proceeding to the next layers in the
model. Many previous works have used the early exit concept for different
purposes (Xiao et al, 2021; Scardapane et al, 2020; Matsubara et al, 2022).
Among them, Shallow Deep Networks (SDN) (Kaya et al, 2019) points out
the “overthinking” problem in deep neural networks. “Overthinking” refers to
the models spending a fixed amount of computational resources for any query
sample, regardless of their complexity (i.e., how deep the neural network should
be to infer the correct prediction for the sample). Their research proposes
attaching shallow classifiers to the intermediate layers in the model to form
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the early exits. Each shallow classifier in SDN provides a prediction based on
the values of the intermediate layer to which it is attached.

On the other hand, (Xiao et al, 2021) incorporates the shallow classifiers
to obtain multiple predictions for each sample. In their method, they use early
exits as an ensemble of models to increase the base model’s accuracy.

The functionality of the shallow classifiers in our proposed method is similar
to SDN. However, the SDN method trains the shallow classifier using the
ground truth data in the training set and overlooks the available knowledge in
the original model. This constraint renders the proposed method useless when
using a pre-trained model without access to the original training data, which
is commonly the case for practitioners.

3.3 DNN Distillation and Self-distillation

Among machine learning tasks, the classification category is one of the signifi-
cant use cases where DNNs have been successful in recent years. Classification
is applied to a broad range of data such as image (Bharadi et al, 2017), text
(Varghese et al, 2020), audio (Lee et al, 2009), and time-series (Zheng et al,
2014) classification.

Knowledge distillation(KD) (Bucila et al, 2006; Polino et al, 2018; Hinton
et al, 2015) is a model compression method that trains a relatively small (less
complex) model known as the student to mimic the behavior of a larger (more
complex) model known as the teacher. Classification models usually provide a
probability distribution (PD) representing the probability of the input belong-
ing to each class. KD trains the student model to provide similar PDs (i.e.,
soft labels) to the teacher model rather than training it with just a class label
for each sample (i.e., hard labels). KD uses specialized loss functions in the
training process, such as Kullback-Leibler Divergence (Joyce, 2011) to measure
how one PD is different from another.

KD usually is a 2-step process consisting of training a large complex model
to achieve high accuracy and distilling its knowledge into a smaller model. An
essential challenge in KD is choosing the right teacher and student models.
Self-distillation (Zhang et al, 2021) addresses this challenge by introducing a
single-step method to train the teacher model along with multiple shallow clas-
sifiers. Each shallow classifier in self-distillation is a candidate student model
which is trained by distilling the knowledge from one or more of the deeper
classifiers. In contrast to SDN, self-distillation utilizes knowledge distillation
to train the shallow classifiers. However, it still trains the base model from
scratch along with the shallow classifiers, using the original training set. This
training procedure conflicts with our objectives in both aspects. Specifically,
we use a pre-trained model and keep it unchanged throughout the experiment
and only use inference data to train the shallow classifiers.

Our work modifies and puts the presented methods in SDN and self-
distillation in the context of caching the final predictions of pre-trained DNN
models. The method trains the shallow classifiers using only the unlabelled
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samples collected at run-time and measures the improvement in inference
compute costs achieved by the early exits throughout the forward-passes.

3.4 DNN Prediction Caching

Clipper (Crankshaw et al, 2017) is a serving framework that incorporates
caching DNNs predictions based on their inputs. Freeze Inference (Kumar et al,
2019) investigates the use of traditional MLmodels such as K-NN and K-Means
to predict based on intermediate layers’ values. They show that the size and
computation complexity of those ML models grows proportionally with the
number of available samples and their computational overheads by far exceed
any improvement. In Learned Caches, (Balasubramanian et al, 2021) extend
the Freeze Inference by replacing the ML models with a pair of DNN models.
A predictor model predicting the outputs and a binary classifier predicting
whether the output should be used as the final prediction. Their method uses
the ground truth data in the process of training the predictor and selector
models. In contrast, our method 1) only uses unlabelled inference data, 2)
automates the process of cache-enabling, 3) uses a confidence-based cache hit
determination, 4) handles batch processing by batch shrinking.

4 Methodology

In this section, we explain the method to convert a pre-trained deep neural
model (which we call the backbone) to its extended version with our caching
method (called cache-enabled model). The caching method adds one or more
early-exit paths to the backbone, controlled by the shallow classifiers (which
we call the cache models), allowing the model to infer a decision faster at run-
time for some test data samples (cache hits). Faster decision for a portion of
queries will result in a reduced mean response time.

“Cache model” is a supplementary model that we attach to an intermediate
layer in the backbone, and given the layer’s values provides a prediction (along
with a confidence value) for the backbone’s output. Just a reminder that as our
principal motivation, we assume that the original training data is unavailable
for the user, as is the case for most large-scale pre-trained models used in
practice. Therefore, in the rest of the paper, unless we explicitly mention it,
the terms dataset, training set, validation set, and test set all refer to the whole
available data at run-time or a respective subset.

Our procedure for cache-enabling a pre-trained model is chiefly derived
from the self-distillation method (Zhang et al, 2021). However, we adopt the
method to cache-enable pre-trained models using only their recorded outputs,
without access to the ground truth (GT) labels.

A step-by-step guide on cache-enabling an off-the-shelf pre-trained model
from a user perspective contains the following steps:
1. Identify the candidate layers to be cached
2. Build a cache model for each candidate
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3. Assign confidence thresholds to the built models for determining the cache
hits

4. Evaluate and optimize the cache-enabled model
5. Update and maintenance
In the following subsections, we further discuss the procedure and design

decisions in each step outlined above.

Fig. 2 Cache-enabling procedure, candidate layers, and data paths.

4.1 Identifying candidate layers

Choosing which layers to cache is the first step toward cache-enabling a model.
A candidate layer is a layer that we will examine its values correlation to the
final predictions by training a cache model based on them. One can simply list
all the layers in the backbone as candidates. However, since we launch a search
for a cache model per candidate layer in the next step, we suggest narrowing
the list by filtering out some layers with the following criteria:

• Some layers are disabled at inference time, such as dropouts and batch
normalizations. These layers do not modify their input values at inference
time. Therefore, we cross them off the candidates list.

• A few last layers in the model (close to the output layer, such as L15 in
Figure 2) might not be valuable candidates for caching since the remaining
layers might not have heavy computations to reach the output.

• DNN models usually are composed of multiple components (i.e. first-level
modules) consisting of multiple layers such as multiple residual blocks in
ResNet models He et al (2016)). We narrow down the search space to the
outputs layers in those components.
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• We only consider the layers which, given their activation values, the back-
bone’s output is uniquely determined without any other layer’s state
involved (i.e., the backbone’s output is a function of the layer’s output).
In other words, a layer with other layers or connections in parallel (such
as L7-L11 and L13 in the Figure 2) is not suitable for caching since the
backbone’s output does not solely depend on the layer’s output.

Having the initial set of the candidate layers, we next build and associate
a cache model to each one.

4.2 Building cache models

Building a cache model to be associated with an intermediate layer in the
backbone consists of finding a suitable architecture for the cache model and
training the model with that architecture. The details of the architecture search
(search space, search method, and evaluation method) and the training pro-
cedure (training data extraction and the loss function) are discussed in the
following two subsections.

4.2.1 Cache models architecture

A cache model can have an architecture with any size in depth and breadth,
as long as it provides more computational improvement than its overhead.
In other words, it must have substantially less complexity (i.e., number of
parameters and connections) than the rest of the layers in the backbone that
come after the corresponding intermediate layer. The search space for such
models would contain architectures with different numbers and types of layers
(e.g., a stack of dense and/or convolution layers). Nevertheless, all the models
in the search space must output a PD identical to the backbone’s output in
terms of size (i.e., the number of classes) and activation (e.g., SoftMax or
LogSoftMax).

In our experiments, the search space consists of architectures with a stack
of (up to 2) convolution layers followed by another stack of (up to 2) linear
layers, with multiple choices of kernel and stride sizes for the convolutions and
neuron counts for the linear layers. However, users can modify or expand the
search space according to their specific needs and budget.

The objective of the search is to find a minimal architecture that converges
and predicts the backbone’s output with acceptable accuracy. Note that any
accuracy given by a cache model (better than random) can be helpful as we
will have a proper selection mechanism later in the process to only use the
cache predictions that are (most likely) correct, and also to discard the cache
models yielding low computational improvement.

The user can conduct the search by empirically sampling through the search
space or by using a automated Neural Architecture Search (NAS) tool such
as Auto-Keras (Jin et al, 2019), Auto-PyTorch (Zimmer et al, 2021), Neu-
ral Network Intelligence (NNI) (Microsoft, 2022), or NASLib (Ruchte et al,
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2020). However, we used NNI to conduct the search and customized the eval-
uation process to account for the models’ accuracy and their computational
complexity. We have used the floating point operations (FLOPs) count as the
estimation for the models’ computational complexity in this stage.

Several factors influence a cache model’s architecture for a given interme-
diate layer. These factors include the target intermediate layer’s dimensions,
its position in the backbone, and the dataset specifications such as its number
of target classes. For instance, the first cache models in CIFAR100-Resnet50
and in CIFAR10-Resnet18 experiments (shown as cache1 in Figure 3) have the
same input size, but since CIFAR100 has more target classes, it reasonably
requires a cache model with more learning capacity. Therefore, using NAS to
design the cache models helps automate the process and alleviate deep learning
expert supervision in designing the cache models.

Regardless of the search method, evaluating a nominated architecture
requires training a model with the given architecture which we discuss the pro-
cedure in the next section. Moreover, since the search space is limited in depth,
it is possible that for some intermediate layers, neither of the cache models
converge (i.e., the model provides nearly random results). In such cases, we
discard the candidate layer as non-suitable for caching.

4.2.2 Training a cache model

Figure (2) illustrates a cache-enabled model’s schema consisting of the back-
bone (the dashed box) and the associated cache models. A cache model’s objec-
tive is to predict the output of the backbone model, given the corresponding
intermediate layer’s output, per input sample.

Similar to the backbone, cache models are classification models. However,
their inputs are the activation values in the intermediate layers. As suggested
in self-distillation (Zhang et al, 2021), training a cache model is essentially
similar to distilling the knowledge from the backbone (final classifier) into the
cache model.

Therefore, to distill the knowledge from the backbone into the cache mod-
els, we need a medial dataset (MD) based on the collected inference data (ID).
The medial dataest for training a cache model associated to an intermediate
layer L in the backbone B consists of the set of activation values in the layer
L and the PDs given by B per samples in the given ID, formally annotated as
below:

MDL = [i ∈ ID :< BL(i), B(i) >] (1)

where:
MDL : Medial dataset for the cache model associated with the layer L
ID : The collected inference data consisting of unlabelled samples
BL(i): Activation values in layer L given the sample i to the backbone B
B(i) : The backbone’s PD output for the sample i
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Note that the labels in MDs are the backbone’s outputs and not the GT
labels, as we assumed the GT labels to be unavailable. We split the MDL into
three splits (MDTrain

L , MDV al
L , MDTest

L ) and use them respectively similar
to the common deep learning training and test practices.

Similar to distillation method (Hinton et al, 2015), we use Kullback–Leibler
Divergence (KLDiv) (Joyce, 2011) loss function in the training procedure.
KLDiv measures how different are the two given PDs. Thus, minimizing
the KLDiv loss value over MDTrain

L trains the cache model to estimate the
prediction of the backbone (B(i)).

Unlike self-distillation where (Zhang et al, 2021) train the backbone and
the shallow classifiers simultaneously, in our method, while training a cache
model, it is crucial to freeze the rest of the model including the backbone and
the other cache models (if any) in the collection, to ensure the training process
does not modify any parameter not belonging to the current cache model.

4.3 Assigning confidence threshold

The probability value associated to the predicted class (the one with the high-
est probability) is known as the model’s confidence in the prediction. The
cache model’s prediction confidence for a particular input will indicate whether
we stick with that prediction (cache hit) or we proceed with the rest of the
backbone to the next — or probably final — exit (cache miss).

Confidence calibration means enhancing the model to provide an accurate
confidence. In other words, a well-calibrated model’s confidence accurately
represents the likelihood for that prediction to be correct(Guo et al (2017)). An
over-confident cache model will lead the model to prematurely exit for some
samples based on incorrect predictions, while an under-confident cache model
will bear a low cache hit rate. Therefore, after building a cache model, we
also calibrate its confidence using MDV al

L to better distinguish the predictions
more likely to be correct. Several confidence calibration methods are discussed
in (Guo et al, 2017), among which the temperature scaling (in the output
layer) has shown to be practical and easy to implement.

Having the model calibrated, we next assign a confidence threshold value
to the model which will be used at inference time to determine the cache
hits and misses. When a cache model identifies a cache hit, its prediction is
considered to be the final prediction. However, when needed for validation
and test purposes, we obtain the predictions from the cache model and the
backbone.

A cache model’s prediction (C) for an input to the backbone falls into one
of the 5 correctness categories listed in table 1 with respect to the ground truth
labels (GT) and the backbone’s prediction (B) for the input.

Among the cases where the cache model and the backbone disagree, the
BC predictions negatively affect the final accuracy and on the other hand, the
BC predictions positively affect the final accuracy. The Equation 2 formulates
a cache model’s actual effect on the final accuracy.
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Table 1 Cache prediction confusion matrix, C: Cached predicted class, B: Backbone’s
predicted class, GT: Ground Truth label

Category B = C B = GT C = GT

BC X X X

BC X X X

BC X X X

BC X X X

B C X X X

F∆(θ) = BC∆(θ) −BC∆(θ) (2)

Where:
∆ : The cache model
F∆ : The actual accuracy effect ∆ causes given θ as threshold
BC∆ : Ratio of BC predictions by ∆ given θ as threshold
BC∆ : Ratio of BC predictions by ∆ given θ as threshold

However, since we use the unlabelled inference data to form the MDs, we
can only estimate an upper bound for the cache model’s effect in the final
accuracy. The estimation assumes that an incorrect cache would always lead
to an incorrect classification for the sample (BC). We estimate the change in
the accuracy upper bound a cache model causes given a certain confidence
threshold, by its hit rate and cache accuracy:

F∆(θ) ≤ HR∆(θ) × (1− CA∆(θ)) (3)

Where
∆ : The cache model
F∆ : The expected accuracy drop ∆ causes given θ as threshold
HR∆ : Hit rate provided by ∆ given θ as threshold
CA∆ : Cache accuracy provided by ∆ given θ as threshold

Given the tolerance T for drop in final accuracy, we assign a confidence
threshold to each cache model that yields no more than X/2n% expected
accuracy drop on MDV al

L according to the Equation 3, where n is the 1-based
index of the cache model in the setup.

It is important to note that there are alternative methods to distribute the
accuracy drop budget among the cache models. For instance, one can equally
distribute the budget. However, as we show in the evaluations later in section
5.7.1, we find it reasonable to assign more budget to the cache models shallower
positions in the backbone.
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4.4 Evaluation and optimization of the cache-enabled

model

So far, we have a set of cached layers and their corresponding cache models
ready for deployment. Algorithm 1 demonstrates a Python-style pseudo imple-
mentation of cache-enabled model inference process. When the cache-enabled
model receives a batch of samples, it proceeds layer-by-layer similar to the
standard forward-pass. Once a cached layer’s activation values are available,
it will pass the values to the corresponding cache model and obtains an early
prediction with a confidence value per sample in the batch. For each sample,
if the corresponding confidence value exceeds the specified threshold, we con-
sider it a cache hit. Hence, we have the final prediction for the sample without
passing it through the rest of the backbone. At this point, the prediction can
be sent to the procedure awaiting the results (e.g. an API, a socket connec-
tion, a callback). We shrink the batch by discarding the cache hits items at
each exit and proceed with a smaller batch to the next (or the final) exit.

Algorithm 1 Cache-enabled model inference

Require: Backbone ⊲ The original model
Require: CachedLayers ⊲ List of cached layers
Require: Layer ⊲ As part of Backbone, including the associated cache

model and threshold
1: procedure ForwardPass(X, callback) ⊲ X: Input batch
2: for Layer in Backbone.Layers do ⊲ In order of presence1

3: X ← Layer(X)

4: if Layer in CachedLayers then
5: Cache ← Layer.CacheModel
6: T ← Cache.Threshold
7: cachedPDs ← Cache(X)
8: confidences ← max(cachedPDs, axis=1)
9: callback(cachedPDs[confidences≥ T]) ⊲ Resolve cache hits

10: X ← X[confidences<T] ⊲ Shrink the batch
11: end if
12: end for
13: end procedure

So far in the method, we have only evaluated the cache models individually,
but to gain the highest improvement, we must also evaluate their collaborative
performance within the cache-enabled model. Once the cache-enabled model
is deployed, each cache model affects the following cache models’ hit rates by
narrowing the set of samples for which they will infer. More specifically, even if

1The loop is to show that each cache model will receive the cached layer’s activation values
when available, immediately, before proceeding to the next layer in the base model.
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a cache model shows promising hit rate and accuracy in individual evaluation,
its performance in the deployment can be affected due to the previous cache
hits made by the earlier cache models (connected to shallower layers in the
backbone). Therefore, we need to choose the optimum subset of cache models
to infer the predictions with the minimum computations.

A brute force approach to find the optimum subset would require evaluating
the cache-enabled model with each subset of the cache models. However, we
implement a more efficient method without multiple executions of the cache-
enabled model.

First, for each cache model, we record its prediction per sample in the
MDV al

L and their confidence values. We also record two FLOPs counts per
cache model; One is the cache model’s FLOPs count(C1), and the other is the
fallback FLOPs count which denotes the FLOPs in the remaining layers in
the backbone(C2). For example, for the layer L12 in the Figure 2, C1 is the
corresponding cache model’s FLOPs count, and C2 is the FLOPs count in the
layers L13 through L16.

For each subset S, we process the lists of predictions recorded for each
model in S to generate the lists of samples they actually receive when deployed
along with other cache models in S. The processing consist of keeping only the
samples in each list for which there has been no cache hits by the previous cache
models in the subset. Further, we divide each list into two parts according to
each cache model’s confidence threshold; One consisting of the cache hits, and
the other consisting of the cache misses.

Finally, we score each subset using the processed lists and recorded values
for each cache model in S as follows:

K(S) =
∑

∆∈S

|H∆| × (C2,∆ − C1,∆)− |M∆| × C1,∆ (4)

Where
K : The caching score for subset S
∆ : A cache model in S
H∆ : The generated list of cache hits for ∆
M∆ : The generated list of cache misses for ∆
C1,∆ : FLOPs count recorded for ∆
C2,∆ : Fallback FLOPs count recorded for ∆

The score equation accounts for both the improvement a cache model pro-
vides through its cache hits within the subset, and the overhead it produces
for its cache misses.

Final schemas after applying the method on MobileFaceNet, EfficientNet,
ResNet18, and ResNet50 are illustrated in Figure 3. The figure demonstrates
the chosen subsets and their associated cache models per backbone and
dataset.
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Fig. 3 Final schema of the cache models, for the experiments CIFAR10-Resnet18,
CIFAR100-Resnet150, LWF-EfficientNet, and LFW-MobileFaceNet

4.5 Updates and maintenance

Similar to conventional caching, layer caching also requires recurring updates
to the cache space to adapt to the trend in inference data. However, unlike
conventional caching, we can not update the cache models in real-time. There-
fore, to update the cache models using the extended set of collected inference
samples, we retrain them and re-adjust their confidence thresholds.

The retraining adapts the cache models to the trend in the incoming queries
and maintains their cache accuracy. We consider two triggers for the updates:
I) When the size of the recently collected data reaches a threshold (e.g. 20%
of the collected samples are new) and II) When the backbone is modified
or retrained. However, users must adapt the recommended triggers to their
requirements and budget.

5 Empirical Evaluation

In this section, we explain our experiment’s objective, research questions, the
tool implementation, and the experiment design including the backbones and
datasets, evaluation metrics, and the environment configuration.

5.1 Objectives and research questions

The high-level objective of this experiment is to assess the ability of the auto-
mated layer caching mechanism to improve the compute requirements and
inference time for DNN-based services.

To address the above objective, we designed the following research ques-
tions (RQ):
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RQ1 To what extent the cache models can accurately predict the backbone’s
output and the ground truth data?
This RQ investigates the core idea of caching as a mechanism to esti-
mate the final outputs earlier in the model. The assessments in this RQ
considers the cache models’ accuracy in predicting the backbone’s output
(cache accuracy) and predicting the correct labels (GT accuracy).

RQ2 To what extent can cache-enabling improve compute requirements?
In this RQ, we are interested in how cache-enabling affects the mod-
els’ computation requirements. In these measurements, we measure the
FLOPs counts and memory usage as the metrics for the models’ compute
consumption.

RQ3 How much acceleration does cache-enabling provide on CPU/GPU?
In this RQ, we are interested in the actual amount of end-to-end speed
up that a cache-enabled model can achieve. We break this result down to
CPU and GPU accelerations, since they address different types of com-
putation during the inference phase and thus may have been differently
affected.

5.2 Tasks and datasets

Among the diverse set of classification tasks in real-world that are implemented
by solutions utilizing DNN models, we have selected two representatives: face
recognition and object classification. Both tasks are quite commonly addressed
by DNNs and often used in large-scale services that have non-functional
requirements such as: high throughput (due to the nature of the service and
the large volume of input data) and are time-sensitive.

The face recognition models are originally trained on larger datasets such
as MS-Celeb-1M (Guo et al, 2016) and are usually tested with different —
and smaller — datasets such as LFW (Huang et al, 2008), CPLFW (Zheng
et al, 2017), RFW (Wang et al, 2019a), AgeDB30 (Moschoglou et al, 2017),
and MegaFace (Kemelmacher-Shlizerman et al, 2016) for testing the models
against specific challenges, such as age/ethnic biases, and recognizing mask
covered faces.

We used the Labeled Faces in the Wild (LFW) dataset for face recognition
which contains 13,233 images of 5,749 people. We used the images of 127
identities who have at least 11 images in the set so we can split them for
training, validation and testing.

We also used CIFAR10 and CIFAR100 test sets (Krizhevsky, 2009) for
object classification, each containing 10000 images distributed equally among
10 and 100 classes, respectively.

A reminder that we do not use the training data, rather we only use the
test sets to simulate incoming queries at run-time. Specifically, we use only the
test splits of the CIFAR datasets. However, we use the whole LFW data as it
has not been used to train the face recognition models. Moreover, we do not
use the labels in these test sets in the training and optimization process, rather
we only use them in the evaluation step to provide GT accuracy statistics.
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Each dataset mentioned above represents an inference workload for the
models. Thus, we split each one into training, validation and test partitions
with 50%, 20%, and 30% proportionality, respectively. However, we augmented
the test sets using flips and rotations to improve the statistical significance of
our testing measurements.

5.3 Backbones

The proposed cache-enabling method is applicable to any deep classifier model.
However, the results will vary for different models based on their complexity.

Among the available face recognition models, we have chosen well-known
MobileFaceNet and EfficientNet models to evaluate the method, and we
experiment with ResNet18 and ResNet50 for object classification.

The object classification models are typical classifier models out-of-the-
box. However, the face recognition models are feature extractors that provide
embedding vectors for each image based on the face/landmarks features. They
can still be used to classify a face-identity dataset. Therefore, we attached a
classifier block to those models and trained them (with the feature extractor
layers frozen) to classify the images of the 127 identities with the highest
number of images in the LFW dataset (above 10). It is important to note
that since the added classifier block is a part of the pre-trained model under
study, we discarded the data portion used to train the classifier block to ensure
we still hold on to the constraint of working with pre-trained models without
access to the original training dataset.

5.4 Metrics and measurements

Our evaluation metrics for RQ1 are ground truth (GT) accuracy and cache
accuracy. Cache accuracy measures how accurately a cache model predicts
the backbone’s outputs (regardless of correctness). The GT accuracy applies
to both cache-enabled model and each individual cache model. However, the
cache accuracy only applies to the cache models.

In RQ2, we compare the original models and their cache-enabled version
in terms of the average FLOPs count occurring for inference and their mem-
ory usage. We only measure the resources used in inference. Specifically, we
exclude the training-specific layers (e.g., Batch Normalization and Dropout)
and computations (e.g., gradient operations) in the analysis.

FLOPs count takes the model architecture and the input size into account
and estimates the computations required by the model to infer for the input
(Desislavov et al, 2021). In other words, the fewer FLOPs used for inference,
the more efficient is the model in terms of compute and energy consumption.

On the other hand, we report two aspects of memory usage for the models.
First is the total space used to load the models on the memory (i.e. model
size). This metric is essentially agnostic to the performance of cache models
and only considers the memory cost of loading them along with the backbone.
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In addition to the memory required for their weights, DNNs also allocate a
sizeable amount of temporary memory for buffers (also referred to as tensors)
that correspond to intermediate results produced during the evaluation of the
DNN’s layers Levental (2022). Therefore, our second metric is the live ten-
sor memory allocations (LTMA) during inference. LTMA measures the total
memory allocated to load, move, and transform the input tensor through the
model’s layers to form the output tensor while executing the model.

In RQ3, we compare the average inference latency by the original model and
its cache-enabled counterpart. Inference latency measures the time spent from
passing the input to the model till it exits the model (by either an early exit or
the final classifier in the backbone). Various factors affect the inference latency
including hardware-specific optimizations (e.g., asynchronous computation),
framework, and model implementation. In our measurements, the framework
and model implementations are fixed as discussed in section 5.5. However, to
account for other factors, we repeat each measurement for 100 times and report
the average inference latency recorded for each experiment. Further, to also
account for the asynchronous computations effects in GPU inference latency,
we repeated the experiments with different batch sizes.

5.5 Implementation

We developed the caching tool using PyTorch, which is accessible through
the GitHub repository2. Figure 4 shows the overall system design. The tool
provides a NAS module, an optimizer module, and a deployment module.
The NAS module provides the architectures to be used per cache model.
The optimizer assigns the confidence thresholds, finds the best subset of the
cache models and provides evaluation reports. Lastly, the deployment module
launches a web server with the cache-enabled model ready to serve queries.

5.5.1 NAS Module

Existing NAS tools typically define different search spaces according to dif-
ferent tasks which constrains their applicability to certain input types and
sizes. Using such tools with input constraints defeats our method’s general-
ization and automation purpose since the cache models’ inputs can have any
dimension and size. For instance, ProxylessNAS (Cai et al, 2019) specializes
in optimizing the neural architecture performance for a target hardware. How-
ever, it is only applicable for image classification tasks and requires certain
input specifications (e.g., 3xHxW images normalized using given values). Sim-
ilarly, Auto-PyTorch (Zimmer et al, 2021) and Auto-Keras are only applicable
to tabular, text, and image datasets.

We chose NNI by Microsoft (Microsoft, 2022) as it does not constrain the
model inputs in terms of type, size, and dimensions. NNI also provides an

2https://github.com/aminabedi/Automated-Layer-Caching
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Fig. 4 Caching system overall framework

extensible search space definition with support for variable number of lay-
ers and nested choices (e.g., choosing among different layer types, each with
different layer-specific parameters).

Given the backbone implementation, the dataset, and the search space,
the module launches an NNI experiment per candidate layer to search for an
optimum cache model for the layer. Each experiment launches a web GUI for
the progress reports and the results.

We aim for end-to-end automation in the tool. However, currently, the user
still needs to manually export the architecture specifications when using the
NAS module and convert them to a proper python implementation (i.e., a
PyTorch module implementing the architecture). The specifications are avail-
able to the user through the experiments web GUI and also in the trial output
files. This shortcoming is due to the NNI implementation, which does not cur-
rently provide access to the model objects within the experiments. We have
created an enhancement suggestion on the NNI repository to support the
model object access (issue #4910).

5.5.2 Optimizer and deployment modules

Given the backbone’s implementation and the cache models, the optimizer
evaluates cache models, assigns their confidence thresholds, finds the best
subset of the cache models and disables the rest, and finally reports the rele-
vant performance metrics for the cache-enabled model and each cache model.
We used the DeepSpeed by Microsoft and PyTorch profiler to profile the
FLOPs counts, memory usage, and latency values for the cache models and
the backbones.

The user can use each module independently. Specifically, the user can
skip the architecture search via the NAS module and provide the architectures
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manually to the optimizer, and the module trains them before proceeding to
the evaluation.

The tool also offers an extensive set of configurations. More specifically, the
user can configure the tool to use one device (e.g., GPU) for training processes
and the other (e.g., CPU) for evaluation and deployment.

The deployment module launches a web server and exposes a WebSocket
API to the cache-enabled model. The query batches passed to the socket will
receive one response per item, as soon as the prediction is available through
either of the (early or final) exits.

5.5.3 Backbone Implementation

We used the backbone implementations and weights provided by the FaceX-
Zoo (Wang et al, 2021) repository to conduct the experiments with LWF
dataset on MobileFaceNet and EfficientNet models.

For experimenting with CIFAR10 and CIFAR100, we used the implemen-
tations provided by torchvision (Marcel and Rodriguez, 2010) and the weights
provided by (Phan, 2021) and (Weiaicunzai, 2020).

All the backbone implementations were modified to implement an interface
that handles the interactions with the cache models, controls the exits (cache
hits and misses), and provides the relevant reports and metrics. We docu-
mented the interface usage in the repository, so users can experiment with new
backbones and datasets. We refer interested readers to a blog post on how to
extract intermediate activations in PyTorch (Bhaskhar, 2020) which introduces
three methods to access the activation values. The introduced forward hooks
method in PyTorch is very convenient for read-only purposes. However, our
method requires performing actions based on the activation values, specifically,
cache lookup and batch shrinking and avoiding further computation through
the next layers. Therefore, we used the so called “hacker” method to access
the activation values and perform these action and provided the interface for
easy replication on different backbones.

5.6 Environment setup

The hardware used for inference substantially affects the results due to the
hardware-specific optimizations such as computation parallelism. In our exper-
iments, we have used an “Intel(R) Core(TM) i7-10700K CPU @ 3.80GH” to
measure on-CPU inference times and an “NVIDIA GeForce RTX 3070” GPU
to measure on-GPU inference time.

5.7 Experiment results

In this sub-section, we evaluate the results of applying the method on the
baseline backbones and discuss the answers to the RQs.
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5.7.1 RQ1. How accurate are the cache models in predicting
the backbone’s output and the ground truth labels?

In this RQ we are interested in the built cache models’ performance in terms
of their hit rate, GT accuracy, and cache accuracy. We break down the
measurements into two parts. The first part covers the cache models’ indi-
vidual performance over the whole test set without any other cache model
involved. The second part covers their collaborative performance within in the
cache-enabled model.

5.7.2 Cache models’ individual performance
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Fig. 5 Individual accuracy and hit rate of the cache models vs. confidence threshold per
cache model in CIFAR100 - Resnet50 experiment

Figure 5 portrays each cache model’s individual performance against any
confidence threshold value in CIFAR100-Resnet50 experiment. The figures
demonstrating the same measurements for other experiments are available in
appendix A.

We make three key observations here. First, deeper cache models are more
confident and accurate in their predictions. For instance, cache 1 in the Figure



Springer Nature 2021 LATEX template

Automated Layer Caching 23

5 has 33.36% GT accuracy and 35.74% cache accuracy, while these metrics
increase to 78.60% and 95.38% for Cache 3, respectively. This observation
agrees with the generally acknowledged feature extraction pattern in the DNNs
— deeper layers convey more detailed information.

The second key observation is the inverse correlation between the cache
models’ accuracy (both GT and cache) and their hit rates. This observation
highlights the reliability of confidence thresholds in distinguishing the predic-
tions more likely to be correct. For instance, cache 1 in Figure 5, with a 20%
confidence threshold, yields 35.24% hit rate but also 8.99% drop in the final
accuracy. However, with a 60% confidence threshold, it yields a 4% hit rate
and does not reduce the final accuracy more than 0.1%.

The third observation is that the cache accuracy is higher than the GT
accuracy in all cases. This difference is because we have trained the cache
models to mimic the backbone only by observing its activation values in the
intermediate layers and outputs. Since we have not assumed access to the
GT labels (which is the case for inference data collected at run-time) while
training the cache models, they have learned to make correct predictions only
through predicting the backbone’s output, which might have been incorrect in
the first place. On the other hand, we observed that the cache models predict
the correct labels for a portion of samples for which the backbone misclassifies.
For instance, for 0.92% of the samples, cache 3 (in the Figure 5) correctly
predicted the GT labels while the backbone failed (BC predictions). This
shows the cache models’ potential to partially compensate for their incorrect
caches (BC predictions) by correcting the backbone’s predictions for some
samples (BC). This indeed agrees with the overthinking concept in SDN (as
discussed in 3.3) since for this set of samples, the cache models have been able
to predict correctly in the shallower layers of the backbone.

5.7.3 Cache models’ collaborative performance

Table 2 describes the cache models’ collaborative performance within the
cache-enabled model per experiment. In the table, we also report how each
cache model’s cache hits have affected the final accuracy.

Here, we observe that while evaluating the cache models on the subset of
samples, which were missed by the previous cache models (the relatively more
complex ones), the measured hit rate and GT accuracy is substantially lower
compared to the evaluation on the whole dataset. This is indeed due to the
fact that the simpler samples (less detailed and easier to classify) are resolved
earlier in the model. More specifically, hit rate decreases since the cache mod-
els are less confident in their prediction for the more complex samples, and
GT accuracy also decreases since the backbone also is less accurate for such
samples. However, we observe that the cache models still have high cache accu-
racy with low impact on the overall accuracy. This observation shows how the
confidence-based caching method has effectively enabled the cache models to
provide early predictions and keep the overall accuracy drop within the given
tolerance.



Springer Nature 2021 LATEX template

24 Automated Layer Caching

Table 2 Cache models’ collaborative performance in terms of hit rate(HR), cache
accuracy (Acache), GT accuracy (AGT), and their effect on the final accuracy(↓Aeffect).
LFW: Labeled Faces in the Wild, MFN: MobileFaceNet, EFN: EfficientNet

Data Model
Final accuracy

Exit# HR Acache AGT ↓ AeffectBase Cache-enabled
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88.71% 86.49%

1 67.21% 92.29% 88.91% 01.31%
2 10.33% 89.76% 76.63% 0.56%
3 11.24% 85.71% 51.43% 0.25%
4 8.32% 91.37% 35.71% 0.1 %

R
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87.92% 85.88%

1 61.41% 89.12% 86.19% 1.12%
2 15.73% 93.01% 77.84% 0.58%
3 10.29% 82.22% 53.33% 0.3%
4 6.1% 97.47% 42.65% 0.04%
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75.92% 74.47%

1 11.96% 99.29% 82.11% 0.94%
2 58.26% 99.62% 85.41% 0.1%
3 7.26 % 93.81% 59.29% 0.3%
4 5.36% 55.56% 38.89% 0.11%

R
es
n
et
5
0

78.98% 77.04%

1 11.92% 76.34% 80.2% 1.32%
2 61.98% 98.56% 84.55% 0.34%
3 11.5% 97.85% 63.69% 0.27%
4 7.38% 73.68% 52.63% 0.1%

L
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97.78% 96.91%
1 37.35% 98.63% 97.88% 0.51%
2 41.02% 99.71% 99.71% 0%
3 55.95% 93.44% 96.18% 0.24%

E
F
N

97.29% 95.35%
1 63.73% 96.82% 96.24% 1.67%
2 14.52% 99.12% 98.76% 0.02%

5.7.4 RQ2. To what extent can cache-enabling improve
compute requirements?

In this RQ, we showcase the amount of computation caching can save in terms
of FLOPs count and analyze the memory usage of the models.

Table 3 Original and cache-enabled models FLOPs (M:Mega - 106)

Dataset(input size) Model
FLOPs

↓ Ratio
Original Cache-enabled

CIFAR10(3 × 32× 32)
Resnet18 765M 414M 45.88%
Resnet50 1303M 601M 53.87%

CIFAR100(3 × 32× 32)
Resnet18 766M 374M 51.17%
Resnet50 1304M 547M 58.05%

LFW(3 × 112× 112)
MobileFaceNet 474M 296M 37.55%
EfficientNet 272M 182M 33.08%

Table 3 demonstrates the average amount of FLOPs computed for infer-
ence per sample. Here we observe that shrinking the batches proportionally
decreases the FLOPs count required for inference.

Moreover, table 4 shows the memory used to load the models (i.e., the
model size) and the total LTMA during inference while inferring for the test set.
As expected, the cache-enabled models’ size is larger than the original model
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Table 4 Original and cache-enabled models memory usage

Dataset(input size) Model
Original Cache-enabled

Model Size LTMA Model Size LTMA

CIFAR10(3 × 32× 32)
Resnet18 43MB 102MB 97MB 88MB
Resnet50 91MB 235MB 243MB 201MB

CIFAR100(3 × 32× 32)
Resnet18 43MB 104MB 383MB 93MB
Resnet50 91MB 235MB 552MB 189MB

LFW(3 × 112 × 112)
MobileFaceNet 286MB 567MB 350MB 515MB
EfficientNet 147MB 371MB 297MB 349MB

in all cases since they include the backbone and the additional cache models.
However, the decreased LTMA in all cases shows the reduced amount of mem-
ory allocations during the inference time. Generally, lower LTMA indicates
smaller tensor dimensions (e.g. batch size, input and operators’ dimensions)
(Ren et al, 2021). However, in our case, since we do not change neither of the
dimensions, lower LTMA is due to avoiding the computations in the remaining
layers after cache hits which require further memory allocations.

Although the FLOPs count and memory usage indicate the model’s infer-
ence computational requirements, the decreased amount of FLOPs and LTMA
does not necessarily lead to proportional reduction in the models’ inference
latency, which we further investigate in the next RQ.

5.7.5 RQ3. How much acceleration does cache-enabling
provide on CPU/GPU?

In this RQ, we investigate the end-to-end improvement that cache-enabling
offers. The results of this measurement clearly depend on multiple deployment
factors such as the underlying hardware and framework, and as we discuss
later in the section, their asynchronous computation capabilities.

Table 5 end-to-end evaluation of cache-enabled models improvement in average inference
latency, batch size = 32, MFN: MobileFaceNet, EFN: EfficientNet

Dataset Model
Original latency Cache-enabled latency ↓ Ratio
CPU GPU CPU GPU CPU GPU

CIFAR10
Resnet18 13.4 ms 1.08 ms 10.11 ms 0.98 ms 24.55% 10.2%
Resnet50 18.73 ms 1.81 ms 14.62 ms 1.51 ms 31.08% 16.57%

CIFAR100
Resnet18 14.23 ms 1.39 ms 9.39 ms 1.25 ms 34.01% 10.08%
Resnet50 19.59 ms 2.05 ms 9.02 ms 1.84 ms 46.08% 16.75%

LFW
MFN 25.34 ms 8.22 ms 16.91 ms 7.30 ms 33.23% 11.19%
EFN 39.41 ms 17.63 ms 27.98 ms 14.38 ms 29.01% 18.44%

Table (5) shows the average latency for the base models on CPU and GPU,
vs. their cache-enabled counterparts, evaluated on the test set.

The first key observation here is the improvements on CPU. This improve-
ment is due to the low parallelism in the CPU architecture. Essentially, the
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computations volume on CPU is proportional to the number of samples. There-
fore, when a sample takes an early exit, the remaining computation required
to finish the tasks for the batch proportionally decreases.

The second observation is the relatively lower latency improvement on
GPU. This observation shows that shrinking a batch does not proportionally
reduce the inference time on GPU, which is due to the high parallelism in
the hardware. Shrinking the batch on GPU provides a certain overhead since
it interrupts the on-chip parallelism and hardware optimizations. This inter-
ruption forces the hardware to re-plan its computations which can be time
consuming. Thus, batch shrinking improvements can be insignificant on GPU.

Table 6 Inference latency improvement on GPU vs. batch size in Resnet18 and Resnet50
trained on CIFAR100

Model Batch Size Original Latency Cache-enabled Latency ↓ Ratio

Resnet18

16 1.34 ms 1.18 ms 11.83%
32 1.39 ms 1.25 ms 10.08%
64 1.43 ms 1.77 ms -24.28%
128 1.61 ms 2.11 ms -31.05%

Resnet50

16 1.98 ms 1.71 ms 13.68%
32 2.05 ms 1.84 ms 16.75%
64 2.19 ms 1.98 ms 9.21%
128 2.7 ms 3.22 ms -19.43%

Table 6 further demonstrates how the batch size affects the improvement
provided by caching. The key observation here is that increasing the batch size
can negate the caching effect on the inference latency which as discussed is
due to fewer number of batches that are fully resolved through the cache mod-
els and do not reach the last layers. In conclusion, the latency improvement
here highly depends on the hardware used in inference and must be specifi-
cally analyzed per hardware environment and computation parameters such
as batch size. However, the method still can be useful when the model is not
performing batch inferences (batch size = 1). One can also use the tool and
get a best prediction so far within the forward-pass process by disabling the
batch shrinking. Doing so will generate multiple predictions per input sample,
one per exit (early and final).

5.8 Limitation and future directions

The first limitation of this study is that the proposed method is limited to
classification models since it would be more complicated for the cache models
to predict a regression model’s output due to their continuous values. This
limitation is strongly tied to the effectiveness of knowledge distillation in case
of regression models.

The method also does not take the internal state of the backbone (if any)
into account, such as the hidden states in recurrent neural networks. Therefore,
the method’s effectiveness for such models still needs to be further assessed.
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Moreover, practitioners should take the underlying hardware and the back-
bone structure into account as they directly affect the final performance. On
this note, as shown in section 5.7.5, different models provide different perfor-
mances in terms of inference latency in the first place, therefore, choosing the
right model for the task comes first, and caching can be helpful in improving
the performance.

6 Conclusion

In this paper, we have showed that our automated cashing approach is able
to extend a pre-trained classification DNN to a cache-enabled version using
a relatively small and unlabelled dataset. The required training dataset for
cashing models are collected just by recording the input items and their cor-
responding backbone outputs at the inference time. We have also shown that
the caching method can introduce significant improvement in the model’s
computing requirements and inference latency, specially when the inference is
performed on CPU.

We discussed the parameters, design choices, and the procedure of cache-
enabling a pre-trained off-the-shelf model, and the required updates and
maintenance.

In conclusion, while traditional caching might not be beneficial for DNN
models due to the diversity, size and dimensions of the inputs, caching the
features in the hidden layers of the DNNs using the cache models can achieve
significant improvement in the model’s inference computational complexity
and latency. As shown in sections 5.7.4 and 5.7.5, caching reduces the average
inference FLOPs by up to 58% and the latency up to 46.09% on CPU and
18.44% on GPU.
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Appendix A Cache models’ individual
performance for all experimenst

The following figures demonstrate the hit rate, GT accuracy, and cache accu-
racy of each cache model vs. the confidence threshold, per experiment dataset
and backbone.
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