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Abstract

One of the key challenges in designing machine
learning systems is to determine the right bal-
ance amongst several objectives, which also often-
times are incommensurable and conflicting. For
example, when designing deep neural networks
(DNNs), one often has to trade-off between multi-
ple objectives, such as accuracy, energy consump-
tion, and inference time. Typically, there is no
single configuration that performs equally well
for all objectives. Consequently, one is interested
in identifying Pareto-optimal designs. Although
different multi-objective optimization algorithms
have been developed to identify Pareto-optimal
configurations, state-of-the-art multi-objective op-
timization methods do not consider the different
evaluation costs attending the objectives under
consideration. This is particularly important for
optimizing DNNs: the cost arising on account of
assessing the accuracy of DNNs is orders of mag-
nitude higher than that of measuring the energy
consumption of pre-trained DNNs. We propose
FlexiBO, a flexible Bayesian optimization method,
to address this issue. We formulate a new ac-
quisition function based on the improvement of
the Pareto hyper-volume weighted by the mea-
surement cost of each objective. Our acquisition
function selects the next sample and objective
that provides maximum information gain per unit
of cost. We evaluated FlexiBO on 7 state-of-the-
art DNNs for object detection, natural language
processing, and speech recognition. Our results
indicate that, when compared to other state-of-the-
art methods across the 7 architectures we tested,
the Pareto front obtained using FlexiBO has, on
average, a 28.44% higher contribution to the true
Pareto front and achieves 25.64% better diversity.
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Table 1: Experimental Results

Performance Consistency Influential Options Influential Interactions

Environment ES M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

DNN

ec1 : [h1 ! h2] S 0.98 0.30 0.98 0.97 0.93 8 6 5 1 0.82 16 12 12 0.94

ec2 : [h1 ! h3] S 1.00 0.19 0.99 0.93 0.94 8 7 7 0 0.90 16 12 12 0.93

ec3 : [h3 ! h4] M 0.89 0.41 0.47 0.46 0.66 7 7 5 1 0.80 12 18 12 0.68

ec4 : [w1 ! w2] S 1.00 0.01 1.00 0.95 0.95 7 7 6 1 0.82 12 12 12 0.98

ec5 : [w1 ! w3] S 1.00 0.01 1.00 0.94 0.95 7 7 6 1 0.89 12 12 12 0.99

ec6 : [w1 ! w4] S 1.00 0.01 1.00 0.95 0.95 7 8 6 1 0.85 12 12 12 0.98

ec7 : [v1 ! v2] M 0.97 0.24 0.96 0.86 0.93 6 6 6 0 0.78 12 14 12 0.90

ec8 : [v1 ! v3] M 0.94 0.21 0.93 0.58 0.79 6 7 6 0 0.66 16 21 16 0.74

ec9 : [v2 ! v3] M 0.95 0.04 0.93 0.54 0.79 6 7 6 0 0.73 17 21 16 0.76

ec10 : [h4w3v1 ! h4w2v2] L 0.48 0.31 0.45 0.66 0.70 7 6 6 0 0.70 18 14 14 0.60

h1: Azure, h2: AWS, h3: TK1, h4: GPU; w1: Co↵ee, w2: DiatomSizeReduction, w3: Adiac, w4: ShapesAll;

v1: TensorFlow, v2: Theano, v3: CNTK;

Metrics: M1: Pearson correlation; M2: Kullback-Leibler (KL) divergence; M3: Spearman correlation; M4/M5: Perc.

of top/bottom conf.; M6/M7: Number of influential options; M8/M9: Number of options agree/disagree; M10:

Correlation btw importance of options; M11/M12: Number of interactions; M13: Number of interactions agree on

e↵ects; M14: Correlation btw the coe↵s;
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4 Technical Aims and Research Plan

We will pursue the following technical aims: (1) investigate potential criteria for e↵ective sampling for

exploration of the design space of DNN architectures (Section 4.2), (2) build analytical models that ac-

curately predict the performance of a given architecture configuration given other similar architectures,

which either have been measured in the target environments or other similar environments, without

measuring the network performance directly (Section 4.3), and (3), develop a tunning mechanism

that exploit the performance model from previous step to e↵ectively search for optimal architectures

(Section 4.4).

4.1 Project Timeline

We plan to complete the proposed project in two years. To mitigate project risks, we will divide the

project into three major phases:
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Figure 1. The deep learning system stack.

1. Introduction
DNNs are becoming ubiquitous and being deployed in many
resource-constrained environments, such as mobile phones,
smart home devices, and robots. Many different network
design and hardware parameters impact the computational
and memory requirements of DNNs and make them diffi-
cult to effectively deploy in resource-constrained environ-
ments. Designing an optimal DNN system is fundamentally
a co-design problem: a designer must develop a DNN that
achieves high prediction accuracy on the application task
while simultaneously minimizing the resource requirements.
The following factors create the challenging obstacles con-
fronted in producing such a system design: (i) the design
space is large and complex not only for DNN design op-
tions (Snoek et al., 2012) but also system stack options (see
Figure 1). Further, (ii) the parameters tend to interact (e.g., a
DNN design parameter like the number of filters may affect
resource requirements). In addition, (iii) evaluating DNN
architectures is expensive, since it involves training a DNN,
which thus limits the total number of configurations that can
be measured (Iqbal et al., 2019). Finally, (iv) due to mul-
tiple conflicting objectives, it is not possible to determine
an optimal configuration that excels across all objectives.
Hence, Pareto-optimal configurations are required in order
to find the appropriate balance between multiple objectives,
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which leads to the following research question: how can we
effectively and efficiently explore the configuration space of
DNNs by sampling promising configurations that are likely
to hit Pareto-optimal solutions?

Multi-objective optimization techniques can effectively be
utilized to identify the Pareto front of a DNN system for
performance optimization. Several multi-objective optimiza-
tion algorithms have been proposed to determine the Pareto
front of a system (Knowles, 2006), (Ponweiser et al., 2008),
(Emmerich & Klinkenberg, 2008), (Campigotto et al., 2013),
(Picheny, 2015), (Zuluaga et al., 2013), (Hernández-Lobato
et al., 2016a), (Zuluaga et al., 2016), (Sener & Koltun, 2018).
However, these methods perform measurements by always
evaluating all objectives contained in the objective space
jointly at the same point in the design space. This approach
is, in particular, sub-optimal for problems like DNN op-
timization as evaluating for accuracy of a DNN is more
expensive when compared to evaluating energy consump-
tion or inference time, because it requires the retraining
of the network (Hernández-Lobato et al., 2016b). An ap-
proach based on decoupled objective evaluations has been
proposed to enable independent evaluations across objec-
tives in two-objectives optimization of neural hardware ac-
celerators (Hernández-Lobato et al., 2016b). In this work,
we explicitly incorporate the cost of evaluating each objec-
tive into a new acquisition function that chooses not only
which point to evaluate next but also across which objective.

To motivate our approach, we first performed a small ex-
periment to separately optimize accuracy and energy con-
sumption of Inception v1 (Szegedy et al., 2015) using a
cost-aware and a cost-unaware single objective Bayesian op-
timization approach with the expected improvement (EI)
acquisition function (Emmerich & Klinkenberg, 2008).
We tuned the CPU frequency of the runtime environment
(NVIDIA Jetson TX2) and the total number of filters in
the Inception v1 network. Here, the total number of fil-
ters affects both energy consumption and accuracy, whereas
CPU frequency only affects energy consumption. In con-
trast to tuning CPU frequency, every time the number of
filters is changed, it necessitates the retraining of the DNN
before the effect of the change on accuracy and energy
consumption can be measured. As a result, measuring the
effect of varying the number of filters has a higher compu-
tational cost versus measuring the effect of varying CPU
frequency. Given a limited measurement budget, an opti-
mization method is more efficient if it explores the config-
uration space by tuning the less costly objective, i.e., CPU
frequency. The cost-aware single objective Bayesian op-
timization approach classifies the time needed to retrain a
network as the cost and incorporates this computed cost into
the EI acquisition function in determining the next config-
uration to select. The optimization paths with and without
cost awareness are shown in Figure 2. Although both paths

Figure 2. Given that changing the number of filters results in a
costly retraining of the Inception v1 network, the cost-aware ap-
proach reaches the optimum using fewer costly evaluations when
comparing to the cost-unaware approach.

ultimately found the optimum, the cost-aware approach had
to retrain the network only 7 times, while the cost-unaware
approach had to retrain it 11 times.

In this paper, we propose FlexiBO, a framework for multi-
objective Bayesian optimization that has the following prop-
erties:

• Multi-objective: FlexiBO explicitly considers multiple
objectives involved in DNN optimization, such as ac-
curacy and energy consumption.

• Flexible and Cost-aware: FlexiBO allows users to spec-
ify the costs, which can be customized to account for
the specific objectives involved in the particular opti-
mization problem and for the target platform for which
the DNN is being optimized, that are then incorporated
by FlexiBO in guiding the search process.

• Generality: FlexiBO is a general framework that can
be employed for optimizing not only different DNN
architectures but also other optimization problems
where the cost would be different across objectives.
In this paper, we demonstrate this property by applying
FlexiBO to optimize Xception (Chollet, 2017), Mo-
bileNet (Howard et al., 2017), LeNet (LeCun et al.,
1998), ResNet (He et al., 2016), SqueezeNet (Ian-
dola et al., 2016), BERT (Devlin et al., 2018), Deep-
Speech (Hannun et al., 2014).

• Cross-stack: FlexiBO enables automatic optimization
of DNNs in the joint space of architectures, hyperpa-
rameters, and the computer system stack1 (see Fig-
ure 1).

• Effectiveness and Efficiency: The configurations of
DNNs found by FlexiBO achieve higher accuracy and
lower energy consumption. Experimental results also
confirm that FlexiBO efficiently searches the configura-
tion space as it explores the search space more effec-
tively using the cost-aware approach.

1Also known as deep learning system stack (Chen et al., 2018)
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Our work is motivated by a state-of-the-art multi-objective
optimization algorithm called Pareto Active Learning
(PAL) (Zuluaga et al., 2013) that identifies Pareto-optimal
configurations; nonetheless, our approach uses a different
Pareto front construction method than that of PAL and intro-
duces a new acquisition function to sample the next config-
uration and objective for evaluation that incorporates cost
into account. To identify Pareto-optimal configurations, a
surrogate model is fit to the performance response surface
in order to predict the objective values given a configuration,
and an acquisition function is repeatedly evaluated on it to
determine the next configuration and objective to evaluate.
The acquisition function incorporates the uncertainty of the
surrogate model’s prediction so as to balance exploration
and exploitation. We thus formulate a new cost-aware ac-
quisition function that iteratively improves the quality of
the Pareto-optimal solution space, also known as the Pareto
region. This acquisition function selects the objective across
which the configuration will be evaluated in addition to se-
lecting the next configuration to evaluate. Consequently,
we can make a trade-off between the additional information
obtained through an evaluation with the cost of obtaining
it; whereby, we ensure that we do not perform costly eval-
uations for little potential gain. Our intuition is that by
evaluating the less costly objective without the necessity of
evaluating the more costly objective, we can traverse the
objective space and find the near-optimal configuration with
increased efficiency.

We evaluated FlexiBO to optimize 7 different DNN archi-
tectures deployed in resource-constrained environments for
object detection, natural language processing, and speech
recognition. The results from our experiments indicate
that FlexiBO consistently samples better configurations
than state-of-the-art algorithms throughout the design space
search, which results in the faster production of superior
Pareto fronts. More precisely, the Pareto front determined
by FlexiBO is of similar quality to those produced by the
state-of-the-art algorithms, despite that FlexiBO does so with
an average of 80.23% less cost. In addition, we also show
that given the same cost, the Pareto front obtained by Flex-
iBO has a 28.44% higher contribution and achieves 25.64%
better diversity. Notably, while we merely evaluated Flex-
iBO for optimizing DNN systems, our proposed approach is
general and can be applied in other application domains as
well.

Our primary contributions are as follows:

• We propose FlexiBO: a new cost-aware multi-objective
optimization approach that iteratively selects the next
configuration and an objective to measure in multi-
objective optimization scenarios (Section 3).

• We also propose a new acquisition function that allows
for trade-off between the additional information gained
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Figure 3. The configuration space is mapped to the objective space.
In the objective space, rectangles show uncertainty regions for
configurations that are not evaluated for any objective; while lines
show uncertainty regions for configurations that are not evaluated
for one objective, points are used for configurations that are eval-
uated for both objectives, which points accordingly include no
uncertainty.

through an evaluation and the cost being incurred as a
result of the evaluation (Section 3.3).

• We comprehensively evaluate multiple variations of
FlexiBO with different acquisition functions in 7 dif-
ferent types of DNN architectures selected from 3
different domains and compare its performance to
PAL, random search, and two forms of single-objective
Bayesian optimization methods (Section 5).

The code and experimental data that can be used to replicate
our experiments are also available at https://github.
com/softsys4ai/FlexiBO.

2. Background
2.1. Surrogate Models

Surrogate models replace expensive, time-consuming, and
otherwise difficult to measure black-box functions with mod-
els that not only provide an approximation of the measure-
ments from the underlying black-box process but also are
inexpensive and fast to evaluate. In this paper, we use Gaus-
sian Processes (GP) and random forests (RF) as surrogate
models.

2.1.1. GAUSSIAN PROCESSES

A function f is modeled as a sample from an n-variate GP
distribution. A GP distribution over f(x) is characterized
by its mean, µ(x), and co-variance, k(x,x∗), (Williams
& Rasmussen, 2006). We model each objective function
fi(x) as a sample from an independent GP distribution. At
each iteration t, the algorithm selects a design xt for eval-
uation that yields a noisy sample as yt,i = f(xt) + vt,i.
The posterior distribution of fi, for the set of configura-

https://github.com/softsys4ai/FlexiBO
https://github.com/softsys4ai/FlexiBO
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tions sampled from the design space E, is a GP with mean
µt,i(x), co-variance kt,i(x,x∗), and variance σ2

t,i(x), as-
suming vt,i ∼ N(0, σ2) (i.i.d. Gaussian noise).

µt,i(x) = kt,i(x)T (Kt,i + σ2I)−1yt,i (1)

kt,i(x,x
∗) = ki(x,x

∗)−kt,i(x)T (Kt,i+σ
2I)−1kt,i(x

∗) (2)

σ2
t,i(x) = kt,i(x,x) (3)

Here the posterior distribution captures the uncertainty of
f(x) for points x ∈ E, namely, those points for which the
objectives have not yet been evaluated.

2.1.2. RANDOM FORESTS

RF is an ensemble learning algorithm that builds forests of
multiple trees, which are trained independently and whose
predictions are averaged to obtain the prediction of the entire
forest, i.e., µt(x). We compute the uncertainty of each
prediction as the standard deviation σt(x) across all w trees.

µt(x) =

∑l
i=1 µi(x)

w
(4)

σt(x) =

√∑l
i=1 |µt(x)− µi(x)|2

w
(5)

2.2. Multi-Objective Optimization

In multi-objective optimization, we simultaneously optimize
n potentially conflicting objective functions f = f1, . . . , fn,
where f : E ⊆ Rm → O ⊆ Rn for some n-dimensional
objective spaceO and a finite design space E with dimen-
sionality m. A multi-objective optimization (maximization)
can be expressed as:

argmaxx∈Ef(x) (6)

It is generally not possible to find a solution that maxi-
mizes each objective equally, but instead, there is a trade-off
between them. Pareto-optimal points represent the best
compromises across all objectives; in particular, a Pareto-
optimal solution is a point x ∈ E for which it is not possible
to find another point x∗ ∈ E, such that fi(x∗) > fi(x) for
all i ∈ n.

Formally, for multi-objective maximization, x∗ � x (x∗

dominates x) if and only if f(x∗) � f(x), which means
fi(x

∗) ≥ fi(x) for all i ∈ n. Pareto-optimal points are not
dominated and form the Pareto front, which maps points
with the optimal trade-off in the objective space.

Pareto-optimality Bayesian multi-objective optimization
is an iterative algorithm where a prior model is chosen
for the expensive-to-evaluate black-box functions involved
in an optimization problem. In Bayesian multi-objective

optimization, each point x in the configuration space is
assigned an uncertainty region Rt(x) at each iteration t
using model f . The minimum value of the uncertainty
region, min(Rt(x)), is regarded as the pessimistic value of
x; similarly, the maximum value of the uncertainty region,
max(Rt(x)), is regarded as the optimistic value of x. The
pessimistic Pareto front, Ppess, is constructed using the
undominated pessimistic values of x, where x ∈ E. The
optimistic Pareto front, Popt, is likewise constructed using
the undominated optimistic values of x in the design space.

Pareto region is the region between the pessimistic and
optimistic Pareto fronts, and as we denote it as PR through-
out this paper. As shown in Figure 4, the set of solutions
inside the Pareto region are classified as the Pareto-optimal
solutions. Let R(P ) be a region in the objective space,
where each point in the region is dominated by at least one
point in the Pareto front, P . Then, the Pareto region, PR,
can be calculated as:

PR = R(Popt)−R(Ppess),

R(P ) = {o ∈ O, oi ≥ 0;∃o∗ ∈ P,o � o∗} (7)

2.3. Metrics

To determine the evaluation cost for each of the objectives
that we seek to optimize and in order to assess the quality
of the Pareto front approximations obtained, two types of
performance metrics are used: cost and prediction quality
metrics.

2.3.1. COST METRICS

As a quality indicator, we use the cost of measuring an
objective, which we term as the objective evaluation cost.

Objective evaluation cost For multi-objective optimiza-
tion, we assume that the objective evaluation cost for the
cheapest objective, Ocheap, is 1. The cheapest objective
is identified by comparing the computational efforts of dif-
ferent objectives, and the objective with the lowest com-
putational effort is determined as the cheapest one. For
any objective Oi, the objective evaluation cost, Ψi, where
1 ≤ i ≤ n, is defined as follows:

X =

{
1, if Oi = Ocheap
Ψi = θi

φ×θcheap
, otherwise (8)

where θi is the computational effort to evaluateOi; θcheap is
the effort to evaluateOcheap; and φ is a balancing parameter
to be chosen later (see Section 3.3).

2.3.2. PREDICTION QUALITY METRICS

To assess the quality of the Pareto front, we use the follow-
ing prediction quality metrics: total evaluation cost, Pareto
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volume reduction, contribution, and diversity.

Pareto volume reduction For a query q, the Pareto vol-
ume reduction is defined as follows:

∆V = V − Vq, (9)

where V and Vq are the volumes of the region between the
pessimistic and optimistic Pareto fronts before and after
query q, respectively.

Contribution rate indicator When the true Pareto front
is unknown, the contribution rate indicator can be used to
determine the quality of the obtained Pareto front (Cao et al.,
2015). Here, we refer to the contribution rate indicator as
“contribution” throughout the paper. The contribution of a
Pareto front P is the ratio of hypervolume indicators, IH ,
of the corresponding modified Pareto front, P ∗, and the
surrogate of the true Pareto front, Ps, which is defined as
follows:

Contribution =
IH(P ∗, r)

IH(Ps, r)
, (10)

where Ps is constructed by combining points from l com-
peting Pareto fronts P1, P2, P3,. . . , Pl. Furthermore, the
modified Pareto front, P ∗, contains only those points of P
that are not dominated by P s, which is defined using the
following:

P ∗ = P ∩ P s (11)

The hypervolume indicators for P ∗ and Ps with respect to a
reference point r are IH(P ∗, r) and IH(Ps, r) respectively.
The hypervolume indicator IH of a Pareto front P with
reference to r is computed using the following equation:

IH(P, r) = λ(∪s∈P space(s, r)), (12)

where λ is the Lebesgue measure and space(s, r) corre-
sponds to the set of objective vectors that are dominated by
points in P , which is enclosed by the reference setQref = r.
The value of the contribution metric ranges between 0 and
1. A contribution value of 1 indicates that the particular
Pareto front is exactly the surrogate of the true Pareto front,
while a contribution value of 0 means that all points on the
particular Pareto front are dominated by the surrogate of the
true Pareto front.

Diversity measure is used to determine the spread be-
tween a Pareto front with an ideal point, ipi, and nadir point,
npi, for the objective (Oi)1≤i≤n, and the Pareto-optimal
points (Audet et al., 2018). Here, we refer to the diversity
measure as “diversity” throughout the the paper. To deter-
mine diversity, a grid environment is constructed using the
following:

ubi = npi +
npi − ipi
2× div , lbi = ipi, (13)

Figure 4. The shaded area between the pessimistic and optimistic
Pareto fronts indicates the Pareto region.

where ubi and lbi indicate the upper and lower bounds of
the grid for the objective (Oi)1≤i≤n. Once the grid is con-
structed, the number of divisions (div) are set by the user,
and hyper-boxes of size di are afterward constructed using
the following equation:

di =
ubi − lbi
div

(14)

Finally, the ratio of the number of hyper-boxes containing
one or more Pareto-optimal points and the total number
of hyper-boxes are computed to determine diversity. The
values of diversity range from 0 to 1, where 1 indicates the
maximum diversity for a hyper-box containing at least one
Pareto-optimal point.

3. FlexiBO: Flexible Bayesian
Multi-Objective Optimization

We describe our Flexible Bayesian Multi-Objective Opti-
mization (FlexiBO) algorithm in this section. Typically, in a
multi-objective setting, each objective Oi, where 1 ≤ i ≤ n,
is modeled with a separate surrogate model. In many appli-
cations, evaluating different objectives, O1, . . . , On, incurs
different costs, which may be expensive. Therefore, we
wish to identify the Pareto region, PR, that is constructed
using undominated points U ⊂ E without evaluating all
inputs x ∈ E.

FlexiBO extends the concepts employed by the state-of-the-
art PAL algorithm (Zuluaga et al., 2013); PAL identifies a
set of Pareto-optimal points to build a Pareto front in a
multi-objective optimization setting by iteratively select-
ing a sequence of points (x1,x2, . . . ,xT ) in E which are
Pareto-optimal; albeit, PAL collect the points in a coupled
fashion by always evaluating all objectives involved (e.g.,
accuracy, energy, inference time) jointly at the same design
point, which is sub-optimal. In contrast, FlexiBO does so us-
ing a decoupled approach (Hernández-Lobato et al., 2016b)
in which, at each iteration, it chooses which point to evaluate
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Algorithm 1 FlexiBO algorithm
Input: Design space: E; Maximum number of objectives:

n; Number of iterations: T ; Surrogate model prior:
µ0,i, σ0,i where 1 ≤ i ≤ n; Scaling parameter: βt
for 1 ≤ t ≤ T .

Output: Pareto region: PR.
/* Initialization */

1 U0 = ∅; /* Undominated points set */

2 S0 = Randomly selected k samples from E : k � |E|;
/* Evaluated samples set */

3 R0(x) = Rn for all x ∈ E; /* Uncertainty region

for each points */

4 for t = 1, 2, 3 . . . , T − 1 do
/* Modeling */

5 Fit a surrogate model to St;
6 Obtain µt(x) and σt(x) for all x ∈ E. Here, µt(x) =

f̂(x) and σt(x) = 0 for all x ∈ St;
7 Rt(x) = µt(x) − β

1/2
t σt(x) ≤ y ≤ µt(x) +

β
1/2
t σt(x) for all x ∈ E;

/* Pareto region construction */

8 for all x ∈ E do
9 if no x∗ 6= x exists such that min(Rt(x)) �

max(Rt(x
∗)) then

10 Ut = Ut ∪
{
x
}

11 Get the pessimistic Pareto front Ppess and the optimistic
Pareto fronts Popt using Ut as the set of candidate
points andRt(x) as uncertainty region from Algorithm
2;

12 Compute the volume of the Pareto region, V , using
Ppess and Popt;

/* Sampling */

13 Compute the change of volume per cost ∆i(x) for each
objective Oi, 1 ≤ i ≤ n, for all x ∈ Ut using Algo-
rithm 3;

14 Choose the next sample xt+1 and objective Oi using
argmax

x∈
{
Ppess∪Popt

}∆i(x), 1 ≤ i ≤ n ;

15 St = St ∪ {xt+1} ;

16 Compute PR using equation 7;
17 return PR;

next but also across which objective. More specifically, Flex-
iBO is a cost-aware multi-objective optimization algorithm
that iteratively and adaptively selects a sequence of points
and objectives, (x1,O1), (x2,O2), . . . , (xT ,OT ), for the
purpose of determining a Pareto region instead of a Pareto
front and then continuing by improving its quality until the
maximum number of iterations, T , is reached. To identify
the Pareto-optimal points in E from which to construct PR,
we train surrogate models with a small subset of E. We use
separate surrogate models for each objective to predict the
values of the objective functions fi, where 1 ≤ i ≤ n for

t

iteration t+1iteration t

iteration t+2iteration t+3

Figure 5. The volume of the Pareto region, V , is decreased over
time. The next sample to be evaluated, xt+1, is determined by the
acquisition function.

points in E, with the aim of predicting Pareto-optimality
with high probability.

A point x that has not been sampled for any objective is pre-
dicted as a vector f̂(x) = µ(x) = (µ1(x), . . . , µn(x)),
and the uncertainty of this prediction is interpreted as
σ(x) = (σ1(x), . . . , σn(x)). We use the predicted values
and the uncertainty values for such a prediction to determine
the uncertainty region for each point x ∈ E. These uncer-
tainty regions are later used to determine the dominance of
x. PAL assumes that any uncertain point x which becomes
dominated at iteration t would not become undominated in
later iterations and considers only the undominated points
x ∈ U for the purpose of dominance determination. How-
ever, in our approach, we do not make this assumption, but
instead, we consider all the points x ∈ E to determine
dominance. Although our consideration of all of the points
x ∈ E in the dominance calculation leads to an increase
in computational complexity of the optimization algorithm,
for some applications, especially for DNN systems, this in-
crease of cost is negligible when compared to the evaluation
cost of each objective. Later, undominated points x ∈ U are
used to classify as x belonging to the set of Pareto-optimal
points or otherwise falling fully outside such areas. These
identified Pareto-optimal points are then used to construct
the Pareto fronts.

After initialization, we iterate until the maximum number
of iterations is reached. Every iteration t consists of three
stages: modeling, construction of the Pareto region, and sam-
pling. However, unlike PAL, FlexiBO determines a Pareto
region instead of an actual Pareto front and proposes a new
acquisition function, i.e., change in volume of the Pareto
region per unit of cost incurred for each candidate sam-
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Algorithm 2 Construction procedure of the Pareto region
Input: Candidate points: C; Uncertainty region for candi-

date points: ρ.
Output: Pessimistic Pareto-points: Ppess; Optimistic

Pareto-points: Popt.
/* Pessimistic Pareto front */

1 Cpess = The list of pessimistic points of ρ, which are sorted
in the descending order across the first objective;

2 Ppess = Cpess[0];
3 ηrank = argsort(Cpess) (the ascending order across the

second objective);
4 iter = 1;
5 while iter ≤ |ηrank| do
6 ξcur = ηrank[iter];
7 if there exists any ηrank[iter] ≤ ξcur then
8 Find the maximum index itermax where

ηrank[iter] < ξcur;
9 for j = iter . . . itermax do

10 Update Cpess[j] = Cpess[iter] across the sec-
ond objective;

11 Update Ppess = Ppess ∪
{
Cpess[j]

}
;

12 Update iter = itermax;

13 else if no ηrank[iter] < ξcur exists then
14 Ppess = Ppess ∪

{
Cpess[iter]

}
;

/* Optimistic Pareto front */

15 Copt = The list of optimistic points of ρ, which are sorted
in the descending order across the first objective;

16 Popt = Copt[0];
17 for iter = 1, 2, 3, . . . , |Copt| − 1 do
18 if Copt[iter + 1] ≥ Copt[iter] across the second objec-

tive then
19 Popt = Popt ∪

{
Copt[iter + 1]

}
;

20 return Ppess, Popt

ple. The construction of each surrogate model in FlexiBO
is based on the sampled points at each iteration, which are
used to make predictions of the objective values and their
concomitant uncertainties for non-sampled configurations.
We use these predictions to construct a new Pareto front
and then select the configuration to next evaluate that most
improves the Pareto front (as measured as a reduction in
Pareto volume) each weighted by the cost of measuring the
particular objective. After the termination of the algorithm,
the configurations predicted to be part of the Pareto front in
the final iteration are returned as the Pareto region, namely
PR. The pseudocode for Bayesian optimization procedure
implemented by FlexiBO is outlined in Algorithm 1.

Algorithm 3 Calculation of the change of volume per cost
Input: Candidate points: C; Current pessimistic points:

Ppess; Current optimistic points: Popt; Current
volume of Pareto front: V ; Objective: Oi where
1 ≤ i ≤ n; Uncertainty region for candidate points:
ρ; cost for Oi: Ψi where 1 ≤ i ≤ n.

Output: Change of Pareto front volume weighted by cost:
∆.

1 ∆ = ∅;
2 for all x ∈ C do
3 for each Oi where 1 ≤ i ≤ n do
4 Compute the estimated mean, µi(x), of pessimistic

and optimistic values of x across Oi;
5 Get the set of current candidate points Ć by replac-

ing pessimistic and optimistic values of x across
Oi with µi(x);

6 Get updated pessimistic Pareto front Ppess and opti-
mistic Pareto front Popt from Algorithm 2 using Ć
as the set of candidate points and ρ as correspond-
ing uncertainty region;

7 Compute updated volume the Pareto front Vq using
Ppess and Popt;

8 Compute the change of volume along Oi as ∆Vi =
V − Vq;

9 Compute change of volume per cost along Oi as
∆i(x) = ∆Vi

Ψi
;

10 ∆ = ∆ ∪ {∆i(x)}

11 return ∆

3.1. Modeling

At iteration t, to predict the mean vector, µt(x), and stan-
dard deviation, σt(x), for all x ∈ E, we use separate surro-
gate models (GP or RF). Every configuration x ∈ E is then
assigned an uncertainty region, Rt(x), which is computed
as follows (cf. Figure 3):

Rt(x) = [µt(x)− β
1/2
t σt(x),µt(x) + β

1/2
t σt(x)], (15)

where βt is a scaling parameter that defines how large the
uncertain region is in proportion toσt for the purpose of ana-
lyzing the exploration-exploitation trade-off. Similar to PAL
(Zuluaga et al., 2013; 2016), for n objectives at iteration t,

we define βt as βt = 1
3

√
2 logn|E|π2t2

6δ . The pessimistic and
optimistic values within the uncertainty region Rt(x) are
determined by min(Rt(x)) and max(Rt(x)), respectively.
The dimension of Rt(x) depends on the objective space, so
in two objectives space, Rt(x) is thus two dimensional.

3.2. Pareto Region Construction

Similar to PAL, at each iteration t, to determine the Pareto
region, we construct a pessimistic and optimistic Pareto
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front using a set of undominated points, Ut. The pseudocode
for construction of the pessimistic and optimistic Pareto
fronts for two objectives is provided in Algorithm 2.

We first identify Ut using the following rules for each x ∈
E,x 6= x∗:

R1 : x ∈ Ut if min(Rt(x)) � max(Rt(x
∗))

R2 : x /∈ Ut if min(Rt(x
∗)) � max(Rt(x))

(16)

Next, the pessimistic Pareto front, Ppess, is constructed from
the pessimistic points min(Rt(x)) of each x ∈ Ut. The
pessimistic value min(Rt(x)) of a point x that is already in
Ppess is updated if min(Rt(x)) is less than min(Rt(x

∗))
and max(Rt(x)) is greater than min(Rt(x

∗)) but less than
max(Rt(x

∗)) of any other point x∗ ∈ Ppess. This pro-
cess of constructing the pessimistic Paret-front ensures that
any point that has the potential to be included in the Pareto
region is not discarded from our consideration as the conse-
quence of additional emphasis we place on the pessimistic
values of the points in the uncertainty region. We use the
ranks of the sorted pessimistic value across one objective
to construct Ppess as shown in Algorithm 2. In contrast,
each point x ∈ Ut is included in the optimistic Pareto front,
Popt, if max(Rt(x)) is greater than max(Rt(x

∗)) of any
previous point x∗ that is already included in Popt. Finally,
the volume of the Pareto region between Ppess and Popt is
then calculated.

3.3. Sampling

We compute our acquisition function that considers the
change of volume of the Pareto region per evaluation cost
∆Vi

Ψi
for each x ∈ {Ppess ∪ Popt} for each objective Oi,

where 1 ≤ i ≤ n. To compute the change of volume of
the Pareto region, we shrink the uncertainty region of each
x ∈ {Ppess ∪ Popt} to its estimated mean—µi(x)—across
each Oi separately and then compute the change of Pareto
volume, ∆Vi (pseudocode is provided in Algorithm 3). This
assists us in determining the volume change of the Pareto
region per unit of cost that would be achieved if a point
x ∈ {Ppess ∪ Popt} is evaluated using the estimated mean
value. We choose the next sample xt+1 and objective Oi
using the following:

xt+1 = argmax
x∈
{
Ppess∪Popt

}∆(x) (17)

Our algorithm selects points in Ppess and Popt that will ini-
tially result in the construction of a large Pareto region, and
it decreases the volume of the Pareto region iteratively (Fig-
ure 5). We do not consider points x ∈ Ut \ {Ppess ∪ Popt}
because the process by which we constructed the optimistic
and pessimistic Pareto fronts ensures that the change of vol-
ume, ∆V , for these points will be zero. Therefore, points

x ∈ Ut \ {Ppess ∪ Popt} will not contribute to further im-
provement of the Pareto region. In addition, this exclusion
increases the speed of FlexiBO.

4. Implementation and Workflow
The implementation of FlexiBO is shown in Figure 6. Each
pass through this 6-step search process produces one con-
figuration to sample for one objective, and the cycle is then
iteratively repeated for the purpose of exploring the design
space.

Step 1—Update Model: The outputs from the performance
measurements are fed back to FlexiBO. FlexiBO uses this in-
formation to update the posterior distribution of its surrogate
model (i.e., the GP or RF).

Step 2—Optimize Acquisition Function: Once the surro-
gate model has been updated, the acquisition function can
then be recomputed and the next configuration and objective
will be determined by optimizing the acquisition function.

Step 3—Measure Information Gain: At each exploration
iteration, the parameters are required to be assigned with
appropriate values. The value of each configuration option is
chosen based on its ability to maximize the expected utility,
while, the selection of the objective to evaluate is based
on the expected maximum change of volume along that
particular objective. The process is then iteratively repeated.

Step 4—Train DNN: At each newly selected configuration,
the training of the DNN is not necessarily required. Instead,
for the configurations where the expensive objective was not
selected, FlexiBO uses the surrogate model to approximate
the accuracy of the network. In order to measure the energy
consumption of such configurations, FlexiBO instantiates
the DNN architecture with random parameters, and FlexiBO
then automatically deploys the architecture on the target
device for profiling (Step 5). In contrast, for configurations
where the expensive objective is selected, FlexiBO first in-
stantiates the target DNN architecture, then sends the model
to cloud, and afterwards conducts the training of the target
DNN on a cloud server.

Step 5,6—DNN performance measurements: The perfor-
mance measurements are collected from the target resource-
constrained hardware for which we want to optimize the
DNN. We set the parameters for the target architecture and
retrieve the DNN that was trained according to the parameter
settings of the current configuration for deployment. Once
the optimization budget is exhausted, the Pareto-optimal
configuration of the DNN will be returned.
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Table 1: Experimental Results

Performance Consistency Influential Options Influential Interactions

Environment ES M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

DNN

ec1 : [h1 ! h2] S 0.98 0.30 0.98 0.97 0.93 8 6 5 1 0.82 16 12 12 0.94

ec2 : [h1 ! h3] S 1.00 0.19 0.99 0.93 0.94 8 7 7 0 0.90 16 12 12 0.93

ec3 : [h3 ! h4] M 0.89 0.41 0.47 0.46 0.66 7 7 5 1 0.80 12 18 12 0.68

ec4 : [w1 ! w2] S 1.00 0.01 1.00 0.95 0.95 7 7 6 1 0.82 12 12 12 0.98

ec5 : [w1 ! w3] S 1.00 0.01 1.00 0.94 0.95 7 7 6 1 0.89 12 12 12 0.99

ec6 : [w1 ! w4] S 1.00 0.01 1.00 0.95 0.95 7 8 6 1 0.85 12 12 12 0.98

ec7 : [v1 ! v2] M 0.97 0.24 0.96 0.86 0.93 6 6 6 0 0.78 12 14 12 0.90

ec8 : [v1 ! v3] M 0.94 0.21 0.93 0.58 0.79 6 7 6 0 0.66 16 21 16 0.74

ec9 : [v2 ! v3] M 0.95 0.04 0.93 0.54 0.79 6 7 6 0 0.73 17 21 16 0.76

ec10 : [h4w3v1 ! h4w2v2] L 0.48 0.31 0.45 0.66 0.70 7 6 6 0 0.70 18 14 14 0.60

h1: Azure, h2: AWS, h3: TK1, h4: GPU; w1: Co↵ee, w2: DiatomSizeReduction, w3: Adiac, w4: ShapesAll;

v1: TensorFlow, v2: Theano, v3: CNTK;

Metrics: M1: Pearson correlation; M2: Kullback-Leibler (KL) divergence; M3: Spearman correlation; M4/M5: Perc.

of top/bottom conf.; M6/M7: Number of influential options; M8/M9: Number of options agree/disagree; M10:

Correlation btw importance of options; M11/M12: Number of interactions; M13: Number of interactions agree on

e↵ects; M14: Correlation btw the coe↵s;

Input #1

Input #2

Input #3

Input #4

Output

Hidden

layer

Input

layer

Output

layer

4 Technical Aims and Research Plan

We will pursue the following technical aims: (1) investigate potential criteria for e↵ective sampling for

exploration of the design space of DNN architectures (Section 4.2), (2) build analytical models that ac-

curately predict the performance of a given architecture configuration given other similar architectures,

which either have been measured in the target environments or other similar environments, without

measuring the network performance directly (Section 4.3), and (3), develop a tunning mechanism

that exploit the performance model from previous step to e↵ectively search for optimal architectures

(Section 4.4).

4.1 Project Timeline

We plan to complete the proposed project in two years. To mitigate project risks, we will divide the

project into three major phases:

8

DNN Stack

(2) Optimize
Acq Function

Perf.FlexiBO

Figure 6. The implementation of FlexiBO and the experimental setup.

5. Experimental Evaluation
5.1. Experimental Setup

To evaluate FlexiBO, we use 8 different architectures in 3
different domains: object detection, natural language pro-
cessing (NLP), and speech recognition. Table 1 lists the
architectures, datasets, compilers, and the sizes of the train-
ing and test sets used in our experiments. We used NVIDIA
Jetston TX2 as the hardware for our experiments and 4 hard-
ware configuration options, 5 OS configuration options, and
2 different network configuration options depending on the
type of architecture used to construct the DNN design space
(see Table 2).

FlexiBO was used to guide the search. We used either
Keras+TensorFlow or PyTorchTo to train and evaluate the
DNNs (see Table 1 for details). Moreover, in contrast to
previous research that used simulators, we directly measure
energy usage on a real device.

To initialize FlexiBO, we measured the accuracy and en-
ergy consumption of 15 randomly sampled configurations
from the configuration space of the corresponding DNN
system. The cross-stack configuration space that we consid-
ered in our experiments is shown in Table 2. For example,
hardware/OS configuration options affect the energy con-
sumption of a DNN, while the network options (e.g., filter
size) impact both accuracy and energy consumption.

We set the maximum number of iterations, T , to be 200.
We then measured energy consumption 10 times and took
the median with the aim of reducing measurement noise.
Accuracy measurements do not suffer from noise and were
thus not repeated. We used two versions of FlexiBO with
two different surrogate models—GP (FlexiBO + GP) and RF
(FlexiBO + RF). We compare our approach to random search
(RS) (Bergstra & Bengio, 2012); single objective Bayesian
optimization for energy consumption (SOBO (EC)) and
accuracy (SOBO (Acc)); and PAL (Zuluaga et al., 2013).

RS randomly selects a configuration and an objective at each

iteration to measure. For comparative analysis with FlexiBO,
we set an upper bound on the number of times the expensive
objective is evaluated in RS, which is equal to the number of
times the expensive objective is evaluated in FlexiBO. SOBO
(Acc) and SOBO (EC) optimize accuracy and energy con-
sumption independently by using the maximum likelihood
of improvement to acquire a new point and further measure
both objectives at each iteration. For PAL implementation,
we set ε = (εi)1≤i≤2 value as 0.004% of each objective
range fi : maxx∈E(fi(x))−minx∈E(fi(x)) for objective
Oi, where 1 ≤ i ≤ n. We repeated the entire optimization
process 5 times for each architecture and afterward reported
the median.

5.2. Results

Our results demonstrate that FlexiBO outperforms other op-
timization methods—RS, SOBO (EC), SOBO (Acc), and
PAL—across all major metrics of interest. FlexiBO consis-
tently finds better configurations and strictly better Pareto
fronts and achieves both in fewer iterations and at less cost.

5.2.1. FLEXIBO FINDS BETTER CONFIGURATIONS

Figure 7 shows the evaluations of configurations in the objec-
tive space, which are selected by FlexiBO (GP, RF) versus
those selected by SOBO (EC, Acc), RS, and PAL in the
Xception + ImageNet architecture (moreover, similar results
are observed for other architectures and are included in the
supplementary materials). The objective functions—energy
consumption and accuracy—are plotted on the x- and y-axis,
respectively (better designs are closer to the upper-left part
of the plots). We made the following observations based on
the results: First, the configurations tend to cluster around
the 55% accuracy mark in all methods, which is a reflection
of the underlying scenarios since ImageNet is a classifica-
tion problem with 200 categories for object detection and
the Xception architecture correctly predicts 55% of the input
images on average. Notwithstanding, DNN optimization is
a difficult problem, and most configurations are sub-optimal
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Table 1. The DNN architectures and datasets used in the experimental evaluation.

Architecture Dataset Compiler Num. Num. Num. Training Test Domain
Layers Paremeters Classes Size Size

Xception ImageNet Keras 71 22M 200 150,000 20,000

Image
MobileNet ImageNet Keras 28 4.2M 200 100,000 30,000
LeNet MNIST Keras 7 60000 10 60,000 10,000
ResNet CIFAR-10 Keras 50 2.5M 10 50,000 10,000
SqueezeNet CIFAR-10 Keras 3 1.2M 10 50,000 10,000
BERT SQuAD 2.0 PyTorch 12 110M - 56,000 5,000 NLPBERT IMDB Sentiment PyTorch 12 110M 2 50,000 2,000
DeepSpeech Common Voice PyTorch 9 68M 29 300 (hours) 20 (hours) Image

and cannot improve the average performance of already
good architectures. Furthermore, while it is hard to discover
an accurate DNN, it is easy to set a single parameter incor-
rectly that causes a sizeable decrease in model accuracy,
such that the result is an optimization landscape reflecting
sharp peaks indicating that the isolated good configurations
are surrounded by many poor ones.

The results for PAL give some insight into the optimization
space in a sense that it was able to find only one configura-
tion with accuracy higher than 85%. PAL tends to sample
configurations with good energy consumption but not accu-
racy, which suggests that of the two objectives, the DNN
training space is more difficult to reason about than the
hardware space. This finding is somewhat intuitive, since
there are several simple relationships between hardware op-
tions with low interaction levels (Iqbal et al., 2019; Jamshidi
et al., 2017a). While PAL can exploit these simple trends, it
has difficulty simultaneously optimizing both objectives. In
contrast, although FlexiBO and PAL have similar median en-
ergy consumption, FlexiBO consistently finds designs with
substantially higher accuracy. FlexiBO’s strength is derived
from its ability to model intricate relationships between
options and avoiding cliffs in the optimization landscape
by using faster measurements across the cheaper objective.
Nine of the configurations found by FlexiBO have high accu-
racy and among those, four have low energy consumption.

Insights. FlexiBO produces many energy-efficient configu-
rations, which is, in part, a product of its design: FlexiBO
tries to find a balance between exploitation and exploration
by way of first exploring the cheaper objective in an effort to
bypass the cliffs contained in the optimization landscape and
further, by only measuring the DNN configuration across the
expensive objective when it matters and thus, is prudent to
do so.

5.2.2. FLEXIBO PRODUCES SUPERIOR PARETO FRONTS

We also evaluated the quality of the Pareto front using the
contribution and diversity quality indicator metrics. Contri-
bution is particularly useful when the shape and cardinality
of the true Pareto front is unknown and can also be used to
provide a fair comparison between Pareto fronts obtained
from the use of different methods. A Pareto front approx-
imation with a higher contribution value is closer to the
estimated actual Pareto front. The diversity of Pareto front
is another useful quality indicator that determines the extent
of the spread. A Pareto front with higher diversity has more
points for use in the optimization process and thereby en-
sures better control for performance tuning in the context of
multiple objectives.

We evaluate the quality of the Pareto front approximations
derived by FlexiBO in two modes of operation: Full ca-
pacity mode (FCM), where the optimization methods are
allowed to run until the maximum number of iterations is
reached, and Time-budget mode (TBM), where the opti-
mization methods (other than FlexiBO) are allowed to run
until the time when they have accrued the same cost in eval-
uating objectives as FlexiBO after the maximum number
of iterations, which is the point of their respective termina-
tions. A comparison of the Pareto fronts in FCM gives us
insight into the quality of the Pareto fronts notwithstanding
cost; whereas, TBM is a more realistic gauge for resource-
constrained environments. Figure 8 and Figure 9 report the
contribution and diversity values of the following different
Pareto fronts: (i) actual Pareto fronts (FlexiBO + GP (Actual),
FlexiBO + RF (Actual), PAL, RS, SOBO (Acc) and SOBO
(EC); (ii) pessimistic Pareto fronts (FlexiBO + GP (Pess)
and FlexiBO + RF (Pess)); and (iii) optimistic Pareto fronts
(FlexiBO + GP (Opt) and FlexiBO + RF (Opt)). The actual
Pareto fronts for FlexiBO are constructed using the config-
urations for which both objectives, such as accuracy and
energy consumption, are evaluated. Pessimistic and opti-
mistic Pareto fronts are constructed using the configurations
for which at least one objective is evaluated.
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Table 2. The configuration space for cross-stack optimization of DNNs.

Layer Configuration Option Range

Network

Image

Number of filters 32, 64, 128, 256, 512, 1024
Filter size (1×1), (3×3), (5×5), (7×7), (9×9)

NLP

Max batch size 6, 12, 14, 16, 32, 64
Max sequence length 64, 128, 256, 320, 384, 512

Speech

Batch size 16, 32, 64, 128, 256, 512, 1024
Number of epochs 13, 16, 32, 64, 128, 256, 512, 1024

OS

Scheduler policy CFP, NOOP
VFS cache pressure 0, 100, 500
Swappiness 10, 60, 100
Dirty background ratio 10,80
Dirty ratio 5, 50

Hardware

Number of active cores 1 - 4
Core frequency 0.3 - 2.0 (GHz)
GPU frequency 0.1 - 1.3 (GHz)
Memory controller frequency 0.1 - 1.8 (GHz)

Figures 8(a) and 8(b) plot the contribution values of the
Pareto fronts obtained from using different optimization
methods in FCM and TBM modes, respectively. We ob-
serve that in FCM, PAL has a 17.14% higher contribution
value than FlexiBO + GP (next best method) in all architec-
tures for the actual Pareto fronts (Figure 8(a)). It should
be emphasized that FlexiBO + GP is able to achieve this
performance with 80.23% less cost than PAL. Figure 8(b)
indicates that, given the same cost, the actual Pareto front
obtained by FlexiBO + GP has a 28.44% higher contribution
value than PAL.

Insights. The quality of the Pareto fronts constructed by
FlexiBO + GP is similar to the Pareto fronts derived from
state-of-the-art algorithms but at a significantly reduced cost.
Accordingly, with the same time budget, FlexiBO builds bet-
ter Pareto fronts.

The diversity of the Pareto fronts as obtained by the opti-
mization methods we evaluated with both FCM and TBM
modes are shown in Figures 9(a) and 9(b), respectively. Fig-
ure 9(a) illustrates that PAL achieves a better spread for
actual Pareto fronts and outperforms the next best optimiza-
tion method, FlexiBO + GP, by 12.72%. However, between
these two modes, where the volume of the Pareto region are
almost similar, the optimistic and pessimistic Pareto fronts
obtained using FlexiBO + GP are 21.64% and 14.06% more
diverse than those obtained by PAL.

Figure 9(b) indicates that FlexiBO + GP (actual) outperforms
other methods and obtains 25.64% better diversity values
than the next best optimization method, PAL. For all archi-
tectures, the diversity value achieved by FlexiBO + RF is
lower than FlexiBO + GP and PAL for actual Pareto fronts.
The diversity values of the pessimistic and optimistic Pareto
fronts obtained by FlexiBO + GP in TBM mode are 46.87%
and 57.14% higher than those derived from PAL.

Insights. With the same time budget, FlexiBO identifies more
diverse Pareto-optimal solutions.

5.2.3. FLEXIBO DISCOVERS OPTIMAL
CONFIGURATIONS AT LOWER COST

Table 3 shows the total objective evaluation cost for 200
iterations of different optimization methods in the context
of the different architectures used in our experiments. As
SOBO (EC), SOBO (Acc), and PAL evaluate both accuracy
and energy consumption for each of the 200 iterations, their
total cost is same. The total cost for RS is equal to the
minimum of the total evaluation cost of FlexiBO + GP and
FlexiBO + RF, because the number of evaluations of the
costly objective is the same as the minimum number of
evaluations of either FlexiBO + GP or FlexiBO + RF.

It is evident from Table 3 that excluding SOBO (EC), Flex-
iBO + RF obtains the minimum total evaluation cost in the
MobileNet (367.2), ResNet (676.4), SqueezeNet (423.9),
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Table 3. The total objective evaluation cost and run time for 200 iterations of different optimization methods in different DNN architectures.
The objective evaluation cost has no unit since it is the ratio of the time required to evaluate an objective and the time needed to evaluate
the cheapest objective in a multi-objective setting. *Bold values indicate the minimum values for cost and time among the different
optimization methods other than SOBO(EC). SOBO(EC) has the lowest cost (200) of any other methods, since the expensive objective,
accuracy, is not evaluated by SOBO(EC) at any iteration.

RS SOBO (EC) SOBO (Acc) PAL FlexiBO + RF FlexiBO + GP

Cost Cost Cost Cost Time(h) Cost Time(h) Cost Time(h)

Xception 703 200 3,840 3,840 129.6 960 25.2 703 22.4
MobileNet 367.2 200 2,720 2,720 99.2 367.2 9.4 408 8.1
LeNet 272.8 200 1,360 1,360 32.1 396 5.9 272.8 5.7
ResNet 676.4 200 3,560 3,560 114.0 676.4 21.3 712 22.1
SqueezeNet 423.9 200 3,140 3,140 111.6 423.9 20.4 688.8 23.2
BERT-SQuAD 1112.8 200 4,280 4,280 151.3 1,177 37.9 1,112.8 37.7
BERT-IMDB 543 200 3,620 3,620 147.2 543 23.4 760.2 25.4
DeepSpeech 706.2 200 4,680 4,680 163.8 706.2 26.2 842.4 28.8

BERT-IMDB (543), and DeepSpeech (706.2) architectures,
while in the Xception (703), LeNet (272.8), and BERT-
SQuAD (1112.8) architectures, FlexiBO + GP obtains the
minimum total evaluation cost. The respective total costs
of FlexiBO + RF and FlexiBO + GP are 80.69% and 79.77%
less than the total cost of SOBO (Acc) and PAL, on average.

From Table 3, we also observe that FlexiBO + RF per-
forms in the minimum time (in hours) in the ResNet (21.3),
SqueezeNet (20.4), BERT-IMDB (23.4) and DeepSpeech
architectures (26.2), while FlexiBO + GP performs in the
minimum time (in hours) in the Xception (22.4), MobileNet
(8.1), LeNet (5.7), and BERT-SQuAD (37.7) architectures.
On average, FlexiBO + RF and FlexiBO + GP require 84.12%
and 81.68% less time to perform than PAL does in the con-
text of all 7 architectures.

Insights. FlexiBO, on average, determines the Pareto-optimal
configurations for accuracy and energy consumption at
80.23% less cost than the other optimization methods (with
the exception of SOBO (EC)) and in 82.90% less time than
PAL.

Multi-objective optimization of DNN systems is a costly
task. In our experiments, training and performance measure-
ments could each take hours per configuration, and it is not
uncommon for modern DNNs to take days in order to train
even just a single configuration. We compare the sample
efficiency of FlexiBO, PAL, RS, and SOBO by analyzing
the evolution of their Pareto fronts as a function of the cu-
mulative number of configurations sampled. We use the
Pareto hypervolume (Zitzler & Thiele, 1999), the volume
between the bounded space made by the Pareto front and
a fixed reference point in the objective space (here, we use
the origin of the objective space), to evaluate the evolution

of Pareto fronts derived from the samples obtained by the
optimization methods.

A sound way to interpret these results is by comparing the
depicted hypervolume curves against one another (Figure
10), since all three curves were computed using the same
reference point. FlexiBO + GP and PAL consistently out-
perform the others as they decrease the hypervolume in all
architectures at a more rapid pace using fewer samples. For
example, in MobileNet, after only 40 samples, although
FlexiBO reached a value of 0.10 (arbitrary units), it took PAL
100 samples (2.5x more) to find a Pareto front of similar
quality to the one derived by FlexiBO. Only in the smallest
architecture, LeNet, was PAL able to outperform FlexiBO.
These results show that FlexiBO is more effective not only
in larger configuration spaces but also in more difficult sce-
narios.

From this experiment, a comparison of the hypervolumes
for RS and FlexiBO provides a marked illustration of the
performance edge of FlexiBO over other approaches. A
decisively illustrative observation that supports this conclu-
sion is that between iterations 10 and 40, RS outperforms
FlexiBO, meaning it found a better point earlier, which may
seem to weaken the justification for using FlexiBO, but in
fact, it strengthens the merits. RS samples the configuration
space randomly, and thus, the large spike in hypervolume at
point 10 is entirely coincidental; yet after 40 iterations, Flex-
iBO still outperformed RS for the remaining samples, which
means that even though RS at the 10th iteration forward
can find very good configurations, it was unable to leverage
this capability as a means to effectively explore the design
space. On the other hand, once FlexiBO had a reasonable
surrogate model of the design space, it was able to exploit
its samples and thereby, consistently find improvements to
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Figure 7. The exploration results in the Xception+ImageNet set-
ting. It is desirable to have more evaluations towards the upper
left part of each marginal scatter plot. FlexiBO outperforms other
methods, since it finds more accurate and more efficient DNN
architectures.

its approximated Pareto front.

6. Threats to Validity
In our experiments, we selected a diverse set of subject
DNN systems and configuration options that influence the
performance of DNNs and excluded some configuration
options—such as scheduler latency, scheduler wakeup gran-
ularity, etc.—that had no impact on energy consumption
or accuracy of DNNs. To select influential configuration
options for this experiment, we studied the causal structure
of different DNN systems’ performance using partial an-
cestral graphs (PAG), which can be thought of as maps of
dependency structures of probability distributions of sys-
tem performance given specified configuration options used
during DNN inference. Still, one has to be careful in gen-

eralizing FlexiBO to other systems. To reduce the effect
of measurement noise in the DNN systems, we repeated
each energy profiling 10 times on the NVIDIA device. Al-
though due to the high evaluation cost we did not repeat the
accuracy measurements, yet still, our initial experimental
study also suggested that the accuracy measurements, i.e.,
network retraining, are less noisy in DNN systems.

Although we measured the accuracy and energy consump-
tion of 15 randomly selected configurations to initialize
FlexiBO, we note that the results might vary if a different
number of configurations are measured for initialization. To
determine the quality of the Pareto metric for comparison,
we used the contribution and diversity measures, which are
both calculated relative to a reference point, and for our
evaluations, we used the origin as the reference point. For
PAL implementation, we fix the value of ε to 0.004% of
the objective range. One might find different results when
other values of ε are used; however, we do not vary the ε
value due to the extremely high experimental cost associated
therewith.

7. Related Work
Multi-objective optimization with preferences. Re-
searchers have developed methods to incorporate prefer-
ences in multi-objective optimization using evolutionary
methods (Deb & Sundar, 2006; Thiele et al., 2009; Kim
et al., 2011); although these methods enable tradeoff for
exploring the design space of systems (Kolesnikov et al.,
2019), they are not sample efficient, which is an essential at-
tribute for optimizing highly-configurable systems (Pereira
et al., 2019; Jamshidi & Casale, 2016; Jamshidi et al., 2017b;
2018; Nair et al., 2018), especially for very large configura-
tion spaces (Acher et al., 2019).

Despite that various methods have been recently proposed,
which use surrogate functions to obtain objective approxi-
mations as a means to determine a Pareto front that account
for preference constraints (Paria et al., 2018; Abdolshah
et al., 2019), these methods need a defined set of prefer-
ences over objectives to be supplied, which is a condition
for identifying a Pareto-set. In contrast, our method focuses
on determining a Pareto front in the light of the cost of
evaluation incorporated in an acquisition function, where
the acquisition function, automatically and iteratively, deter-
mines the approximate balance of preference over objectives
based on a tradeoff between the relative cost and information
gain.

Multi-objective optimization with scalarizations. Dif-
ferent multi-objective optimization methods have been
developed that use scalarizations to formulate a single-
objective optimization problem such that the optimal solu-
tions to single-objective optimization problems correspond
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Figure 8. The contribution indicator values of the Pareto fronts derived in (a) full-capacity mode and (b) time-budget mode, as obtained by
different methods. The higher values indicate that the obtained Pareto front is closer to the surrogate of the true Pareto front.
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Figure 9. The diversity indicator values of the Pareto fronts derived in (a) full-capacity mode and (b) time-budget mode, as obtained by
various methods applied to different DNN architectures. The higher values indicate the better quality of the respective Pareto fronts.
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different optimization methods. The median (solid line) and in-
terquartile range (shaded) of optimizing 5 runs are shown.

to Pareto-optimal solutions for multi-objective optimization
problems. Random scalarizations have been used to dis-
cover the Pareto front (Knowles, 2006; Paria et al., 2018).
Scalarization-based methods also include weighted product
methods to obtain scalarized objectives (Deb, 2001) and
utility functions (Roijers et al., 2013; Zintgraf et al., 2015;
Roijers et al., 2017; 2018; Zintgraf et al., 2018). How-
ever, the scalarization approaches require the encoding of
preference, as a priori, over objectives, and thus a scalariza-
tion approaches require multiple runs in order to obtain a
high coverage of Pareto front solutions, which makes scalar-
ization approaches not feasible and impractical for DNN
optimization purposes.

Multi-objective optimization with Pareto front approxi-
mation. Several methods have been proposed to identify
the complete Pareto front using multi-objective Bayesian
optimization. For example, PESMO determines the Pareto
front by reducing posterior entropy (Hernández-Lobato
et al., 2016a; 2015). Another method, SMSego, uses the
optimistic estimate of the objective function in order to se-
lect Pareto-optimal points and uses maximum hypervolume
improvement to choose the next sample (Ponweiser et al.,
2008). In addition, different gradient-based multi-objective
optimization algorithms have been proposed for the pur-
pose of finding a descent direction to optimize objectives
(Schäffler et al., 2002; Désidéri, 2012). Therefore, these
methods were then extended to utilize stochastic gradient
descent (Poirion et al., 2017; Peitz & Dellnitz, 2018). Re-
cently, active learning approaches have been proposed to
approximate the surface of the Pareto front (Campigotto
et al., 2013), through use of acquisition functions such as
expected hypervolume improvement (Emmerich & Klinken-
berg, 2008), and Sequential Uncertainty Reduction (SUR)
(Picheny, 2015). Contemporary active learning approaches,

like PAL, tend to approximate the Pareto front (Zuluaga
et al., 2013) and further allow the user to set the predic-
tion accuracy level (Zuluaga et al., 2016). Nevertheless, in
contrast to our approach, these methods do not take into
account the varying costs of the objective evaluations they
complete. Our approach is reasonably similar to PAL but is
different insofar as how the Pareto fronts are computed and
meanwhile, further uses a different acquisition function as
a means to incorporate the evaluation cost of optimization
into its implementation.

Multi-objective, cross-layer, and hardware-aware opti-
mization of DNNs. One of the largest difficulties in pro-
ducing energy-efficient DNNs is the disconnect between
the platform where the DNN is designed, developed, and
tested, and the platform where it will eventually be deployed
and the energy it consumes there (Guo, 2017; Chen et al.;
Cai et al., 2017; Qi et al., 2016; Manotas et al., 2014; Sze
et al., 2017; Chen et al., 2016). Therefore, hardware-aware
multi-objective optimization approaches have been intro-
duced (Zhu et al., 2018; Lokhmotov et al., 2018; Cai et al.,
2018; Wu et al., 2019; Whatmough et al., 2019) that enable
automatic optimization of DNNs in the joint space of archi-
tectures, hyperparameters, and even the computer system
stack (Zela et al., 2018; Iqbal et al., 2019; Nardi et al., 2019;
Hernández-Lobato et al., 2016b). Like these approaches,
FlexiBO enables efficient multi-objective optimization in
such joint configuration spaces. Works have also been done
on multi-objective neural architecture search (NAS) (Kim
et al., 2017; Dong et al., 2018; Liu et al., 2017) to opti-
mize accuracy and limit resource consumption, whereby
through limiting the search space, a fixed-length vector de-
scription is used (Kim et al., 2017). In addition, several
approaches characterize runtime, power, and the energy of
DNNs via analytical models, e.g., Paleo (Qi et al., 2016),
NeuralPower (Cai et al., 2017), Eyeriss (Chen et al., 2016),
and Delight (Rouhani et al., 2016). However, they either rely
on proxies like inference time for energy estimation or oth-
erwise extrapolate energy values from energy-per-operation
tables. Due to the simplistic assumptions these methods
rely upon, they cannot be used across different deployment
platforms.

8. Conclusion
In this work, we developed a novel cost-aware Bayesian
multi-objective optimization algorithm called FlexiBO. Flex-
iBO approximates the Pareto region and employs a novel
cost-aware acquisition function that not only selects the
next sample but also the most cost-effective objective to
collect measurement. We carried out our experiments using
7 different DNN architectures for tasks of object detec-
tion, NLP and speech recognition, and optimized accuracy
and energy consumption on a resource-constrained device.
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The experimental results, which compared with the cur-
rent state-of-the-art multi-objective optimization methods,
confirmed that FlexiBO (i) consistently finds better con-
figurations, (ii) produces superior Pareto fronts, and (iii)
discovers optimal configurations at a lower cost. In par-
rticular, our results show that with the same time-budget,
the contribution rate indicator and the diversity measures
of FlexiBO + GP, on average, were 28.44% and 25.64%
higher, respectively, than the state-of-the-art across all 7
architectures. Moreover, FlexiBO determines a Pareto front
of similar quality were compared to the state-of-the-art
with 80.23% less cost. An immediate future direction of
this work is to compare FlexiBO with other Bayesian opti-
mization frameworks such as Spearmint (Hernández-Lobato
et al., 2016a), which offers multiple acquisition functions
such as ParEGO (Knowles, 2006), SMSego (Ponweiser
et al., 2008) and PESMO (Hernández-Lobato et al., 2016a).
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