
A Comparison of Reinforcement Learning
Techniques for Fuzzy Cloud Auto-Scaling

Hamid Arabnejad∗, Claus Pahl†, Pooyan Jamshidi‡ and Giovani Estrada§
∗IC4, Dublin City University, Dublin, Ireland

†Free University of Bozen-Bolzano, Bolzano, Italy
‡Imperial College London, London, UK

§Intel, Leixlip, Ireland

Abstract—A goal of cloud service management is to design
self-adaptable auto-scaler to react to workload fluctuations and
changing the resources assigned. The key problem is how and
when to add/remove resources in order to meet agreed service-
level agreements. Reducing application cost and guaranteeing
service-level agreements (SLAs) are two critical factors of dy-
namic controller design. In this paper, we compare two dynamic
learning strategies based on a fuzzy logic system, which learns
and modifies fuzzy scaling rules at runtime. A self-adaptive fuzzy
logic controller is combined with two reinforcement learning
(RL) approaches: (i) Fuzzy SARSA learning (FSL) and (ii) Fuzzy
Q-learning (FQL). As an off-policy approach, Q-learning learns
independent of the policy currently followed, whereas SARSA
as an on-policy always incorporates the actual agent’s behavior
and leads to faster learning. Both approaches are implemented
and compared in their advantages and disadvantages, here in
the OpenStack cloud platform. We demonstrate that both auto-
scaling approaches can handle various load traffic situations,
sudden and periodic, and delivering resources on demand while
reducing operating costs and preventing SLA violations. The
experimental results demonstrate that FSL and FQL have accept-
able performance in terms of adjusted number of virtual machine
targeted to optimize SLA compliance and response time.

Keywords-Cloud Computing; Orchestration; Controller; Fuzzy
Logic;Q-Learning; SARSA; OpenStack

I. INTRODUCTION

Automated elasticity and dynamism, as two important
concepts of cloud computing, are beneficial for application
owners. Auto-scaling system is a process that automatically
scales the number of resources and maintains an acceptable
Quality of Service (QoS) [19]. However, from the perspec-
tive of the user, determining when and how to resize the
application makes defining a proper auto-scaling process dif-
ficult. Threshold-based auto-scaling approaches are proposed
for scaling application by monitoring metrics, but setting
the corresponding threshold conditions still rests with the
user. Recently, automatic decision-making approaches, such as
reinforcement learning (RL) [24], have become more popular.
The key advantage of these methods is that prior knowledge
of the application performance model is not required, but they
rather learn it as the application runs.

Our motivation here is to compare two different auto-scaling
services that will automatically and dynamically resize user
application to meet QoS requirements cost-effectively. We
consider extensions of two classic RL algorithms, namely

SARSA and Q-Learning, for the usage with a fuzzy auto-
scaling controller for dynamic resource allocations. RL is
defined as interaction process between a learning agent (the
auto-scaling controller) and its environment (the target could
application). The main difference between SARSA and Q-
learning is that SARSA compares the current state vs. the
actual next state, whereas Q-Learning compares the current
state vs. the best possible next states.

Generally, RL approaches suffer from the size of the table
needed to store state-action values. As a solution, a fuzzy
inference system offers a possible solution to reducing the
state space. A fuzzy set is a mapping of real state to a set
of fuzzy labels. Therefore, many states can be represented by
only a few fuzzy states. Thus, we base our investigation on a
fuzzy controller [17]. The combination of fuzzy logic control
and RL approaches results in a self-adaptive mechanism where
the fuzzy logic control facilitates the reasoning at a higher
level of abstraction, and the RL approaches allow to adjust the
auto-scaling controller. This paper extend previous results [14],
[16] as follows. First, we specifically focus on architecture,
implementation and experimentation aspects in OpenStack.
Then, we utilise SARSA approach as an on-policy learning
algorithm against Q-learning which is an off-policy approach.
The advantage of using SARSA, due to following the action
which is actually being taken in the next step, is the policy
that it follows will be more optimal and learning will be faster.
Furthermore, a comparison between the two strategies will be
provided. The comparison analysis is an important goal to
know the performance and scalability of each RL approaches
under different workload patterns.

The contributions of this paper are:

• a review of cloud auto-scaling approaches;
• integrate RL and fuzzy approaches as an automatic

decision-making in a real cloud controller;
• implementation of Fuzzy RL approaches in OpenStack

(industry-standard IaaS platform);
• extensive experimentation and evaluation of wide range

of workload patterns;
• comparison between two RL approaches, SARSA and Q-

learning in terms of quality of results

We show that the auto-scaling approaches can handle various
load traffic situations, delivering resources on demand while

reducing infrastructure and management costs alongside the
comparison between both proposed approaches. The experi-
mental results show promising performance in terms of re-
source adjustment to optimize Service Level Agreement (SLA)
compliance and response time while reducing provider costs.

The paper is organized as follows. Section II describes auto-
scaling process briefly, and discusses on related research in
this area, Section III describes the OpenStack architecture
and orchestration, Section IV describes our proposed FSL
approach in details followed by implementation in Section V.
A detailed experiment-based evaluation follows in Section VI.

II. BACKGROUND AND RELATED WORK

The aim of auto-scaling approaches is to acquire and release
resources dynamically while maintaining an acceptable QoS
[19]. The auto-scaling process is usually represented and
implemented by a MAPE-K (Monitor, Analyze, Plan and
Execute phases over a Knowledge base) control loop [12].

An auto-scaler is designed with particular goal, relying on
scaling abilities offered by the cloud providers or focusing on
the structure of the target application. We can classify auto-
scaling approaches based on usage theory and techniques:

A. Threshold-based rules

Threshold-based rules are the most popular approach offered
by many platforms such as Amazon EC21, Microsoft Azure2

or OpenStack3. Conditions and rules in threshold-based ap-
proaches can be defined based on one or more performance
metrics, such as CPU load, average response time or request
rate. Dutreilh et al. [6] investigate horizontal auto-scaling using
threshold-based and reinforcement learning techniques. In [9],
the authors describe a lightweight approach that operates fine-
grained scaling at resource level in addition to the VM-
level scaling in order to improve resource utilization while
reducing cloud provider costs. Hasan et al. [10] extend the
typical two threshold bound values and add two levels of
threshold parameters in making scaling decisions. Chieu et
al. [4] propose a simple strategy for dynamic scalability of
PaaS and SaaS web applications based on the number of
active sessions and scaling the VMs numbers if all instances
have active sessions exceed particular thresholds. The main
advantage of threshold-based auto-scaling approaches is their
simplicity which make them easy to use in cloud providers
and also easy to set-up by clients. However, the performance
depends on the quality of the thresholds.

B. Control theory

Control theory deals with influencing the behaviour of
dynamical systems by monitoring output and comparing it
with reference values. By using the feedback of the input
system (difference between actual and desired output level),
the controller tries to align actual output to the reference.
For auto-scaling, the reference parameter, i.e., an object to be

1http://aws.amazon.com/ec2
2http://azure.microsoft.com
3https://www.openstack.org

controlled, is the targeted SLA value [15]. The system is the
target platform and system output are parameters to evaluate
system performance (response time or CPU load). Zhu and
Agrawal [26] present a framework using Proportional-Integral
(PI) control, combined with a reinforcement learning compo-
nent in order to minimize application cost. Ali-Eldin et al. [2],
[1] propose two adaptive hybrid reactive/proactive controllers
in order to support service elasticity by using the queueing
theory to estimate the future load. Padala et al. [21] propose a
feedback resource control system that automatically adapts to
dynamic workload changes to satisfy service level objectives.
They use an online model estimator to dynamically maintain
the relationship between applications and resources, and a
two-layer multi-input multi-output (MIMO) controller that
allocates resources to applications dynamically. Kalyvianaki et
al. [18] integrate a Kalman filter into feedback controllers that
continuously detects CPU utilization and dynamically adjusts
resource allocation in order to meet QoS objectives.

C. Time series analysis

The aim of time series analysis is to carefully collect
and study the past observations of historical collect data to
generate future value for the series. Some forecasting models
such as Autoregressive (AR), Moving Average (MA) and
Autoregressive Moving Average (ARMA) focus on the direct
prediction of future values, whereas other approach such as
pattern matching and Signal processing techniques first try
to identify patterns and then predict future values. Huang et
al. [11] proposed a prediction model (for CPU and memory
utilization) based on double exponential smoothing to improve
the forecasting accuracy for resource provision. Mi et al. [20]
used Browns quadratic exponential smoothing to predict the
future application workloads alongside of a genetic algorithm
to find a near optimal reconfiguration of virtual machines. By
using ARMA, Roy et al. [23] presented a look-ahead resource
allocation algorithm to minimizing the resource provisioning
costs while guaranteeing the application QoS in the context of
auto-scaling elastic clouds. By combining a sliding window
approach over previous historical data and artificial neural
networks (ANN), Islam et al. [13] proposed adaptive approach
to reduce the risk of SLA violations by initializing VMs
and perform their boot process before resource demands.
Gong et al. [8] used the Fast Fourier Transform to identify
repeating patterns. The Major drawback relies on this category
is the uncertainty of prediction accuracy that highly on target
application, input workload pattern, the selected metric, the
history window and prediction interval, as well as on the
specific technique being used [19].

D. Reinforcement learning (RL)

RL [24] is learning process of an agent to act in order to
maximize its rewards. The standard RL architecture is given
in Figure 1. The agent is defined as an auto-scaler, the action
is scaling up/down, the object is the target application and
the reward is the performance improvement after applying
the action. The goal of RL is how to choose an action in

response to a current state to maximize the reward. There are
several ways to implement the learning process. Generally, RL
approaches learn estimates of the Initialized Q-values Q(s, a),
which maps all system states s to their best action a. We
initialise all Q(s, a) and during learning, choose an action a
for state s based on ε-greedy policy and apply it in the target
platform. Then, we observe the new state s′ and reward r and
update the Q-value of the last state-action pair Q(s, a) with
respect to the observed outcome state (s′) and reward (r).

Two well-known RL approaches are SARSA and Q-learning
[24]. Dutreilh et al. [5] use an appropriate initialization of
the Q-values to obtain a good policy from the start as well
as convergence speedups to quicken the learning process
for short convergence times. Tesauro et al. [25] propose a
hybrid learning system by combining queuing network model
and SARSA learning approach to make resource allocation
decisions based on application workload and response time.

�
�
�
��
�
��

�����

�����	�
���

��
�
�
��

�
�
�
�
�

�

�
�

�

Fig. 1. The standard architecture of the RL algorithm

The important feature of RL approaches is learning without
prior knowledge of the target scenario and ability to online
learn and update environmental knowledge by actual obser-
vations. However, there are some drawbacks in this approach
such as taking long time to converge to optimal or near optimal
solution for solving large real world problems and requiring
good initialization of the Q-function.

III. OPENSTACK ORCHESTRATION

OpenStack is an IaaS open-source platform, used for build-
ing public and private clouds. It consists of interrelated compo-
nents that control hardware pools of processing, storage, and
networking resources throughout a data center. Users either
manage it through a web-based dashboard, through command-
line tools, or through a RESTful API. Figure 2 shows a high-
level overview of OpenStack core services.

Neutron

Nova

Cinder

swift

Glance

K
e

y
st

o
n

e

C
e

il
o

m
e

te
r

H
e

a
t

Horizon RESTful API

Virtual Network

Virtual

Machine

Storage

Browser Program

Fig. 2. An OpenStack block diagram

In OpenStack, 1) Neutron is a system for managing net-
works and IP addresses; 2) Nova is the computing engine for
deploying and managing virtual machines; 3) Glance supports
discovery, registration and delivery for disk and server images;
4) Ceilometer provides telemetry services to collect metering
data; 5) Keystone provides user/service/endpoint authentica-
tion and authorization and 6) Heat is a service for orchestrating
the infrastructure needed for cloud applications to run.

OpenStack Orchestration is about managing the infrastruc-
ture required by a cloud application for its entire lifecy-
cle. Orchestration automates processes which provision and
integrate cloud resources such as storage, networking and
instances to deliver a service defined by policies. Heat, as
OpenStack’s main orchestration component, implements an
engine to launch multiple composite applications described in
text-based templates. Heat templates are used to create stacks,
which are collections of resources such as compute instance,
floating IPs, volumes, security groups or users, and the rela-
tionship between these resources. Heat along with Ceilometer
can create an auto-scaling service. By defining a scaling
group (e.g., compute instance) alongside using monitoring
alerts (such as CPU utilization) provided by Ceilometer, Heat
can dynamically adjust the resource allocation, i.e., launching
resources to meet application demand and removing them
when no longer required, see Figure 3. Heat executes Heat
Orchestration Templates (HOT), written in YAML.

Stack

HOT
template

❷
H

ea
t c

re
at

e
st

ac
k

Heat

Ceilometer

❸ create alarms

❹ monitor asg instances

❺ Trigger alarm

❻ apply scale
up/down

❶ send HOT template

AutoScaling
Group (asg)

Fig. 3. Heat + Ceilometer architecture

By sending a HOT template file to the Heat engine, a
new autoscaling group (asg) is created by launching a group
of VM instances. The maximum and minimum number of
instances should be defined in HOT file. Then, Ceilometer
alarms that monitor all of the instances in asg are defined.
Basically, at each Ceilometer interval time, the system checks
the alarm metric and if it passed the defined threshold values,
the scaling up/down policy will be performed based on defined
action in the HOT file. During the life cycle of the application,
all checking, testing and actions are performed automatically.

IV. ON-POLICY AND OFF-POLICY RL AUTO-SCALING

In [14], an elasticity controller based on a fuzzy logic sys-
tem is proposed. The motivation factor for using fuzzy control
systems is the fact that they make it easier to incorporate

human knowledge in the decision-making process in the form
of fuzzy rules, but also reduce the state space.

We extend the fuzzy controller in the form of a SARSA-
based Fuzzy Reinforcement Learning algorithm as an on-
policy learning approach, called FSL, and describe this in more
detail. Then, we related this to a Q-Learning-based off-policy
learning approach, called FQL, by describing the differences.

A. Reinforcement Learning (RL)

Reinforcement learning [24] is learning by trial and error
to map situations to actions, which aims to maximize a
numerical reward signal. The learning process consists of two
components: a) an agent (i.e., the auto-scaler) that executes
actions and observes the results and b) the environment
(i.e., the application) which is the target of the actions. In
this schema, the auto-scaler as an agent interacts with an
environment through applying scaling actions and receiving a
response, i.e., the reward, from the environment. Each action is
taken depending on the current state and other environmental
parameters such as the input workload or performance, which
moves the agent to a different state. According to the reward
from system about the action quality, the auto-scaler will learn
the best scaling action to take through a trial-and-error.

B. Fuzzy Reinforcement Learning (FRL)

We extend fuzzy auto-scaling with two well-known RL
strategies, namely Q-learning and SARSA. We start with a
brief introduction of the fuzzy logic system and then describe
proposed FSL and FQL approaches.

The purpose of the fuzzy logic system is to model a human
knowledge. Fuzzy logic allows us to convert expert knowledge
in the form of rules, apply it in the given situation and
conclude a suitable and optimal action according to the expert
knowledge. Fuzzy rules are collections of IF-THEN rules
that represent human knowledge on how to take decisions
and control a target system. Figure 4 illustrates the main
building blocks of a Fuzzy Reinforcement Learning (FRL)
approach. During the lifecycle of an application, FRL guides
resource provisioning. More precisely, FRL follows the au-
tonomic MAPE-K loop by monitoring continuously different
characteristics of the application (e.g., workload and response
time), verifying the satisfaction of system goals and adapting
the resource allocation in order to maintain goal satisfaction.
The goals (i.e., SLA, cost, response time) are reflected in the
reward function that we define later in this section.

System

SLA

O
p

e
n

st
a

ck
C

lo
u

d
 P

la
tf

ro
m

 (
Ia

a
s)

Scaling

Action

��

� (Workload) , � (response time), �� (virtual machines)

Rules

In
fe

re
n

ce

E
n

g
in

e

D
e

fu
zz

if
ie

r

Fuzzifier

Fuzzy

Logic system
Fuzzy

Reinforcement

Learning Actuator

Fuzzy Controller

Monitoring

Fig. 4. FRL (logical) architecture

The monitoring component collects required metrics such
as the workload (w), response time (rt) and the number of
virtual machines (vm) and feeds both to the controller and
the knowledge learning component. The controller is a fuzzy
logic controller that takes the observed data, calculates the
scaling action based on monitored input data and a set of
rules, and as output returns the scaling action (sa) in terms
of an increment/decrement in the number of virtual machines.
The actuator issues adaptation commands from the controller
at each control interval to the underlying cloud platform.

Generally, the design of a fuzzy controller involves all parts
related to membership functions, fuzzy logic operators and
IF-THEN rules. The first step is to partition the state space of
each input variable into fuzzy sets through membership func-
tions. The membership function, denoted by µ(x), quantifies
the degree of membership of an input signal x to the fuzzy
set y. Similar to [14], the membership functions, depicted in
Figure 5, are triangular and trapezoidal. Three fuzzy sets have
been defined for each input (i.e., workload and response time)
to achieve a reasonable granularity in the input space while
keeping the number of states small.

��������� 	�
�
�

��������

����� ����
�

�������������

Fig. 5. Fuzzy membership functions for auto-scaling variables

For the inference mechanism, the elasticity policies are
defined as rules: "IF (w is high) AND (rt is bad)
THEN (sa+ = 2)", where w and rt are monitoring metrics
stated in the SLA and sa is the change constant value in the
number of deployed nodes, i.e., the VMs numbers.

Once the fuzzy controller is designed, the execution of the
controller is comprised of three steps (cf. middle part of Figure
4): (i) fuzzification of the inputs, (ii) fuzzy reasoning, and (iii)
defuzzification of the output. The fuzzifier projects the crisp
data onto fuzzy information using membership functions. The
fuzzy engine reasons based on information from a set of fuzzy
rules and derives fuzzy actions. The defuzzifier reverts the
results back to crisp mode and activates an adaptation action.
This result is enacted by issuing appropriate commands to the
underlying platform fabric.

Based on this background, we can now combine the fuzzy
logic controller with the two RL approaches.

C. Fuzzy SARSA Learning (FSL)
By using RL approaches instead of relying on static thresh-

old values to increase/decrease the amount of VMs, the per-
formance of target application can be captured after applying
each sa decision. In this paper, we use SARSA and Q-learning
as RL approaches that we combine with the fuzzy controller.
In this schema, a state s is modeled by a triple (w,rt,vm) for
which an RL approach looks for best action a to execute. The
combination of the fuzzy logic controller with SARSA [24]
learning, called FSL, is explained in the following.

1) Initialize the q-values: unlike the threshold policy, the RL
approach captures history information of a target applica-
tion into a value table. Each member of the q-value table is
assigned to a certain rule that describes some state-action
pairs and is updated during the learning process. It can
tell us the performance of taking the action by taking into
account the reward value. In this study, we set all q-values
to 0 as simplest mode.

2) Select an action: to learn from the system environment,
we need to explore the knowledge that has already
been gained. The approach is also known as the ex-
ploration/exploitation strategy. ε-greedy is known as a
standard exploration policy [24]. Most of the time (with
probability 1 − ε), the action with the best reward will
be selected or a random action will be chosen (with low
probability ε) in order to explore non-visited actions. The
purpose of this strategy is to encourage exploration. After
a while, by decreasing ε, no further exploration is made.

3) Calculate the control action inferred by fuzzy logic con-
troller: The fuzzy output is a weighted average of the
consequences of the rule, which can be written as:

a =

N∑
i=1

µi(x)× ai (1)

where N is the number of rules, µi(x) is the firing degree
of the rule i (or the degree of truth) for the input signal x
and ai is the consequent function for the same rule.

4) Approximate the Q-function from the current q-values and
the firing level of the rules: In classical RL, only one state-
action pair (rule) can be executed at once, which is not true
for the condition of fuzziness. In a fuzzy inference system,
more rules can be taken and an action is composed of these
rules [7]. Hence, the Q value of an action a for the current
state s is calculated by:

Q(s, a) =

N∑
i=1

(
µi(s)× q[i, ai]

)
(2)

The action-value function Q(s, a) tells us how desirable it
is to reach state s by taking action a by allowing to take
the action a many times and observe the return value.

5) Calculate reward value: The controller receives the current
values of vm and rt that correspond to the current state
of the system s. The reward value r is calculated based on
two criteria: (i) the amount of resources acquired, which
directly determine the cost, and (ii) SLO violations.

6) Calculate the value of new state s′: By taking action a and
leave the system from the current state s to the new state
s′, the value of new state denoted V (s′) by is calculated
by:

V (s′) =

N∑
i=1

µi(s
′).max

k
(q[i, ak]) (3)

where max(q[i, ak]) is the maximum of the q-values ap-
plicable in the state s′.

7) Calculate error signal: As an on-policy approach, SARSA
estimates the value of action a in state s using experience
actually gathered as it follows its policy, i.e., it always in-
corporates the actual agent’s behavior. We mark ∆Q(s, a)
as the error signal given by:

∆QFSL(s, a) = r + γ ×Q(s′, a′)−Q(s, a) (4)

where γ is a discount rate which determines the relative
importance of future rewards. A low value for γ means
that we value rewards that are close to time t, and a higher
discount gives more value to the ones that are further in
the future than those closer in time.

8) Update q-values: at each step, q-values are updated by :

q[i, ai] = q[i, ai] + η.∆Q.µi

(
s(t)

)
(5)

where η is the learning rate and takes a value between 0
and 1. Lower values for η mean that preferring old values
slightly with every update and a higher η gives more impact
on recent rewards.

The FSL solution is sketched in Algorithm 1.

Algorithm 1 Fuzzy SARSA learning(FSL)
Require: discount rate (γ) and learning rate (η)

1: initialize q-values
2: observe the current state s
3: choose partial action ai from state s (ε-greedy strategy)
4: compute action a from ai (Eq. 1) and its corresponding

quality Q(s, a) (Eq. 2)
5: repeat
6: apply the action a, observe the new state s′
7: receive the reinforcement signal (reward) r
8: choose partial action a′i from state s′
9: compute action a′ from a′i (Eq. 1) and its correspond-

ing quality Q(s′, a′) (Eq. 2)
10: compute the error signal ∆QFSL(s, a) (Eq. 4)
11: update q-values (Eq. 5)
12: s← s′ ,a← a′

13: until convergence is achieved

D. Fuzzy Q-Learning (FQL)

As we explained before, the major difference between Q-
learning and the SARSA approach is their strategy to update
q-values, i.e., in Q-learning q-values are updated using the
largest possible reward (or reinforcement signal) from the next
state. In simpler words, Q-learning is an off-policy algorithm
and updates Q-table values independent of the policy the
agent currently follows. In contrast, SARSA as an on-policy
approach always incorporates the actual agent’s behavior.
Thus, the error signal for FQL is given by :

∆QFQL(s, a) = r + γ × V (s′)−Q(s, a) (6)

The FQL is presented in Algorithm 2
As an example, we assume the state space to be finite

(e.g., 9 states as the full combination of 3 × 3 membership
functions for fuzzy variables w (workload) and rt (response

Algorithm 2 Fuzzy Q-Learning (FQL)
Require: discount rate (γ) and learning rate (η)

1: initialize q-values
2: observe the current state s
3: repeat
4: choose partial action ai from state s (ε-greedy strategy)
5: compute action a from ai (Eq. 1) and its corresponding

quality Q(s, a) (Eq. 2)
6: apply the action a, observe the new state s′
7: receive the reinforcement signal (reward) r
8: compute the error signal ∆QFQL(s, a) (Eq. 6)
9: Update q-values (Eq. 5)

10: s← s′

11: until convergence is achieved

time). Our controller might have to choose a scaling action
among 5 possible actions {−2,−1, 0,+1,+2}. However, the
design methodology that we demonstrated in this section is
general and can be applied for any possible state and action
spaces. Note, that the convergence is detected when the change
in the consequent functions is negligible in each learning loop.

V. IMPLEMENTATION

We implemented prototypes of the FQL and FSL algorithms
in OpenStack. Orchestration and automation within OpenStack
is handled by the Heat component. The auto-scaling decisions
made by Heat on when to scale application and whether
scale up/down should be applied, are determined based on
collected metering parameters from the platform. Collecting
measurement parameters within OpenStack is handled by
Ceilometer (see Figure 3). The main part of Heat is the stack,
which contains resources such as compute instances, floating
IPs, volumes, security groups or users, and the relationship be-
tween these resources. Auto-scaling in Heat is done using three
main resources: (i) auto-scaling group is used to encapsulate
the resource that we wish to scale, and some properties related
to the scale process; (ii) scaling policy is used to define the
effect a scale process will have on the scaled resource; and
(iii) an alarm is used to define under which conditions the
scaling policy should be triggered.

In our implementation, the environment contains one or
more VM instances that are controlled by a load balancer
and defined as members in autoscaling group resources. Each
instance (VM) includes a simple web server to run inside of it
after launching. Each web server listens to an input port (here
port 80), returns a simple HTML page as the response. User
data is the mechanism by which users can define their own
pre-configuration as a shell script (the code of web server) that
the instance runs on boot.

In Fig. 6, the template used for the web server is shown. For
the VM web-server instance type, we used a minimal Linux
distribution: the cirros4 image was specifically designed for
use as a test image on clouds such as OpenStack [3].

4CirrOS images, https://download.cirros-cloud.net/

The next step is defining the scaling policy, which is used
to define the effect a scaling process will have on the scaled
resource, such as ”add -1 capacity” or ”add +10% capacity”
or ”set 5 capacity”. Figure 7 shows the template used for the
scaling policy.

user_data_format: RAW
user_data: |

#!/bin/sh
...
while true
do

{
echo "HTTP/1.1 200 OK"
echo "Content-Length:$(wc -c /tmp/index.html | cut
-d’ ’ -f1)"↪→
echo
cat /tmp/index.html

} | sudo nc -l -p 80
done
...

resources:
...
web_server_scaleup_policy:
type: OS::Heat::ScalingPolicy
properties:

auto_scaling_group_id: {get_resource: asg}
adjustment_type: change_in_capacity
scaling_adjustment: 1

...

Fig. 6. The simple web server

user_data_format: RAW
user_data: |

#!/bin/sh
...
while true
do

{
echo "HTTP/1.1 200 OK"
echo "Content-Length:$(wc -c /tmp/index.html | cut
-d’ ’ -f1)"↪→
echo
cat /tmp/index.html

} | sudo nc -l -p 80
done
...

resources:
...
web_server_scaleup_policy:
type: OS::Heat::ScalingPolicy
properties:

auto_scaling_group_id: {get_resource: asg}
adjustment_type: change_in_capacity
scaling_adjustment: 1

...

Fig. 7. The template for scaling policy

The scaling policy resource is defined as a type of
OS::Heat::ScalingPolicy and its properties are as
follows: 1) auto_scaling_group_id is the specific scal-
ing group ID to apply the corresponding scale policy, 2)
adjustment_type is the type of adjustment (absolute or
percentage) and can be set to allowed values such as change
in capacity, exact capacity, percent change in capacity, and
3) scaling_adjustment is the size of the adjustment in
absolute value or percentage.

We used our auto-scaling manager instead of the native
auto-scaling tool in OpenStack, which is designed by setting
alarms based on threshold evaluations for a collection of
metrics from Ceilometer. For this threshold approach, we
can define actions to take if the state of the watched re-
source satisfies specified conditions. However, we replaced
this default component by the FRL approaches, to control
and manage scaling options. In order to control and manage
scaling option by the two FRL approaches (FQL and FSL), we
added an additional VM resource, namely ctrlsrv, which
acts as an auto-scaling server and enacts the scale up/down
decision proposed by either of the two FRL approaches.
For ctrlsrv, due to the impossibility of installing any
additional package in the cirros image, we considered a
VM machine running a Linux Ubuntu precise server. Figure 8
illustrates the implemented system in OpenStack. The created
load balancer distributes client’s HTTP request across a set
of web-servers, i.e., auto-scaling group members, collected
in load balancer pool. The algorithm used to distribute load
between the members of the pool is ROUND_ROBIN.

VM

VM

VM

AutoScaling

Group

(asg)

VM

Load

Balancdr

Cdilomdtdr

Flotino IP
(external Network)

Virtual IP
(from Our Subnet)

customers

Ctrlsrv

VM

Get instance list

Monitor asg

instances

M
o

n
it

o
r

re
q

u
ir

e
d

 m
e

tr
ic

s
:
�

,
�

,
�
�

Apply scaling action ��

Up/Down/no-scale

Fig. 8. Overview of the implemented system

Figure 8 shows the complete process of how the proposed
fuzzy auto-scaling approach works. First, ctrlsrv gathers
information from the load balancer, ceilometer and the current
state of members (web-servers) in an autoscaling group, then
decides which horizontal scaling, i.e., up or down, should be
applied to the target platform. For instance, the scale-up even
will launch a new web-server instance, which may take a few
minutes as the instance needs to be started, and adds it to the
load-balancer pool. The two proposed auto-scaling algorithms,
FQL and FSL, are coded and run inside of the ctrlsrv
machine. We implemented and added a complete fuzzy logic
library. This is functionally similar to the respective matlab
features and implements our FRL approaches.

For some parameters in the proposed algorithm, such as
the current number of VM instances or workload, we need
to call the OpenStack API. For example, the command nova
list shows a list of running instances. The API is a RESTful
interface, which allows us to send URL requests to the service
manager to execute commands. Due to the unavailability of
direct access to the OpenStack API inside of the ctrlsrv
machine, we used the popular command line utility cURL
to interact with a couple of OpenStack APIs. cURL lets us
transmit and receive HTTP requests and responses from the
command line or a shell script, which enabled us to work with
the OpenStack API directly. In order to use an OpenStack
service, we needed authentication. For some OpenStack APIs,
it is necessary to send additional data, like the authentication
key, in a header request. In Figure 9, the process of using
cURL to call OpenStack APIs is shown. The first step is
to send a request authentication token by passing credentials
(username and password) from OpenStack Identity service.
After receiving Auth-Token from the Keystone component,
the user can combine the authentication token and Computing
Service API Endpoint to send an HTTP request and receive
the output. We used this process inside the ctrlsrv machine
to execute OpenStack APIs and collect required outputs.

By combining these settings, we are able to run both FRL
approaches, i.e., FQL and FSL, as the manager and controller
of auto-scaling process in OpenStack.

OpenStack

Keysttne

OpenStack

Services

User

Userssubmitsrequest1

Confirms

Requests

&

Createstoken

2

Tokensvalidationsrequest5

Confirmsauthorizedstoken6

Servicesrequestswiths

keystonestoken

4

executesauthorizedsaction7

returnstokenstosuser3

Fig. 9. cURL process of calling OpenStack API

0

50

100

0 1 2 3 4 5 6 7 8

0

50

100

Time[hour]

VM#1
VM#5

R
es
p
on

se
T
im

e

F
u
z
z
y

S
R
A
S
A

(
F
S
L
)

F
u
z
z
y

Q
-
l
e
a
r
n
i
n
g

(
F
Q
L
)

Fig. 14. The observed end-to-end response time for Wikipedia workload

VI. EXPERIMENTAL COMPARISON

The experimental evaluation aims to show the effectiveness
of two proposed approaches FQL and FSL, but also to look at
differences. Furthermore, the cost improvement by proposed
approaches for cloud provider is demonstrated.

A. Experimental setup and benchmark

In our experiment, the two proposed approaches FQL and
FSL were implemented as full working systems and were
tested in the OpenStack platform. As the required parameters,
the maximum and minimum number of VMs that were allowed
to be available at same time were set to 5 and 1, respectively.
Here, we considered low number of VMs to demonstrate

0

50

100

0 1 2 3 4 5 6 7 8

0

50

100

Time[hour]

VM#1
VM#5

R
es
p
on

se
T
im

e

F
u
z
z
y

S
R
A
S
A

(
F
S
L
)

F
u
z
z
y

Q
-
l
e
a
r
n
i
n
g

(
F
Q
L
)

Fig. 15. The observed end-to-end response time for FIFA’98 workload

0

20

40

60

80
1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

0

20

40

60

80

number of concurrent users

VM#1
VM#5

R
es
p
on

se
T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(a) Predictable Bursting pattern

0

20

40

60

80

1
0

3
0

2
0

5
0

3
0

1
0

3
0

5
0

7
0

5
0

3
0

5
0

4
0

3
0

2
0

3
0

6
0

7
0

6
0

5
0

6
0

8
0

9
0

1
0
0

9
0

7
0

6
0

5
0

7
0

6
0

5
0

4
0

5
0

0

20

40

60

80

number of concurrent users

VM#1
VM#5

R
es
p
on

se
T
im

e
n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(b) variations pattern

0

20

40

60

80

1
0

1
0

1
0

1
0

6
0

6
0

6
0

6
0

3
0

3
0

3
0

3
0

9
0

9
0

9
0

9
0

1
0

1
0

1
0

1
0

4
0

4
0

4
0

4
0

2
0

2
0

2
0

2
0

5
0

5
0

5
0

5
0

5
0

0

20

40

60

80

number of concurrent users

VM#1
VM#5

R
es
p
on

se
T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(c) ON&OFF pattern

Fig. 10. The observed end-to-end response time of FSL

0

20

40

60

80

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

0

20

40

60

80

number of concurrent users

VM#1
VM#5

R
es
p
on

se
T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(a) Predictable Bursting pattern

0

20

40

60

80
1
0

3
0

2
0

5
0

3
0

1
0

3
0

5
0

7
0

5
0

3
0

5
0

4
0

3
0

2
0

3
0

6
0

7
0

6
0

5
0

6
0

8
0

9
0

1
0
0

9
0

7
0

6
0

5
0

7
0

6
0

5
0

4
0

5
0

0

20

40

60

80

number of concurrent users

VM#1
VM#5

R
es
p
on

se
T
im

e
n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(b) variations pattern

0

20

40

60

80

1
0

1
0

1
0

1
0

6
0

6
0

6
0

6
0

3
0

3
0

3
0

3
0

9
0

9
0

9
0

9
0

1
0

1
0

1
0

1
0

4
0

4
0

4
0

4
0

2
0

2
0

2
0

2
0

5
0

5
0

5
0

5
0

5
0

0

20

40

60

80

number of concurrent users

VM#1
VM#5

R
es
p
on

se
T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(c) ON&OFF pattern

Fig. 11. The observed end-to-end response time of FQL

VM#1

8%
VM#2

12%

VM#3
16%

VM#4

22%

VM#5

42%

(a) Predictable Bursting
pattern

VM#1
48%

VM#2

20%

VM#313%

VM#4

10%

VM#5

9%

(b) variations pattern

VM#1

33%

VM#2

22%
VM#3

16%

VM#4
12%

VM#5

17%

(c) ON&OFF pattern

Fig. 12. Percentage number of VMs used by FSL

VM#1

18%

VM#2
21%

VM#3

20% VM#4

20%

VM#5

21%

(a) Predictable Bursting
pattern

VM#1

25%

VM#2

20%

VM#3

21%

VM#4
20%

VM#5

14%

(b) variations pattern

VM#1

19%

VM#2
20%

VM#3

18% VM#4

23%

VM#5

20%

(c) ON&OFF pattern

Fig. 13. Percentage number of VMs used by FQL

the effectiveness of our proposed approaches under heavy
load user request traffic. However, larger VM number can
be applied for these parameters. The term workload refers to
the number of concurrent user request arrivals in given time.
Workload is defined as the sequence of users accessing the
target application that needs to be handled by the auto-scaler.

Application workload patterns can be categorized in three
representative patterns [19]: (a) the Predictable Bursting pat-
tern indicates the type of workload that is subject to periodic
peaks and valleys typical for services with seasonality trends or
high performance computing, (b) the Variations pattern reflects
applications such as News&Media, event registration or rapid
fire sales, and (c) the ON&OFF pattern reflects applications
such as analytics, bank/tax agencies and test environments.

In all cases, we considered 10 and 100 as minimum and
maximum number of concurrent users per second.

Additionally, we validated our approaches with real user
request traces of the Wikipedia5 and the FIFA WorldCup6

websites, which are the number of requests/users accessing
these two websites per unit time. We used Siege7, a HTTP
load testing and benchmarking utility, as our performance
measuring tools. It can generate concurrent user requests, and
measure the performance metric such as average response
time. For each concurrent user number N , we generate N
requests per second by Siege for 10 minutes.

5Wikipedia Access Traces : http://www.wikibench.eu/?page id=60
6FIFA98 View Statistics : http://ita.ee.lbl.gov/html/contrib/WorldCup.html
7https://www.joedog.org/siege-home/

For fuzzy controller parameters, the learning rate is set
to a constant value η = 0.1 and the discount factor is set
to γ = 0.8. Here, we considered lower value for η, thus
giving more impact on old rewards with every update. After
sufficient epochs of learning, we decrease the exploration rate
(ε) until a minimum value is reached, which here is 0.2.
FRL approaches start with an exploration phase and after
the first learning convergence occurs, they enter the balanced
exploration-exploitation phase.

Additionally, we compared the two proposed approaches
with a base-line strategy. The results of comparing with
fixed numbers of VMs equal to a minimum and maximum
permitted value are also shown as based-line (benchmark)
approaches, named VM#1 and VM#5, reflecting under- and
over-provisioning strategies.

Furthermore, in order to investigate the effects of initialized
knowledge, we considered two types of fuzzy inference system
(FIS) as the primary knowledge for fuzzy controller, expert
and not-expert knowledge.

B. Comparison of effectiveness

Figures 10 and 11 show the fluctuation of the observed
end-to-end response time for three type of workload patterns
obtained by two approaches FSL and FQL, respectively. In
order to investigate the behaviour of the auto-scaler, we
considered two types of initialized knowledge (expert and non-
expert) and each algorithm FQL and FSL was executed several
times and represented by a different color in presented figures.

During the test, workloads were dynamically changed. De-
pending on incoming workload (the concurrent input requests
submitted by individual users) and the number of available
VMs, corresponding response timed varied between upper or
lower bound. Both FQL and FSL algorithms with adaptive
policies continuously monitored these fluctuation of the re-
sponse time and identified workload changes. The scaling
decisions were applied accordingly as recommended by the
proposed algorithms. In our experiment, the up/down scaling
process can be completed in a few seconds, due to simplicity
and fast booting of Cirros image.

We compared FQL and FSL with VM#1 and VM#5
as the base-line approaches, which have a fixed number
of VMs during the test. Figures 10 and 11 show that the
proposed auto-scalers are able to dynamically set the number
of required resources to the current workload, providing only
resource allocations that are needed to meet the user’s QoS
expectations. As seen from Figures 10 and 11, both algorithms
FQL and FSL adapt themself to input workload in order to
meet SLA parameters, which here is the response time.

The difference in the algorithms can be seen from the
quality of the solution, i.e., the scaling value. Both algorithms
represent dynamic resource provisioning to satisfy upcoming
resource demand. However:
1) For the Predictable Burst workload pattern (Figures 10(a)

and 11(a)), FSL finds a significantly better solution com-
pared to FQL. The reason can be explained by the speed
of convergence for each RL approach. Q-learning does not

learn the same policy as it follows which consequences
that it learns slower. This means that although the learning
improves the approximation of the optimal policy, it does
not necessarily improve the policy which is actually being
followed. On the other hand, on-policy learning used in
by FSL learns faster and enters the balanced exploration-
exploitation phase, i.e., completes learning phase quickly
and reaches a minimum exploration rate (ε) that avoids
more exploration in the action selection step.

2) As a result of the performance improvement achieved by
SARSA, FSL has a tendency to get more VMs launched
to obtain a good solution which can be realized by com-
paring the percentage number of VMs used by these two
algorithms (Figure 12(a) and Figure 13(a)).

3) For the Variations workload pattern, FQL is superior to the
solution found by FSL approach. Due to faster learning
of the on-policy approach used in FSL alongside high
fluctuation and non-periodic behaviour of this pattern, the
non-explorative policy used after the learning phase is
not optimized for the these workloads. For the ON&OFF
(Figures 10(c) and 11(c)) workload patterns, the value of
the solution is more and less similar.

The effectiveness of having expert (optimal) knowledge can
be figured out by comparison between the two types of initial
knowledge used for the experiment. In all presented cases, the
good initial knowledge significantly improves the quality of
results compared to non-expert (sub-optimal) knowledge.

In addition, to validate the applicability of approaches
against real-life situations, we used two real workloads: the
Wikipedia workload and the FIFA WorldCup Website access
logs. While the Wikipedia workload shows a steady and
predictable trend, the FIFA workload has a bursty and an
unpredictable pattern. For the Wikipedia trace in figure 14,
FSL shows slightly better performance compared to FQL.
For the FIFA results shown in Figure 15, the situation is
different. FSL as an on-policy approach behaves better in
terms of the measured response time, while FQL is still in
exploration/exploitation phase.

C. Comparison of cost-effectiveness of scaling

Figures 12 and 13 show percentage numbers of used VMs
for all workload patterns. The approaches work on the current
workload and relative response time of the system at the
current time, increasing the number of available VMs (scale-
up) and decreasing the number of idle VMs (scale-down). Both
FQL and FSL conduct distributed-case scaling and allocate
suitable numbers of VMs according to the workload.

For different types of workload patterns, the average max-
imum number of VMs used during our experiment by FQL
and FSL algorithms are 18.3% and 22.6%, respectively. This
implies our approaches can meet the QoS requirements using
a smaller amount of resources, which is an improvement on
resource utilisation for applications in terms of hosting VMs.
Thus, the FQL and FSL approaches can perform auto-scaling
of application as well as save cloud provider cost by increasing
resource utilisation.

VII. CONCLUSION

We investigated horizontal scaling of cloud applications.
Many commercial solutions use simple approaches such as
threshold-based ones. However, providing good thresholds
for auto-scaling is challenging. Recently, machine learning
approaches have been used to complement and even replace
expert knowledge to design self-adaptable solutions to capable
to react to unpredictable workload fluctuations.

We proposed a fuzzy rule-based system, based on which
we compared two well-know RL approaches, resulting in
Fuzzy Q-learning (FQL) and Fuzzy SARSA learning (FSL).
Both approaches can efficiently scale up/down cloud resources
to meet the given QoS requirements while reducing cloud
provider costs by improving resource utilisation. However,
differences also emerge. In the SARSA experiment, given the
reward at each time step improves the quality of solutions
for periodic workload pattern. Both algorithms have been
implemented in OpenStack, an open-source IaaS platform, to
demonstrate the practical effectiveness of proposed approach
has been successfully tested and presented and the validity of
the comparison results are established.

In conclusion, this paper identifies the promising auto-
scaling concepts for cloud computing: (i) developing an auto-
nomic and complete auto-scaler for a cloud platform system
by combining of techniques such as a fuzzy logic system and
reinforcement learning to provide optimal resource manage-
ment approach tailored to different types of workload pattern,
and (ii) defining the concept of a complex auto-scaler, that
can replace traditional threshold-based ones, (iii) implement
the proposed auto-scaler in an open-source cloud platform and
presenting results for different type of workloads.

We have demonstrated the overall suitability of the different
types of on-policy and off-policy RL approaches for auto-
scaling, but also differences for specific workload patterns
and converging times. We plan to extend our approach in
a number of ways: (i) extending FQL4KE to perform in
environments which are partially observable, (ii) exploiting
clustering approaches to learn the membership functions of
the antecedents (in this work we assume they do not change
once they specified, for enabling the dynamic change we will
consider incremental clustering approaches) in fuzzy rules and
(iii) look at other resource types such as containers [22].

VIII. ACKNOWLEDGEMENT

This work was partly supported by IC4 (Irish Centre for
Cloud Computing and Commerce), funded by EI and the IDA.

REFERENCES

[1] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Efficient provision-
ing of bursty scientific workloads on the cloud using adaptive elasticity
control. In Workshop on Scientific Cloud Computing Date, 2012.

[2] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elas-
ticity controller for cloud infrastructures. In Network Operations and
Management Symposium (NOMS), pages 204–212. IEEE, 2012.

[3] H. Arabnejad, P. Jamshidi, G. Estrada, N. El Ioini, and C. Pahl. An
auto-scaling cloud controller using fuzzy q-learning - implementation in
openstack. In European Conf on Service-Oriented and Cloud Computing
ESOCC 2016, pages 152–167, 2016.

[4] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. Dynamic scaling
of web applications in a virtualized cloud computing environment. In
IEEE Intl Conf on e-Business Engineering, pages 281–286, 2009.

[5] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and
I. Truck. Using reinforcement learning for autonomic resource allocation
in clouds: towards a fully automated workflow. In International
Conference on Autonomic and Autonomous Systems, pages 67–74, 2011.

[6] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck. From
data center resource allocation to control theory and back. In IEEE 3rd
International Conference on Cloud Computing, pages 410–417, 2010.

[7] D. Fang, X. Liu, I. Romdhani, P. Jamshidi, and C. Pahl. An agility-
oriented and fuzziness-embedded semantic model for collaborative cloud
service search, retrieval and recommendation. Future Generation Com-
puter Systems, 56:11 – 26, 2016.

[8] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling
for cloud systems. In Network and Service Management (CNSM), 2010
International Conference on, pages 9–16. IEEE, 2010.

[9] R. Han, L. Guo, M.M. Ghanem, and Y. Guo. Lightweight resource
scaling for cloud applications. In 12th International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pages 644–651, 2012.

[10] M.Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S.L.D. Gudreddi.
Integrated and autonomic cloud resource scaling. In Network Operations
and Management Symposium (NOMS), pages 1327–1334, 2012.

[11] J. Huang, C. Li, and J. Yu. Resource prediction based on double
exponential smoothing in cloud computing. In Intl Conf on Consumer
Electronics, Communications and Networks, pages 2056–2060, 2012.

[12] M.C. Huebscher and J.A. McCann. A survey of autonomic computing:
Degrees, models, and applications. ACM Comp Surveys, 40(3):7, 2008.

[13] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical prediction for adaptive
resource provisioning in the cloud. Future Generation Computer
Systems, 28(1):155–162, 2012.

[14] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic resource provisioning
for cloud-based software. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and self-Managing
Systems (SEAMS), pages 95–104, 2014.

[15] P. Jamshidi, C. Pahl, and N. C. Mendona. Managing uncertainty in
autonomic cloud elasticity controllers. IEEE Cloud Computing, 3(3):50–
60, 2016.

[16] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, and
G. Estrada. Fuzzy self-learning controllers for elasticity management in
dynamic cloud architectures. In International ACM Sigsoft Conference
on the Quality of Software Architectures (QoSA), 2016.

[17] P. Jamshidi, A.M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada. Self-
learning cloud controllers: Fuzzy q-learning for knowledge evolution.
In International Conference on Cloud and Autonomic Computing, pages
208–211, 2015.

[18] E. Kalyvianaki, TheT.mistoklis Charalambous, and S. Hand. Self-
adaptive and self-configured cpu resource provisioning for virtualized
servers using kalman filters. In Proceedings of the 6th international
conference on Autonomic computing, pages 117–126. ACM, 2009.

[19] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano. A review of
auto-scaling techniques for elastic applications in cloud environments.
Journal of Grid Computing, 12(4):559–592, 2014.

[20] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan. Online self-
reconfiguration with performance guarantee for energy-efficient large-
scale cloud computing data centers. In Services Computing (SCC), 2010
IEEE International Conference on, pages 514–521. IEEE, 2010.

[21] P. Padala, K.-Y. Hou, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In ACM Europ Conf on Computer systems, pages 13–26, 2009.

[22] C. Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2(3):24–31, 2015.

[23] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud
using predictive models for workload forecasting. In Intl Conf on Cloud
Computing (CLOUD), pages 500–507, 2011.

[24] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[25] G. Tesauro, N.K. Jong, R. Das, and M.N. Bennani. A hybrid reinforce-
ment learning approach to autonomic resource allocation. In IEEE Intl
Conference on Autonomic Computing, pages 65–73, 2006.

[26] Q. Zhu and G. Agrawal. Resource provisioning with budget constraints
for adaptive applications in cloud environments. In ACM Intl Symp on
High Performance Distributed Computing, pages 304–307, 2010.

