
A Hybrid Cloud Controller for Vertical Memory
Elasticity: A Control-theoretic Approach

Soodeh Farokhi∗, Pooyan Jamshidi†, Ewnetu Bayuh Lakew§, Ivona Brandic∗, and Erik Elmroth§
∗Faculty of Informatics, Vienna University of Technology, Austria.

†Department of Computing, Imperial College London, United Kingdom.
§Department of Computing Science, Umeå University, Sweden.

Email: ∗{firstname.lastname}@tuwien.ac.at, †p.jamshidi@imperial.ac.uk, §{ewnetu, elmroth}@cs.umu.se

Abstract—Web-facing applications are expected to provide
certain performance guarantees despite dynamic and continuous
workload changes. As a result, application owners are using
cloud computing as it offers the ability to dynamically provision
computing resources (e.g., memory, CPU) in response to changes
in workload demands to meet performance targets and eliminates
upfront costs. Horizontal, vertical, and the combination of the
two are the possible dimensions that cloud application can be
scaled in terms of the allocated resources. In vertical elasticity
as the focus of this work, the size of virtual machines (VMs)
can be adjusted in terms of allocated computing resources
according to the runtime workload. A commonly used vertical
resource elasticity approach is realized by deciding based on
resource utilization, named capacity-based. While a new trend
is to use the application performance as a decision making
criterion, and such an approach is named performance-based.
This paper discusses these two approaches and proposes a novel
hybrid elasticity approach that takes into account both the
application performance and the resource utilization to leverage
the benefits of both approaches. The proposed approach is used
in realizing vertical elasticity of memory (named as vertical
memory elasticity), where the allocated memory of the VM
is auto-scaled at runtime. To this aim, we use control theory
to synthesize a feedback controller that meets the application
performance constraints by auto-scaling the allocated memory,
i.e., applying vertical memory elasticity. Different from the
existing vertical resource elasticity approaches, the novelty of our
work lies in utilizing both the memory utilization and application
response time as decision making criteria. To verify the resource
efficiency and the ability of the controller in handling unexpected
workloads, we have implemented the controller on top of the
Xen hypervisor and performed a series of experiments using the
RUBBoS interactive benchmark application, under synthetic and
real workloads including Wikipedia and FIFA. The results reveal
that the hybrid controller meets the application performance
target with better performance stability (i.e., lower standard
deviation of response time), while achieving a high memory
utilization (close to 83%), and allocating less memory compared
to all other baseline controllers.

Keywords: cloud computing, feedback control loop,
vertical memory elasticity, performance, response time,
memory utilization, interactive applications.

I. INTRODUCTION

Cloud applications face dynamic and bursty workloads
generated by variable numbers of users. Therefore, dynamic
resource provisioning is necessary not only to avoid the appli-
cation performance degradation, but also to efficiently utilize
resources. Consequently, infrastructure providers ought to have
a resource provisioning technique that allocates resources

according to application demands in order to attract customers
and to use their resources efficiently.

Since the users of modern interactive applications are
becoming increasingly interested to have high and predictable,
if not guaranteed, performance, the need for having robust
auto-scaling1 solutions that would meet their service level
agreement (SLA) is rising for cloud environments. Otherwise,
unexpected workloads can cause a poor service performance
that kills user’s satisfaction. Several studies have shown that
increased response times reduce, revenue [1]. For instance,
Amazon found a page load slowdown of just 1sec could cost
$1.6 billion in sales each year [2]. Google stated only half a
second delay in search page generation time dropped traffic
by 20% [3].

Resource elasticity, as one of the main selling points of
cloud computing [4, 5, 6], is defined as the degree to which a
cloud service is able to accommodate the varying demands at
runtime by dynamically provisioning and releasing resources,
such that the available resources match the current demands
closely [6]. Two types of resource elasticity are defined:
horizontal and vertical. While horizontal resource elasticity
allows virtual machines (VMs) to be acquired and released
on-demand, vertical resource elasticity allows adjusting com-
puting resources (e.g., CPU or memory) of individual VMs
to cope with runtime changes. Accordingly, vertical memory
elasticity, as the focus of our work, is the case where the size
of the allocated memory of the VM is dynamically changed at
runtime. Generally speaking, horizontal resource elasticity is
coarse-grained, i.e., VMs are considered as resources, which
have static and fixed size configurations. Vertical resource
elasticity, on the other hand, is fine-grained: the size of the
VMs in terms of a particular computing resource such as CPU
or memory can be dynamically changed to an arbitrary size
for as short as a few seconds [5].

Horizontal elasticity has been widely adopted by commer-
cial clouds due to its simplicity as it does not require any
extra support from the hypervisor. However, due to the static
nature and fixed VM size of the horizontal elasticity, appli-
cations cannot be provisioned with arbitrary configurations of
resources based on their demands. This leads to inefficient
resource utilization as well as SLA violations since the demand
cannot always exactly fit the size of the VM. To efficiently
utilize resources and avoid SLA violations, horizontal elasticity
should be complemented with fine-grained resource allocations

1“Auto-scaling” and “Elasticity” are used alternatively in this paper.

where the VM sizes can be dynamically adjusted to an arbitrary
allocated computing resources according to runtime demands.
Moreover, based on a European Commission report on the
future of cloud computing [7], vertical elasticity is one of
the areas that is not fully addressed by current commercial
efforts, although its importance is acknowledged. For example,
vertical elasticity is considered as a key enabling technology
to realize resource-as-a-service (RaaS) clouds and one of the
main driving features of the second-generation Infrastructure
as a Service (IaaS 2.0) [8], in which users pay only for the
resources they actually use, and cloud providers can use their
resources more efficiently and serve more users [5, 9].

Nevertheless, from the research point of view, in the last
decade, most elasticity research has focused on horizontal,
while only few research efforts have addressed vertical elas-
ticity [10] due to lack of support from hypervisors. However,
vertical scaling of resources has recently started to be sup-
ported by the hypervisors such as Xen [11] and KVM [10].
Unlike horizontal elasticity that is widely supported by almost
all commercial cloud providers, only a few cloud providers
such as DotCloud2 and ProfitBricks3 have started commercial
support for vertical elasticity. However, with the current rate of
technological developments and user expectations, the support
of vertical elasticity techniques will become necessary by any
public cloud providers in the future [10].

In theory, one can turn any computing resource, like CPU
or memory, vertically elastic if there is a way to measure its
behavior continuously over time and if there is at least one
knob to change its behavior. However, the practical exploita-
tion of vertical resource elasticity is very challenging due to the
following reasons: (i) intrinsically dynamic and unpredictable
nature of the and applications’ workloads; (ii) the difficulty
in determining which resource (e.g., memory or CPU) is
the bottleneck [12]; (iii) non-trivial relationship between the
performance metrics (e.g., throughput or response time) and
the amount of required resources; (iv) detecting when and how
much of resources can be added to or removed from the VM
while maintaining the desired application performance.

In this work, we used control theory to synthesize a
controller for vertical memory elasticity of cloud applications,
i.e., the elastic resource is memory and it is adjusted by
the controller. The main motivation behind the choice of
control theory in our work is to use this well-established
theory for modeling and designing feedback loops to make
the cloud applications self-adaptive and achieve a proper
balance between fast reaction and better stability. Moreover,
since the time to adjust memory at runtime is close to
instantaneous, control theory is a good fit. The proposed
approach, named hybrid memory controller, takes the advan-
tages of both the performance-based (PC) and the capacity-
based (CC) elasticity control approaches. As commonly used
vertical resource elasticity approaches, CC approaches take
the resource utilization as a decision making criterion to do
the resource elasticity, while PC approaches, give the priority
to the application performance and adjust the resources in
accordance to the application performance metrics such as
response time. However, a CC approach is inadequate to ensure

2docCloud: https://www.dotcloud.com/
3ProfitBricks:www.profitbricks.com

the application performance, and a PC approach may not
be able to provide the level of performance assurance that
a CC approach can provide efficient resource utilization as
the performance of an application can also be affected, for
example, by bugs inside the application or by other resources
which are not considered by the controller. Therefore, using
both the application performance and the resource utilization
at the same time would allocate the right amount of resources
for the application while preventing both under and over-
provisioning. In summary, at the designed feedback loop of
the proposed hybrid memory controller, scaling up or down
of the allocated memory is considered as the control knob
parameter, while the application response time (RT) and VM
memory utilization are used as feedback variables.

We evaluated the hybrid memory controller using RUB-
BoS [13] as an interactive benchmark application and compare
the results of the hybrid controller with a performance-based
controller [14, 15] and a capacity-based controller [10]. We
validate our approach using synthetic traces generated based
on open and closed user loop models [16] along with the real
user request traces of Wikipedia [17] and FIFA WorldCup [18]
websites, which are the number of requests/ users accessing
these two websites per unit time. Results show that the hybrid
memory controller ensures efficient resource utilization as well
as meeting application performance.

Contribution. The contribution of this paper lies in de-
veloping and experimentally evaluating a vertical memory
controller that takes both memory utilization and application
performance as indicators to adjust the memory size of the VM
hosting an application at runtime. The goal is to provide guar-
anteed performance using RT as a key performance indicator
(KPI) for cloud applications. We show that the new approach
can fulfill the performance guarantees of the application while
avoiding over- or under-committing the allocated memory.
Specifically, our contributions are:

1) Performance model design– a performance model is
proposed based on control theory in order to deter-
mine how each application is behaving compared to
its target performance.

2) Memory prediction– using the output from the per-
formance model and the actual memory utilization,
the amount of memory to be allocated for each
application is predicted.

3) Performance guarantee and efficient resource utiliza-
tion– the proposed approach ensures that the appli-
cation performance is met while maintaining high
utilization of memory.

4) The proposed approach is evaluated using a real
application under different workloads. We compare
its performance along with resource usage with both
performance-based and capacity-based approaches.

The remainder of this paper is organized as follows: Sec-
tion II motivates our work. Section III provides background
regarding memory vertical elasticity and the mechanisms how
it can be achieved. Section IV presents the proposed hybrid
memory elasticity approach, including the design of the system
model and the memory controller. The experimental evaluation
and discussion of the results are presented in Section V. Key
findings, the limitation of our work, and the threats to validity

https://www.dotcloud.com/
ProfitBricks: www.profitbricks.com

are presented in Section VI. Finally, Section VII presents the
related work, and Section VIII concludes the paper and brings
up the opportunities for the future research directions.

II. MOTIVATION

The pervasive and popular architectural patterns for a cloud
application is the 3-tier pattern [19]. It comprises presentation
tier (representing user interface), business logic (BL) tier
(featuring the main business logic), and data storage (DS)
tier (managing the persistent data). Multiple tiers of a cloud
application may be involved in processing user requests, thus,
requiring different resources such as memory. Therefore, re-
source auto-scaling may be required for one or more tiers in
order to meet application performance. In this work, we focus
on vertical memory scaling of the BL tier.

Based on the Apache Web server performance tuning
tip [20], "the single biggest issue affecting web-server per-
formance is RAM. The more RAM your system has, the more
processes and threads Apache can allocate and use; which
directly translates into the amount of concurrent requests/
clients Apache can serve.". In order to show that the dynamic
thread creation of Apache is working as expected in accor-
dance to the allocated memory and its effects the application
performance, we conducted an experiment using ab, Apache
HTTP Server benchmarking tool4 for RUBBoS application.
The result is depicted in Fig. 1.

We deployed the BL and DS tiers of RUBBoS on different
VMs, while provisioning sufficient memory and CPU cores to
the VM hosting the DS tier. We also over-provisioned the VM
hosting the BL tier in terms of CPU (8 CPU cores), while we
configured three different values for the allocated memory (i.e.
1GB, 2GB, and 4GB) in order to show the effect of memory
on the application performance. By using a workload generator
tool, httpmon5, we defined variable workload dynamics
which stress BL tier for memory during the application life
span at runtime by slowly increasing the number of users (i.e.,
requests/ sec) from 100 to 1000 (with 100 users increment
each time). During the experiment, the number of concurrent
Apache processes was monitored by checking the Apache
server status6, which were dynamically varying according to
the number of concurrent users and allocated memory size.
As shown in Fig. 1, when more memory is allocated to the
VM, a better application performance is achieved as Apache
can create more threads. As the number of concurrent users is
increased, the difference in performance (in both throughput
and RT) among the three memory configurations also becomes
more apparent. The aim of applying an auto-scaling solution
for such a scenario is to dynamically adjust the amount of
memory to keep the application performance, e.g., RT in this
work, under a desired value regardless of the variation in
workloads.

Note that allocating more memory to the VM-hosting DS
tier will also lead to the ability of caching more data into
memory, therefore, increasing the probability of a cache hit and
consequent enhancement of the application RT. However, due
to the lack of research on memory elasticity of the BL tier (e.g.,

4ab: https://httpd.apache.org/docs/2.2/programs/ab.html
5httpmon: https://github.com/cloud-control/httpmon
6w3m http://VM-IP/server-status

0

200

400

600

800

100 200 300 400 500 600 700 800 900 1000

th
ro

ug
hp

ut
 [#

/ s
ec

]

1G 2G 4G

0

1000

2000

3000

4000

100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e
[m

s]

number of concurrent users

Motivation Scenario

thesis

0

1

2

3

4

100 200 300 400 500 600 700 800 900 1000

1G 2G 4G

number of concurrent users

re
sp

on
se

 ti
m

e
(s)

(b)

(a)

Figure. 1: The effect of vertical memory scaling on the RUBBoS
application performance: (a) throughput; (b) response time.

for Apache Server), and the need for the further application
support in case of vertical memory auto-scaling of the DS tier
(e.g., for MySQL [21]), we chose to primarily concentrate on
BL tier. The proposed solution targets applications that can
benefit from live memory elasticity at runtime, i.e. application
with dynamic memory requirements, and also applications in
which the performance bottleneck is memory not CPU.

III. MEMORY ELASTICITY BACKGROUND

In this section, in order to explain the logic behind the pro-
posed hybrid approach, we first introduce current approaches
for vertical resource elasticity and then explain mechanisms to
enforce memory actuation.

A. Vertical Elasticity Approaches

Resource vertical elasticity approaches can be catego-
rized into performance-based, capacity-based, and hybrid ap-
proaches:

(i) Capacity-based approaches.As the most popular elas-
ticity approach from the cloud provider point of view, this
approach uses resource utilization as the decision making
criteria to change the amount of resource to be allocated
[22, 23, 24]. In other words, the utilization data is used to
estimate the required resource at runtime. Efficient use of
resources is one of the main advantages of such an approach,
but on the other hand, decision making based solely on
utilization of the resources can lead to violating performance
guarantees of the application as the decisions are oblivious
to applications performances [25]. In other words, a sustained
high resource utilization can tell us that the system suffering,
but it cannot determine by how much. While the whole point
of elasticity is to figure out by how much we need to scale up
to meet the current demand or scale down to avoid the resource
wastage, and consequently taking the appropriate action [26].

(ii) Performance-based approaches. Since modern appli-
cations are getting more performance sensitive, as a new

https://httpd.apache.org/docs/2.2/programs/ab.html
https://github.com/cloud-control/httpmon

trend of the resource elasticity, this category of approaches
decide to what extent either increase or decrease the allocated
resources based on the application performance properties,
such as response time or throughput at runtime [5, 15, 25].

(iii) Hybrid approaches. As the main contribution of this
work, we bring up a new approach named hybrid in which
we leverage from the advantages of both performance-based
and capacity-based approaches. The rationale behind such an
approach is that while a capacity-based approach is inadequate
to ensure the application performance, a performance-based
approach may not able to provide a sufficient level of re-
source efficiency that a capacity-based approach can provide.
Therefore, by taking both the application performance and
the resource utilization as two decision making criteria would
result to satisfy the application users in terms of performance,
as well as the application owner in terms of the application
resource usage. Detailed explanation of the proposed hybrid
approach is presented in Section IV.

B. Hypervisor-level Mechanisms to support Memory Elasticity

The hypervisor is responsible to support vertical elastic-
ity.Vertical memory elasticity operation requires some support
from the VM’s kernel, hence two mechanisms are commonly
mentioned:

(i) Hot memory add or remove. Adding or removing
resources without having to reboot the system is called hot
add or remove. Assuming a kernel supports hot memory
add or remove, this concept can easily be extended to virtual
environments: whenever the hypervisor wants to take memory
from a virtual machine, it would request it through a VM-
hypervisor interface, and the VM’s kernel would be elastic
with respect to memory. This mechanism is not widely used
since it cannot be supported by the guest operating systems
without restarting the VM.

(ii) Memory ballooning.

In this mechanism, instead of adding or removing memory,
the VM’s kernel can ban the usage of a portion of memory in
spite of the fact that initially it was allocated to the VM. This
is achieved by running a custom device driver, the so-called
ballooning driver, in the VM’s kernel, which creates a bridge
between the hypervisor and the VM. Using this mechanism,
the VM’s kernel is booted with a certain amount of memory.
Initially, the balloon would be deflated, i.e., the ballooning
driver would request no memory from the VM’s kernel. Hence,
the VM could use all the initial memory. If the hypervisor
wants to reduce the memory allocation of the VM, then it
would tell the balloon to inflate to that amount. When the
balloon expands, the physical memory available in the VM
is reduced that compels the guest operating system to reduce
the memory footprint of other processes when insufficient free
memory is detected; for instance, via passing some of the
processes’ memory pages to the swap space, or killing some of
them in extreme situations. Then, the memory allocated by the
balloon process in the guest OS can be reclaimed by the host
OS, and can then be used by other co-located VMs, enabling
a higher consolidation ratio on the physical host [27]. Finally,
if the hypervisor decides to increase the memory allocated to
the VM, it would map that amount to the VM address space,
in the region allocated by the balloon driver. Now the balloon

controller

application

deployed on

VM

memory
size

memory utilization (Umem)

desired RT

Hybrid Memory Controller

measured RT
application / VM

sensors

actuator

Figure. 2: The architecture of the hybrid memory controller. The
colored modules are the contribution of this work.

driver has access to that memory, and can safely release it
to the VM’s kernel. Despite its complexity, this mechanism
reacts almost instantaneously, that is, the guest OS reflects the
memory change a few moments after the operation is executed
through the hypervisors’ API7 [10].

Based on the above explanation, in contrast to hot memory
add or remove, memory ballooning has some restrictions in
order to support memory elasticity: (i) a maximum amount
of memory needs to be specified; (ii) some ballooning drivers
can only deflate as much as they had been previously inflated.
However, in the case of memory ballooning, it is supported by
all recent Linux kernels and no additional features are required.
This makes memory ballooning a practical mechanism for
realizing vertical memory elasticity, as it is supported by both
Xen and KVM hypervisors, while hot memory add or remove
is currently not supported by any guest OSs without restarting
the VM [27]. Therefore, in our work, we utilize the ballooning
mechanism provided by the Xen hypervisor via reconfiguration
API. The freed memory can then be used by other co-located
VMs enabling a higher ratio on the PM [27].

IV. HYBRID MEMORY ELASTICITY

In this section, we explain the detailed design of the
proposed hybrid memory controller.

A. Overview

In our work, we consider a cloud infrastructure that hosts
interactive applications, each with variable workload dynamics.
Each application has an SLA that stipulates a target value
expressed as mean response time. The goal is to continuously
adjust the allocated memory of applications without human
intervention, so as to drive applications’ performance toward
their targets. Specifically, the desired controller should be
capable of allocating just the right amount of memory for each
application at the right time in order to meet its respective per-
formance target, avoiding both under- and over-provisioning of
resources.

Fig. 2 shows the architecture of the proposed hybrid
memory controller. It loosely follows a Monitor, Analysis,
Planning, and Execution (MAPE) loop based on self-adaptive
software terminology [28]. Monitoring gathers information

7"virsh setmem" in KVM, "xm mem-set" in Xen

desired
output

controller’s
output

disturbances

application
deployed on

VM

memory size
(ctlimi)

workload
measured RT

(rti)

(a)

(b)

control
error

controlled system

+
-

+
-

desired RT
(rt)~ ei = rt - rti

~

memory utilization (Umemi)

target
system

hybrid
memory

controller

controller

measured
output

Figure. 3: (a) The standard feedback loop [29] (b) Our feedback loop.

such as the observed RT, average memory utilization from the
hosted services at each interval. During analysis, the memory
required by an application to meet its performance target
is computed using the proposed controller. The goal of the
controller is to allocate the right amount of memory in order
to meet the application performance target.

The proposed memory controller determines the amount of
memory that should be allocated using the application RT and
VM memory utilization as decision making criteria. Previous
monitoring data is used to fit the model parameters. Finally,
during the planning and execution phase, hypervisor is config-
ured to enforce the computed resources. A high level function
of each component depicted in Fig. 2 is described as follows.

• Controller. It is an adaptive controller that dynami-
cally tunes the amount of memory required for each
application using the values of measured RT given
by the application sensor and the desired RT as
well as the value of the memory utilization (Umem)
given by the VM sensor. It is called adaptive since
it dynamically keeps the system model updated at
runtime. As the main part of the contribution of this
paper, the proposed controller will be discussed in
details under Section IV-B.

• Sensor. This component gathers the application- and
VM-level real time performance information consist-
ing the mean response time and the average memory
utilization of the application and the allocated VMs,
periodically. We refer to this period as the control
interval. Memory utilization statistics are monitored
over a control interval by using /proc/meminfo.
These monitoring values are used as a feedback and
decision making criteria in hybrid memory controller
for the next control interval.

• Actuator. At each control interval, the controller in-
vokes this module which is the Xen API for memory
allocation, to either increase or decrease the allocated
memory of the VM hosting the application at runtime.

While sensor and actuator will be briefly introduced in Sec-
tion V, the controller as the main part of the contribution, will
be discussed in details under Section IV-B.

B. System Model and Controller Design

In the context of control theory, a standard feedback control
loop is illustrated in Fig. 3 (a) [29]. The controller periodically

adjusts the value of the controller’s output in such a way that
the measured output can stay close to the desired output. The
controller aims to maintain the difference between the desired
and measured output (referred to as the control error) close
to zero, in spite of the disturbances in the target system. The
disturbances are what affect the measured output, but they are
not controllable [30].

We develop hybrid memory controller for cloud applica-
tions. In an equivalent feedback loop consisting of hybrid
memory controller, Fig. 3 (b), the target system is a cloud
application deployed on a VM. The controller’s output at
each iteration i is named ctli and is mapped to the memory
size memi to enable elasticity by scaling the VM memory
up or down. The desired RT r̃t and the measured RT rti
in our control loop are the desired and measured output,
respectively. The control error ei is the difference between
these two values at each iteration, as shown in Eq. (1). The
number of user requests (workload) and a change in the mix
of different request types in the workload are considered
as the disturbances. Since the controller cannot control the
workload change, it should adjust the application deployment
environment in order to meet the desired RT.

ei = r̃t− rti (1)

We adopted and customized the control formula originally
devised in [31, 32]. As shown in Eq. (2), the controller’s
output ctli is calculated based on its previous value ctli−1

and a coefficient of the control error. The coefficient is based
on the value of α, β, and pole, which are described as follows.

ctli = ctli−1 − 1− pole

αi
· βi · ei (2)

The system model parameter α represents a first order
model of the reaction to the controller’s output. Similar to [31],
in our work α is calculated at each control interval by applying
the linear regression technique based on the effect of ctl on rt.
The model building is started when the controller passes a min-
imum number of control intervals to be able to gather enough
information to adaptively calculate and update the value of
α, e.g., 25 control interval used in our experiments, before
that a default value is used for the α (10 in our experiments).
Moreover, to improve the stability of the controller, we apply
the weighted moving average (WMA) filtering technique on
the gathered values before calculating the value of α at each
control interval.

The parameter β is a function of memory utilization
Umemi

∈ [0, 1] of the VM hosting the application and it is
calculated adaptively at each control interval. The rationale
behind having such a parameter is to have more insight
on the current memory required by the application before
increasing or decreasing the memory size. β is defined as
shown in Eq. (3).

βi =

{
1− Umemi ei > 0

Umemi
ei ≤ 0

(3)

When ei > 0, it means the measured RT rti is better than
the desired RT, r̃t, (see Eq. (1)), which can indicate the over-
provisioning situation where the current allocated memory is
more than enough for the application to process the current
workload. Therefore, the controller should carefully decrease

the memory to some extent to avoid over-provisioning while
still meeting r̃t. However, based on our observation during
while performing the experiments, there is a period in which in
spite of having a reasonable RT, memory utilization is getting
very high. Such a period is when the allocated memory is
near to its saturation point, but still the remaining memory
is good enough for the application in response faster than
the desired RT. In this situation, if the controller only reacts
based on the control error, it would decrease the memory and
this usually leads to a sudden increment of measured RT. To
avoid this situation, β is defined as 1− Umemi

when ei > 0.
Therefore, β will be very low when the memory utilization
is high, and this will lessen the decrement of the memory
(see Eq. (2)).

On the other hand, ei ≤ 0 represents an overload condition
when the application workload is high and more memory is
needed to be able to meet the desired RT, so the controller
should increase the amount of allocated memory. Nevertheless,
if the memory utilization Umemi

is low it can indicate that
memory is not the main reason of having a high RT, so the
controller should be conservative on adding a large body of
memory in this situation. Therefore, β is defined as Umemi

and consequently this will influence the change at the allocated
memory.

The choice of pole determines the stability of the controlled
system, and how fast it approaches to its equilibrium. The sta-
bility of the controller is ensured as long as 0 ≤ pole < 1 [31].
In order to develop a more stable and robust controller, we
apply the weighted moving average error smoothing method
used in time-series analysis for calculating control error before
using it in Eq. (2). At each control interval, hybrid memory
controller tracks r̃t by rejecting the influence of workload
fluctuation on rti and withstands the control error ei as long as
it is insignificant. Finally, the controller’s output ctl ∈ (0, 1) is
mapped to a memory size mi ∈ [mmin,mmax] using Eq. (4).

mi = ctli · (mmax −mmin) +mmin (4)

where mmin and mmax are the minimum and maximum
amount of VM memory sizes expressed by the number of
memory units8 munit, which are allowed to be allocated, mi

is the final output of hybrid memory controller. For more ex-
tensive details about the hybrid controller design methodology
refer to [33].

C. Assessment of the Controller Properties

From the perspective of control theory, a controller should
be able to provide four main properties: (i) stability; (ii)
absence of overshooting; (iii) low settling time; (iv) robustness
to model inaccuracies. First, let’s consider the static case, in
which the values of α and β are fixed based on the results of
the experiments and do not change with time. In this case, the
control properties are given by [31], and a choice of the pole
between 0 and 1 guarantees stability, absence of overshooting,
a robustness that depends on the value of the pole (the closer
to 1, the more robust), and a settling time that depends on
the value of the pole (the closer to 0, the fastest). This allows
the controlled system to trade off robustness for settling time,
which is usually done in control theory.

8Memory unit is a discrete block of memory, e.g., 64MB in this work.

In the case of our proposed controller, where we also
consider adaptation of the controller, recalling Eq. (2) what
changes is the weight that is given to the error. That is indeed
changed by a factor that is given by the changes of β and
α. Similar to [31], since the WMA is used for the value
of α, so it will not change too fast, so it does not affect
the stability of the closed user loop model. Actually, it even
improves convergence, it is because by using updated values
of α, the system model is a more precise representation of
what is happening at the current time. The value of β here is
always between 0 and 1, therefore, it affects the settling time
but not the stability. Clearly, if a controller acts on less than the
error that it experiences, it will be slower in reacting in case the
model is correct. However, it also increases robustness, because
the controller would take smaller steps towards the satisfaction
of the goals. No matter how β is changed, the fact that its value
is between 0 and 1 makes it possible to state that stability is
preserved, settling time is increased, but with an increase in
robustness. This is preferable because apparently the model
may not be very precise around some of the operating points -
due to memory saturation or some other runtime situation that
happens in software systems.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental performance
evaluation of the proposed hybrid memory controller (HMC)
and compare it against two baseline approaches: performance-
based memory controller (PMC) [14, 15] and capacity-based
memory controller (CMC) [10]. In what follows, we first
describe these baseline approaches, then we explain the exper-
imental setup and finally, we report and discuss the evaluation
results.

A. Baseline Approaches

CMC. This approach, as discussed in Section III-A, uses
memory utilization as its decision criterion. We used the
solution presented in [10] which proposes a vertical elasticity
manager (VEM) based on memory utilization. The VEM en-
compasses an elasticity rule that is applied based on a concept
called memory over-provisioning percentage (MOP) ∈ [0, 1].
The idea behind MOP is to avoid thrashing so that to keep the
VM memory size beyond the memory used by the application.
The proposed elasticity rules enable CMC to decide when
to scale up or scale down by monitoring the memory usage
memused ∈ [0, 1] and the calculated MOP at each control
interval (every 5 seconds used in our experiments). As shown
in Eq. (5) the memused is estimated by using the values
reported at meminfo9 file, which includes the information
about the Linux system’s memory at runtime. Similar to HMC
and PMC, we define a minimum amount of memory where the
controllers cannot shrink the memory size of the VM below
this amount. This will allow the guest OS to properly operate
and avoid experiencing unexpected application crashes due to
the lack of memory.

memused = total − (free + cached + buffers) (5)

The proposed elasticity rule is applied if the free memory of
the VM, memfree = 1 −memused, is smaller than 80% or

9/proc/meminfo

greater than 120% of the MOP. Under such conditions, CMC
dynamically adjusts the memory size of the VM using Eq. (6).

memsize = memused · (1 + MOP) (6)

This rule implies decreasing or increasing the memory size
depends on the behavior of the application deployed on the
VM, and the magnitude of the memory changes depends
on how fast or slow the application requests or releases the
memory. A lower value of MOP aims at reducing the unused
memory of the VM, i.e., achieving higher utilization, but
has a higher chance to incur in thrashing if the application
memory consumption grows faster than the rate at which CMC
increases the memory size. In contrast, a higher MOP aims at
reducing the chance of thrashing if the memory consumption
grows rapidly, but surely at the expense of wasting more mem-
ory. Based on our experimental setup (i.e., the used benchmark
application and the workload pattern), as suggested in the
original work [10], we use 0.1 for the Wikipedia workload
trace and 0.2 for the FIFA workload trace as values for MOP.
This is because of the different nature of these workloads. A
larger value of MOP leads to achieving better result in case of
unpredictable and sudden workload such as FIFA workload.

PMC. This approach (see Section III-A), is based on our
previously designed memory controller presented in [14]. It is
also an adaptive version of the work proposed in [15], which
follows a control synthesis technique. As shown in Eq. (7), the
control formulation is roughly the same as what we proposed
in Eq. (2), but without including the parameter β.

ctli = ctli−1 − 1− pole

α
· ei (7)

At each control interval, similar to HMC, PMC’s out-
put ctl ∈ [0, 1] is mapped to a memory size memi ∈
[memmin,memmax] using the same mapping formula that we
used in our work, Eq. (4).

B. Experimental Setup

The experiments were conducted on a physical machine
(PM) equipped with 32 cores10 and 56 GB of memory. To
emulate a typical virtualized environment and easily perform
vertical elasticity, we used Xen hypervisor. The benchmark
application, as shown in Fig. 4, was deployed on two separate
VMs. VM1 runs a Web server, Apache 2.0 with PHP
enabled, and VM2 runs the application database, MySQL.
To emulate long connections that induce memory-intensive
behavior on VM1, as would be the case with techniques such as
long-polling, we set keep alive timeout to 10 seconds. To avoid
VM2 being a bottleneck, we provisioned sufficient memory
(10 GB) and CPU (10 cores) for that during the experiments.
Besides, we set our experimental setup in a way that there is no
memory consumption limit for Apache running on VM1. We
used Apache MPM prefork module, which is thread safe
and therefore suitable to be used with PHP applications. We set
parameters regarding Apache processes (e.g., MaxClients
and ServerLimit) to relatively high values, i.e., 2000 in our
experiments. This value is well above the number of concurrent
requests that Apache has to deal with during any of the
experiments in our work.

10Two AMD OpteronTM6272 processors, 2100 MHz, 16 cores each.

Experimental Setup

RUBBoS
BL tier

(Apache 2.0)

OS (Ubuntu)

KVM hypervisor

elastic memory

memory controller

server-side

memory (4GB)

RUBBoS
DS tier
(MySQL)

OS (Ubuntu)

VM2 VM1

CPU (4 cores) CPU (4 cores)

client-side

httpmon
client+monitoring

workload
traces

http GET request

response time

56

PM (32 GB memory, 16 processors)

< Java + Matlab > 2 1

3

4

Xen Hypervisor

server side
VM1

client side

httpmon
load emulator

workload

Physical Machine (56 GB memory, 32 processors)

1

OS (Ubuntu)

RUBBoS
BL tier

(Apache 2.0)

 memory controller
<java>

control side
VM2

memory (fixed)

RUBBoS
DS tier

(MySQL)

OS (Ubuntu)

CPU (fixed)

http GET request
measured response time
memory utilization (Umem)

App / VM
 sensors

CPU (fixed)

elastic memory 3 2

4

Figure. 4: Experimental setup for the evaluation scenarios. HMC,
PMC, or CMC can be used as the memory controller. Numbers
indicate the experiment’s process.

Benchmark Application. To test the applicability of our
contribution, we performed experiments using RUBBoS as an
interactive benchmark application. It is an open source multi-
tier interactive application. It implements the essential bulletin
board features of Slashdot site11 and has been widely used in
cloud research community [23, 34, 35]. It includes two tiers: a
front-end tier, which is a Web server that performs the BL by
using PHP server side scripts; a back-end tier that stores user
information, stories, and related comments. We use an updated
PHP version of RUBBoS12. The benchmark includes two kinds
of workload modes: browse-only and write interaction. We use
browse-only workload in all the experiments to more stress the
BL tier with read-only http GET requests.

Workloads. Experiments were performed using different
workloads to characterize the controller’s responses to perfor-
mance changes. We evaluated the controller using workload
generated based on the open and closed user loop models [16].
A closed user loop model is defined when the arrival of new
requests is only triggered by previous request completions,
followed by a delay according to thinktime. The effective
average request inter-arrival time is the sum of the average
thinktime and the average response time of the application,
hence dependent on the performance of the evaluated ap-
plication. While, an open user loop model is defined when
new requests arrive independently of the previous request
completions, typically modeled as Poisson process, requests
are issued with an exponentially-random inter-arrival time,
characterized by a rate parameter, without waiting for requests
to complete. For open clients, we change the arrival rate
and inter-arrival time during the course of the experiments as
required to stress the system. For the closed model, thinktime
of each client as well as the number of concurrent users are
varied. The change in arrival rate or number of users is made
instantly. This makes it possible to meaningfully compare the
system behavior under these two client models. For instance,
to increase the number of requests by five-folds or ten-folds to
understand the behavior of our solution; to induce memory
intensive behavior by varying different parameters such as
thinktime and the number of concurrent users accessing the
systems. To emulate the users accessing the applications, under
both open and closed user loop models, we used the httpmon
workload generator tool. We also kept constant the number of

11Slashdot: http://slashdot.org
12RUBBoS: https://github.com/cristiklein/brownout/tree/rubbos-icse2014

http://slashdot.org
https://github.com/cristiklein/brownout/tree/rubbos-icse2014

 0

 200

 400

 600

 800

0 200 400 600 800 1000

n
u
m

b
e
r

o
f
re

q
u
e
s
ts

[p
e
r

s
e
c
]

Time [sec]

FIFA
Wikipedia

_______ _______

Synthetic___

Figure. 5: Workload patterns based on the user requests accessing
real Websites: Unpredictable–FIFA-based and Predictable–Wikipedia-
based, and synthetic (open and closed user loop models) workload.

requests for some time to study the behavior of the models
under both the steady- and transient-states.

In addition, to validate the applicability of our approach
against real-life situations, we used two real workloads: (i)
the Wikipedia workload [17] extracted from a trace of 10%
of all user requests issued to Wikipedia Website (in German
language) during the period between September 19, 2007
and January 2, 2008; (ii) the FIFA WorldCup Website access
logs [18], named as FIFA workload in our work, that includes
all the requests made to the 1998 WorldCup Website between
April 30, 1998 and July 26, 1998. As reported in [18],
during this period of time the Website received 1,352,804,107
requests. These two traces were selected due to their comple-
mentary nature. While the Wikipedia workload shows a steady
and predictable trend, the FIFA workload has a bursty and
an unpredictable pattern. Fig. 5 depicts the scaled patterns of
these two real workloads as well as the synthetic workload
used– generated based on open and closed loop models. The
scaling of the real workloads is according to the capacity of our
experimental setup, while keeping the original patterns. These
workloads finally are mapped to the number of concurrent
users who send http GET requests to the used benchmark
application. To facilitate the reproduction of our research, we
released the csv files of these workloads13.

Metrics. The response time of a request is defined as
the time elapsed from sending the first byte of the request
to receiving the last byte of the reply. In this work, we are
mostly interested in the average RT over 20 seconds (4 control
intervals), which is a long enough period to filter measurement
noise, but short enough to highlight the transient behavior of an
application. Note that, as pointed in [26], suitable auto-scaling
metrics are the ones which are related to a single application
tier. Such metrics can be tracked, patterns can be learned,
statistics can be calculated, and intelligent elasticity controllers
then can use them to ensure the user satisfactions in terms of
the SLA. This is one of the reasons that in our work we only
focus on the BL tier of the cloud application, so based on
our experimental setup (see Section V-B), the defined metric
is only dependent on the memory resource of the VM hosting
the BL tier of the application.

Experiment Process. As shown in Fig. 4 by the numbers,
the experiment starts with feeding the workload traces into
httpmon (1), and based on the workload at each control
interval, httpmon emulates a specific number of concurrent

13https://gitlab.com/soodeh/workloads/tree/master

users to send http GET requests to the application under
test (2). In each control interval, 5 seconds in our experi-
ments, the application sensor observes the average RT and
the VM sensor14 measures and sends the average of memory
utilization (3). Both sensors send their monitored information
via TCP/IP connection to the controller. Depending on the
evaluation setup, either HMC, PMC, or CMC is used as the
memory controller and then it will dynamically adjust the
memory size of VM2. While for HMC both the memory uti-
lization and measured RT are required, in the case of the other
controllers only one of these measurements is enough for the
corresponding controller to decide the memory size. Finally,
the used memory controller invokes the memory actuator, i.e.,
the Xen API for memory allocation, to either increase or
decrease the allocated memory of VM1 at runtime (4).

C. Experimental Results

In this section, the evaluation results will be presented and
discussed as follows:

(i) non-adaptive scenarios. Analyzing the time-series re-
sults of a non-adaptive RUBBoS under both Wikipedia and
FIFA workloads. Non-adaptive scenarios consisting of over-
and under-provisioning the memory;

(ii) HMC time-series analysis. Analyzing the time-series
results of HMC under various workloadtraces consisting open
closed user loop models, Wikipedia and FIFA workloads. The
goal here is to show that the proposed controller is able to
meet the desired RT without over-provisioning while achieving
a relatively high memory utilization;

(iii) Time-series comparison. Presenting the results related
to the behavior of CMC and PMC under Wikipedia and
FIFA workloads and Comparing them with the results of the
proposed controller, HMC, with a similar experimental setup;

(vi) Aggregate analysis. Reporting the aggregate results
related to a self-adaptive RUBBoS equipped with the three
controllers under different scenarios as well as a non-adaptive
RUBBoS with under- and over-provisioned memory.

The plots in this section are structured as follows. Each
figure shows the results of a single experiment. Note that
we performed a number of experiments and found similar
patterns in the results and then presents one of them. The
bottom x-axis represents the time elapsed since the start of
the experiment. In each figure, the upper graph plots mean
response times, the bottom graph plots the memory and CPU
utilization of the VM hosting the BL tier (i.e., VM1) of the
application under test. The rationale behind reporting the CPU
utilization is to show that in the experiments, CPU has not been
the bottleneck resource. Finally, the middle graph plots the
amount of memory required in GB computed by the respective
controller and allocated to VM1 over the next 5 seconds as the
default control interval.

Non-adaptive scenarios. Figs. 6 and 7 presents the be-
havior of a non-adaptive RUBBoS, with over-provisioning and
under-provisioning of allocated memory under Wikipedia and
FIFA workloads, respectively. The aim of these scenarios is to
show the application measured RT when the allocated memory

14https://gitlab.com/soodeh/monitoring-scripts/tree/master

https://gitlab.com/soodeh/workloads/tree/master
https://gitlab.com/soodeh/monitoring-scripts/tree/master

is static under different workloads. It can be observed that in
the over-provisioning (Figs. 6a and 7a), the target RT easily
was met with allocating 4GB of memory, but with the expenses
of wasting the memory most of the time during the experi-
ments and consequently a high resource cost, while achieving
relatively low resource utilization. On the other hand, in the
case of under-provisioning experiments (Figs. 6b and 7b), the
measured RT roughly follows the workload pattern and is much
higher than the target RT from when the workload started
to increase while achieving a very high resource utilization.
However, the application is unable to respond quickly and
handle the peak periods, so all requests after this time face the
measured RTs far higher than the desired RT. More precisely,
under sever lack of memory and a large amount of user
requests, the Web server enters a state where it is unable to
respond to any single request. If this happens, the reaction
of the VM to memory increment will become much slower
than normal. Avoiding this situation is a challenge for the
controller. In general, these results reveal the need for self-
adaptive solutions, i.e., using memory elasticity controllers.

HMC Time-Series Analysis. To show the behavior of
HMC under various runtime conditions, the diagrams of Fig. 8
show results of different scenarios in which RUBBoS applica-
tion has been equipped with HMC under various workloads:
(i) synthetic workloads consisting open and closed user loop
models (Figs. 8a and 8b); (ii) real workloads consisting
Wikipedia and FIFA traces (Figs. 8c and 8d). In general, the
measured RTs remain lower than or relatively close to the
target values under both user loop models (see Figs. 8a and 8b)
and the RTs converge to the target values immediately, mostly
without being noticed, after detecting a sudden increase or
decrease in workload, e.g., from the 1st interval (200 requests/
users) to the 2nd interval (500 requests/ users). This can be
seen also in scenarios with real workloads (see Figs. 8c and 8d
while considering Fig. 5). The used pole value for all scenarios
is 0.9, but in the case of Wikipedia due to the slow, incremental
nature of the workload where it is not required to have a
quick reaction from the controller, so we set the pole value
0.99 empirically which lead to the lower control error for this
workload.

The other important point to note is that HMC properly
detects and adapts to the memory capacity required to meet the
target RTs for both open and closed user loop models. Indeed,
as it can be observed from the plots presented in Figs. 8a
and 8b, a close observation of the results reveals that the
memory allocated is slightly higher under the open user loop
model compared to the closed user loop model for similar
configurations (i.e., under the same workload as written on
top of the first diagram in Figs. 8a and 8b). This is because
the number of Apache processes created is slightly higher
under the open than the closed user loop model. Moreover,
there is a slight increase in memory usage as the number
of users or arrival rates increase because of the equivalent
number Apache processes created. However, memory is not
immediately released unlike CPU cores as the number of users
or arrival rates decrease. This is because the idle Apache
processes are not garbage collected immediately. In general,
since the nature of the memory allocation is quite different
with the other resource such as CPU cores in terms of
responsiveness, i.e., memory is released or reclaimed by the
application slowly, a memory controller should have enough

time to monitor the correct reaction of the application to the
change and then decide the right amount of the memory for
the next control interval.

Time–Series Comparison of CMC, PMC, and HMC. To
compare the behavior of the proposed controller with the two
baseline controllers, Figs. 9 and 10 present the results achieved
by using these two baseline controllers, while considering the
results achieved by HMC (Figs. 8c and 8d) using the same
benchmark application under Wikipedia and FIFA workload,
respectively.

As shown in Figs. 9b and 10b, while CMC as a capacity-
based controller was able to highly utilized the allocated
memory, it is obviously inadequate to ensure the performance.
Based on the results of Figs. 9b and 10a, the values of the
measured RT exactly follow the application workload pattern
(see Fig. 5 for the Wikipedia and FIFA workload patterns,
respectively). This is because that capacity-based approaches
are oblivious to the observed performance of services and only
tries to adjust the allocated resources in a way to achieve a high
resource utilization. Therefore, the important point is that the
decisions of such a controller may lead to SLA violations, so
it is not sufficient for performance-sensitive applications such
as interactive applications.

The results of PMC, Figs. 9a and 10a, on the other hand,
reveals that taking the application response time as an indicator
of the memory scarcity is enough to meet the application
performance requirements. However, a performance-based ap-
proach such as PMC sometimes decides inefficiently as it
does have any feedback regarding the resource utilization.
This can lead to either over- or under-provisioning. As an
example, a common problem of such approaches is when
the application performance is close to the saturation point,
but still the measured RT is far better that the desired RT,
therefore, PMC decides to decrease the allocated memory
to avoid the memory wastage. While the controller in this
situation is oblivious about the memory utilization, depends on
the intensity of the workload at that moment, any decrement
of memory may suddenly enter the application into a memory
saturation circumstance and consequently achieving a sudden
peak at the measured RT and sometimes the SLA violation.
For instance, this problem be seen in Fig. 9a around time
4200sec with the sudden RT peaks.

Nevertheless, results of Figs. 8c and 8d show that HMC
remains stable in terms of both achieving performance targets
and avoiding resource over- and under-provisioning. In com-
pared to CMC based on the utilization plots (considering the
last diagram of Figs. 8c and 9b under Wikipedia workload,
and Figs. 8d and 10b under FIFA workload), while it is clear
that the achieved memory utilization using HMC is relatively
lower than by using CMC, the measured RT is kept under
the desired RT in case of HMC. In comparison with PMC
(Figs. 9a and 10a), HMC was able to meet the desired RT
with less oscillations, low values for the standard deviation
(SD) of RT as reported in Table I which will be discussed later,
and achieving a higher memory utilization. These comparisons
are more obvious when analyzing the aggregate results of the
remaining of this section.

Aggregate Analysis. To assess the aggregate behaviors
of HMC in comparison with PMC, and CMC over the course

 0

 20

 40

 60

 0

 2

 4

 6

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

desired RT

measured RT allocated memory memory utilization

CPU utilization

re
s
p

o
n

s
e

 t
im

e
[m

s
]

m
e

m
 c

a
p

a
c
it
y

[G
B

]

u
ti
li
z
a

ti
o

n

[%
]

(a) Over-provisioning the memory, Wikipedia workload, 20ms target RT

 0
 200
 400
 600
 800

 1000

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

desired RT
measured RT allocated memory memory utilization

CPU utilization

re
sp

o
n
se

 t
im

e
[m

s]
m

e
m

 c
a
p
a
ci

ty
[G

B
]

u
til

iz
a
tio

n
[%

]

(b) Under-provisioning the memory, Wikipedia workload, 20ms target RT

Figure. 6: Non-adaptive RUBBoS, under Wikipedia workload with 20ms target RT.

 0
 10
 20
 30
 40

 0

 2

 4

 6

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

desired RT
measured RT allocated memory memory utilization

CPU utilization

re
sp

o
n

se
 t

im
e

m
e

m
 c

a
p

a
ci

ty
[G

B
]

u
til

iz
a

tio
n

[%
]

[m
s]

(a) Over-provisioning the memory, FIFA workload, 15ms target RT

 0
 10
 20
 30
 40

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

desired RT
measured RT allocated memory memory utilization

CPU utilization
re

sp
o
n
se

 t
im

e
[m

s]
m

e
m

 c
a
p
a
ci

ty
u
til

iz
a
tio

n
[%

]
[G

B
]

(b) Under-provisioning the memory, FIFA workload, 15ms target RT

Figure. 7: Non-adaptive RUBBoS, under FIFA workload with 15ms target RT.

Table. I: Self-adaptive and non-adaptive aggregate results of RUBBoS under the two synthetic workload models, as well as Wikipedia and
FIFA workloads.

Scenario definition Workload (r̃t) Controller ISE ISTE Memory usage
(mean) [GB]

RT
(mean) [ms]

RT
(SD) [ms]

Ucpu

[%]
Umem

[%]

non-adaptive
Wikipedia (20ms) Over-provisioned 2.86 18.97 4 8.7 0.7 27.97 33.67

Under-provisioned 94.4 85.63 1 234.0 305.35 60.45 85.97

FIFA (15ms) Over-provisioned 0.11 0.07 4 1.91 4.80 12.51 29.62
Under-provisioned 126.34 231.81 1 110.77 12.36 30.99 86.88

aggregate results of HMC open (30ms) HMC (pole 0.9) 81.6 55.56 2.42 14.61 13.62 34.63 69.62
closed (30ms) HMC (pole 0.9) 82.48 55.53 2.15 13.02 11.46 34.91 68.85

controllers’ comparisons

Wikipedia (20ms)
HMC (pole 0.99) 36.4 23.45 1.60 10.45 6.93 31.05 83.36
PMC (pole 0.99) 38.13 25.33 2.32 15.0 64.73 19.47 59.74
CMC (MOP 0.1) 30.5 22.25 2.06 176.15 173.19 42.02 90.97

FIFA (15ms)
HMC (pole 0.9) 0.11 0.06 1.34 8.12 7.71 38.99 82.18
PMC (pole 0.9) 0.17 0.10 2.08 11.39 11.26 18.65 57.39
CMC (MOP 0.2) 12.13 4.25 1.36 98.99 63.33 18.02 90.93

T

desired RT

measured RT

allocated memory

memory utilization

CPU utilization

re
sp

o
n

se
 t

im
e

[m
s]

m
e

m
 c

a
p

a
ci

ty
[G

B
]

u
til

iz
a

tio
n

[%
]

(a) Open system model, 30 ms target RT, 0.9 pole, interval 5sec

 0
 20
 40
 60

[users, thinktime]
200 , 1 500 ,1 100 ,1 700, 2 200 ,1

 0
 1
 2
 3
 4
 5

 20
 40
 60
 80

 100

0 360 720 1080 1440
Time [sec]

1800

desired RT
measured RT

allocated memory
memory utilization
CPU utilization

re
sp

on
se

 ti
m

e
[m

s]
m

em
 c

ap
ac

ity
[G

B
]

ut
ili

za
tio

n
[%

]

(b) Closed system model, 30ms target RT, 0.9 pole, interval 5sec

 0

 20

 40

 60

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

desired RT

measured RT allocated memory memory utilization

CPU utilization

re
s
p
o
n
s
e
 t
im

e
[m

s
]

m
e
m

 c
a
p
a
c
it
y

[G
B

]

u
ti
li
z
a
ti
o
n

[%
]

(c) Wikipedia workload, 20ms target RT, 0.99 pole, interval 5sec

 0
 10
 20
 30
 40

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

desired RT
measured RT allocated memory memory utilization

CPU utilization

re
sp

o
n
se

 t
im

e
[m

s]
m

e
m

 c
a
p
a
ci

ty
[G

B
]

u
til

iz
a
tio

n
[%

]

(d) FIFA workload, 15ms target RT, 0.9 pole, interval 5sec

Figure. 8: Self-adaptive RUBBoS equipped with HMC, under different workload traces and configuration parameters.

 0

 20

 40

 60

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

desired RT

measured RT allocated memory memory utilization

CPU utilization

re
s
p
o
n
s
e
 t
im

e
[m

s
]

m
e
m

 c
a
p
a
c
it
y

[G
B

]

u
ti
li
z
a
ti
o
n

[%
]

(a) PMC: Wikipedia workload, 20ms target RT, 0.99 pole, interval 5sec

 0
 200
 400
 600

 0
 1
 2
 3
 4
 5

 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

re
sp

o
n
se

 t
im

e
[m

s]
m

e
m

 c
a
p
a
ci

ty
[G

B
]

u
til

iz
a
tio

n
[%

]

desired RT
measured RT allocated memory memory utilization

CPU utilization

(b) CMC: Wikipedia workload, MOP 0.1, interval 5sec

Figure. 9: Self-adaptive RUBBoS equipped with PMC (a) and CMC (b), under Wikipedia workload.

 0
 10
 20
 30
 40

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

desired RT

measured RT allocated memory memory utilization

CPU utilization

re
s
p
o
n
s
e
 t
im

e
[m

s
]

m
e
m

 c
a
p
a
c
it
y

[G
B

]

u
ti
liz

a
ti
o
n

[%
]

(a) PMC: FIAF workload, 15ms target RT, 0.9 pole, interval 5sec

 0
 10
 20
 30
 40

 0
 1
 2
 3
 4

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

desired RT

measured RT allocated memory memory utilization

CPU utilization

re
s
p
o
n
s
e
 t
im

e
[m

s
]

m
e
m

 c
a
p
a
c
it
y

[G
B

]

u
ti
liz

a
ti
o
n

[%
]

(b) CMC: FIFA workload, MOP 0.2, interval 5sec

Figure. 10: Self-adaptive RUBBoS equipped with PMC (a) and CMC (b), under FIFA workload.

of the experiments, in Table I, we report the mean values of the
allocated memory, memory utilization, and CPU utilization, as
well as the values for the mean and SD of RT for different
scenarios. Moreover, we also present two control theoretic
metrics, Integral of Squared Error (ISE) and Integral Squared
of Timed Error (ISTE) [36], which represent the observed
error during the life span of the system under test. These
metrics are computed as shown in Eqs. (8) and (9) [36],
where e (t) = r̃t − rt (t). ISE metric reports how much the
measured RT is close to the desired RT (set point). ISTE
is a timed variant of the ISE, which weights the error over
time and reduces the effect of the initial transient phase. ISTE
would result in better values for a control theoretical solution,
where the transient phase is the price to pay for modeling and
controlling the system [36]. Note that although achieving a
lower measured RT seems preferable from the end users’ point
of views, an elasticity controller should be able to achieve a
measured RT that is close to the desired RT, not far better since
this can implicitly indicate the resources over-provisioning.

ISE =
1

n

∑
(e (t))

2 (8)

ISTE =
1

n

∑
(t · e (t))2∑

t
(9)

Table I shows these aggregated results of the non-adaptive
RUBBoS application without using any controller, as well as
the self-adaptive RUBBoS equipped with different controllers
under different test scenarios. As shown in this table, the first
set of results is related to non-adaptive experiments under
Wikipedia and FIFA workload where we have not used any
of the controllers. The goal of such experiments was to show
that with a static memory allocation strategy, we either should
sacrifice the application performance (see under-provisioning
results), or we can meet the desired performance with the
expense of memory wastage to be able to handle the workload
peak (see the over-provisioning results). The rational behind
having a relatively high CPU utilization in the case of under-
provisioning case under Wikipedia workload in compared to
all other scenarios is that, when the memory is not sufficient

for the application to handle the workload, the VM starts using
thrashing which is a CPU intensive task.

The second set of scenarios (the second row of Table I)
is related to HMC under open and closed user models. The
aggregate results using HMC reveal that while HMC was able
to keep the measured RT less than the desired RT, it uses
reasonable memory with relatively low error values, while the
memory utilization is close to 70% in these two experiments.
Note that achieving a relatively low CPU utilization in all
scenarios indicates that CPU in not a resource bottleneck in
any of the scenarios (i.e., CPU has been over-provisioned).

The last set of experiments (the last row of Table I),
compare the aggregate results of HMC to the two baseline
controllers, PMC, and CMC, under the Wikipedia and FIFA
workload with similar test conditions. A controller is said to
be better if the desired RT is met with less error and without
memory over-provisioning. In the case the three first experi-
ments under Wikipedia workload, while HMC uses the lease
amount of memory (1.60GB), it could meet the application
performance target with low control errors and high memory
utilization (83.36%). Although among the all, CMC achieved
the highest memory utilization (90.97%), the measured appli-
cation RT is very high (173.19ms) compared to the desired RT
(20ms), and it used even more memory (2.06GB) than the
proposed HMC. In the case the last three experiments under
FIFA workload, similar results were achieved. HMC uses the
least amount of memory (1.34GB), while meeting the appli-
cation performance target with the lowest control errors and
relatively high memory utilization (82.18%). Again, among all
the controllers CMC achieved the highest memory utilization
(90.93%), but the desired RT was violated (98.99ms) compared
to the desired RT (15ms), while using almost the same memory
(1.36GB) as the proposed HMC.

Figures 11 and 12 respectively visualises the aggregated
results presented in Table I under Wikipedia and FIFA work-
loads. Specifically, each of these figures depicts the aggre-
gate results obtained under the respective workloads for 5
different experiments, including self-adaptive scenarios, (us-
ing HMC, CMC, and PMC presented with reddish plots), as

23
.4

5

10
.4

5

6.
93

1.
60

83
.3

6

22
.2

5

17
6.

15

17
3.

19

2.
06

90
.9

7

25
.3

3

15
.0

0

64
.7

3

2.
32

59
.7

4

85
.6

3

23
4

30
5.

35

1

85
.9

7

18
.9

7

8.
70

0.
70 4

33
.6

7

ISTE [ms] RT (mean) [ms] RT (SD) [ms] memory used [GB] *memory util. [%]

Performance-related metrics Cost-related metrics

HMC CMC PMC under-provisoning over-provisoning

Figure. 11: Comparison of the aggregate results for self-adaptive RUBBoS under Wikipedia workload using CMC, PMC, and HMC, and
non-adaptive RUBBoS, based on the values reported in Table I. *Note that, except the other metrics, achieving a higher value is preferred in
the case of memory utilization.

0.
11

8.
12

7.
71

1.
34

82
.1

8

4.
25 63

.3
3

98
.9

9

1.
36

90
.9

3

0.
10

11
.2

6

11
.3

9

2.
08

57
.3

9

23
1.

81

11
0.

77

12
.3

6

1

86
.8

8

0.
07

4.
83

1.
91

4

29
.6

2

ISTE [ms] RT (mean) [ms] RT (SD) [ms] memory used [GB] memory util. [%]

Performance-related metrics Cost-related metrics

HMC CMC PMC under-provisoning over-provisoning

Figure. 12: Comparison of the aggregate results for self-adaptive RUBBoS under FIFA workload using CMC, PMC, and HMC, and
non-adaptive RUBBoS, based on the values reported in Table I.

well as non-adaptive scenarios (under- and over-provisioning,
presented with back plots) in terms of either performance-
related metrics, or cost-related metrics. These two diagrmas
are illustrated in details in next section.

VI. DISCUSSIONS AND LIMITATIONS

In the remainder of this section, we discuss the results,
limitations, threats to the validity of the findings, some insights
and future work.

A. Discussion

Recalling Figs. 11 and 12, in general, the usage of the
proposed HMC controller (the dark red plots) leads to better
results in both performance and cost aspects. More precisely, in
the case of Wikipedia workload (see Fig. 11 achieved results
using HMC compared to the results using one of the base-
line controllers reveal that, while the observed control error
(ISTE) over the experiment period was almost comparable,
the stability in RT is less for CMC compared to HMC (173.19
SD vs. 6.93 SD) by even allocating more memory (2.06GB
vs. 1.60GB), leading to SLA violation. This shows that a
capacity-based approach such as CMC in spite of achieving a
higher resource utilization (90.97% vs. 83.36%) compared to
our proposed hybrid-approach, is oblivious to the application
performance, achieving at least 10 times worse RT compared
to HMC (176.19ms vs. 10.45ms), and it obviously violated
the SLA (20ms).

In the case of FIFA workload (see Fig. 12, the observed
control error (ISTE) over the experiment period were similar

for PMC and HMC, but it is much higher for CMC. After
the over-provisioning scenario, the stability in RT is the
minimum for the proposed HMC (7.71) compared to other two
controllers by even allocating the minimum memory. Although
again CMC achieved the highest memory utilization (90.93%
vs. 82.18) compared to our proposed hybrid-approach and
performance-based approach, is oblivious to the application
performance, violating the SLA (15ms) compared to HMC
(63.33ms vs. 8.12ms).

On the other hand, a performance-based approach such
as PMC could achieve almost the same measured RT compared
to the proposed hybrid approach (HMC) with comparable
control error under both workloads, but with higher memory
usage (Wikipedia workload: 2.32GB vs. 1.60GB; FIFA work-
load: 2.06GB vs. 1.34GB), less memory utilization (Wikipedia
workload: 59.74% vs. 83.36%; FIFA workload: 57.93.74%
vs. 82.18%), and much less stability in measured RT based
on the value of SD under Wikipedia workload (64.73ms vs.
6.93msc) and comparable values in case of FIFA workload
(11.39ms vs. 8.12ms). The more stability was achieved by the
hybrid approach due to the insight that it has into resource
utilization in comparison to a performance-based approach
that only decides based on the application performance, i.e.,
response time, at runtime. That is why HMC achieved the
best stability (i.e., the lowest SD value) in RT among all other
baseline controllers.

Results related the comparison between two non-adaptive
scenarios and self-adaptive RUBBoS equipped with our pro-
posed hybrid controller (HMC) show the benefit of leveraging
elasticity controllers that dynamically adjust the allocated

resources, rather than allocating static amount of resources.
Compared to HMC, at the over-provisioning scenario, the
memory utilization is lower (Wikipedia workload: 33.67% vs.
83.36%; FIFA workload: 29.62% vs. 82.18%), and allocating
much more memory in average (4GB vs. 1.60GB–Wikipedia
and 1.34GB–FIFA). While achieving the lowest average RT,
which is far better than the desired RTs (20ms and 15ms), with
the expense of wasting resources. On the other hand, while
in the under-provisioning experiment only 1GB of memory
was allocated statically with a high utilization (85.97.97%–
Wikipedia, 86.88%), due to the lack of memory during the
workload peak, the mean and SD of measured RT are not
acceptable (see Figs. 11 and 12) and it lead to SLA violation.

In summary, the trade off between the importance of saving
more on memory usage (i.e., achieving a higher memory
utilization) or having less performance violation is subjective
and is up to the owner of the cloud application. Moreover, the
behavior of the hybrid controller under all experiments reveals
that HMC behaves as intended. After identifying the system
model and updating it, if it is required, at each control interval,
it adjusts the right amount of memory in order to keep the
measured RT close to the desired RT without over-committing
the memory by considering the memory utilization as another
decision making indicator along with the application response
time.

B. Limitations

Reactive rather than proactive. Although the violation rate
by using HMC, as a reactive approach, was very low (recalling
the first plots of Figs. 8a to 8d), even this amount might be
unacceptable for the industrial usages, as the money which
can be saved by using such controllers may not compensate
the degradation in their users’ satisfactions. Therefore, using a
proactive approach to address this concern would be superior.
However, one can configure HMC with a value lower than
the desired output. This way, before the controlled output
goes outside of its desired regime, corrective action can be
triggered by the controller, i.e., explicitly, the controller can
behave proactively.

Using a linear regression technique to build the system
model. Although as mentioned in [31], the system model used
in the control formula does not necessary have to capture
the exact relationship between the controller’s output and the
measured output, but a rough estimation is enough to tune the
controller, the fact that the model rebuild mechanism is linear
regression limits its applicability in highly dynamic situations
such as burstly workload.

Using empirical tuning for configuring the controller rather
than running sensitivity analysis. For the reported experimental
scenarios, we empirically set the pole value by monitoring
the control error for different value and then we chose the
value which lead to the lowest error for that scenario. However,
enhancing the controller to adaptively find the best value for
pole can be one of the future directions.

C. Threats to Validity

Evaluation with a limited virtulized environment. Since
vertical elasticity is not yet supported widely by public in-
frastructure providers, HMC was evaluated on a virtulized

environment using Xen hypervisor (i.e., roughly similar to a
private cloud). However, changing the allocated memory on-
demand has been possible very recently in some public clouds
such as ProfitBricks15. Therefore, evaluating HMC using public
clouds services is considered as a future task.

Correlating application RT with the memory size of the VM
hosting the BL tier. In order to observe the influence of the
memory allocation of the VM hosting the BL tier, we set our
experiments by considering: (i) assigning the proper number
of CPU cores; (ii) focusing on a memory-intensive application
scenario; (iii) the assignment of enough memory to the VM
hosting the DS tier to be able to cache the whole application
database; (iv) stressing the application by read-only requests.
Since fetching required data from the cache is greatly faster
than processing each request by the BL tier, the changes in
the measured RT can be considered independent of the DS
tier, i.e., it can be assumed that the VMs used for different
application tiers behave independently.

Technical constraints of vertical elasticity. Apart from
the challenges addressed throughout the controller designing
process, there are still several technical constraints that should
be carefully considered while focusing on the memory elastic-
ity: (i) depending on the memory allocation strategy used in
hypervisors, reducing memory size may not be beneficial for
the host OS. However, in the case of Xen hypervisor and using
ballooning mechanism, the released VM memory size can be
used for other co-located VMs; (ii) even when the memory size
can be changed at the OS level, some applications cannot still
support the dynamic memory allocation and eventually need to
be restarted to take advantages of the new allocated memory,
such as JVM applications. However, we focused on Apache
Web service that can leverage the new allocated memory in a
dynamic and live manner.

VII. RELATED WORK

The field of elastic systems in general and auto-scaling
approaches, in particular has been gaining momentum in cloud
computing [4], and several approaches based on different
frameworks, models and techniques have been applied, turning
it into a mature field. In this section, instead of reviewing the
breadth of this field, which has been reviewed in [37, 38], we
summarize the work on vertical elasticity in cloud computing,
and then carefully look at the most relevant control-theoretic
approaches that have been applied to enable auto-scaling of
cloud applications. By following this approach, not only can
we position our work into this narrow filed in cloud computing,
but we can also provide a clear view of the impact of control
theory in this field.

A. Vertical Elasticity Approaches

In theory, any resource could be elastic, however, the
practical exploitation depends on the type of the resource, cost
and complexity of the implementation. Since the focus of this
paper is on vertical scaling of memory, we mainly review work
related to vertical memory elasticity and briefly explore the
efforts for other resources such as CPU. The research work in
the area of vertical elasticity is presented in two categories:
capacity-based and performance-based approaches.

15www.profitbricks.com/help/Live_Vertical_Scaling

www.profitbricks.com/help/Live_Vertical_Scaling

Capacity-based approaches. Baruchi et al. [22] compare
two techniques for memory elasticity: (i) based on the concept
of EMA, which was also used in our work; (ii) based on Page
Faults. They experimentally show that when Page Faults are
used to scale memory, the performance is improved in com-
parison with the EMA technique. Dawoud et al. [23] propose
the concept of Elastic VM that supports dynamic resource
scaling feature without rebooting the system. They experi-
mentally demonstrated that Elastic VM architecture requires
less consumption of resources and avoids scaling-up overhead
while guaranteeing SLAs. The authors claim it is more suitable
for memory scaling with lower costs and complexity. The
authors of [10] use elasticity rules to adapt the VM memory
size to the application requirements. A mechanism is proposed
to monitor the VM memory and apply vertical elasticity rules
in order to dynamically change its memory size by using the
memory ballooning technique provided by KVM hypervisor.
Similar to us, they show that it is possible to adapt the VM
memory size while maintaining the performance level of the
running application. Molto et al. [10] present a mechanism for
adapting the VM memory size to the memory consumption
pattern of the application by using a simple elasticity rule.
Kalyvianaki et al. [39] supports vertical elasticity by adopting
Kalman filtering and statistical approaches to track and control
the CPU utilization in virtualized environments in order to
guide capacity allocation. In [40], the authors use two layers
of controllers, one to regulate the relative utilization for each
tier of a RUBBiS Web application, and a second one to further
adjust the allocations in cases of CPU contention. Baruchi
et al. [22] compare two techniques for memory elasticity:
exponential moving average (EMA), and page faults. They
demonstrate that scaling memory using page faults improves
the performance as compared to the EMA technique.

Performance-based approaches. The authors of [5]
and [15] propose a significantly faster average response time
models by using parameter estimation techniques for CPU
and memory, respectively. These models require only minimal
training or knowledge about the hosted applications while
simultaneously reacting as quickly as possible to changes in
workloads. In [14] the authors propose an autonomic resource
controller consisting two controllers for CPU and memory
vertical elasticity, and a higher level fuzzy controller as a
coordination between these two controllers. Their proposed
approach considers the application performance as the main
elasticity reasoning and resource utilization to infer the degree
of contribution of each resource on application performance
change. Spinner et al. [27] proposes a proactive vertical mem-
ory approach which takes the application performance and the
change at the workload in order to adjust the allocated memory
at runtime. In [41] the authors present a performance model
which captures the relationship between the CPU allocation
and the application performance is automatically extracted and
updated online using resource demand estimation techniques.
This model is then used in a feedback controller to dynamically
adapt the number of virtual CPUs of individual VMs.

B. Control-Theoretic Approaches on Auto-scaling

Controller synthesis. Our work is inspired by the idea of
simple yet general controller synthesis proposed in [31, 32]
that reduces the need for strong mathematical background to
devise ad-hoc control solutions. There are some approaches

based on control theory (e.g., [35, 42]) that can enhance cloud
applications with the capability to adjust their resources based
on changing environmental conditions. These approaches typi-
cally synthesize an elasticity controller to automatically decide
when to activate some optional features. The benefit of such
approaches is that they allow guaranteeing some specific
desirable properties. Although such controllers are resilient
against stationary noises, they are proved to be robust against
non-stationary uncertainties.

Classic control. Some approaches (e.g., [30, 43, 44])
employ class control techniques, such as PID, to construct
autonomic controllers for adjusting resources. Other work use
feedback control to realize power management [45, 46] to
guarantees power consumption while maximizing performance
subject to the power budget. These controllers depend on
simple mathematical models and provide formal guarantees on
the properties of the controller, but they need to consider some
assumptions that constrain their adoption in highly dynamic
and volatile environments such as clouds.

Advanced control. Other approaches (e.g., [34, 36, 47]) try
to build on classic control theory or classic queuing models, by
proposing parametric models in which part of the parameters
are unknown at design time and can be adjusted by adopting
adaptive filters such as Kalman filtering.

Adaptive control. Adaptive control addresses some of
the shortcomings of fixed gain controllers by dynamically
estimating the model parameters and adjusting the gains of the
controller to better estimate the set point. Therefore, changes in
the system model are detected on the fly and incorporated into
the controller. A relevant example of such adaptive controller
has been employed in [48].

Knowledge-based control. The main difference between
the traditional model-based control theory approaches and
knowledge-based control approaches is that model-based ap-
proaches assume that a precise mathematical model of the
system to be controlled is explicitly available. Whereas, the
knowledge-based control does not make such an assumption,
but rely on expert knowledge [4]. Deriving an accurate math-
ematical model of the underlying software is a daunting task
due the non-linear dynamics of real systems [30, 49]. Fuzzy
control is a known knowledge-based control approach which
has been applied for dynamic resource allocation in cloud
[50]. In fuzzy control, which is typically called as model-free
approach, such non-linear functions of the target system is
implicitly constructed through fuzzy rules and fuzzy inference
by imitating human control knowledge. Although this facili-
tates knowledge elicitation from users, but such approaches are
still dependent on users’ inputs. Some approaches tackle this
problem by entangling the fuzzy control with machine learning
techniques [51, 52].

Black box control. Classic control approaches rely on
the use of mathematical models that is inherently limited
to the domain where it is possible to accurately define a
model structure and estimate model parameters. Black box and
surrogate models address this challenge by constructing the
models from input-output data collected over time, and thus
obtaining models that resemble the system by construction.
Interestingly, such black box approaches have been adopted
quite a lot in the context of cloud auto-scaling, e.g., [53, 54].

Online learning approaches. Some other established tech-
niques, such as machine learning, have been exploited to
enhance classic controllers. This approach allows the control
solutions to deal with unseen and emerging behaviors that may
differ from the design-time assumptions. Machine learning
approaches can be categorized as model-based and model-free,
depending on the use of analytical models. The most popular
model-based approaches use artificial neural networks (ANN)
[36], while popular model-free techniques use clustering to
discover new control rules [50]. In model based approaches,
the accuracy of the control actions is proportionally related to
the model structure and the training data [36]. In model-free
solutions, the accuracy depends on the learning rate and the
size of the action-configuration space [38].

C. Concluding remarks

The literature on auto-scaling is abundant. However, our
approach has several distinguishing aspects: first, because of
the special challenges in memory elasticity, research on this
topic is scarce compared to other resource elasticity research;
second, among the work exploring memory elasticity, most of
them [55, 56] look at the DS tier, as the effect of memory
on retrieving data is clear; therefore, being concerned with
the memory elasticity of the BL tier has not yet been well
investigated; third, our proposed hybrid approach consider
both application performance and resource utilization as de-
cision making criteria to scale up or scale down the memory
in order to leverage the benefits of both performance-based
approaches and capacity-based approaches.

VIII. CONCLUSION

This paper proposes a hybrid vertical memory elasticity
controller that leverages the benefits of both performance-
based and capacity-based elasticity approaches. The hybrid
controller was designed by using the concept of the feedback
control loop. It scales up or down the allocated memory as
a control knob, and takes the application performance and
VM memory utilization as feedback parameters to satisfy the
application performance constraints in spite of the varying
workload. For the evaluation, the results achieved by the hybrid
controller are compared in an experimental setup with the
results of a performance-based controller and a capacity-based
controller using RUBBoS as an interactive benchmark appli-
cation deployed in a virtualized environment using Xen hyper-
visor under synthetic and real workloads including Wikipedia
and FIFA. The results reveal that the hybrid controller achieves
a relatively high memory utilization (close to 83%), while
allocating the lowest amount of memory, and having a high
performance stability (i.e., standard deviation of response time)
compared to the two baseline controllers.

Generally speaking, such a controller can be used to
make a cloud application self-adaptive (memory-wise) and to
guarantee the desired performance while decreasing the cost
in terms of resource usage, i.e., achieving a high resource
utilization, for the application owner. We envision the future
work as follows: (i) improving hybrid memory controller by
using techniques such as Kalman Filtering to more precisely
rebuild the system model and hereby be able to more robustly

handle the workload fluctuations; (ii) considering the appli-
cation workload prediction to proactively realize the memory
elasticity.

ACKNOWLEDGMENT

The authors would like to thank Martina Maggio for her
constructive comments on the control related content of the
paper, Toni Mastelić for his technical points regarding the ex-
periments, and Cristian Klein for his valuable points regarding
the memory virtualization. This work was partially supported
by the doctoral college "Adaptive Distributed Systems", the
HALEY project, the Vienna Science and Technology Fund
(WWTF) through the PROSEED grant, the Swedish Research
Council (VR) project Cloud Control, and the Swedish Gov-
ernment’s strategic effort eSSENCE.

REFERENCES

[1] F. Nah, “A Study on Tolerable Waiting Time: How Long
are Web Users Willing to Wait?” Behaviour & Information
Technology, vol. 23, no. 3, pp. 153–163, 2004.

[2] K. Eaton. (2012) How One Second Could Cost Amazon $1.6
Billion In Sales. Available online: http://www.fastcompany.com/
1825005/impatient-america-needs-faster-intertubes/.

[3] J. Grossklags and A. Acquisti, “When 25 Cents is Too Much:
An Experiment on Willingness-To-Sell and Willingness-To-
Protect Personal Information,” in Workshop on the Economics
of Information Security (WEIS), 2007.

[4] P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource
provisioning for cloud-based software,” in International Sympo-
sium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2014, pp. 95–104.

[5] E. B. Lakew, C. Klein, F. Hernandez, and E. Elmroth, “Towards
Faster Response Time Models for Vertical Elasticity,” in IEEE
Conference on Utility and Cloud Computing (UCC), 2014, pp.
560–565.

[6] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud
Computing: What it is, and What it is not,” in International
Conference on Autonomic Computing (ICAC), 2013, pp. 23–27.

[7] L. Schubert, K. G. Jeffery, and B. Neidecker-Lutz, The Future
of Cloud Computing: Opportunities for European Cloud Com-
puting Beyond 2010. European Commission, 2010.

[8] Neovise. (2013) Second-generation Cloud Computing - IaaS
Services, What It Means, and Why We Need It Now.

[9] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir, “The Resource-as-a-service (RaaS) Cloud,” in Con-
ference on Hot Topics in Cloud Computing, 2012, p. 12.

[10] G. Moltó, M. Caballer, E. Romero, and C. de Alfonso, “Elastic
Memory Management of Virtualized Infrastructures for Ap-
plications With Dynamic Memory Requirements,” Procedia
Computer Science, vol. 18, pp. 159–168, 2013.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 164–177, 2003.

[12] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Per-
formance Anomaly Setection and Bottleneck Identification,”
Computing Surveys (CSUR), vol. 48, no. 1, p. 4, 2015.

[13] (2014) Rubbos. Available : http://jmob.ow2.org/rubbos.html.
[14] S. Farokhi, E. B. Lakew, C. Klein, I. Brandic, and E. Elmroth,

“Coordinating CPU and Memory Elasticity Controllers to Meet
Service Response Time Constraints,” in International Confer-
ence on Cloud and Autonomic Computing (ICCAC). IEEE,
2015, pp. 69–80.

http://www.fastcompany.com/1825005/impatient-america-needs-faster-intertubes/
http://www.fastcompany.com/1825005/impatient-america-needs-faster-intertubes/
http://jmob.ow2.org/rubbos.html

[15] S. Farokhi, P. Jamshidi, D. Lucanin, and I. Brandic,
“Performance-based Vertical Memory Elasticity,” in Interna-
tional Conference on Autonomic Computing (ICAC). IEEE,
2015, pp. 151–152.

[16] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Ver-
sus Closed: A Cautionary Tale,” in Networked Systems Design
and Implementation (NSDI), vol. 6, 2006, pp. 18–32.

[17] Wikipedia Access Traces. Available online: http://www.
wikibench.eu/?page_id=60, Last visit 2016-02-10.

[18] FIFA 1998 Web site Page View Statistics. Available online: http:
//ita.ee.lbl.gov/html/contrib/WorldCup.html, Last visited 2016-
02-10.

[19] N. Grozev and R. Buyya, “Multi-cloud Provisioning and Load
Distribution for Three-tier Applications,” Transactions on Au-
tonomous and Adaptive Systems (TAAS), vol. 9, no. 3, p. 13,
2014.

[20] Apache Performance Tuning. Available online: http://www.
devside.net/articles/apache-performance-tuning, Last visit 2016-
02-10.

[21] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Ap-
plication Level Ballooning for Efficient Server Consolidation,”
in European Conference on Computer Systems. ACM, 2013,
pp. 337–350.

[22] A. Baruchi and E. T. Midorikawa, “A Survey Analysis of
Memory Elasticity Techniques,” in Euro-Par Parallel Processing
Workshops. Springer, 2011, pp. 681–688.

[23] W. Dawoud, I. Takouna, and C. Meinel, “Elastic Virtual Ma-
chine for Fine-grained Cloud Resource Provisioning,” in Global
Trends in Computing and Communication Systems. Springer,
2012, pp. 11–25.

[24] Y. Wang, C. C. Tan, and N. Mi, “Using Elasticity to Improve
Inline Data Deduplication Storage Systems,” in International
Conference on Cloud Computing (CLOUD). IEEE, 2014.

[25] E. B. Lakew, “Autonomous Cloud Resource Provisioning: Ac-
counting, Allocation, and Performance Control,” Ph.D. disserta-
tion, Umeå University, Department of Computing Science, 2015.

[26] (2015) Metric Choice Matters for Intelligent Auto-
scaling. Available online: http://elastisys.com/2015/08/24/
metric-choice-matters-for-intelligent-auto-scaling/.

[27] S. Spinner, N. Herbst, S. Kounev, X. Zhu, L. Lu, M. Uysal,
and R. Griffith, “Proactive Memory Scaling of Virtualized
Applications,” in International Conference on Cloud Computing
(CLOUD). IEEE, 2015, pp. 277–284.

[28] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[29] S. Farokhi, P. Jamshidi, I. Brandic, and E. Elmroth, “Self-
adaptation Challenges for Cloud-based Applications: A Control
Theoretic Perspective,” in International Workshop on Feedback
Computing, 2015.

[30] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
P. Padala, “What Does Control Theory Bring to Systems Re-
search?” SIGOPS Operating Systems, vol. 43, no. 1, pp. 62–69,
2009.

[31] A. Filieri, H. Hoffmann, and M. Maggio, “Automated Design of
Self-Adaptive Software with Control-Theoretical Formal Guar-
antees,” in International Conference on Software Engineering
(ICSE), 2014.

[32] A. Filieri, M. Maggio, and et. al, “Software Engineering Meets
Control Theory,” in International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS),
2015.

[33] S. Farokhi, “Quality of Service Control Mechanisms in Cloud
Computing Environments,” Ph.D. dissertation, Vienna Univer-
sity of Technology, Faculty of Informatics, 2016.

[34] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang,
“Adaptive, Model-driven Autoscaling for Cloud Applications,”
in International Conference on Autonomic Computing (ICAC).
IEEE, 2014, pp. 57–64.

[35] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building More Robust Cloud Applications,” in In-
ternational Conference on Software Engineering (ICSE), 2014,
pp. 700–711.

[36] M. Maggio, H. Hoffmann, A. V. Papadopoulos, J. Panerati,
M. D. Santambrogio, A. Agarwal, and A. Leva, “Comparison of
Decision-making Strategies for Self-optimization in Autonomic
Computing Systems,” Transactions on Autonomous and Adap-
tive Systems (TAAS), vol. 7, no. 4, p. 36, 2012.

[37] G. Galante and L. C. E. d. Bona, “A Survey on Cloud Com-
puting Elasticity,” in IEEE Conference on Utility and Cloud
Computing (UCC), 2012, pp. 263–270.

[38] A. Gambi, G. Toffetti, and M. Pezzè, “Assurance of Self-
adaptive Controllers for the Cloud,” in Assurances for Self-
Adaptive Systems. Springer, 2013, pp. 311–339.

[39] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive
and self-configured CPU Resource Provisioning for Virtualized
Servers Using Kalman Filters,” in International conference on
Autonomic computing (ICAC). IEEE, 2009, pp. 117–126.

[40] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive Control of Virtualized
Resources in Utility Computing Environments,” in SIGOPS
Operating Systems, vol. 41, no. 3, 2007, pp. 289–302.

[41] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and
R. Griffith, “Runtime Vertical Scaling of Virtualized Applica-
tions via Online Model Estimation,” in International Conference
on Self-Adaptive and Self-Organizing Systems (SASO). IEEE,
2014, pp. 157–166.

[42] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck,
“From Data Center Resource Allocation to Control Theory
and Back,” in International Conference on Cloud Computing
(CLOUD). IEEE, 2010, pp. 410–417.

[43] M. Maggio, C. Klein, and K. Arzen, “Control Strategies for
Predictable Brownouts in Cloud Computing,” in International
Federation of Automatic Control (IFAC), 2014.

[44] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch, “Autoscale: Dynamic, Robust Capacity Management
for Multi-tier Data Centers,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 4, p. 14, 2012.

[45] H. Hoffmann and M. Maggio, “PCP: A Generalized Approach
to Optimizing Performance under Power Constraints Through
Resource Management,” in International Conference on Auto-
nomic Computing (ICAC), 2014, pp. 241–247.

[46] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agar-
wal, and M. Rinard, “Dynamic Knobs for Responsive Power-
aware Computing,” in ACM SIGPLAN Notices, vol. 46, no. 3.
ACM, 2011, pp. 199–212.

[47] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus, “Using Control Theory to Achieve Service Level
Objectives in Performance Management,” Real-Time Systems,
vol. 23, no. 1-2, pp. 127–141, 2002.

[48] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A Multi-
model Framework to Implement Self-managing Control Systems
for QoS Management,” in International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS).
ACM, 2011, pp. 218–227.

[49] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems. John Wiley & Sons,
2004.

[50] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On
the Use of Fuzzy Modeling in Virtualized Data Center Manage-
ment,” in International Conference on Autonomic Computing
(ICAC). IEEE, 2007, pp. 25–25.

[51] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “DynaQoS: Model-
free Self-tuning Fuzzy Control of Virtualized Resources for QoS
Provisioning,” in International Workshop on Quality of Service
(IWQoS). IEEE, 2011, pp. 1–9.

[52] P. Lama and X. Zhou, “Autonomic Provisioning with Self-

http://www.wikibench.eu/?page_id=60
http://www.wikibench.eu/?page_id=60
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://www.devside.net/articles/apache-performance-tuning
http://www.devside.net/articles/apache-performance-tuning
http://elastisys.com/2015/08/24/metric-choice-matters-for-intelligent-auto-scaling/
http://elastisys.com/2015/08/24/metric-choice-matters-for-intelligent-auto-scaling/

adaptive Neural Fuzzy Control for Percentile-based Delay Guar-
antee,” Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 8, no. 2, p. 9, 2013.

[53] G. Toffetti, A. Gambi, M. Pezzé, and C. Pautasso, Engineer-
ing Autonomic Controllers for Virtualized Web Applications.
Springer, 2010.

[54] A. Gambi, G. Toffetti, C. Pautasso, and M. Pezze, “Kriging Con-
trollers for Cloud Applications,” Internet Computing, vol. 17,
no. 4, pp. 40–47, 2013.

[55] A. Gupta, E. Ababneh, R. Han, and E. Keller, “Towards Elastic
Operating Systems,” in Conference on Hot Topics in Operating
Systems, 2013, p. 16.

[56] H. C. Lim, S. Babu, and J. S. Chase, “Automated Control
for Elastic Storage,” in International Conference on Autonomic
Computing (ICAC). IEEE, 2010, pp. 1–10.

	Introduction
	Motivation
	Memory Elasticity Background
	Vertical Elasticity Approaches
	Hypervisor-level Mechanisms to support Memory Elasticity

	Hybrid Memory Elasticity
	Overview
	System Model and Controller Design
	Assessment of the Controller Properties

	Experimental Evaluation
	Baseline Approaches
	Experimental Setup
	Experimental Results

	Discussions and Limitations
	Discussion
	Limitations
	Threats to Validity

	Related Work
	Vertical Elasticity Approaches
	Control-Theoretic Approaches on Auto-scaling
	Concluding remarks

	Conclusion

