
2 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Microservices
Architecture
Enables DevOps
Migration to a Cloud-Native
Architecture

Armin Balalaie and Abbas Heydarnoori, Sharif University of
Technology

Pooyan Jamshidi, Imperial College London

// This article reports on experiences and lessons learned
during incremental migration and architectural refactoring of
a commercial mobile back end as a service to microservices
architecture. It explains how the researchers adopted
DevOps and how this facilitated a smooth migration. //

A LOOK AT the searches related to
the term “microservices” on Google
Trends revealed that the top searches
are now technology driven. This im-
plies that the time of general search
terms such as “What is microser-
vices?” has now long passed. Not
only are software vendors (for ex-
ample, IBM and Microsoft) using
microservices and DevOps practices,

but also content providers (for exam-
ple, Netflix and the BBC) have ad-
opted and are using them.

In addition, Google Trends re-
veals that both DevOps and mi-
croservices are growing concepts,
with an equal rate of growth after
2014 (see Figure 1). Although Dev-
Ops can also be applied to mono-
lithic software systems, microservices

enable effective implementation of
DevOps by promoting the impor-
tance of small teams.1 (For more on
DevOps and Microservices, see the
related sidebar.)

A microservices architecture is a
cloud-native architecture that aims
to realize software systems as a
package of small services. Each ser-
vice is independently deployable on
a potentially different platform and
technological stack. It can run in
its own process while communicat-
ing through lightweight mechanisms
such as RESTful or RPC-based
APIs—for example, Finagle. (REST
stands for Representational State
Transfer.) In this setting, each ser-
vice is a business capability that can
utilize various programming lan-
guages and data stores and is devel-
oped by a small team.2

Migrating monolithic architec-
tures to microservices brings in
many benefits. In particular, it pro-
vides adaptability to technological
changes to avoid technology lock-in
and, more important, reduced time-
to-market and better development
team structuring around services.3

Here we explain our experiences
and lessons learned during incre-
mental migration of Backtory (www.
backtory.com), a commercial mo-
bile back end as a service (MBaaS),
to microservices in the context of
 DevOps. Microservices help Back-
tory in various ways, especially in
shipping new features more fre-
quently and providing scalability for
the collective set of users from differ-
ent mobile-app developers.

Furthermore, we report on migra-
tion patterns we developed on the
basis of our observations in migra-
tion projects. Practitioners can use
these patterns to migrate monolithic
software systems to microservices. In
addition, system consultants can use

FOCUS: DEVOPS

Pooyan Jamshidi
preprint version

 MAY/JUNE 2016 | IEEE SOFTWARE 3

them to help organization plan the
adoption of DevOps in their migra-
tion to microservices.

Architectural Concerns
for Microservices
Migration
Backtory, which was developed at
PegahTech (www.pegahtech.ir), pro-
vides back-end services to mobile
developers who don’t know any
server-side programming languages.
It originally was an RDBMS (rela-
tional database management sys-
tem) functioning as a service. De-
velopers defined database schemas
in Backtory’s developer dashboard,
and Backtory provided a software
development kit for the desired tar-
get platform (for example, Android
or iOS). Afterward, the developers
coded on their desired platforms
using their domain objects, which
made service calls on their behalf to
fulfill their requests. Over time, new
services are being added to Backtory,
such as chat, indexing, and NoSQL.

Backtory is written in Java using
the Spring framework. The underly-
ing RDBMS is Oracle Database 11g.
Backtory uses Maven to fetch depen-
dencies and build the project. Before
migration, all the services were in a
Git repository, and Backtory used
Maven’s modules to build services.
Deployment of services to develop-
ment machines was done using Ma-
ven’s Jetty plug-in. However, deploy-
ment to the production machine was
a manual task.

Figure 2a illustrates Backtory’s

architecture before migration and
shows Backtory’s five main com-
ponents. For more on them, see the
sidebar, “Backtory Components be-
fore the Migration.”

Why We Migrated Backtory
What motivated us to migrate Back-
tory to microservices was an issue
related to the requirement to pro-
vide chat as a service. To implement
this requirement, we chose ejabberd
because it’s scalable and can run
on clusters. To this end, we wrote

DEVOPS AND MICROSERVICES
DevOps is a set of practices that aim to decrease the time between changing a system and transferring that change to the pro-
duction environment. However, they also insist on maintaining software quality in terms of both code and the delivery mecha-
nism. Any technique that enables these goals is considered a DevOps practice.1,2

In particular, continuous delivery (CD) is a DevOps practice that enables on-demand deployment of software to any environ-
ment through automated machinery.3 CD is an essential companion of microservices as the number of deployable units increases.

Another critical DevOps practice is continuous monitoring (CM),4 which not only provides developers with performance-related
feedback but also facilitates detecting any operational anomalies.2

References
 1. L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective, Addison-Wesley Professional, 2015.

 2. A. Brunnert et al., Performance-Oriented DevOps: A Research Agenda, tech. report SPEC-RG-2015-11, Standard Performance Evaluation Corp., 2015;

http://arxiv.org/pdf/1508.04752.pdf.

 3. J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Addison-Wesley Professional,

2010.

 4. A. van Hoorn et al., Continuous Monitoring of Software Services: Design and Application of the Kieker Framework, research report, Kiel Univ., Nov. 2009.

Average

DevOps
Microservices

2005 2007 2009

Year

Ke
yw

or
d

us
ag

e

2011 2013 2015

FIGURE 1. The increase in the use of the keywords “DevOps” and “microservices,”
according to a Google Trends report.

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: DEVOPS

<<component>>
DeveloperWebsite

<<service>>
ContentServices

<<service>>
DeveloperServices

<<library>>
CommonLib

<<library>>
DeveloperData

(a)

(g)

(b)

<<component>>
DeveloperWebsite

<<service>>
ContentServices

<<service>>
DeveloperServices

<<library>>
CommonLib

<<service>>
DeveloperData

(c)

<<component>>
DeveloperWebsite

<<service>>
ContentServices

<<service>>
DeveloperServices

<<component>>
Configuration

Server

<<service>>
DeveloperData

(d)

<<component>>
DeveloperWebsite

<<service>>
ContentServices

<<service>>
DeveloperServices

<<component>>
Edge Server

<<service>>
DeveloperData

<<component>>
Configuration

Server

(e)

<<component>>
DeveloperWebsite

<<service>>
ContentServices

Circuit Breaker /
Load Balancer

Circuit Breaker /
Load Balancer

<<service>>
DeveloperServices

<<service>>
DeveloperData

<<component>>
Service

Discovery

<<component>>
Edge Server

<<component>>
Configuration

Server

(f)

<<component>>
DeveloperWebsite

<<service>>
DeveloperData

<<service>>
ResourceManager

<<component>>
Edge Server

<<service>>
ContentServices

Circuit Breaker /
Load Balancer

Circuit Breaker /
Load Balancer

<<service>>
DeveloperServices

<<component>>
Service

Discovery

<<component>>
Configuration

Server

<<component>>
DeveloperWebsite

<<component>>
Configuration Server

<<component>>
Service Discovery

<<component>>
Edge Server

<<service>>
RdbmsServices

<<service>>
ResourceManager

Circuit Breaker /
Load Balancer

<<service>>
ContentServices

Circuit Breaker /
Load Balancer

<<service>>
DeveloperServices

Circuit Breaker /
Load Balancer

<<service>>
ChatServices <<service>>

DeveloperInfo
Services

FIGURE 2. Migrating Backory to microservices. Solid arrows indicate service calls; dashed arrows indicate library dependencies.
(a) Backtory’s architecture before the migration. (b) Transforming DeveloperData to a service. (c) Introducing the Configuration Server.
(d) Introducing the Edge Server. (e) Introducing dynamic service collaboration. (f) Introducing ResourceManager. (g) Backtory’s target
architecture after the migration.

 MAY/JUNE 2016 | IEEE SOFTWARE 5

a Python script that enabled ejab-
berd to perform authentication using
Backtory. The major issue in our ser-
vice was the on-demand capability.
Dealing with this issue led us to ac-
tions that provided further motiva-
tions for migration.

The need for reusability. To address
the on-demand capability, we started
to automate the process of setting
up a chat service. One step was to
spin off a MySQL database for each
user. Our system had a pool of serv-
ers, each containing an instance of
the Oracle RDBMS and an instance
of DeveloperServices running. During
RDBMS instantiation, a server was
selected randomly, and related us-
ers and table spaces were created in
the Oracle server. This design raised
several issues because its original
purpose was just to fulfill the RD-
BMS service needs and it was tightly
coupled to the Oracle server. So, we
needed a database reservation sys-
tem that both the RDBMS and chat
services could use.

The need for decentralized data gov-
ernance. Another issue was that
whenever anyone added metadata
about different services, that meta-
data was added to DeveloperData. This
practice wasn’t good because ser-
vices are independent units that
only share their contracts with other
parts of the system.

The need for automated deployment.
As the number of services grew, an-
other problem was to automate de-
ployment and decouple the build
life cycle of each service from the
other services.

The need for built-in scalability. Back-
tory aims to serve millions of users.
By increasing the number of services,

we needed a new approach for han-
dling such scalability because in-
dividually scaling services requires
major effort and can be error-prone
if not handled properly.

Backtory’s Target Architecture
after the Migration
We transformed Backtory’s core ar-
chitecture to the target architecture
through refactorings. These changes
included introducing microservices-
specific components and rearchitect-
ing the system.

In the microservices state-of-the-
art,4,5 domain-driven design and
the Bounded Context pattern are
common practices to transform a
system’s architecture into microser-
vices.6 Because our domain wasn’t
complex, we rearchitected the sys-
tem on the basis of domain entities
in DeveloperData. We discuss the final
architecture (see Figure 2g) in more
detail later.

Backtory’s new technology
stack included Spring Boot for the

embedded application server and
fast service initialization, the OS’s
environment variables for configu-
ration, and Spring Cloud Context
and the Spring Cloud Config server
to separate the configuration from
the source code, as continuous deliv-
ery (CD) practices recommend. (For
more on CD, see the “DevOps and
Microservices sidebar.) Additionally,
the Netflix OSS (open source soft-
ware) provided microservices-specific
components (such as the Service Dis-
covery), and Spring Cloud Netflix in-
tegrated the Spring framework with
the Netflix OSS project. We also
chose Eureka for the Service Discov-
ery, Ribbon as the Load Balancer,
Hystrix as the Circuit Breaker,7 and
Zuul as the Edge Server,8 which all
are parts of the Netflix OSS project.
We specifically chose Ribbon instead
of other load balancers—for exam-
ple, HAProxy—because of its inte-
gration with the Spring framework
and other Netflix OSS projects, par-
ticularly Eureka.

BACKTORY COMPONENTS
BEFORE THE MIGRATION

Before migrating to microservices, Backtory comprised these components:

• CommonLib contains shared functionalities, such as utility classes, that the
rest of the system will use.

• DeveloperServices is where the services related to managing the domain
model of developers’ projects reside. Using these services, developers can
add new models, edit existing ones, and so on.

• ContentServices holds the services the target software development kit
uses to perform CRUD (create, read, update, and delete) operations on the
model’s objects.

• DeveloperData holds the information of developers who are using the Back-
tory service and their domain model metadata entities that are shared
between DeveloperServices and ContentServices.

• DeveloperWebsite is an application written in HTML and JQuery that acts as a
dashboard for developers. It leverages DeveloperServices.

Pooyan Jamshidi

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: DEVOPS

The Migration
During migration, we performed the
architectural refactorings we just
mentioned and some crosscutting
changes to enable DevOps.

Architectural Refactorings
Migrating the system wasn’t a one-
step procedure; we performed it in-
crementally without affecting the end
users. We treated the migration steps
as architectural changes (adding or re-
moving components) comprising two
states: before and after migration.

Preparing the continuous-integration
pipeline. Continuous integration (CI)
is the first step toward CD. It lets de-
velopers integrate their work with
others’ work early and regularly
and helps prevent future conflicts.9
Achieving this goal requires a CI
server, an as-a-service or self-hosted
code repository, and an artifact re-
pository. We chose Jenkins as the CI
server, self-hosted Gitlab as the code
repository, and Artifactory as the ar-
tifact repository.

Because services can have mul-
tiple instances running, deploying
microservices using virtualization
isn’t cost effective and introduces
heavy computational overhead. Fur

thermore, we needed to use configu-
ration management systems to create
the production and test environments.

Using containers let us deploy
service instances with lower over-
head and better isolation than with
virtualization. Another major ben-
efit was portability; we could deploy
anywhere that supports container-
ization without changing our source
codes or container images. Docker
is a tool for application container-
ization.10 Because we were going to
use Docker, our pipeline needed the
Docker Registry too.

To summarize, in this step, we
integrated Gitlab, Jenkins, Artifac-
tory, and the Docker Registry as a CI
pipeline. As Figure 3 shows, the fun-
damental difference between this de-
livery pipeline and a monolithic one
is that ours has independent pipeline
delivery for each service, so each can
be deployed independently. Previ-
ously, we were using integration tests
that required running the whole set
of tests if just one service changed.
We replaced the integration tests with
consumer-driven contracts11 and
tests that led to independent testing
of each service, using its consumers’
expectations. This change minimized
interteam coordination, which, even

though the testing strategy was more
complex, enabled forming smaller
teams as a DevOps practice.

Transforming DeveloperData to a service.
We changed DeveloperData to use Spring
Boot because of its advantages (as we
discussed before). Furthermore, as
Figure 2b shows, we changed Develo-
perData to expose its functionalities as
a RESTful API. In this way, its de-
pendent services won’t be affected
when its internal structure changes.
Because DeveloperData entities have
service- level dependency, a single
service will handle their governance,
and DeveloperData won’t act as an inte-
gration database12 for its dependent
services anymore. Accordingly, we
adapted DeveloperServices and Content-
Services to use DeveloperData as a service
and not as a Maven dependency.

Introducing CD. One of the best CD
practices is to separate the source
code, configuration, and environment
specification so that they can evolve
independently.9 In this way, we can
change the configuration without re-
deploying the source code. By lever-
aging Docker, we removed the need
for specifying environments because
the Docker images produce the same

GitLab
Fetch

GitLab
Fetch

Jenkins
Build

Jenkins
Build

Jenkins
Build

Jenkins
Build

Jenkins
Build

Jenkins
Test

Jenkins
Test

Jenkins
Test

Docker
Artifactory
Deploy
artifacts

Docker
Artifactory
Deploy
artifacts

Docker
Artifactory
Deploy
artifacts

Kubernetes
CoreOS
Deploy

Kubernetes
CoreOS
Deploy

Kubernetes
CoreOS
Deploy

GitLab
Fetch

GitLab
Fetch

GitLab
Fetch

(a) (b)

Microservices 1

Microservices N

FIGURE 3. Moving from (a) a monolithic pipeline to (b) a microservices pipeline. The final delivery pipeline has independent delivery
for each service, so each can be deployed independently.

 MAY/JUNE 2016 | IEEE SOFTWARE 7

behavior in different environments.
To separate the source code and

configuration, we ported every ser-
vice to Spring Boot and changed
them to use the Spring Cloud Con-
figuration Server and Spring Cloud
Context to resolve their configura-
tion values (see Figure 2c). In this
step, we also separated services’ code
repositories to have a clearer change
history and to separate each service’s
build life cycle. We also created a
Dockerfile for each service, which is
a configuration for creating Docker
images for that service. We then cre-
ated a CI job per service and ran the
jobs to populate our repositories.
Having the Docker image of each
service in our private Docker regis-
try, we could run the whole system
with Docker Compose, using only
one configuration file. Starting from
this step, we had an automated de-
ployment on a single server.

Introducing the Edge Server. Rearchi-
tecting the system would change the
internal service architecture. So, we
introduced the Edge Server to mini-
mize internal changes’ impact on
end users (see Figure 2d). Accord-
ingly, we adapted DeveloperWebsite.

Introducing dynamic service collabo-
ration. We then introduced the Ser-
vice Discovery, Load Balancer, and
Circuit Breaker (see Figure 2e). De-
pendent services should locate each
other through the Service Discovery
and Load Balancer, and the Circuit
Breaker will make our system more
resilient during service calls. Intro-
ducing these components made our
developers more comfortable with
these new concepts and accelerated
the migration.

Introducing ResourceManager. We intro-
duced ResourceManager by factoring out

the server-related entities—for exam-
ple, AvailableServer—from DeveloperData
and introducing a feature—MySQL
database reservation—to satisfy our
chat service requirements (see Figure
2f). Accordingly, we adapted Develop-
erServices to use this service for data-
base reservations.

Introducing ChatServices and DeveloperIn-
foServices. The final refactoring step
introduced two services (see Figure
2g). We introduced ChatServices to per-
sist chat-service-instances metadata
and create chat service instances.
We introduced DeveloperInfoServices by
factoring out developer- related en-
tities (for example, Developer) from
DeveloperData.

Clusterization. In this step, we set up
a cluster of CoreOS instances con-
taining Kubernetes agents. We then
deployed our services on this cluster
instead of a single server. As Figure
3 shows, independent testing of ser-
vices using consumer-driven tests en-
abled us to also deploy each service
independently. So, a change in a ser-
vice would no longer result in rede-
ploying the whole system.

Crosscutting Changes
The necessary changes involved en-
abling continuous monitoring to
bridge the gap between development
and operations, and changing the
team structures.

Bridging development and operations.
In the context of microservices, each
service can have its own independent
monitoring facility owned by the
operations team. This enables inde-
pendent flow of per-service perfor-
mance information to the develop-
ment team. The development team
can adopt appropriate parametric
performance models to estimate the

end-to-end system performance or
facilitate what-if analyses. This helps
the team refactor the architecture to
remove performance bottlenecks.13

As Figure 4 shows, our monitor-
ing solution comprises both server
and client containers. A server con-
tainer manages the monitoring
tools. In our deployment, it contains
Kibana for visualization and Elastic-
search for consolidating the moni-
toring metrics. With Elasticsearch,
users can horizontally scale and clus-
ter multiple monitoring components.

A client container contains the
monitoring agents and the facilities
to forward the data to the server. In
this particular instance, it contains
Logstash and the collected modules.
Logstash connects to the Elastic-
search cluster as the client and stores
the processed and transformed met-
rics data there.

This architecture lets us monitor
each microservice independently and
react to any anomalies we uncover
on the basis of the online monitoring
data. To detect anomalies, we use a

Microservice 1 Monitoring server

Collectd Kibana

Query

Unstructured

Structured
ElasticsearchLogstash

(a) (b)

DockerDocker

FIGURE 4. The monitoring and
performance feedback infrastructure.
(a) The client container. (b) The server
container. This architecture lets us monitor
each microservice independently and
react to any anomalies we uncover on the
basis of the online monitoring data.

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: DEVOPS

statistical model we trained using
the monitoring data in normal situ-
ations. Then, for each new incoming
monitoring data point, the anomaly
detection module calculates a score,
using principal component analysis,
to spot outliers.

Changing team structures. Traditional
software methods encourage horizon-
tal division of project members into
functionally separated teams. This di-
vision normally causes the creation of
development, quality assurance, and
operations teams (see Figure 5a). Such
separation delays the development life
cycle owing to transitions between
teams and the teams’ various reac-
tions to change frequency. Moreover,
with microservices, because each
team should be responsible for its
own services, functionally separated
teams can’t benefit from the increased
comprehensibility of code and easier
assimilation of new team members
that system decomposition enables.

In contrast, DevOps recommends
vertically dividing project members
into small cross-functional teams,
which fits microservices well. Each
team is responsible for a service and
contains people with different skills,
such as development and operations
skills. The team members cooper-
ate from the project’s start to create
more value for the particular ser-
vice’s end users. This added value re-
sults from more frequent releases of
new features to production, which
eliminates the transition overheads
with horizontal teams. Further-
more, because each team focuses on
a particular service, each service’s
code has much higher maintainabil-
ity and comprehensibility, and teams
can add members with a lower
learning curve.

During the migration, we gradu-
ally formed small cross-functional
teams for each new service con-
structed as a result of architec-
tural refactorings (see Figure 5b).

Furthermore, we formed a core team
that’s responsible for shared capabil-
ities; it consists of representatives of
each service’s team. This core team
has an overall view of the service
interactions in the system and is in
charge of critical architectural de-
cisions. It also handles interservice
refactorings that involve transferring
functionalities between services and
updating the corresponding rules in
the Edge Server.

Lessons Learned
Here, we share five lessons we learned
that might be helpful for others try-
ing to migrate to microservices.

First, deployment in the develop-
ment environment is difficult. Al-
though the application code is now
in isolated services, developers must
also deploy the dependent services
to run the isolated services on their
machines. This problem occurred
after we introduced dynamic service
collaboration. To solve it, we chose
Docker Compose and put a sample
deployment description file in each
service so that the dependent ser-
vices can be easily deployed from
our private Docker registry.

Second, service contracts are crit-
ical. Changing so many services that
expose their contracts only to each
other could be error-prone. Even a
small change in the contracts can
break part or even all of the system.
One possible solution is service ver-
sioning, but it could make deploy-
ing each service even more complex.
So, people usually don’t recommend
service versioning for microservices.
Thus, techniques such as the Toler-
ant Reader service design pattern11
are more advisable to avoid service
versioning. Consumer-driven con-
tracts could help greatly in this re-
gard because the team responsible
for a service can be confident that

Operations

Quality assurance

Development

Core team

Crossfunctional
team

Crossfunctional
team

Crossfunctional
team

Crossfunctional
team

Crossfunctional
team

Crossfunctional
team

(a) (b)

FIGURE 5. DevOps team formation. (a) Traditional horizontal teams. (b) Vertical
teams in DevOps. In DevOps, each team is responsible for a service and contains
people with different skills, such as development and operations skills. The team
members cooperate from the project’s start to create more value for the particular
service’s end users.

 MAY/JUNE 2016 | IEEE SOFTWARE 9

most of its customers are satisfied
with the service.

Third, distributed-system devel-
opment needs skilled developers.
Microservices is a distributed ar-
chitectural style. Furthermore, for
such architectures to be fully func-
tional, they need supporting ser-
vices such as service discovery and
a load balancer. During the early
migration steps, we tended to spend
much time describing these con-
cepts and their corresponding tools
and libraries to novice developers.
Still, those developers often misused
these things. So, to get the most out
of microservices, teams need mem-
bers who are familiar with these
concepts and comfortable with this
type of programming.

Fourth, creating service develop-
ment templates is important. Poly-
glot persistence and the use of dif-
ferent programming languages are
promises of microservices. Never-
theless, in practice, a radical inter-
pretation of these promises could
result in chaos in the system and
even make it unmaintainable. As a
solution, after architectural refac-
toring began, we started to create
service development templates. We
have different templates for creating
microservices in Java using different
data stores; these templates include
a simple sample of a correct imple-
mentation. We’re also creating tem-
plates for Node.js. One simple rule
is that a senior developer should first
examine each new template to iden-
tify potential challenges.

Finally, microservices architecture
isn’t a silver bullet. It was beneficial
for us because our system needed that
flexibility and because we had Spring
Cloud and Netflix OSS, which made
migration and development much
easier. However, as we mentioned
before, adopting microservices will

introduce complexities to the system
that require much effort to resolve.

Microservices
Migration Patterns
After our migration project, we de-
cided to make our experiences and
best practices more accessible for
other similar projects by abstract-
ing them as migration patterns. In
this way, other developers can reuse
these practices to create migration
plans by instantiating and compos-
ing the patterns.

Migrating to the cloud, specifically
through cloud-native architectures
such as microservices, is a multidi-
mensional problem and thus non-
trivial.14 So, without a well-thought-
out methodology, migration could
become a trial-and-error endeavor
that not only wastes much time but
also can lead to a wrong solution.
Furthermore, because factors such as
the requirements, current situation,
and team members’ skills could vary
among companies and scenarios, a
unique and rigid methodology won’t
suffice. Thus, instead of a one-fits-all
methodology, we chose a situational-
method- engineering approach.15

The first step toward this ap-
proach is to prepare a method base
or pattern repository consisting of
reusable process patterns or method
chunks, each instantiated from a
predefined metamodel. To this end,
using our previous experience in de-
fining migration patterns,16 we docu-
mented our experience in this project
and similar practices in the microser-
vices state-of-the-art3,8 (see http://
microservices.io) as method chunks.
We tried to enrich each step in our
migration with the precise definition
of the corresponding situation, the
problem to solve, and the proposed
solution’s possible challenges, thus
forming a pattern template.8

Part of these patterns de-
scribes why we need supporting
 components—for example, the Ser-
vice Discovery—and the prerequi-
sites for their introduction. We also
provided solutions and advice for
decomposing a monolithic system
to the constituting services and pre-
paring the system’s current and tar-
get architectures as a roadmap for
migration planning. In addition, we
provided hints about the container-
ization of services and their deploy-
ment in a cluster.

Table 1 lists the patterns related to
this article; details on them appear in
a supplementary technical report.8

As Figure 6 shows, with an ini-
tial set of these patterns, method
engineers can apply the construc-
tion guidelines to create a concrete
method based on their migration
requirements. For example, in re-
sponse to the need for “polyglot-
ness,” method engineers can access
the decomposition patterns. Then,
they can select a pattern suitable for
their needs.

The architectural refactorings
resulting from pattern applications
can’t be ad hoc. Invariants exist that
must be satisfied during the architec-
tural transition.17 The most impor-
tant invariants are to keep the sys-
tem stable after applying a pattern,
perform one architectural change
at a time, and keep the system’s us-
ers unaffected. However, although
a single step must conform to these
invariants, the steps and their execu-
tion order collectively might violate
them. Method engineers should con-
sider this when selecting patterns.

During Backtory’s migration, we
introduced the Edge Server before
introducing components related to
dynamic collaboration between ser-
vices to make the following changes
transparent to users. If the order of

10 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: DEVOPS

these steps changed, we couldn’t sat-
isfy some invariants.

Future migrations can add pat-
terns to the pattern repository. This
repository will serve as an extensible
source for the DevOps community
through which they can reuse pat-
terns for migrating to microservices.
For an example repository, visit
http://microservices.io.

T raditional methods for soft-
ware development advocate
separated development and

operations teams in which the devel-
opment team provides the operations
team with deployment artifacts and
details. The problem is that these
teams behave differently regarding
the frequency of changes, such that
the development team tends to pro-
duce more changes and the opera-
tions team insists on higher stability.
Furthermore, because large teams
are working on monolithic systems,
changes need much coordination.
Even with system componentiza-
tion, the final integration needs con-
siderable coordination. These issues

lengthen the development life cycle.
DevOps, together with microser-

vices, is tackling these issues by pro-
viding the necessary equipment to
minimize coordination among the
teams responsible for each compo-
nent and removing the barriers for
an effective, reciprocal relationship
between the development and opera-
tions teams. Indeed, in the DevOps
setting, these teams help each other
through continuous valuable feed-
back. Table 1 briefly describes the
problems our patterns tackle and
how they affect DevOps.

TA
B

L
E

 1 Migration patterns related to this article.8

Pattern name DevOps impact

Enable the Continuous Integration (CI) CI is the first step toward continuous delivery (CD), a DevOps practice.

Recover the Current Architecture These patterns enable decomposition of the system into smaller services, which
leads to smaller teams.

Decompose the Monolith

Decompose the Monolith Based on Data Ownership

Change Code Dependency to Service Call

Introduce Service Discovery Dynamic discovery of services removes the need for manual wiring, thereby
promoting more independent deployment pipelines.

Introduce Service Discovery Client

Introduce Internal Load Balancer

Introduce External Load Balancer

Introduce Circuit Breaker Failing fast can decrease the coupling between services, thereby contributing to
independent service deployments.

Introduce Configuration Server Separating configuration from code is a CD best practice.

Introduce Edge Server The Edge Server not only allows the development team to more easily change the
system’s internal structure but also permits the operations team to better monitor
each service’s overall status.

Containerize the Services Containers can produce the same environment in both production and development,
thus reducing conflicts between the development and operations teams.

Deploy into a Cluster and Orchestrate Containers Cluster management tools reduce the difficulties around deployment of many
instances from different services in production, thus reducing the operations team’s
resistance to the development team’s changes.

Monitor the System and Provide Feedback Performance monitoring enables systematic collection of performance data and
sharing to enhance decision making. For example, the development team can use
such information to refactor the architecture if it discovers a performance anomaly in
the system.

 MAY/JUNE 2016 | IEEE SOFTWARE 11

Extract a migration
pattern

?

New migration experience
New domain

Migration pattern
discovery

Migration pattern
repository

Migration pattern
selection and assembly

guidelines

Migration pattern
selection

Store the migration
pattern into

the repository

FIGURE 6. Selecting migration patterns, instantiating and composing a migration plan, and extending the migration pattern
repository. With an initial set of patterns, method engineers can apply the construction guidelines to create a concrete method based
on their migration requirements.

Stay relevant with the IEEE Computer Society

More at www.computer.org/publications

Stay Informed

Access to Computer Society books,
technical magazines and research
journals arm you with Industry
intelligence to keep you ahead of the
learning curve.

• 3,000 technical books included
with membership from books 24 x
7 and Safari Books Online

• 13 technical magazines
• 20 research journals

Learn something new. Check out
Computer Society publications
today!

Keeping
YOU at the

Center
of Technology
IEEE Computer Society
Publications

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: DEVOPS

References
 1. L. Bass, I. Weber, and L. Zhu,

DevOps: A Software Architect’s
Perspective, Addison-Wesley Profes-
sional, 2015.

 2. M. Fowler and J. Lewis, “Microser-
vices,” 26 Mar. 2014; http://martin
fowler.com/articles/microservices.html.

 3. A. Balalaie, A. Heydarnoori, and P.
Jamshidi, “Migrating to Cloud-Native
Architectures Using Micro services: An
Experience Report,” to be published
in Proc. 1st Int’l Workshop Cloud
Adoption and Migration, 2015.

 4. S. Newman, Building Microservices,
O’Reilly Media, 2015.

 5 .M. Stine, Migrating to Cloud-Native

Application Architectures, O’Reilly
Media, 2015.

 6. V. Vernon, Implementing Domain-
Driven Design, Addison-Wesley
Professional, 2013.

 7. M. Nygard, Release It! Design and
Deploy Production-Ready Software,
Pragmatic Bookshelf, 2007.

 8. A. Balalaie, A. Heydarnoori, and P.
Jamshidi, Microservices Migration
Patterns, tech. report TR-SUTCE-
ASE-2015-01, Automated Software
Eng. Group, Sharif Univ. of Technol-
ogy, Oct. 2015; http://ase.ce.sharif
.edu/pubs/techreports/TR-SUT-CE
-ASE-2015-01-Microservices.pdf.

 9. J. Humble and D. Farley, Continuous

Delivery: Reliable Software Releases
through Build, Test, and Deployment
Automation, Addison-Wesley Profes-
sional, 2010.

 10. C. Pahl, “Containerization and the
PaaS Cloud,” IEEE Cloud Comput-
ing, vol. 2, no. 3, 2015, pp. 24–31.

 11. R. Daigneau, Service Design Pat-
terns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web
Services, Addison-Wesley Profes-
sional, 2011.

 12. G. Hohpe and B. Woolf, Enterprise
Integration Patterns: Designing,
Building, and Deploying Messaging
Solutions, Addison-Wesley Profes-
sional, 2004.

 13. A. Brunnert et al., Performance-
Oriented DevOps: A Research Agen-
da, tech. report SPEC-RG-2015-11,
Standard Performance Evaluation
Corp., 2015; http://arxiv.org/pdf
/1508.04752.pdf.

 14. P. Jamshidi, A. Ahmad, and C.
Pahl, “Cloud Migration Research:
A Systematic Review,” IEEE Trans.
Cloud Computing, vol. 1, no. 2,
2013, pp. 142–157.

 15. B. Henderson-Sellers et al., Situa-
tional Method Engineering, Springer,
2014.

 16. P. Jamshidi et al., “Cloud Migration
Patterns: A Multi-cloud Architec-
tural Perspective,” Service-Oriented
 Computing—ICSOC 2014 Work-
shops, LNCS 8954, Springer, 2014,
pp. 6–19.

 17. A. Ahmad, P. Jamshidi, and C. Pahl,
“Classification and Comparison
of Architecture Evolution Reuse
Knowledge: A Systematic Review,” J.
Software: Evolution and Process, vol.
26, no. 7, 2014, pp. 654–691.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ARMIN BALALAIE is a master’s student in the Sharif
University of Technology’s Department of Computer Engineer-
ing. His research interests include software engineering, cloud
computing, and distributed systems. Balalaie received his BSc
in software engineering from Shiraz University. Contact him at
armin.balalaie@gmail.com.

ABBAS HEYDARNOORI is an assistant professor in the Sharif
University of Technology’s Department of Computer Engineer-
ing. His research interests include reverse engineering and
reengineering software systems, mining software repositories,
and recommendation systems in software engineering. Heydar-
noori received a PhD from the University of Waterloo’s School of
Computer Science. Contact him at heydarnoori@sharif.edu.

POOYAN JAMSHIDI is a postdoctoral research associate
in Imperial College London’s Department of Computing. His
primary research interest is self-adaptive software, in which he
applies statistical machine learning and control theory to enable
self-organizing behaviors in distributed systems for processing
big data. Jamshidi received a PhD in computing from Dublin
City University. Contact him at p.jamshidi@imperial.ac.uk.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

