
Journal of Artificial Intelligence Research (2020) Submitted 00/00; Published 00/00

AMP Chain Graphs: Minimal Separators
and Structure Learning Algorithms

Mohammad Ali Javidian javidian@email.sc.edu

Marco Valtorta mgv@cse.sc.edu

Pooyan Jamshidi pjamshid@cse.sc.edu

Department of Computer Science & Engineering, University of South Carolina, Columbia, SC,

29201, USA.

Editor: X

Abstract

We address the problem of finding a minimal separator in an Andersson–Madigan–Perlman
chain graph (AMP CG), namely, finding a set Z of nodes that separates a given non-
adjacent pair of nodes such that no proper subset of Z separates that pair. We analyze
several versions of this problem and offer polynomial time algorithms for each. These
include finding a minimal separator from a restricted set of nodes, finding a minimal sep-
arator for two given disjoint sets, and testing whether a given separator is minimal. To
address the problem of learning the structure of AMP CGs from data, we show that the
PC-like algorithm (Peña, 2012) is order-dependent, in the sense that the output can de-
pend on the order in which the variables are given. We propose several modifications of
the PC-like algorithm that remove part or all of this order-dependence. We also extend
the decomposition-based approach for learning Bayesian networks (BNs) proposed by (Xie
et al., 2006) to learn AMP CGs, which include BNs as a special case, under the faithful-
ness assumption. We prove the correctness of our extension using the minimal separator
results. Using standard benchmarks and synthetically generated models and data in our ex-
periments demonstrate the competitive performance of our decomposition-based method,
called LCD-AMP, in comparison with the (modified versions of) PC-like algorithm. The
LCD-AMP algorithm usually outperforms the PC-like algorithm, and our modifications of
the PC-like algorithm learn structures that are more similar to the underlying ground
truth graphs than the original PC-like algorithm, especially in high-dimensional settings.
In particular, we empirically show that the results of both algorithms are more accurate
and stabler when the sample size is reasonably large and the underlying graph is sparse.

Keywords: AMP chain graph, conditional independence, decomposition, separator, junc-
tion tree, augmented graph, triangulation, graphical model, Markov equivalent, structural
learning.

1. Introduction

Probabilistic graphical models (PGMs), and their use for reasoning intelligently under un-
certainty, emerged in the 1980s within the statistical and artificial intelligence reasoning
communities. Probabilistic graphical models are now widely accepted as a powerful and
mature tools for reasoning under uncertainty. Unlike some of the ad hoc approaches taken
in early experts systems, PGMs are based on the strong mathematical foundations of graph
and probability theory. In fact, any PGM consists of two main components: (1) a graph

©2020 Mohammad Ali Javidian.

https://jair.org/index.php/jair.

https://jair.org/index.php/jair

Javidian, Valtorta, and Jamshidi

that defines the structure of the model; and (2) a joint distribution over random variables
of the model. The main advantages of using PGMs compared to other models are that
the representation is intuitive, inference can often be done efficiently and practical learning
algorithms exist. 1 This led PGMs to become arguably the most important architecture for
reasoning with uncertainty in artificial intelligence (Koller and Friedman, 2009; Neapoli-
tan and Jiang, 2018). There are many efficient algorithms for both inference and learning
available in open-source (Højsgaard et al., 2012; Nagarajan et al., 2013; Scutari and Denis,
2015) and commercial software (Hugin, Netica, GeNIe, and BayesiaLab). Moreover, their
power and efficacy has been proven through their successful application to an enormous
range of real-world problem domains. They can be used for a wide range of reasoning tasks
including prediction, monitoring, diagnosis, risk assessment and decision making (Spirtes
et al., 2000; Xiang, 2002; Jensen and Nielsen, 2007; Fenton and Neil, 2018).

One of the most basic subclasses of PGMs is Markov networks. The graphical framework
of Markov networks are undirected graphs (UGs), in which each undirected edge represents
a symmetric relation i.e., direct correlation between the two variables it connects, while
no edge means that the variables are not directly correlated. The best known and most
widely used PGM class, however, is Bayesian networks. The graphical structures of Bayesian
networks are directed acyclic graphs (DAGs). In a DAG the directed edges can often be seen
as representing cause and effect (asymmetric) relationships e.g., see (Motzek and Möller,
2017).

Chain graphs (CGs) were introduced as a unification of directed and undirected graphs to
model systems containing both symmetric and asymmetric relations. In fact, a chain graph
is a type of mixed graph, admitting both directed and undirected edges, which contain no
partially directed cycles. So, CGs may contain two types of edges, the directed type that
corresponds to the causal relationship in DAGs and a second type of edge representing a
symmetric relationship (Sonntag, 2016). In particular, X1 is a direct cause of X2 only if
X1 → X2 (i.e., X1 is a parent of X2), and X1 is a (possibly indirect) cause of X2 only if there
is a directed path from X1 to X2 (i.e., X1 is an ancestor of X2). So, while the interpretation
of the directed edge in a CG is quite clear, the second type of edge can represent different
types of relations and, depending on how we interpret it in the graph, we say that we have
different CG interpretations with different separation criteria, i.e. different ways of reading
conditional independences from the graph, and different intuitive meaning behind their
edges. The three following interpretations are the best known in the literature. The first
interpretation (LWF) was introduced by Lauritzen, Wermuth and Frydenberg (Lauritzen
and Wermuth, 1989; Frydenberg, 1990) to combine DAGs and undirected graphs (UGs).
The second interpretation (AMP), was introduced by Andersson, Madigan and Perlman,
and also combines DAGs and UGs but with a Markov equivalence criterion that more
closely resembles the one of DAGs (Andersson et al., 1996). The third interpretation, the
multivariate regression interpretation (MVR), was introduced by Cox and Wermuth (Cox
and Wermuth, 1993, 1996) to combine DAGs and bidirected (covariance) graphs.

This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman
(AMP) interpretation (Andersson et al., 1996, 2001). AMP CGs are useful when we have

1. These algorithms are fast enough in practice, even though learning, inference, and other reasoning tasks
are NP-complete or worse in the worst case, because they exploit sparsity and other features prevalent
in application domains (Cooper, 1990; Koller and Friedman, 2009).

2

https://www.hugin.com/
https://www.norsys.com/
https://www.bayesfusion.com/
https://www.bayesfusion.com/

AMP CGs: Minimal Separators and Structure Learning Algorithms

a set of variables for which the internal relations has no causal ordering, so the relations
should be modelled as a Markov network, but also a second set of variables that can be
seen as causes for some of these variables in the first set. The internal structure of the first
set of variables can then be modelled as a Markov network, creating a chain component in
an AMP CG, and the causes as parents of some of the variables in the chain component.
Note that for AMP CGs the parents only affect the direct children in the chain component,
not all the nodes in the chain component as in the case of LWF CGs. An example in
medicine (Sonntag and Peña, 2015) when such a model might be appropriate is when we
are modelling pain levels on different areas on the body of a patient. The pain levels can
then be seen as correlated “geographically” over the body, and hence be modelled as a
Markov network. Certain other factors do, however, exist that alters the pain levels locally
at some of these areas, such as the type of body part the area is located on or if local
anaesthetic has been administered in that area and so on. These outside factors can then
be modeled as parents affecting the pain levels locally. AMP chain graphs are widely studied
in different areas from applications in biology (Sonntag and Peña, 2015), to more advanced
theoretical investigations (Richardson, 1998; Levitz et al., 2001; Roverato, 2005; Roverato
and Rocca, 2006; Drton, 2009; Studený et al., 2009; Peña, 2014b, 2015; Sonntag and Peña,
2015; Peña, 2016; Peña and Gómez-Olmedo, 2016; Peña, 2018a,b).

Minimality is a desirable property to ensure efficiency and usability e.g., see (Peña,
2011). Finding minimal separators is useful for learning and inference tasks (Acid and
de Campos, 1996; Javidian and Valtorta, 2019). Of course, finding these sets will take some
effort, but the additional effort will be compensated by decreased computing time when
using the corresponding independencies in learning and inference. Moreover, it will also
increase the reliability of the results, because fewer data are needed to reliably compute a
conditional dependence measure of lower order. For example, Acid and de Campos (Acid
and de Campos, 2001) proposed a hybrid algorithm for learning Bayesian networks from
data that uses minimal d -separators. They showed that the use of minimal d-separating
sets is clearly useful, not only with respect to the quality of the learned network but also in
terms of time complexity of the proposed algorithm. In this paper, we address the problem
of finding minimal separators in AMP chain graphs and their applications in learning the
structure of AMP CGs from data.

One important aspect of PGMs is the possibility of learning the structure of models
directly from sampled data. Two constraint-based learning algorithms, that use a statis-
tical analysis to test the presence of a conditional independency, exist for learning AMP
CGs: (1) the PC-like algorithm (Peña, 2012; Peña and Gómez-Olmedo, 2016), and (2)
the answer set programming (ASP) algorithm (Peña, 2016). In this paper, we show that
the PC-like algorithm is order-dependent, in the sense that the output can depend on the
order in which the variables are given. We propose several modifications of the PC-like al-
gorithm, i.e., Stable PC-like for AMP CGs (Stable-PC4AMP), Conservative PC-like for
AMP CGs (Conservative-PC4AMP), and a version that is both Stable and Conservative
(Stable-Conservative-PC4AMP) for learning the structure of AMP chain graphs under the
faithfulness assumption that remove part or all of the order-dependence.

We use some of our findings regarding minimal separators in AMP CGs to prove the
correctness of a new efficient algorithm for learning AMP chain graphs, called Learn Chain
graphs via Decomposition for AMP CGs (LCD-AMP). Our proposed LCD-AMP algorithm,

3

Javidian, Valtorta, and Jamshidi

(a) Observational Data

ce

b

d a

f

(b) Undirected Independence
Graph Recovery

ce

b

d a

f

(c) Triangulation

e

c, d, e

e, f

c, d

b, c, db, c

a, b, c

(d) p-Separation Tree

d

e c e

f

a c

b

Sbc = {a}

c b

d

Scd = {b}

(e) Local Skeleton Recovery

ce

b

d a

f

(f) Global Skeleton Recovery

ce

b

d a

f

(g) AMP CG Recovery

ce

b

d a

f

(h) Largest Deflagged Graph Re-
covery

Figure 1: An overview of LCD-AMP ’s steps for learning the structure of the largest deflagged
AMP CG from a faithful distribution.

illustrated in Figure 1, consists of five steps: (1) An undirected graphical model for the
data is chosen. Any conditional independencies that hold under this model will also hold
under the selected chain graph, so this step serves to restrict the search space in the third

4

AMP CGs: Minimal Separators and Structure Learning Algorithms

step. (2) A junction tree as a facilitator for decomposition of structure learning is built
from the triangulated graph obtained from the resulting graph at the end of step (1).
(3) Local skeletons are recovered in each individual node of the obtained separation tree
from the previous step. (4) The global skeleton is recovered by merging recovered local
skeletons from the previous step along with removing those edges that are deleted in any
local skeleton. (5) Arrowheads are added to some of the edges to obtain desired AMP
chain graph. The details of each step with related definitions are provided later in the
paper (Section 5). This algorithm not only reduces complexity and increases the power
of computational independence tests but also achieves a better quality with respect to the
learned structure.

The results of the experiments show that our proposed algorithm Learn Chain graphs via
Decomposition for AMP interpretation (LCD-AMP) consistently outperforms the (Stable-
) PC-like algorithm2. Our proposed algorithms, i.e., the Stable PC-like for AMP CGs
(Stable-PC4AMP) and LCD-AMP are able to exploit the parallel computations for scaling up
the task of learning AMP chain graphs. This will enable AMP chain graph discovery on
large datasets. In fact, lower complexity, higher power of computational independence test,
better learned structure quality, along with the ability of exploiting parallel computing,
make our proposed algorithms more desirable and suitable for big data analysis when AMP
chain graphs are being used. Code for reproducing our results is available at https://

github.com/majavid/AMPCGs2019.

Our main contributions are the following:

1. We propose several polynomial time algorithms to solve the problem of finding minimal
separating sets in AMP chain graphs (Section 3).

2. We show that the original PC-like algorithm (Peña, 2012) is order-dependent, in the
sense that the output can depend on the order in which the variables are given. Then,
we propose modifications of the PC-like algorithm, i.e., Stable PC-like for AMP
(Stable-PC4AMP), Conservative PC-like for AMP (Conservative-PC4AMP), and
Stable-Conservative-PC4AMP for learning the structure of AMP chain graphs under
the faithfulness assumption that remove part or all of the order-dependence (Section
4).

3. We present a computationally feasible algorithm for learning the structure of AMP
chain graphs via decomposition, called LCD-AMP , that reduces complexity and increase
the power of computational independence tests (Section 5).

4. We compare the performance of our algorithms with that of the PC-like algorithm
proposed in (Peña, 2012), in the Gaussian and discrete cases. We empirically show
that our modifications of the PC-like algorithm achieve output of better quality than
the original PC-like algorithm, especially in high-dimensional settings. We also show
that our decomposition based algorithm, i.e., the LCD-AMP algorithm outperforms the
(Stable-) PC-like algorithm in our experiments (Section 6).

2. When we use parenthesis, we mean that what we write applies to both the original PC-like algorithm
and the Stable-PC4AMP algorithm.

5

https://github.com/majavid/AMPCGs2019
https://github.com/majavid/AMPCGs2019

Javidian, Valtorta, and Jamshidi

5. We release supplementary material including data and an R package that implements
the proposed algorithms.

2. Basic Definitions and Concepts

In this paper, we consider graphs containing both directed (of the form a → b or, simply,
(a, b)) and undirected (of the form a− b or, simply, {a, b}) edges and largely use the termi-
nology of (Andersson et al., 2001), where the reader can also find further details. Below we
briefly list some of the central concepts used in this paper.

If A ⊆ V is a subset of the vertex set in a graph G = (V,E), the induced subgraph
GA = (A,EA) is a graph in which the edge set EA = E ∩ (A × A) is obtained from G by
keeping edges with both endpoints in A.

If there is an arrow from a pointing towards b, a is said to be a parent of b. The set of
parents of b is denoted as pa(b). If there is an undirected edge between a and b, a and b
are said to be adjacent or neighbors. The set of neighbors of a vertex a is denoted as ne(a).
The expressions pa(A) and ne(A) denote the collection of parents and neighbors of vertices
in A that are not themselves elements of A. The boundary bd(A) of a subset A of vertices
is the set of vertices in V \A that are parents or neighbors to vertices in A. The closure of
A is cl(A) = bd(A) ∪A.

A directed path of length n from a to b is a sequence a = a0, . . . , an = b of distinct
vertices such that (ai, ai+1) ∈ E, for all i = 0, . . . , n − 1. (A semidirected path of length n
from a to b is a sequence a = a0, . . . , an = b of distinct vertices such that either (ai, ai+1)
or {ai, ai+1} ∈ E, for all i = 0, . . . , n − 1.) A chain of length n from a to b is a sequence
a = a0, . . . , an = b of distinct vertices such that (ai, ai+1) ∈ E, or (ai+1, ai) ∈ E, or
{ai, ai+1} ∈ E, for all i = 0, . . . , n − 1. A vertex α is said to be an ancestor of a vertex β
if there is a directed path α → · · · → β from α to β. We define the smallest ancestral set
containing A as An(A) := an(A) ∪ A. A vertex α is said to be anterior to a vertex β if
there is a chain µ from α to β on which every edge is either of the form γ − δ, or γ → δ
with δ between γ and β, or α = β; that is, there are no edges γ ← δ pointing toward α. We
apply this definition to sets: ant(X) = {α|α is an anterior of β for some β ∈ X}.

A partially directed cycle (or semi-directed cycle) in a graph G is a sequence of n distinct
vertices v1, v2, . . . , vn(n ≥ 3), and vn+1 ≡ v1, such that

(a) for all i(1 ≤ i ≤ n) either vi − vi+1 or vi → vi+1, and

(b) there exists a j(1 ≤ j ≤ n) such that vj → vj+1.

An AMP chain graph is a graph in which there are no partially directed cycles. The
chain components T of a chain graph are the connected components of the undirected graph
obtained by removing all directed edges from the chain graph. We define the smallest
coherent set containing A as Co(A) := ∪τ{τ ∈ T |τ ∩ A 6= ∅}. Let G be obtained by
deleting all directed edges of G; for A ⊆ V the extended subgraph G[A] is defined by
G[A] := GAn(A) ∪GCo(An(A)).

A triple of vertices {X,Y, Z} is said to form a flag in CG if the induced subgraph
CGX∪Y ∪Z is X → Y − Z or X − Y ← Z. A triple of vertices {X,Y, Z} is said to form
a triplex in CG if the induced subgraph CGX∪Y ∪Z is either X → Y − Z, X → Y ← Z,
or X − Y ← Z. A triplex is augmented by adding the X − Z edge. A set of four vertices
{X,A,B, Y } is said to form a bi-flag if the edges X → A, Y → B, and A−B are present in

6

AMP CGs: Minimal Separators and Structure Learning Algorithms

Z

Y

X

(a)

Z

Y

X Z

Y

X Z

Y

X

(b)

A

Y

X

B

(c)

?

A

Y

X

B

(d)

Figure 2: (a) Triplexes and (b) the corresponding augmented triplex, (c) the four configu-
rations that define the bi-flag; (d) the corresponding augmented bi-flag. The “?” indicates
that either X − Y ∈ G, X → Y ∈ G, Y → X ∈ G, or X and Y are not adjacent in G.

the induced subgraph over {X,A,B, Y }. A bi-flag is augmented by adding the edge X−Y .
A minimal complex (or simply a complex) in a chain graph is an induced subgraph of the
form a→ v1 − · · · · · · − vr ← b. The augmented CG Ga is the undirected graph formed by
augmenting all triplexes and bi-flags in CG and replacing all directed edges with undirected
edges (see Fig. 2). The skeleton (underlying graph) of a CG G is obtained from G by
changing all directed edges of G into undirected edges. Vertex Y is an unshielded collider
(or V-structure) in a DAG G if G contains the induced subgraph U → Y ← V .

Definition 1 (Global Markov property for AMP chain graphs) For any triple (A,B, S) of
disjoint subsets of V such that S separates A from B in (G[A∪B ∪ S])a, in the augmented
graph of the extended subgraph of A ∪ B ∪ S, we have A ⊥⊥ B|S (or 〈A,B|S〉) i.e., A is
independent of B given S.

An equivalent pathwise separation criterion that identifies all valid conditional indepen-
dencies under the AMP Markov property was introduced in (Levitz et al., 2001):

Definition 2 (The pathwise p-separation criterion for AMP chain graphs) A node B in a
chain ρ in an AMP CG G is called a triplex node in ρ if A→ B ← C,A→ B−C, or A−
B ← C is a subchain of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when

• every triplex node in ρ is in An(Z), and

• every non-triplex node B in ρ is outside Z, unless A−B − C is a subchain of ρ and
paG(B) \ Z 6= ∅.

7

Javidian, Valtorta, and Jamshidi

A

Y

X

B

(a)

A

Y

X

(b)

A

Y

X

B

(c)

A

Y

X

B

(d)

A

Y

X

B

(e)

Figure 3: (a) The AMP CG G, (b) An(X ∪Y ∪A), (c) the undirected edges in Co(An(X ∪
Y ∪A)), (d) G[X ∪ Y ∪A], and (e) (G[X ∪ Y ∪A])a.

Let X,Y 6= ∅ and Z (may be empty) denote three disjoint subsets of V . When there is no
Z-open chain in an AMP CG G between a node in X and a node in Y , we say that X is
separated from Y given Z in G and denote it as X⊥⊥ Y |Z.

Theorem 4.1 in (Levitz et al., 2001) establishes the equivalence of the p-separation
criterion and the augmentation criterion occurring in the AMP global Markov property for
CGs.

Example 1 Consider the AMP CG G in Fig. 3(a). The global Markov property of AMP
chain graphs implies that X ⊥⊥ Y |A (see Fig. 3). There is no A-open chain in the AMP
CG G between X and Y because the only chain between X and Y i.e., X → A−B ← Y is
blocked at B (B is a triplex node in the chain and B 6∈ An(A)).

We say that two AMP CGs G and H are Markov equivalent or that they are in the same
Markov equivalence class if they induce the same conditional independence restrictions. Two
chain graphs G and H are Markov equivalent if and only if they have the same skeletons and
the same triplexes (Andersson et al., 2001). Two LWF chain graphs G and H are Markov
equivalent if and only if they have the same skeletons and the same minimal complexes
(Frydenberg, 1990). Two DAGs G and H are Markov equivalent if and only if they have
the same skeletons and the same unshielded colliders (Pearl, 1988). The condition for AMP
Markov equivalence of CGs more closely resembles that for DAG Markov equivalence than
does the condition for LWF Markov equivalence of CGs, in the sense that triplexes involve
only three vertices, while complexes can involve arbitrarily many vertices.

8

AMP CGs: Minimal Separators and Structure Learning Algorithms

We say that AMP chain graphs G and H belong to the same strong Markov equivalent
class iff G and H are Markov equivalent and contain the same flags. An AMP CG G∗ is
said to be the AMP essential graph of its Markov equivalence class iff for every directed
edge A → B that exists in G∗ there exists no AMP CG H s.t. G∗ and H are Markov
equivalent and A ← B is in H. An AMP CG G∗ is said to be the largest deflagged graph
of its Markov equivalence class iff there exists no other AMP CG H s.t. G∗ and H are
Markov equivalent and either H contains fewer flags than G∗ or G∗ and H belong to the
same strong Markov equivalence class but H contains more undirected edges. Any largest
deflagged graph or AMP essential graph are AMP CGs and both of these have been proven
to be unique for the Markov equivalence class they represent (Roverato and Rocca, 2006;
Andersson and Perlman, 2006).

Let ḠV = (V, ĒV) denote an undirected graph where ĒV is a set of undirected edges.
For a subset A of V , let ḠA = (A, ĒA) be the subgraph induced by A and ĒA = {e ∈
ĒV |e ∈ A × A} = ĒV ∩ (A × A). An undirected graph is called complete if any pair of
vertices is connected by an edge. For an undirected graph, we say that vertices u and v are
separated by a set of vertices Z if each path between u and v passes through Z. We say
that two distinct vertex sets X and Y are separated by Z if and only if Z separates every
pair of vertices u and v for any u ∈ X and v ∈ Y . We say that an undirected graph ḠV
is an undirected independence graph (UIG) for CG G if the fact that a set Z separates X
and Y in ḠV implies that Z p-separates X and Y in G. Note that the augmented graph
derived from CG G, (G)a, is an undirected independence graph for G. We say that ḠV can
be decomposed into subgraphs ḠA and ḠB if

(1) A ∪B = V , and

(2) C = A ∩B separates V \A and V \B in ḠV .

The above decomposition does not require that the separator C be complete, which is
required for weak decomposition defined in (Lauritzen, 1996). In this paper, we show that
a problem of learning the structure of CG can also be decomposed into problems for its
decomposed subgraphs even if the separator is not complete.

A triangulated (chordal) graph is an undirected graph in which all cycles of four or
more vertices have a chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle (see, for example, Figure 4). For an undirected graph ḠV which is not
triangulated, we can add extra (“fill-in”) edges to it such that it becomes a triangulated
graph, denoted by ḠtV .

In this paper, we assume that all independencies of a probability distribution of variables
in V can be checked by p-separations of G, called the faithfulness assumption (Spirtes
et al., 2000). The faithfulness assumption means that all independencies and conditional
independencies among variables can be represented by G.

The global skeleton is an undirected graph obtained by dropping direction of CG. A
local skeleton for a subset A of variables is an undirected subgraph for A in which the
absence of an edge u v implies that there is a subset S of A such that u⊥⊥ v|S. Now, we
introduce the notion of p-separation trees, which is used to facilitate the representation of the
decomposition. The concept is similar to the junction tree of cliques and the independence
tree introduced for DAGs as d-separation trees in (Xie et al., 2006). Let C = {C1, . . . , CH}

9

Javidian, Valtorta, and Jamshidi

ce

b

d a

f

(a)

ce

b

d a

f

(b)

ce

b

d a

f

(c)

Figure 4: (a) An AMP CG G. (b) The augmented graph Ga, which is also an undirected
independence graph. (c) The triangulated graph (Ga)t.

be a collection of distinct variable sets such that for h = 1, . . . ,H,Ch ⊆ V . Let T be a tree
where each node corresponds to a distinct variable set in C, to be displayed as an oval (see,
for example, Figure 5). An undirected edge e = {Ci, Cj} connecting nodes Ci and Cj in T
is labeled with a separator S = Ci ∩ Cj , which is displayed as a rectangle. Removing an
edge e or, equivalently, removing a separator S from T splits T into two subtrees T1 and
T2 with node sets C1 and C2 respectively. We use Vi to denote the union of the vertices
contained in the nodes of the subtree Ti for i = 1, 2.

e

c, d, e

e, f

c, d

b, c, db, c

a, b, c

Figure 5: The p-separation tree of CG G in Figure 4.

Notice that a separator is defined in terms of a tree whose nodes consist of variable
sets, while the p-separator is defined based on chain graph. In general, these two concepts
are not related, though for a p-separation tree its separator must be some corresponding
p-separator in the underlying AMP chain graph. The definition of p-separation trees for

10

AMP CGs: Minimal Separators and Structure Learning Algorithms

AMP chain graphs is similar to that of junction trees of cliques, see (Cowell et al., 1999;
Lauritzen, 1996). Actually, it is not difficult to see that a junction tree of chain graph G
is also a p-separation tree. However, as in (Ma et al., 2008), we point out two differences
here: (a) a p-separation tree is defined with p-separation and it does not require that every
node be a clique or that every separator be complete on the augmented graph; (b) junction
trees are mostly used in inference engines, while our interest in p-separation trees is mainly
derived from their power in facilitating the decomposition of structural learning.

Given an undirected graph G = (V,E), a subset S ⊆ V that does not contain a or
b is said to be an (a, b)-separator if all paths from a to b intersect S. A set S of nodes
that separates a given pair of nodes such that no proper subset of S separates that pair
is called a minimal separator. Note that removing an (a, b)-separator disconnects a graph
into two connected components, one containing a, and another containing b. Conversely, if
a set S disconnects a graph into a connected component including a and another connected
component including b, then S is an (a, b)-separator. Two disjoint vertex subsets A and B
of V are adjacent if there is at least one pair of adjacent vertices u ∈ A and v ∈ B. Let A
and B be two disjoint non-adjacent subsets of V . Similarly, we define an (A,B)-separator
to be any subset of V \ (A ∪ B) whose removal separates A and B in distinct connected
components. A minimal (A,B)-separator does not contain any other (A,B)-separator.

3. Finding Minimal Separators in AMP Chain Graphs

In this section we propose and solve an optimization problem related to the separation in
AMP chain graphs. The basic problem is formulated as follows: given a pair of non-adjacent
nodes, x and y, in an AMP chain graph, G, find a minimal set of nodes that separates x
and y. We analyze several versions of this problem and offer polynomial time algorithms for
each. Apart from the possible theoretical interest that these problems may have (Tian et al.,
1998; Acid and de Campos, 1996), generally, the solution to the basic problem (Problem
2) represents the minimum information i.e., minimal set of variables, whose values we have
to know in order to break the mutual influence between two sets of variables, either in
the absence of any other information (Problem 5, 6), or in the presence of some previous
knowledge (Problem 1, 3, 4). These include the following problems:

Problem 1 (test for minimal separation) Given two non-adjacent nodes X and Y in an
AMP chain graph G and a set Z that separates X from Y , test if Z is minimal i.e., no
proper subset of Z separates X from Y .

Problem 2 (minimal separation) Given two non-adjacent nodes X and Y in an AMP
chain graph G, find a minimal separating set between X and Y , namely, find a set Z such
that Z, and no proper subset of Z, separates X from Y .

Problem 3 (restricted separation) Given two non-adjacent nodes X and Y in an AMP
chain graph G and a set S of nodes not containing X and Y , find a subset Z of S that
separates X from Y .

Problem 4 (restricted minimal separation) Given two non-adjacent nodes X and Y in an
AMP chain graph G and a set S of nodes not containing X and Y , find a subset Z of S
which is minimal and separates X from Y .

11

Javidian, Valtorta, and Jamshidi

Problem 5 (minimal separation of two disjoint non-adjacent sets) Given two disjoint non-
adjacent sets X and Y in an AMP chain graph G, find a minimal separating set between X
and Y , namely, find a set Z such that Z, and no proper subset of Z, separates X from Y .

Problem 6 (enumeration of all minimal separators) Given two non-adjacent nodes (or
disjoint subsets) X and Y in an AMP chain graph G, enumerate all minimal separating
sets between X and Y .

We prove that it is possible to transform our problem into a separation problem, where
the undirected graph in which we have to look for the minimal set separating X from Y
depends only on X and Y . For each above mentioned problem, we propose and analyze an
algorithm that, taking into account the previous results, solves it.

3.1 Main Theorem: Minimal Separators in AMP Chain Graphs

In this subsection we prove that it is possible to transform our problem into a separation
problem, where the undirected graph in which we have to look for the minimal set separating
X from Y depends only on X and Y . Later, in the next subsections, we will apply this
result to developing an efficient algorithm that solves our problems.

The next proposition shows that if we want to test a separation relationship between
two disjoint sets of nodes X and Y in an AMP chain graph, where the separating set is
included in the anterior set of X ∪ Y , then we can test this relationship in a smaller AMP
chain graph, whose set of nodes is formed only by the anteriors of X and Y .

Proposition 3 Given an AMP chain graph G = (V,E). Consider that X,Y, and Z are
three disjoint subsets of V, Z ⊆ ant(X ∪ Y), and H = Gant(X∪Y) is the subgraph of G
induced by ant(X ∪ Y). Then 〈X,Y |Z〉G ⇔ 〈X,Y |Z〉H .

Proof (⇒) The necessary condition is obvious, because a separator in a graph is also a
separator in all of its subgraphs.

(⇐) Since bd(ant(X ∪ Y)) = ∅, so Co(An(ant(X ∪ Y))) = ant(X ∪ Y). Let 〈X,Y |Z〉H
and Z ⊆ ant(X ∪ Y), then Co(An(X ∪ Y ∪ Z)) ⊆ ant(X ∪ Y). Consider that 〈X,Y 6 |Z〉G.
This means that X is not separated from Y given Z in (G[X ∪ Y ∪ Z])a, which is a
subgraph of (G[ant(X ∪ Y)])a. In other words, there is a chain C between X and Y in
Ha = (G[ant(X∪Y)])a = (Gant(X∪Y))

a that bypasses Z. Once again using Z ⊆ ant(X∪Y),
we obtain that X and Y are not separated by Z in H, in contradiction to the assumption
〈X,Y |Z〉H . Therefore, it has to be 〈X,Y |Z〉G.

The following proposition establishes the basic result necessary to solve our optimization
problems.

Proposition 4 Given an AMP chain graph G = (V,E). Consider that X,Y, and Z are
three disjoint subsets of V such that 〈X,Y |Z〉 and 〈X,Y 6 |Z ′〉,∀Z ′ (Z. Then Z ⊆ ant(X∪
Y).

Proof Suppose that Z 6⊆ ant(X∪Y). Define Z ′ = Z∩ant(X∪Y). Then, by assumption we
have 〈X,Y 6 |Z ′〉. Since Z ′ ⊆ ant(X∪Y), it is obvious that Co(An(X∪Y ∪Z ′)) ⊆ ant(X∪Y).

12

AMP CGs: Minimal Separators and Structure Learning Algorithms

So, X and Y are not separated by Z ′ in (G[X ∪Y ∪Z ′])a, hence there is a chain C between
X and Y in (G[X ∪ Y ∪ Z ′])a that bypasses Z ′ i.e., the chain C is formed from nodes
in ant(X ∪ Y) that are outside of Z. Since Co(An(X ∪ Y ∪ Z ′)) ⊆ ant(X ∪ Y), then
(G[X ∪ Y ∪ Z ′])a is a subgraph of (G[ant(X ∪ Y)])a. Then, the previously found chain C
is also a chain in (G[ant(X ∪ Y)])a that bypasses Z, which means that X and Y are not
separated by Z in (G[ant(X ∪ Y)])a = (Gant(X∪Y))

a. So, X and Y are not p-separated by
Z in Gant(X∪Y). This implies that X and Y are not p-separated by Z in G, in contradiction
to the assumption 〈X,Y |Z〉. Therefore, it has to be Z ⊆ ant(X ∪ Y).

The next proposition shows that, by combining the results in propositions 3 and 4, we
can reduce our problems to a simpler one, which involves a smaller graph.

Proposition 5 Let G = (V,E) be an AMP chain graph, and X,Y ⊆ V are two disjoint
subsets. Then the problem of finding a minimal separating set for X and Y in G is equivalent
to the problem of finding a minimal separating set for X and Y in the induced subgraph
Gant(X∪Y).

Proof The proof is very similar to the proof of Proposition 3 in (Acid and de Campos,
1996; Javidian and Valtorta, 2018b) and Proposition 9 in (Javidian and Valtorta, 2018a).
Let H = Gant(X∪Y), and let us to define sets SG = {Z ⊆ V |〈X,Y |Z〉G} and SH = {Z ⊆
ant(X ∪ Y)|〈X,Y |Z〉H}. Then we have to prove that minZ∈SG

|Z| = minZ∈SH
|Z|, and

therefore, by proposition 4, the sets of minimal separators are the same. From proposition
3, we deduce that SH ⊆ SG, and therefore minZ∈SH

|Z| ≥ minZ∈SG
|Z|.

(⇒) Let T = min(Z ∈ SG). Then ∀T ′ (T we have T ′ 6∈ SG, and from proposition 4
we obtain T ⊆ ant(X ∪ Y), and now using proposition 3 we get T ∈ SH . So, we have
|T | = minZ∈SH

|Z| ≥ minZ∈SG
|Z| = |T |, hence |T | = minZ∈SH

|Z|.
(⇐) Let T = min(Z ∈ SH). If, |T | = minZ∈SH

|Z| > minZ∈SG
|Z| = |Z0|, we have

∀Z ′ (Z0, Z
′ /∈ SG, and therefore, once again using proposition 4 and 3, we get Z0 ∈ SH ,

so that |Z0| ≥ minZ∈SH
|Z| = |T |, which is a contradiction. Thus, |T | = minZ∈SG

|Z|.

Theorem 6 The problem of finding a minimal separating set for X and Y in an AMP
chain graph G is equivalent to the problem of finding a minimal separating set for X and
Y in the undirected graph (Gant(X∪Y))

a.

Proof The proof is very similar to the proof of Theorem 1 in (Acid and de Campos, 1996;
Javidian and Valtorta, 2018b) and Theorem 10 in (Javidian and Valtorta, 2018a). Using
the same notation from proposition 5, let Ha be the augmented graph of H = Gant(X∪Y),
and SaH = {Z ⊆ ant(X ∪Y)|〈X,Y |Z〉Ha}. Let Z be any subset of ant(X ∪Y). Then taking
into account the characteristics of anterior sets, it is clear that Hant(X∪Y ∪Z) = H. Then,
we have Z ∈ SH ⇔ 〈X,Y |Z〉H ⇔ 〈X,Y |Z〉(Hant(X∪Y ∪Z))

a ⇔ 〈X,Y |Z〉Ha ⇔ Z ∈ SaH . Hence,

SH = SaH . Now, using proposition 5, we obtain |T | = minZ∈SG
|Z| ⇔ |T | = minZ∈Sa

H
|Z|.

Informally, Theorem 6 says that the search space of finding a minimal separating set S
for X and Y in an AMP chain graph G is limited to ant(X ∪ Y), as shown in Figure 6.

13

Javidian, Valtorta, and Jamshidi

𝐺

𝑋 𝑌

𝑆

𝑎𝑛
𝑡 𝑋
∪
𝑌

Figure 6: Search space for finding a minimal separating set S for X and Y in an AMP chain
graph G.

Algorithm 1: Test for minimal separation (Problem 1)

Input: A set Z that separates two non-adjacent nodes X,Y in the AMP chain
graph G.

Output: If Z is minimal then the algorithm returns TRUE otherwise, returns
FALSE.

1 if Z contains a node that is not in ant(X ∪ Y) then
2 return FALSE ;
3 else

/* Building the search space according to Theorem 6. */

4 Construct Gant(X∪Y);

5 Construct (Gant(X∪Y))
a;

6 /* Applying Theorem 7 by running BFS algorithm that starts from

both X and Y . */

7 Starting from X, run BFS. Whenever a node in Z is met, mark it if it is not
already marked, and do not continue along that path. When BFS stops;

8 if not all nodes in Z are marked then
9 return FALSE ;

10 else
11 Remove all markings. Starting from Y , run BFS. Whenever a node in Z is

met, mark it if it is not already marked, and do not continue along that
path. When BFS stops;

12 if not all nodes in Z are marked then
13 return FALSE ;
14 else
15 return TRUE ;
16 end

17 end
18

19 end

14

AMP CGs: Minimal Separators and Structure Learning Algorithms

3.2 Algorithms for Finding Minimal Separators

In undirected graphs we have efficient methods of testing whether a separation set is mini-
mal, which are based on the following criterion.

Theorem 7 Given two nodes X and Y in an undirected graph, a separating set Z between
X and Y is minimal if and only if for each node u in Z, there is a path from X to Y which
passes through u and does not pass through any other nodes in Z.

Proof See the proof of Theorem 5 in (Tian et al., 1998).

Applying this theorem to the undirected graph described in Theorem 6, i.e., (Gant(X∪Y))
a,

leads to Algorithm 1 for Problem 1. The idea is that if Z is minimal then all nodes in Z
can be reached using Breadth First Search (BFS) that starts from both X and Y without
passing through any other nodes in Z.

Analysis of Algorithm 1 (Tian et al., 1998): Let H = Gant(X∪Y) and |EaH | stands for
the number of edges in Ha = (Gant(X∪Y))

a. Step 4-5 each requires O(|EaH |) time. Thus,
the complexity of Algorithm 1 is O(|EaH |).

Remark 8 (Characteristic operation and size measure) The size measure used for
graph algorithms in this paper is the sum of the number of vertices and the number of
edges in a chain graph (for simplicity, in connected graphs, just the number of edges). This
measure, which is used in algorithms textbooks (e.g., (Cormen et al., 2009)), is appropriate
here, because the chain graph is given explicitly as an input. In contrast, in heuristic search,
it is usually assumed that a graph is constructed as it is searched, and the size measure that
we chose would be inappropriate (Edelkamp and Schroedl, 2011; Pearl, 1984).

A variant of Algorithm 1 solves Problem 2. Algorithm 2 lists pseudocode for this variation.
Analysis of Algorithm 2: Each one of steps 2-5 each requires O(|EaH |) time. Thus, the
overall complexity of Algorithm 2 is O(|EaH |).

Theorem 9 Given two nodes X and Y in an AMP chain graph G and a set S of nodes
not containing X and Y , there exists some subset of S which separates X and Y if and only
if the set S′ = S ∩ ant(X ∪ Y) separates X and Y .

Proof (⇒) Proof by contradiction. Let S′ = S ∩ ant(X ∪ Y) and 〈X,Y 6 |S′〉. Since
S′ ⊆ ant(X ∪ Y), it is obvious that ant(X ∪ Y ∪ S′) = ant(X ∪ Y). So, X and Y are not
separated by S′ in (Gant(X∪Y))

a, hence there is a chain C between X and Y in (Gant(X∪Y))
a

that bypasses S′ i.e., the chain C is formed from nodes in ant(X ∪ Y) that are outside of
S. Since ant(X ∪ Y) ⊆ ant(X ∪ Y ∪ S′′)),∀S′′ ⊆ S , then (Gant(X∪Y))

a is a subgraph of
(Gant(X∪Y ∪S))

a. Then, the previously found chain C is also a chain in (Gant(X∪Y ∪S′′)a that
bypasses S′′, which means that X and Y are not separated by any S′′ ⊆ S in (Gant(X∪Y ∪S)a,
which is a contradiction.
(⇐) It is obvious.

Informally, search space of finding a restricted minimal separating set Z for X and Y
in an AMP chain graph G, when a set of nodes S not containing X and Y is given, is

15

Javidian, Valtorta, and Jamshidi

Algorithm 2: Minimal separation (Problem 2)

Input: Two non-adjacent nodes X,Y in the AMP chain graph G.
Output: Set Z, that is a minimal separator for X,Y .
/* Building the search space according to Theorem 6. */

1 Construct Gant(X∪Y);

2 Construct (Gant(X∪Y))
a;

3 Set Z ′ to be ne(X) (or ne(Y)) in (Gant(X∪Y))
a;

/* Z ′ is a separator because, according to the local Markov property of

an undirected graph, a vertex is conditionally independent of all

other vertices in the graph, given its neighbors (Lauritzen, 1996).

*/

/* Applying Theorem 7 by running BFS algorithm that starts from both X
and Y . */

4 Starting from X, run BFS. Whenever a node in Z ′ is met, mark it if it is not already
marked, and do not continue along that path. When BFS stops, let Z ′′ be the set of
nodes which are marked. Remove all markings;

5 Starting from Y , run BFS. Whenever a node in Z ′′ is met, mark it if it is not already
marked, and do not continue along that path. When BFS stops, let Z be the set of
nodes which are marked;

6 return Z;

𝑆𝑋 𝑌

𝑎𝑛
𝑡 𝑋

∪
𝑌

𝐺

Figure 7: Search space for finding a restricted minimal separating set Z for X and Y in an
AMP chain graph G, when a set of nodes S not containing X and Y is given.

limited to ant(X ∪ Y), as shown in Figure 7. Therefore, Problem 3 is solved by testing if
S′ = S ∩ ant(X ∪ Y) separates X and Y . Analysis of Algorithm 3: This requires O(|EaH |)
time.

According to Theorem 9, Problem 4 is solved using Algorithm 3 and then, if False not
returned, Algorithm 2 with Z ′ = S ∩ ant(X ∪ Y). The time complexity of this algorithm is
also O(|EaH |).

In order to solve Problem 5, i.e., to find the minimal set separating two disjoint non-
adjacent subsets of nodes X and Y (instead of two single nodes) in an AMP chain graph
G, first we build the undirected graph (Gant(X∪Y))

a. Next, starting out from this graph,
we construct a new undirected graph Aug(G : αX , αY) by adding two artificial (dummy)

16

AMP CGs: Minimal Separators and Structure Learning Algorithms

Algorithm 3: Restricted separation (Problem 3)

Input: A set S of nodes not containing X and Y in the AMP chain graph G.
Output: If there is a subset of S that separates X from Y then the algorithm

returns Z ⊆ S that separates X from Y otherwise, returns FALSE.
/* Building the search space according to Theorem 9. */

1 Construct Gant(X∪Y);

2 Construct (Gant(X∪Y))
a;

3 Set S′ = S ∩ ant(X ∪ Y);
4 Remove S′ from (Gant(X∪Y))

a;

/* Using BFS algorithm to test the separability of the candidate set

S′. */

5 Starting from X, run BFS;
6 if Y is met then
7 return FALSE
8 else
9 return Z = S′

10 end
11

nodes αX , αY , and connect them to those nodes that are adjacent to some node in X and Y ,
respectively. So, the separation of X and Y in (Gant(X∪Y))

a is equivalent to the separation
of αX and αY in Aug(G : αX , αY). Moreover, the minimal separating set for αX and αY
in Aug(G : αX , αY) cannot contain nodes from (X ∪ Y). Therefore, in order to find the
minimal separating set for X and Y in G, it is suffice to find the minimal separating set for
αX and αY in Aug(G : αX , αY). So, we have reduced this problem to one of separation for
single nodes, which can be solved using Algorithm 2.

Shen and Liang in (Shen and Liang, 1997) presents an efficient algorithm for enumer-
ating all minimal (X,Y)-separators, separating given non-adjacent vertices X and Y in an
undirected connected simple graph G = (V,E). This algorithm requires O(n3RXY) time,
where |V | = n and RXY is the number of minimal (X,Y)-separators. The algorithm can be
generalized for enumerating all minimal (X,Y)-separators that separate non-adjacent ver-
tex sets X,Y ⊆ V , and it requires O(n2(n− nX − nY)RXY) time. In this case, |X| = nX ,
|Y | = nY , and RXY is the number of all minimal (X,Y)-separators. According to Theorem
6, using this algorithm for (Gant(X∪Y))

a solves Problem 6.

Remark 10 Since DAGs (directed acyclic graphs) are subclass of AMP chain graphs, one
can use the same technique to enumerate all minimal separators in DAGs.

4. PC-like Algorithm

In this section we explain the original PC-like algorithm proposed in (Peña, 2012) briefly,
and we show that this version of the PC-like algorithm is order-dependent, in the sense
that the output can depend on the order in which the variables are given. We propose
modifications of the PC-like algorithm that remove (part or all of) this order-dependence.

17

Javidian, Valtorta, and Jamshidi

4.1 Order-Dependent PC-like algorithm

The PC-like algorithm for learning AMP CGs under the faithfulness assumption proposed
in (Peña, 2012) is formally described in Algorithm 4 for the reader’s convenience.

Algorithm 4: The order-dependent PC-like algorithm for learning AMP chain
graphs (Peña, 2012)

Input: A set V of nodes and a probability distribution p faithful to an unknown AMP CG
G and an ordering order(V) on the variables.

Output: A CG H that is triplex equivalent to G.
1 Let H denote the complete undirected graph over V ;
/* Skeleton Recovery */

2 for i← 0 to |VH | − 2 do
3 while possible do
4 Select any ordered pair of nodes u and v in H such that u ∈ adH(v) and

|[adH(u) ∪ adH(adH(u))] \ {u, v}| ≥ i, using order(V);
/* adH(x) := {y ∈ V |x y, y x, or x y} */

5 if there exists S ⊆ ([adH(u) ∪ adH(adH(u))] \ {u, v}) s.t. |S| = i and u ⊥⊥p v|S (i.e.,
u is independent of v given S in the probability distribution p) then

6 Set Suv = Svu = S;
7 Remove the edge u v from H;

8 end

9 end

10 end
11 /* Orientation phase: */

12 while possible do
13 Apply rules R1-R4 in Figure 10 to H.
14 end
15 Replace every edge () in H with ();
16 return H.

In applications we do not have perfect conditional independence information. Instead,
we assume that we have an i.i.d. sample of size n of V = (X1, . . . , Xp). In the PC-like algo-
rithm (Peña, 2012) all conditional independence queries are estimated by statistical condi-
tional independence tests at some pre-specified significance level (p.value) α. For example,
if the distribution of V is multivariate Gaussian, one can test for zero partial correlation,
see, e.g., (Kalisch and Bühlmann, 2007). For this purpose, we used the gaussCItest() func-
tion from the R package pcalg throughout this paper. Let order(V) denote an ordering on
the variables in V . We now consider the role of order(V) in every step of the algorithm.

In the skeleton recovery phase of the PC-like algorithm (Peña, 2012; Peña and Gómez-
Olmedo, 2016) (lines 2-10 of Algorithm 4), the order of variables affects the estimation of
the skeleton and the separating sets. In particular, at each level of i, the order of variables
determines the order in which pairs of adjacent vertices and subsets S of their adjacency sets
are considered (see lines 4 and 5 in Algorithm 4). The skeleton H is updated after each edge
removal. Hence, the adjacency sets typically change within one level of i, and this affects
which other conditional independencies are checked, since the algorithm only conditions on
subsets of the adjacency sets. When we have perfect conditional independence information,
all orderings on the variables lead to the same output. In the sample version, however, we

18

https://cran.r-project.org/web/packages/pcalg

AMP CGs: Minimal Separators and Structure Learning Algorithms

typically make mistakes in keeping or removing edges. In such cases, the resulting changes
in the adjacency sets can lead to different skeletons, as illustrated in Example 2.

Moreover, different variable orderings can lead to different separating sets in the skele-
ton recovery phase. When we have perfect conditional independence information, this is
not important, because any valid separating set leads to the correct triplex decision in the
orientation phase. In the sample version, however, different separating sets in the skeleton
recovery phase of the algorithm may yield different decisions about triplexes in the orien-
tation phase (lines 12-15 of Algorithm 4). This is illustrated in Example 3. The examples
were encountered when testing the PC-like algorithm by generating synthesized samples
from the DAGs in Figure 8(a) and 9(a).

Example 2 (Order-dependent skeleton of the PC-like algorithm.) Suppose that the
distribution of V = {a, b, c, d, e} is faithful to the DAG in Figure 8(a). This DAG en-
codes the following conditional independencies with minimal separating sets: b ⊥⊥ c|a and
a ⊥⊥ e|{b, c, d}.

Suppose that we have an i.i.d. sample of (a, b, c, d, e), and that the following conditional
independencies with minimal separating sets are judged to hold at some significance level
α: b ⊥⊥ c|a, a ⊥⊥ e|d,a ⊥⊥ b|d, a ⊥⊥ c|d, b ⊥⊥ d|e, and c ⊥⊥ d|e. Thus, the first conditional
independence relation is correct, while the rest of them are false.

We now apply the skeleton recovery phase of the PC-like algorithm with two different
orderings: order1(V) = (d, c, b, a, e) and order2(V) = (d, e, a, c, b). The resulting skeletons
are shown in Figures 8(b) and 8(c), respectively.

e

d

a

b c

(a)

e

d

a

b c

(b)

e

d

a

b c

(c)

Figure 8: Order-dependent skeleton of the PC-like algorithm. (a) The DAG G, (b) the
skeleton returned by Algorithm 4 with order1(V), (c) the skeleton returned by Algorithm
4 with order2(V).

We see that the skeletons are different, and that both are incorrect as the edges a
b, a c, b d, and c d are missing. The skeleton for order2(V) contains an additional
error, as there is an additional edge b c. We now go through Algorithm 4 to see what
happened. We start with a complete undirected graph on V . When i = 0, variables are

19

Javidian, Valtorta, and Jamshidi

tested for marginal independence, and the algorithm correctly does not remove any edge.
When i = 1, there are six pairs of vertices that are thought to be conditionally independent
given a subset of size one. Table 1 shows the trace table of Algorithm 4 for i = 1 and
order1(V) = (d, c, b, a, e).

Table 1: The trace table of Algorithm 4 for i = 1 and order1(V) = (d, c, b, a, e). For
simplicity, we define ADJH(u) := [adH(u) ∪ adH(adH(u))] \ {u, v}.

Ordered Pair (u, v) ADJH(u) Suv Is Suv ⊆ ADJH(u)? Is u v removed?

(d, c) {a, b, e} {e} Yes Yes

(d, b) {a, c, e} {e} Yes Yes

(c, b) {a, d, e} {a} Yes Yes

(c, a) {b, d, e} {d} Yes Yes

(b, a) {c, d, e} {d} Yes Yes

(a, e) {d} {d} Yes Yes

Table 2 shows the trace table of Algorithm 4 for i = 1 and order2(V) = (d, e, a, c, b).

Table 2: The trace table of Algorithm 4 for i = 1 and order2(V) = (d, e, a, c, b). For
simplicity, we define ADJH(u) := [adH(u) ∪ adH(adH(u))] \ {u, v}.

Ordered Pair (u, v) ADJH(u) Suv Is Suv ⊆ ADJH(u)? Is u v removed?

(d, c) {a, b, e} {e} Yes Yes

(d, b) {a, c, e} {e} Yes Yes

(e, a) {b, c, d} {d} Yes Yes

(a, c) {b, d, e} {d} Yes Yes

(a, b) {d, e} {d} Yes Yes

(c, b) {d, e} {a} No No

(b, c) {c, e} {a} No No

No conditional independency is found when i = 2.

Example 3 (Order-dependent separators & triplexes of the PC-like algorithm.)
Suppose that the distribution of V = {a, b, c, d, e} is faithful to the DAG in Figure 9(a).
This DAG encodes the following conditional independencies with minimal separating sets:
a ⊥⊥ d|b, a ⊥⊥ e|{b, c}, a ⊥⊥ e|{c, d}, b ⊥⊥ c, b ⊥⊥ e|d, and c ⊥⊥ d.

Suppose that we have an i.i.d. sample of (a, b, c, d, e). Assume that all true conditional
independencies are judged to hold except c ⊥⊥ d. Suppose that c ⊥⊥ d|b and c ⊥⊥ d|e
are thought to hold. Thus, the first is correct, while the second is false. We now apply
the orientation phase of the PC-like algorithm with two different orderings: order1(V) =

20

AMP CGs: Minimal Separators and Structure Learning Algorithms

(d, c, b, a, e) and order3(V) = (c, d, e, a, b). The resulting CGs are shown in Figures 9(b) and
9(c), respectively. Note that while the separating set for vertices c and d with order1(V) is
Sdc = Scd = {b}, the separating set for them with order2(V) is Scd = Sdc = {e}.

ed

a

b c

(a)

ed

a

b c

(b)

ed

a

b c

(c)

Figure 9: Order-dependent separators and triplexes of the PC-like algorithm. (a) The
DAG G, (b) the CG returned by Algorithm 4 with order1(V), (c) the CG returned by
Algorithm 4 with order3(V).

This illustrates that order-dependent separating sets in the skeleton recovery phase of the
sample version of the PC-algorithm can lead to order-dependent triplexes in the orientation
phase of the algorithm.

4.2 Order-Independent (Stable-) PC-like Algorithm

As shown in the previous section, the original PC-like algorithm is order-dependent. In
this section we propose modifications of the PC-like algorithm, i.e., the Stable PC-
like for AMP chain graphs (Stable-PC4AMP), Conservative PC-like for AMP CGs
(Conservative-PC4AMP), and Stable-Conservative-PC4AMP for learning the structure of
AMP chain graphs under the faithfulness assumption that remove part or all of the order-
dependence. The order-dependence can become very problematic for high-dimensional data,
leading to highly variable results and conclusions for different variable orderings. The sec-
ond limitation of the PC-like algorithm is that the runtime of the algorithm, in the worst
case, is exponential to the number of variables, and thus it is inefficient when applying to
high dimensional datasets such as gene expression. We now propose several modifications
of the original PC-like algorithm for learning AMP chain graphs (and hence also of the
related algorithms), called stable PC-like, that remove the order-dependence in the var-
ious stages of the algorithm, analogously to what (Colombo and Maathuis, 2014) did for
the original PC algorithm in the case of DAGs. The stable PC-like algorithm for AMP
chain graphs can be used to parallelize the conditional independence (CI) tests at each
level of the skeleton recovery algorithm. So, the CI tests at each level can be grouped and
distributed over different cores of the computer, and the results can be integrated at the
end of each level. Consequently, the runtime of our parallelized stable PC-like algorithm
is much shorter than the original PC-like algorithm for learning AMP chain graphs. Fur-
thermore, this approach enjoys the advantage of knowing the number of CI tests of each
level in advance. This allows the CI tests to be evenly distributed over different cores, so

21

Javidian, Valtorta, and Jamshidi

that the parallelized algorithm can achieve maximum possible speedup. In order to explain
the details of the stable PC-like algorithm for AMP chain graphs, we discuss the skeleton
and the orientation rules, respectively.

We first consider estimation of the skeleton in the adjacency search (skeleton recov-
ery phase) of the PC-like algorithm for AMP chain graphs (lines 2-10 of Algorithm 4).
The pseudocode for our modification is given in Algorithm 5 (lines 2-13). The resulting
PC-like algorithm for learning AMP chain graphs in Algorithm 5 is called Stable PC-like
for AMP CGs (Stable-PC4AMP).

Algorithm 5: The order-independent (Stable-) PC-like algorithm for learning
AMP CGs (Stable-PC4AMP)

Input: A set V of nodes and a probability distribution p faithful to an unknown AMP CG
G and an ordering order(V) on the variables.

Output: A CG H that is triplex equivalent to G.
1 Let H denote the complete undirected graph over V = {v1, . . . , vn};
/* Skeleton Recovery: */

2 for i← 0 to |VH | − 2 do
3 for j ← 1 to |VH | do
4 Set aH(vj) = adH(vj) ∪ adH(adH(vj));

/* adH(x) := {y ∈ V |x y, y x, or x y} */

5 end
6 while possible do
7 Select any ordered pair of nodes u and v in H such that u ∈ adH(v) and

|aH(u) \ {u, v}| ≥ i, using order(V);
8 if there exists S ⊆ (aH(u) \ {u, v}) s.t. |S| = i and u ⊥⊥p v|S (i.e., u is independent

of v given S in the probability distribution p) then
9 Set Suv = Svu = S;

10 Remove the edge u v from H;

11 end

12 end

13 end
14 /* Orientation phase: */

15 while possible do
16 Apply rules R1-R4 in Figure 10 to H.
17 end
18 Replace every edge () in H with ();
19 return H.

The main difference between Algorithms 4 and 5 is given by the for-loop on lines 3-
5 in the latter one, which computes and stores the adjacency sets aH(vi) of all variables
after each new size i of the conditioning sets. These stored adjacency sets aH(vi) are used
whenever we search for conditioning sets of this given size i. Consequently, an edge deletion
on line 10 no longer affects which conditional independencies are checked for other pairs of
variables at this level of i.

In other words, at each level of i, Algorithm 5 records which edges should be removed,
but for the purpose of the adjacency sets it removes these edges only when it goes to the
next value of i. Besides resolving the order-dependence in the estimation of the skeleton, our

22

AMP CGs: Minimal Separators and Structure Learning Algorithms

R1 A B C ⇒ A B C

∧ B ∉ S AC

R2 A B C ⇒ A B C

∧ B ∈ S AC

R3
A . . . B

⇒
A . . . B

R4 A B

C

D

⇒ A B

C

D

∧ A ∈ SCD
Figure 10: Orientation rules in Algorithms 4 and 5: Rules R1-R4 (Peña, 2012)

algorithm has the advantage that it is easily parallelizable at each level of i i.e., computations
required for i-level can be performed in parallel. The Stable-PC4AMP algorithm is correct,
i.e. it returns an AMP CG the given probability distribution is faithful to (Theorem 11),
and yields order-independent skeletons in the sample version (Theorem 12). We illustrate
the algorithm in Example 4.

Theorem 11 Let the distribution of V be faithful to an AMP CG G, and assume that we
are given perfect conditional independence information about all pairs of variables (u, v) in
V given subsets S ⊆ V \ {u, v}. Then the output of the Stable-PC4AMP algorithm is an
AMP CG that is Markov equivalent with G.

Proof The proof of Theorem 11 is completely analogous to the proof of Theorem 1 for the
original PC-like algorithm in (Peña, 2012).

Theorem 12 The skeleton resulting from the sample version of the Stable-PC4AMP algo-
rithm for AMP CGs is order-independent.

Proof We consider the removal or retention of an arbitrary edge u v at some level i. The
ordering of the variables determines the order in which the edges (line 7 of Algorithm 5) and
the subsets S of aH(u) and aH(v) (line 8 of Algorithm 5) are considered. By construction,
however, the order in which edges are considered does not affect the sets aH(u) and aH(v).

If there is at least one subset S of aH(u) or aH(v) such that u ⊥⊥p v|S, then any ordering
of the variables will find a separating set for u and v (but different orderings may lead to
different separating sets as illustrated in Example 3). Conversely, if there is no subset S′ of
aH(u) or aH(v) such that u ⊥⊥p v|S′, then no ordering will find a separating set.

Hence, any ordering of the variables leads to the same edge deletions, and therefore to
the same skeleton.

23

Javidian, Valtorta, and Jamshidi

Example 4 (Order-independent skeletons) We go back to Example 2, and consider
the sample version of Algorithm 5. The algorithm now outputs the skeleton shown in Figure
8(b) for both orderings order1(V) and order2(V).

We again go through the algorithm step by step. We start with a complete undirected
graph on V . No conditional independence found when i = 0. When i = 1, the algorithm
first computes the new adjacency sets: aH(v) = V \ {v},∀v ∈ V . There are six pairs of
variables that are thought to be conditionally independent given a subset of size 1 (see Table
3). Since the sets aH(v) are not updated after edge removals, it does not matter in which
order we consider the ordered pairs. Any ordering leads to the removal of six edges.

Table 3: The trace table of Algorithm 5 for i = 1, order1(V) = (d, c, b, a, e), and order2(V) =
(d, e, a, c, b). For simplicity, we define ADJH(u) := [adH(u) ∪ adH(adH(u))] \ {u, v}.

Ordered Pair (u, v) ADJH(u) Suv Is Suv ⊆ ADJH(u)? Is u v removed?

(d, c) {a, b, e} {e} Yes Yes

(d, b) {a, c, e} {e} Yes Yes

(c, b) {a, d, e} {a} Yes Yes

(c, a) {b, d, e} {d} Yes Yes

(b, a) {c, d, e} {d} Yes Yes

(a, e) {b, c, d} {d} Yes Yes

Now, we propose a method to resolve the order-dependence in the determination of the
triplexes in AMP chain graphs, by extending the approach in (Ramsey et al., 2006) for
unshielded colliders recovery in DAGs.

Our proposed Conservative PC-like algorithm for AMP CGs (Conservative-PC4AMP)
works as follows. Let H be the undirected graph resulting from the skeleton recovery phase
of the PC-like algorithm (Algorithm 4). For all unshielded triples (Xi, Xj , Xk) in H, deter-
mine all subsets S of adH(Xi)∪ adH(adH(Xi)) and of adH(Xk)∪ adH(adH(Xk)) that make
Xi and Xk conditionally independent, i.e., that satisfy Xi ⊥⊥p Xk|S. We refer to such sets
as separating sets. The triple (Xi, Xj , Xk) is labelled as unambiguous if at least one such
separating set is found and either Xj is in all separating sets or in none of them; otherwise
it is labelled as ambiguous. If the triple is unambiguous, it is labeled and then oriented as
described in Algorithm 4. So, the orientation rules are adapted so that only unambiguous
triples are oriented.

We refer to the combination of the Stable-PC4AMP and Conservative-PC4AMP algo-
rithms for AMP chain graphs as the Stable-Conservative-PC4AMP algorithm.

Theorem 13 Let the distribution of V be faithful to an AMP CG G, and assume that we
are given perfect conditional independence information about all pairs of variables (u, v)
in V given subsets S ⊆ V \ {u, v}. Then the output of the Conservative-PC4AMP /
Stable-Conservative-PC4AMP algorithm is an AMP CG that is Markov equivalent with
G.

24

AMP CGs: Minimal Separators and Structure Learning Algorithms

Proof The skeleton of the learned CG is correct by Theorem 11. Now, we prove that for
any unshielded triple (Xi, Xj , Xk) in an AMP CG G, Xj is either in all sets that p-separate
Xi and Xk or in none of them. Since Xi, Xk are not adjacent, they are p-separated given
some subset S \ {Xi, Xk} (see Algorithm 2). Based on the pathwise p-separation criterion
for AMP CGs (see Definition 2), Xj is a triplex node in G if and only if Xj 6∈ An(S).
So, Xj 6∈ S. On the other hand, if Xj is a non-triplex node then Xj ∈ S, for all S that
p-separate Xi and Xk. Because in this case, Xj ∈ Co(An(Xi ∪ Xk ∪ S)) and so there is
an undirected path Xi Xj Xk in (G[Xi ∪ Xk ∪ S])a. Any set S \ {Xi, Xk} that
does not contain Xj will fail to p-separate Xi and Xk because of this undirected path. As a
result, unshielded triples are all unambiguous. Since all unshielded triples are unambiguous,
the orientation rules are as in the original (Stable-) PC-like algorithm. Therefore, the
output of the Conservative-PC4AMP/Stable-Conservative-PC4AMP algorithm is an AMP
CG that is Markov equivalent with G.

Theorem 14 The decisions about triplexes in the sample version of the algorithm for AMP
chain graphs recovery by Stable-Conservative-PC4AMP is order-independent.

Proof The Stable-Conservative-PC4AMP algorithm have order-independent skeleton, by
Theorem 12. In particular, this means that their unshielded triples and adjacency sets are
order-independent. The decision about whether an unshielded triple is unambiguous and/or
a triplex is based on the adjacency sets of nodes in the triple, which are order independent.

Example 5 (Order-independent decisions about triplexes) We consider the sample
versions of the Stable-Conservative-PC4AMP algorithm for AMP chain graphs, using the
same input as in Example 3. In particular, we assume that all conditional independencies
induced by the AMP CG in Figure 9(a) are judged to hold except c ⊥⊥ d. Suppose that
c ⊥⊥ d|b and c ⊥⊥ d|e are thought to hold.

Denote the skeleton after the skeleton recovery phase by H. We consider the unshielded
triple (c, e, d). First, we compute aH(c) = {a, b, d, e} and aH(d) = {a, b, c, e}. We now
consider all subsets S of these adjacency sets, and check whether c ⊥⊥ d|S. The follow-
ing separating sets are found: {b}, {e}, and {b, e}. Since e is in some but not all of these
separating sets, the Stable-Conservative-PC4AMP algorithm for AMP chain graphs deter-
mines that the triple is ambiguous, and no orientations are performed. The output of the
algorithm is given in Figure 9(c).

At this point it should be clear why the modified PC-like algorithm for AMP chain
graphs is labeled “conservative”: it is more cautious than the (Stable-) PC-like algorithm
for AMP chain graphs in drawing unambiguous conclusions about orientations. As we
showed in Example 5, the output of the algorithm for AMP chain graphs recovery by
Conservative-PC4AMP or Stable-Conservative-PC4AMP may not be triplex equivalent
with the true AMP CG G, if the resulting CG contains an ambiguous triple.

Table 4 summarizes all order-dependence issues explained above and the corresponding
modifications of the PC-like algorithm for AMP chain graphs that removes the given order-
dependence problem.

25

Javidian, Valtorta, and Jamshidi

Table 4: Order-dependence issues and corresponding modifications of the PC-like algorithm
that remove the problem. “Yes” indicates that the corresponding aspect of the graph is
estimated order-independently in the sample version.

skeleton triplexes decisions

PC-like algorithm for AMP CGs No No

Stable-PC4AMP Yes No

Stable-Conservative-PC4AMP Yes Yes

5. LCD-AMP Algorithm: Structure Learning by Decomposition

In this section, first, we address the issue of how to construct a p-separation tree from
observed data, which is the heart of our decomposition-based algorithm. Then, we present
an algorithm, called LCD-AMP, that shows how separation trees can be used to facilitate the
decomposition of the structure learning of AMP chain graphs. The theoretical results are
presented first, followed by descriptions of our algorithm that is the summary of the key
results in our paper.

5.1 Constructing a p-Separation Tree from Observed Data

As proposed in (Xie et al., 2006), one can construct a d-separation tree from observed
data. In this section we extend Theorem 2 of (Xie et al., 2006), and thereby prove that
their method for constructing a separation tree from data is valid for AMP chain graphs.
To construct an undirected independence graph in which the absence of an edge u v
implies u ⊥⊥ v|V \ {u, v}, we can start with a complete undirected graph, and then for each
pair of variables u and v, an undirected edge u v is removed if u and v are independent
conditional on the set of all other variables (Xie et al., 2006). For normally distributed
data, the undirected independence graph can be efficiently constructed by removing an
edge u v if and only if the corresponding entry in the concentration matrix (inverse
covariance matrix) is zero (Lauritzen, 1996, Proposition 5.2). For this purpose, performing a
conditional independence test for each pair of random variables using the partial correlation
coefficient can be used. If the p-value of the test is smaller than the given threshold,
then there will be an edge on the output graph. For discrete data, a test of conditional
independence given a large number of discrete variables may be of extremely low power.
To cope with such difficulty, there are two fundamental ways to perform structure learning:
(1) Parameter estimation techniques (Banerjee et al., 2008; Ravikumar et al., 2010) that
utilize a factorization of the distribution according to the cliques of the graph to learn the
underlying graph. These techniques assume a certain form of the potential function, and
thereby relate the structure learning problem to one of finding a sparse maximum likelihood
estimator of a distribution from its samples. (2) Algorithms based on learning conditional
independence relations between the variables (Chow and Liu, 1968; Bresler et al., 2008;
Netrapalli et al., 2010; Anandkumar et al., 2012) that they do not need knowledge of the
underlying parametrization to learn the graph. These methods are based on comparing
all possible neighborhoods of a node to find one which has the maximum influence on the

26

AMP CGs: Minimal Separators and Structure Learning Algorithms

node. In (Edwards, 2000, Chapter 6), (Bromberg et al., 2009), and (de Abreu et al., 2010b)
there are other methods for UIG learning, including some for data with both continuous
and discrete variables. All these methods can be used to construct separation trees from
data.

Theorem 15 A junction tree constructed from an undirected independence graph for AMP
CG G is a p-separation tree for G.

Proof See Appendix A.

A p-separation tree T only requires that all p-separation properties of T also hold for
AMP CG G, but the reverse is not required. Thus we only need to construct an undirected
independence graph that may have fewer conditional independencies than the augmented
graph, and this means that the undirected independence graph may have extra edges added
to the augmented graph. As (Xie et al., 2006) observe for d-separation in DAGs, if all nodes
of a p-separation tree contain only a few variables, “the null hypothesis of the absence of
an undirected edge may be tested statistically at a larger significance level.”

Since there are standard algorithms for constructing junction trees from UIGs (Cowell
et al., 1999, Chapter 4, Section 4), the construction of separation trees reduces to the
construction of UIGs. In this sense, Theorem 15 enables us to exploit various techniques
for learning UIGs to serve our purpose. More suggested methods for learning UIGs from
data, in addition to the above mentioned techniques, can be found in (Ma et al., 2008).

Example 6 To construct a p-separation tree for the AMP CG G in Figure 4(a), at first
an undirected independence graph is constructed by starting with a complete graph and re-
moving an edge u v if u ⊥⊥ v|V \ {u, v}. An undirected graph obtained in this way is the
augmented graph of AMP CG G. In fact, we only need to construct an undirected indepen-
dence graph which may have extra edges added to the augmented graph. Next triangulate
the undirected graph and finally obtain the p-separation tree, as shown in Figure 4(c) and
Figure 5 respectively.

5.2 The LCD-AMP Algorithm for Learning AMP Chain Graphs

By applying the following theorem to structural learning, we can split a problem of searching
for p-separators and building the skeleton of a CG into small problems for every node of
p-separation tree T .

Theorem 16 Let T be a p-separation tree for AMP CG G and u and v be two vertices that
do not belong to the same chain component. So, vertices u and v are p-separated by S ⊆ V
in G if and only if (i) u and v are not contained together in any node C of T or (ii) there
exists a node C that contains both u and v such that a subset S′ of C p-separates u and v.

Proof See Appendix A.

According to Theorem 16, a problem of searching for a p-separator S of u and v in all
possible subsets of V is localized to all possible subsets of nodes in a p-separation tree that

27

Javidian, Valtorta, and Jamshidi

contain u and v. For a given p-separation tree T with the node set C = {C1, . . . , CH},
we can recover the skeleton and all triplexes for an AMP CG using a constraint-based
algorithm, called LCD-AMP, that contains two main steps: (a) determining the skeleton by a
divide-and-conquer approach; (b) determining triplexes and orienting some of the undirected
edges into directed edges according to a set of rules applied iteratively with localized search
for p-separators. We elaborate on each phase of this algorithm below.
LCD-AMP Description: (a) Skeleton Recovery. This phase has two steps. First, we con-
struct a local skeleton for every node Ch of T , which is constructed by starting with a
complete undirected subgraph and removing an undirected edge u v if there is a sub-
set S of Ch such that u and v are independent conditional on S. For this purpose, we
can use the PC-like algorithm Peña (2012) or the Stable-PC4AMP algorithm (Algorithm
5, line 2-13) in Algorithm 6 (line 3-11). Second, in order to construct the global skeleton
(line 13-23 of Algorithm 6), we combine all these local skeletons together. Note that it is
possible that some edges that are present in some local skeletons may be absent in other
local skeletons. Also, two non-adjacent vertices u and v in the AMP CG G that belong
to the same chain component may be adjacent in the temporary global skeleton. (Note
that Theorem 16 only guarantees the existence of the p-separators for those non-adjacent
vertices that do not belong to the same chain component. In Appendix A, we provide an
example that shows that Theorem 16 cannot be strengthened.) In order to remove the
extra edges in the resulting undirected graph, we apply a removal procedure that is similar
to the skeleton recovery phase of the PC-like algorithm. However, instead of the complete
undirected graph we use the resulting undirected graph obtained in the previous step. (b)
Orientation phase. In this phase (line 25-28 of Algorithm 6), we orient undirected edges
using rules R1-R4 in (Peña, 2012; Peña and Gómez-Olmedo, 2016) (illustrated in Figure 10
for the reader’s convenience). The whole process is formally described in Algorithm 6.

We prove that the global skeleton and all triplexes obtained by applying the decomposi-
tion in Algorithm 6 are correct, that is, they are the same as those obtained from the joint
distribution of V . In other words, LCD-AMP returns a chain graph that is a member of a
class of triplex equivalent AMP chain graphs; see Appendix A for proof details. Note that
separators in a p-separation tree may not be complete in the augmented graph. Thus the
decomposition is weaker than the decomposition usually defined for parameter estimation
(Cowell et al., 1999; Lauritzen, 1996).

Remark 17 One can apply Algorithm 3 in (Roverato and Rocca, 2006) to to the resulting
chain graph of Algorithm 6 to obtain the largest deflagged graph. Also, one can apply
Algorithm 1 in (Sonntag and Peña, 2015) to the resulting chain graph of Algorithm 6 to
obtain the AMP essential graph.

5.3 Complexity Analysis of the LCD-AMP Algorithm

Here we start by comparing our algorithm with the main algorithm in (Xie et al., 2006) that
is designed specifically for DAG structural learning when the underlying graph structure is
a DAG. We make this choice of the DAG specific algorithm so that both algorithms can
have the same separation tree as input and hence are directly comparable.

The same advantages mentioned by (Xie et al., 2006) for their BN structural learning
algorithm hold for our algorithm when applied to AMP CGs. For the reader’s convenience,

28

AMP CGs: Minimal Separators and Structure Learning Algorithms

Algorithm 6: LCD-AMP : A decomposition-based recovery algorithm for AMP CGs

Input: A probability distribution p faithful to an unknown AMP CG G.
Output: A chain graph H that is triplex equivalent to the AMP CG G.

1 Construct a p-separation tree T with a node set C = {C1, . . . , CI} as discussed in
Section 5.1;

2 Set S = ∅;
/* Local skeleton recovery: */

3 for i← 1 to I do
4 Start from a complete undirected graph Ḡi with vertex set Ci;
5 for each vertex pair {u, v} ⊆ Ci do
6 if ∃Suv ⊆ Ci such that u ⊥⊥ v|Suv then
7 Delete the edge u v in Ḡi;
8 Add Suv to S;

9 end

10 end

11 end
12 /* Global skeleton recovery: */

13 Initialize the edge set ĒV of ḠV as the union of all edge sets of Ḡi, i = 1, . . . , I;
14 Set H = ḠV ;
15 for i← 0 to |VH | − 2 do
16 while possible do
17 Select any ordered pair of nodes u and v in H such that u ∈ adH(v) and

|[adH(u) ∪ adH(adH(u))] \ {u, v}| ≥ i;
/* adH(x) := {y ∈ V |x y, y x, or x y} */

18 if there exists S ⊆ ([adH(u)∪adH(adH(u))] \ {u, v}) s.t. |S| = i and u ⊥⊥p v|S
(i.e., u is independent of v given S in the probability distribution p) then

19 Set Suv = Svu = S;
20 Remove the edge u v from H;

21 end

22 end

23 end
24 /* Orientation phase (Pe~na, 2012): */

25 while possible do
26 Apply rules R1-R4 in Figure 10 to H.

/* A block is represented by a perpendicular line at the edge end such as

in or , and it means that the edge cannot be a directed edge

pointing in the direction of the block. Note that means that the

edge must be undirected. The ends of some of the edges in the rules

are labeled with a circle such as in or . The circle represents

an unspecified end, i.e. a block or nothing. */

27 end
28 Replace every edge () in H with ();
29 return H.

29

Javidian, Valtorta, and Jamshidi

we list them here. First, by using the p-separation tree, independence tests are performed
only conditionally on smaller sets contained in a node of the p-separation tree rather than
on the full set of all other variables. Thus our algorithm has higher power for statistical
tests. Second, the computational complexity can be reduced. The number of conditional
independence tests for constructing the equivalence class is used as characteristic operation
for this complexity analysis. Decomposition of graphs is a computationally simple task
compared to the task of testing conditional independence for a large number of triples of sets
of variables. The triangulation of an undirected graph is used in our algorithms to construct
a p-separation tree from an undirected independence graph. Although the problem for
optimally triangulating an undirected graph is NP-hard, sub-optimal triangulation methods
(Berry et al., 2004) may be used provided that the obtained tree does not contain too
large nodes to test conditional independencies. Two of the best known algorithms are
lexicographic search and maximum cardinality search, and their complexities are O(|V ||E|)
and O(|V | + |E|), respectively (Berry et al., 2004). Thus in our algorithms, conditional
independence tests dominate algorithmic complexity.

For the sake of complexity analysis, Algorithm 6 can be divided into four parts: (1)
construction of the p-separation tree, (2) local skeleton recovery (lines 3–11), (3) global
skeleton recovery (lines 12–22), and (4) orientation phase (lines 23-25). Part (1) includes the
construction of the UIG, which takes at most O(n2) conditional independence tests, where
n is the number of variables in the data set. Part (2) and (3) together require O(Hm22m)
as claimed in (Xie et al., 2006, Section 6), where H is the number of p-separation tree nodes
(usually H � |V |) and m = maxh |Ch| where |Ch| denotes the number of variables in Ch
(m usually is much less than |V |). Part (4) does not require any conditional independence
tests.

6. Experimental Evaluation

In this section we evaluate the performance of our algorithms in various setups using sim-
ulated / synthetic data sets. We first compare the performance of our proposed algo-
rithms, i.e., Stable-PC4AMP, Conservative-PC4AMP, Stable-Conservative-PC4AMP and
LCD-AMP with the original PC-like learning algorithms by running them on randomly
generated AMP chain graphs. We then compare our algorithms, i.e., Stable-PC4AMP and
LCD-AMP algorithms with the PC-like algorithm on different discrete Bayesian networks
such as ASIA, INSURANCE, ALARM, and HAILFINDER that have been widely used in
evaluating the performance of structural learning algorithms. Empirical simulations show
that our algorithm achieves competitive results with the PC-like and Stable-PC4AMP learn-
ing algorithms; in particular, in the Gaussian case the decomposition-based algorithm out-
performs the PC-like and Stable-PC4AMP algorithms. Algorithms 6 and the PC-like and
Stable-PC4AMP algorithms have been implemented in the R language. All code, data, and
the results reported here are based on our R implementation available at the following
GitHub link https://github.com/majavid/AMPCGs2019. We do not consider the case of
mixed continuous and discrete data in this paper, and leave this important and complex
issue for future work; we only observe that this problem has been studied in the case of
Markov networks and Bayesian networks, for example see (de Abreu et al., 2010a; Lauritzen
and Jensen, 2001; Raghu et al., 2018; Andrews et al., 2018).

30

http://www.bnlearn.com/bnrepository/
https://github.com/majavid/AMPCGs2019

AMP CGs: Minimal Separators and Structure Learning Algorithms

6.1 Performance Evaluation Metrics

We evaluate the performance of the proposed algorithms in terms of the six measurements
that are commonly used by (Colombo and Maathuis, 2014; Ma et al., 2008; Tsamardinos
et al., 2006) for constraint-based learning algorithms:

(a) the true positive rate (TPR)3 is the ratio of the number of correctly identified edges
over total number of edges (in true graph), i.e.,

TPR =
true positive (TP)

the number of real positive cases in the data (Pos)
,

(b) the false positive rate (FPR)4 is the ratio of the number of incorrectly identified edges
over total number of gaps, i.e.,

FPR =
false positive (FP)

the number of real negative cases in the data (Neg)
,

(c) the true discovery rate (TDR)5 is the ratio of the number of correctly identified edges
over total number of edges (both in estimated graph), i.e.,

TDR =
true positive (TP)

the total number of edges in the recovered CG
,

(d) accuracy (ACC) is defined as

ACC =
true positive (TP) + true negative (TN)

Pos+Neg
,

(e) the structural Hamming distance (SHD)6 is the number of legitimate operations
needed to change the current resulting graph to the true CG, where legitimate opera-
tions are: (i) add or delete an edge and (ii) insert, delete or reverse an edge orientation,
and

(e) run-time for the chain graph recovery algorithms.

Note that we use TPR, FPR, TDR, and ACC for comparing the skeletons of a learned
structure and a ground truth graph. In principle, a large TDR, TPR and ACC, a small
FPR and SHD indicate good performance.

To investigate the performance of the proposed learning methods in this paper, we use
the same approach that Ma et al. (2008) used in evaluating the performance of the LCD
algorithm on LWF chain graphs. We run our algorithms on randomly generated AMP chain
graphs and then we compare the results and report summary error measures in all cases.

3. Also known as sensitivity, recall, and hit rate.
4. Also known as fall-out.
5. Also known as precision or positive predictive value.
6. This is the metric described by Tsamardinos et al. (2006) to compare the structure of the learned and

the original graphs.

31

Javidian, Valtorta, and Jamshidi

6.2 Performance Evaluation on Random AMP Chain Graphs (Gaussian case)

To investigate the performance of the proposed learning methods in this paper, we use
the same approach that (Ma et al., 2008) used in evaluating the performance of the LCD
algorithm on LWF chain graphs. We run our algorithms on randomly generated AMP chain
graphs and then we compare the results and report summary error measures in all cases.

6.2.1 Data Generation Procedure

First we explain the way in which the random AMP chain graphs and random samples are
generated. Given a vertex set V , let p = |V | and N denote the average degree of edges
(including undirected and pointing out and pointing in) for each vertex. We generate a
random AMP chain graph on V as follows:

• Order the p vertices and initialize a p× p adjacency matrix A with zeros;

• For each element in the lower triangle part of A, set it to be a random number
generated from a Bernoulli distribution with probability of occurrence s = N/(p− 1);

• Symmetrize A according to its lower triangle;

• Select an integer k randomly from {1, . . . , p} as the number of chain components;

• Split the interval [1, p] into k equal-length subintervals I1, . . . , Ik so that the set of
variables falling into each subinterval Im forms a chain component Cm;

• Set Aij = 0 for any (i, j) pair such that i ∈ Il, j ∈ Im with l > m.

This procedure yields an adjacency matrix A for a chain graph with (Aij = Aji = 1)
representing an undirected edge between Vi and Vj and (Aij = 1, Aji = 0) representing a
directed edge from Vi to Vj . Moreover, it is not difficult to see that E[vertex degree] = N ,
where an adjacent vertex can be linked by either an undirected or a directed edge. In order
to sample from the artificial CGs, we first transformed them into DAGs and then sampled
from these DAGs under marginalization and conditioning as indicated in (Peña, 2014b). The
transformation of an AMP CG G into a DAG H is as follows: First, every node X in G gets
a new parent εX representing an error term, which by definition is never observed. Then,
every undirected edge X Y in G is replaced by εX SXY εY where SXY denotes a
selection bias node, i.e. a node that is always observed. Given a randomly generated chain
graph G with ordered chain components C1, . . . , Ck, we generate a Gaussian distribution
on the corresponding transformed DAG H using the Hugin API. Note that the probability
distributions of samples are likely to satisfy the faithfulness assumption, but there is no
guarantee i.e., samples can have additional independencies that cannot be represented by
the CG G.

6.2.2 Experimental Results in Low-Dimensional Settings

Experimental Setting In our simulation, we change three parameters p (the number of
vertices), n (sample size) and N (expected number of adjacent vertices) as follows:

• p ∈ {10, 20, 30, 40, 50},

32

https://www.hugin.com/

AMP CGs: Minimal Separators and Structure Learning Algorithms

• n ∈ {500, 1000, 5000, 10000}, and

• N ∈ {2, 3}.

For each (p,N) combination, we first generate 30 random AMP CGs. We then generate
a random Gaussian distribution based on each graph and draw an identically indepen-
dently distributed (i.i.d.) sample of size n from this distribution for each possible n. For
each sample, three different significance levels (α = 0.005, 0.01, 0.05) are used to perform
the hypothesis tests. The null hypothesis H0 is “two variables u and v are conditionally
independent given a set C of variables” and alternative H1 is that H0 may not hold. We
then compare the results to access the influence of the significance testing level on the
performance of our algorithms.

Results The experimental results in Figure 11 shows that:

(a) Both algorithms work well on sparse graphs (N = 2, 3).

(b) For both algorithms, typically the TPR, TDR, and ACC increase with sample size.

(c) The SHD and FPR decrease with sample size.

(d) A large significance level (α = 0.05) typically yields large TPR, FPR, and SHD.

(e) In almost all cases, the performance of the LCD-AMP algorithm based on all error
measures i.e., TPR, FPR, TDR, ACC, and SHD is better than the performance of
the PC-like and Stable-PC4AMP algorithms.

(f) In most cases, error measures based on α = 0.01 and α = 0.005 are very close.
Generally, our empirical results suggests that in order to obtain a better performance,
we can choose a small value (say α = 0.005 or 0.01) for the significance level of
individual tests along with large sample if at all possible. However, the optimal value
for a desired overall error rate may depend on the sample size, significance level, and
the sparsity of the underlying graph.

(g) While the Stable-PC4AMP algorithm has a better TDR and FPR in comparison with
the original PC-like algorithm, the original PC-like algorithm has a better TPR as
observed in the case of DAGs (Colombo and Maathuis, 2014). This can be explained
by the fact that the Stable-PC4AMP algorithm tends to perform more tests than the
original PC-like algorithm.

(h) There is no meaningful difference between the performance of the Stable-PC4AMP al-
gorithm and the original PC-like algorithm in terms of error measures ACC and
SHD.

When considering average running times versus sample sizes, as shown in Figures 12,
we observe that:

(a) The average run time increases when sample size increases.

33

Javidian, Valtorta, and Jamshidi

●

●

●

●

500 1000 5000 10000

0.
75

0.
85

0.
95

P= 50 , N= 2 , PC vs LCD

Sample size

T
P

R

PC-like

Stable-PC4AMP
LCD-AMP

●

●

●

●

500 1000 5000 10000

0.
55

0.
65

0.
75

0.
85

P= 50 , N= 3 , PC vs LCD

Sample size
T

P
R

LCD-AMP
Stable-PC4AMP

PC-like

●

●

●

●

500 1000 5000 100000.
80

0.
85

0.
90

0.
95

LCDAMP Algorithm,P= 50,N= 2

Sample size

T
P

R

 = 0.01α
α = 0.005

α = 0.05

 = 0.01

●
●

● ●

500 1000 5000 100000.
00

0
0.

00
4

0.
00

8

P= 50 , N= 2 , PC vs LCD

Sample size

F
P

R

LCD-AMP
Stable-PC4AMP

PC-like

● ●

● ●

500 1000 5000 100000.
00

0
0.

00
4

0.
00

8
P= 50 , N= 3 , PC vs LCD

Sample size

F
P

R

LCD-AMP
Stable-PC4AMP

PC-like

●

●
●

●

500 1000 5000 100000.
00

0
0.

00
4

0.
00

8

LCDAMP Algorithm,P= 50,N= 2

Sample size
F

P
R

 = 0.01α
α = 0.005

α = 0.05

 = 0.01

●

●

●

●

500 1000 5000 100000.
97

0
0.

98
0

0.
99

0

P= 50 , N= 2 , PC vs LCD

Sample size

T
D

R

●

●

●
●

500 1000 5000 10000

0.
92

0.
96

1.
00

P= 50 , N= 3 , PC vs LCD

Sample size

T
D

R

●

●

●

●

500 1000 5000 10000

0.
92

0.
96

1.
00

LCD Algorithm , P= 50 , N= 2

Sample size

T
D

R

●

●

●

●

500 1000 5000 100000.
98

0
0.

99
0

1.
00

0 P= 50 , N= 2 , PC vs LCD

Sample size

A
C

C

LCD-AMP
Stable-PC4AMP

PC-like

●

●

●

●

500 1000 5000 100000.
96

0
0.

97
5

0.
99

0 P= 50 , N= 3 , PC vs LCD

Sample size

A
C

C

LCD-AMP
Stable-PC4AMP

PC-like

●

●

●

●

500 1000 5000 100000.
98

0
0.

99
0

1.
00

0

LCDAMP Algorithm,P= 50,N= 2

Sample size

A
C

C

 = 0.01α
α = 0.005

α = 0.05

 = 0.01

Figure 11

34

AMP CGs: Minimal Separators and Structure Learning Algorithms

●

●

● ●

500 1000 5000 1000012
14

16
18

20
P= 50 , N= 2 , PC vs LCD

Sample size

S
H

D

LCD-AMP
Stable-PC4AMP

PC-like

●

●

● ●

500 1000 5000 1000035
45

55

P= 50 , N= 3 , PC vs LCD

Sample size
S

H
D

LCD-AMP
Stable-PC4AMP

PC-like
●

●

●

●

500 1000 5000 10000

12
14

16
18

LCDAMP Algorithm,P= 50,N= 2

Sample size

S
H

D

 = 0.05α
α = 0.005

 = 0.01α

 = 0.05

Figure 11: First two columns show the performance of the decomposition based (LCD-AMP), original
PC-like and Stable-PC4AMP algorithms for randomly generated Gaussian chain graph models: average
over 30 repetitions with 50 variables correspond to N = 2, 3, and the significance level α = 0.005. In each
plot, the solid blue line corresponds to the LCD-AMP algorithm, the dashed red line corresponds to the
original PC-like algorithm, and the dotted grey line corresponds to the stable PC-like (Stable-PC4AMP)
algorithm. The third column shows the performance of the decomposition-based (LCD-AMP) algorithm for
randomly generated Gaussian chain graph models: average over 30 repetitions with 50 variables correspond
to N = 2, and significance levels α = 0.05, 0.01, 0.005. In each plot, the solid green line corresponds to
α = 0.05, the dashed brown line corresponds to α = 0.01, and the dotted blue line corresponds to α = 0.005.

●
●

●

●

500 1000 5000 10000

0.
5

1.
0

1.
5

2.
0

P= 50 , N= 2 , PC vs LCD

Sample size

ru
nt

im
e

(s
ec

) LCD-AMP
Stable-PC4AMP

PC-like

●

●

●

●

500 1000 5000 10000

2
4

6
8

10

P= 50 , N= 3 , PC vs LCD

Sample size

ru
nt

im
e

(s
ec

) LCD-AMP
Stable-PC4AMP

PC-like

●

●

●

●

500 1000 5000 10000

0.
4

0.
8

1.
2

LCDAMP Algorithm,P= 50,N= 2

Sample size

ru
nt

im
e

(s
ec

)
α = 0.01

α = 0.005

α = 0.05

Figure 12: First two columns show the running times of the decomposition-based (LCD-AMP), original
PC-like and Stable-PC4AMP algorithms for randomly generated Gaussian chain graph models: average over
30 repetitions with 50 variables correspond to N = 2,3 and significance levels α = 0.005. In each plot,
the solid blue line corresponds to the LCD-AMP algorithm, the dashed red line corresponds to the original
PC-like algorithm, and the dotted grey line corresponds to the Stable-PC4AMP algorithm. The third column
shows the running times of the decomposition-based (LCD-AMP) algorithm for randomly generated Gaussian
chain graph models: average over 30 repetitions with 50 variables correspond to N = 2, and significance
levels α = 0.05, 0.01, 0.005. In each plot, the solid green line corresponds to α = 0.05, the dashed brown line
corresponds to α = 0.01, and the dotted blue line corresponds to α = 0.005.

(b) The average run times based on α = 0.01 and α = 0.005 are very close and in all cases
better than α = 0.05, while choosing α = 0.005 yields a consistently (albeit slightly)
lower average run time across all the settings.

(c) Generally, the average run time for the decomposition-based algorithm is lower than
that for the (Stable-) PC-like algorithm.

35

Javidian, Valtorta, and Jamshidi

●
●

●

●

500 1000 5000 10000

10
00

40
00

70
00

P= 50 , N= 2 , PC vs LCD

Sample size

In

de
pe

nd
en

ce
 T

es
ts PC-like

Stable-PC4AMP

LCD-AMP

●

●

●

●

500 1000 5000 10000

10
00

0
40

00
0

P= 50 , N= 3 , PC vs LCD

Sample size

In
de

pe
nd

en
ce

 T
es

ts PC-like

Stable-PC4AMP

LCD-AMP

●

●

●

●

500 1000 5000 10000

10
00

30
00

50
00

LCDAMP Algorithm,P= 50,N= 2

Sample size

In

de
pe

nd
en

ce
 T

es
ts

α = 0.05

α = 0.005

α = 0.01

Figure 13: First two columns show the number of independence tests used by the decomposition-based
(LCD-AMP), original PC-like and Stable-PC4AMP algorithms for randomly generated Gaussian chain graph
models: average over 30 repetitions with 50 variables corresponding to average degrees N = 2,3 and sig-
nificance level α = 0.005. In each plot, the solid blue line corresponds to the LCD-AMP algorithm, the
dashed red line corresponds to the original PC-like algorithm, and the dotted grey line corresponds to
the Stable-PC4AMP algorithm. The third column shows the number of independence tests used by the
decomposition-based (LCD-AMP) algorithm for randomly generated Gaussian chain graph models: aver-
age over 30 repetitions with 50 variables corresponding to average degree N = 2, and significance levels
α = 0.05, 0.01, 0.005. In each plot, the solid green line corresponds to α = 0.05, the dashed brown line
corresponds to α = 0.01, and the dotted blue line corresponds to α = 0.005.

In Figure 13, the algorithms are compared by counting the number of independence
tests, rather than runtime, in order to reduce the impact of different implementations (R
packages). We observe that:

(a) The average number of independence tests increases when sample size increases.

(b) The average number of independence tests based on α = 0.01 and α = 0.005 are close
and in all cases better than α = 0.05, while choosing α = 0.005 yields a consistently
lower average number of independence tests across all the settings.

(c) Generally, the average number of independence tests for the decomposition-based
algorithm is better than that for the (Stable-) PC-like algorithm.

These observations are consistent with the theoretical complexity analysis that we dis-
cussed in Section 5.3. In fact, our findings confirm that the decomposition-based algorithm
reduces complexity and increases the power of computational independence tests.

6.2.3 Experimental Results in High-Dimensional Settings

Although the results in Figure 14 show that our proposed modifications of PC-like, i.e.,
Stable-PC4AMP, Conservative-PC4AMP, and Stable-Conservative-PC4AMP provide sta-
bler estimations and closer to the true underlying structure in sparse high-dimensional
settings for simulated Gaussian data compared with PC-like, we are interested to test
whether the difference is statistically significant.

Experimental Setting To show that the order-dependence of PC-like algorithm is prob-
lematic in high-dimensional data, we compared the SHD of the original PC-like algorithm

36

AMP CGs: Minimal Separators and Structure Learning Algorithms

against its modifications for randomly generated Gaussian chain graph models: average over
30 repetitions with 1000 variables with N = 2, sample size S = 50, and the significance
level α = 0.05, 0.01, 0.005, 0.001. We used an independent t-test to quantitatively evaluate
whether the means of SHDs in different structure discovery algorithms are different.

Results The t-test results in Tables 5 and 6 show that:

(a) Except for the p-value α = 0.001, the mean SHD of our proposed algorithms (i.e.,
Stable-PC4AMP, Conservative-PC4AMP, and Stable-Conservative-PC4AMP) is sig-
nificantly different (lower) from the mean of PC-like’s SHD. This confirms that our
proposed modifications provide more reliable and better-learned structures in com-
parison with the PC-like algorithm.

(b) The mean of Stable-Conservative-PC4AMP’s SHD is significantly different from the
mean of Stable-PC4AMPand Conservative-PC4AMPalgorithms’ SHD for the p-value
α = 0.05. However, for the other p-values the difference is not meaningful.

(c) Taken together, the quantitative t-test analysis confirms what one would expect from
visual inspection of Figure 14.

In addition to t-test, we also performed F-test to test statistical difference between
the corresponding pairwise SHD variances. Our results show that the p-value of F-test in
all pairwise comparisons between all algorithms (Stable-PC4AMP,Conservative-PC4AMP,
Stable-Conservative-PC4AMP, and PC-like) is greater than the significance level α =
0.05. In conclusion, there is no significant difference between the variances of the pairwise
SHDs. The similarity of SHD variances indicates that requiring stability does not control
error propagation in constraint-based algorithms, and that there remains a common source
of errors to be discovered in future work.

Table 5: P-values for pairwise t-tests. Bold numbers in the table mean that PC-like’s
average SHD is significantly different from other’s average SHD with the given p-value (α).

PC-like PC-like PC-like PC-like

(α = 0.05) (α = 0.01) (α = 0.005) (α = 0.001)

Stable-PC4AMP 7.84e−11 3.338e−06 0.0001399 0.1781

Conservative-PC4AMP 9.8e−13 1.682e−05 0.001254 0.6045

Stable-Conservative-PC4AMP 4.997e−16 7.368e−07 0.0001269 0.3511

6.3 Performance on Discrete Bayesian Networks

Since Bayesian networks are special cases of AMP CGs, it is of interest to see whether our
proposed algorithms still work well when the data are actually generated from a Bayesian
network. This matters because we often do not have the information that the underlying
graph is a DAG, which is usually untestable from data alone. For this purpose, we perform
simulation studies for four well-known Bayesian networks from Bayesian Network Reposi-
tory (Scutari, 2017): ASIA, INSURANCE, ALARM, and HAILFINDER. We purposefully

37

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/

Javidian, Valtorta, and Jamshidi

0.05 0.01 0.005 0.001

85
0

95
0

10
50

12
50

●

●

●

●

P= 1000, N= 2, PClike vs its Modifications

p values

S
H

D

●

11
50

PC-like

Stable-PC4AMP

Conservative-PC4AMP

Stable-Conservative-PC4AMP

Figure 14: The SHD of the original PC-like algorithm against its modifications for ran-
domly generated Gaussian chain graph models: average over 30 repetitions with 1000
variables correspond to N = 2, sample size S = 50, and the significance level α =
0.05, 0.01, 0.005, 0.001.

Table 6: P-values for pairwise t-tests. Bold numbers in the table mean that the average
SHD is significantly different when executing the given pair of algorithms for the p-value
α = 0.05.

Stable- Conservative- Stable-Conservative-

PC4AMP PC4AMP PC4AMP

Stable-PC4AMP - 0.116 0.0003893

Conservative-PC4AMP 0.116 - 0.04492

Stable-Conservative-PC4AMP 0.0003893 0.04492 -

selected these networks because they have different sizes (from small to large numbers of
nodes, edges, and parameters), and they are often used to evaluate structure learning algo-
rithms. We briefly introduce these networks here:

• ASIA (Lauritzen and Spiegelhalter, 1988) with 8 nodes, 8 edges, and 18 parameters,
it describes the diagnosis of a patient at a chest clinic who may have just come back
from a trip to Asia and may be showing dyspnea. Standard constraint-based learning
algorithms are not able to recover the true structure of the network because of the
presence of a functional node.

38

AMP CGs: Minimal Separators and Structure Learning Algorithms

• INSURANCE (Binder et al., 1997) with 27 nodes, 52 edges, and 984 parameters, it
evaluates car insurance risks.

• ALARM (Beinlich et al., 1989) with 37 nodes, 46 edges and 509 parameters, it was
designed by medical experts to provide an alarm message system for intensive care
unit patients based on the output a number of vital signs monitoring devices.

• HAILFINDER (Abramson et al., 1996) with 56 nodes, 66 edges, and 2656 parameters,
it was designed to forecast severe summer hail in northeastern Colorado.

We compared the performance of our algorithms for these Bayesian networks for signif-
icance level α = 0.05. The Structural Hamming Distance (SHD) compares the structure of
the largest deflagged of the learned and the original networks, for a fair comparison.

6.3.1 Experimental Results

The results of comparing all learning methods in Table 7 indicate that the performance of
LCD-AMP algorithm in many cases is better than that of the PC-like and Stable-PC4AMP al-
gorithms. In particular, we observed:

(a) Although the performance of our LCD-AMP algorithm, overall, is better than the
PC-like and Stable-PC4AMP algorithms, it is highly variable depending on the proce-
dure that is used for the UIG discovery, especially in TPR and SHD. One of the most
important implications of this observation is that there is much room for improve-
ment to the UIG recovery algorithms and decomposition-based learning algorithms,
and hopefully the present paper will inspire other researchers to address this impor-
tant class of algorithms. In general, the more accurate the UIG discovery algorithm,
the more robust the result. In our experiments, generally, the IAMB-FDR algorithm
(Peña, 2008) and the stepwise forward selection (FWD-BIC) algorithm (de Abreu
et al., 2010a) are more effective as a preliminary step (UIG recovery) towards under-
standing the overall dependence structure of high-dimensional discrete data.

(b) The PC-like and Stable-PC4AMP algorithms tend to have better TDR and FPR.
This comes at the expense, however, of much worse TPR. This suggests that the
PC-like and Stable-PC4AMP algorithms tend to add too many edges to the skeleton
of the learned graph.

7. Related Work

The contributions of this paper regarding finding minimal separators and structure learning
algorithms intersect with various works in the literature as follows.

7.1 Finding Minimal Separators in Probabilistic Graphical Models

A challenging task of model testing is to detect for any given pair of nodes a minimal
or minimum separator. Nontrivial algorithms for testing and for finding a minimal d-
separator in a DAG were first proposed in (Acid and de Campos, 1996; Tian et al., 1998).
An algorithm for learning the structure of Bayesian networks from data, based on the idea

39

Javidian, Valtorta, and Jamshidi

Table 7: Results for discrete samples from the ASIA (5000 observations), INSURANCE
(20000 observations), ALARM (20000 observations), and HAILFINDER (20000 observa-
tions) networks from the bnlearn R package respectively. Each row corresponds to the
significance level: α = 0.05. In order to learn an undirected independence graph from a
given data set in the LCD-AMP algorithm we used the Incremental Association with FDR
(IAMB-FDR) algorithm (Peña, 2008) from the bnlearn R package (Scutari, 2017) and the
stepwise forward selection (FWD-AIC or FWD-BIC) algorithms in (de Abreu et al., 2010a).

Algorithm TPR TDR FPR ACC SHD

LCD-AMP Algorithm (IAMB-FDR) 0.5 0.8 0.05 0.821 7
LCD-AMP Algorithm (FWD-AIC) 0.75 1 0 0.929 3
LCD-AMP Algorithm (FWD-BIC) 0.875 1 0 0.964 1

Stable-PC4AMP Algorithm 0.5 1 0 0.8571 5

Original PC-like Algorithm 0.5 1 0 0.8571 5

LCD-AMP Algorithm (IAMB-FDR) 0.558 0.935 0.0067 0.929 33
LCD-AMP Algorithm (FWD-AIC) 0.385 0.952 0.0033 0.906 42
LCD-AMP Algorithm (FWD-BIC) 0.538 0.875 0.0134 0.920 36

Stable-PC4AMP Algorithm 0.173 1 0 0.877 43

Original PC-like Algorithm 0.346 1 0 0.903 41

LCD-AMP Algorithm (IAMB-FDR) 0.783 0.878 0.0081 0.977 24
LCD-AMP Algorithm (FWD-AIC) 0.696 0.914 0.0048 0.974 27
LCD-AMP Algorithm (FWD-BIC) 0.760 0.921 0.0048 0.979 20

Stable-PC4AMP Algorithm 0.587 1 0 0.971 25

Original PC-like Algorithm 0.696 1 0 0.979 18

LCD-AMP Algorithm (IAMB-FDR) 0.515 0.971 0.00068 0.979 40
LCD-AMP Algorithm (FWD-AIC)
LCD-AMP Algorithm (FWD-BIC) 0.803 0.930 0.0027 0.989 38

Stable-PC4AMP Algorithm 0.394 1 0 0.974 46

Original PC-like Algorithm 0.455 0.811 0.0047 0.972 49

of finding minimal d-separating sets, proposed in (Acid and de Campos, 2001). In (van der
Zander and Liskiewicz, 2019), the authors show that testing and finding a minimal separator
in DAGs can be done in linear time. As shown in (van der Zander and Liskiewicz, 2019;
van der Zander et al., 2019), (minimal) separating sets have important applications in causal
inference tasks like finding (minimal) covariate adjustment sets or conditional instrumental
variables. In (Javidian and Valtorta, 2018a,b), the authors proposed algorithms for testing
and for finding a minimal separator in an LWF CG and an MVR CG, respectively. In this
paper, we proposed algorithms for testing and finding minimal separators in AMP chain
graphs (see Section 3).

40

AMP CGs: Minimal Separators and Structure Learning Algorithms

7.2 PC-like Algorithms for Probabilistic Graphical Models

The PC algorithm proposed by Peter Spirtes and Clark Glymour (Spirtes et al., 2000)
learns the Bayesian network structure from data by testing for conditional independence
between various sets of variables. Given the results of these tests, a network pattern is
constructed so that the Markov property holds and d-separation confirms the resulting
graph mirroring those conditional independencies found in the data. The PC algorithm
consists of two phases: In the first phase, an undirected graph is learned. This is known as
the skeleton of the Bayesian network. In the second phase, arrowheads are added to some
of the edges where they can be inferred. The output graph may not be fully oriented and is
called a pattern. When the pattern contains undirected edges, these indicate that the data
are consistent with models in which either orientation is possible.

The PC algorithm is known to be order-dependent, in the sense that the output can de-
pend on the order in which the variables are given. This order-dependence can be very pro-
nounced in high-dimensional settings, where it can lead to highly variable results. In order
to resolve the order-dependence problem, Colombo and Maathuis (Colombo and Maathuis,
2014) proposed several modifications of the PC algorithm that remove part or all of this
order-dependence.

PC-like algorithms currently exist for all three chain graph interpretations (Javidian,
2019; Peña, 2012; Sonntag and Peña, 2012) where the different phases are slightly altered
according to the interpretation but the basic ideas are kept the same. The first phase finds
the adjacencies (skeleton), the second orients the edges that must be oriented the same
in every CG in the Markov equivalence class and the third phase transforms this graph
into a CG. Order-independent versions of the PC-like algorithm for LWF CGs and MVR
CGs were proposed in (Javidian, 2019; Javidian et al., 2019), respectively. In this paper,
we proved that the proposed PC-like algorithm for AMP CGs in (Peña, 2012) is order-
dependent. Then, we proposed several modifications of the PC-like algorithm that remove
part or all of this order-dependence, but the proposed algorithms do not change the result
when perfect conditional independence information is used (see Section 4).

7.3 Decomposition Based Learning (LCD-Like) Algorithms for PGMs

Structure learning of Bayesian networks via decomposition was proposed in (Xie et al.,
2006). This approach starts with finding a decomposition of the entire variable set into
subsets, on each of which the local skeleton is then recovered. In the next phase, the
adjacency graph (global skeleton) is reconstructed by merging the decomposed graphs (local
skeletons) together. In the last phase, arrowheads are added to some of the edges where
they can be inferred in an efficient manner with lower complexity than the PC algorithm
(Xie et al., 2006).

Following the same idea, a decomposition-based algorithm called LCD (Learn Chain
graphs via Decomposition) was proposed in (Ma et al., 2008; Javidian, 2019) to learn LWF
CGs and MVR CGs, respectively; where the different phases are slightly altered according
to the interpretation but the basic ideas in (Xie et al., 2006) are kept the same. In this
paper, we developed an LCD-like algorithm, called LCD-AMP , for learning the structure of
AMP chain graphs based on the idea of decomposing the learning problem into a set of

41

Javidian, Valtorta, and Jamshidi

smaller scale problems on its decomposed subgraphs. Similarities and differences between
LCD-AMP and other LCD-like algorithms are discussed in Section 5.

8. Conclusion

This paper addresses two main problems in the context of AMP chain graphs (CGs): finding
minimal separators and structure learning. We first studied and solved the problem of
finding minimal separating sets for pairs of variables in an AMP CGs. We also studied some
extensions of the basic problem that include finding a minimal separator from a restricted
set of nodes, finding a minimal separator for two given disjoint sets, testing whether a given
separator is minimal, and listing all minimal separators, given two non-adjacent nodes (or
disjoint subsets) X and Y . Applications of this research include: (1) learning chain graphs
from data and (2) problems related to the selection of the variables to be instantiated when
using chain graphs for inference tasks, a topic for future work.

Experimental evaluations in the Gaussian case show that both (Stable-) PC-like and
LCD-AMP algorithms yield good results when the underlying graph is sparse; this holds also
in the discrete case, according to experiments with standard benchmark Bayesian networks.
This is important because Bayesian networks are special cases of AMP CGs and we often
do not know the information that the true underlying structure is a DAG, which is not
usually testable from data. The LCD-AMP algorithm achieves competitive results with the
PC-like and Stable-PC4AMP learning algorithms in both the Gaussian and discrete cases.
In fact, our LCD-AMP usually outperforms the PC-like and Stable-PC4AMP algorithms in
all five performance metrics i.e., TPR, FPR, TDR, ACC, and SHD.

The local skeletons of our LCD-AMP algorithm and CI tests at each level of the skeleton
recovery of the Stable-PC4AMP algorithm can be learned independently from each other,
and later merged and reconciled to produce a coherent AMP chain graph. This allows the
parallel implementations for scaling up the task of learning AMP chain graphs from data
containing more than hundreds of variables, which is crucial for big data analysis tasks.
The correctness proof of the decomposition-based algorithm (i.e., LCD-AMP) is built upon
our results on separating sets. This algorithm exhibits reduced complexity, as measured by
run time and number of conditional independence tests, enhances the power of conditional
independence tests by reducing the number of separating sets that need to be considered,
and, according to our experimental evaluation, achieves better quality with respect to the
learned structure.

A direction for future work is the design of a hybrid algorithm for learning AMP chain
graphs that exploits minimal separators directly, as done in (Acid and de Campos, 2001)
for learning Bayesian networks. Another natural continuation of the work presented here
would be to develop a learning algorithm with weaker assumptions than the faithfulness
assumption. This could for example be a learning algorithm that only assumes that the
probability distribution satisfies the composition property. It should be mentioned that
(Peña et al., 2014) developed an algorithm for learning LWF CGs under the composition
property. However, (Peña, 2014a) proved that the same technique cannot be used for
AMP chain graphs. We believe that our decomposition-based approach is extendable to
the structural learning of marginal AMP chain graphs (Peña and Gómez-Olmedo, 2016)
and ancestral graphs (Richardson and Spirtes, 2002). Also, a potential continuation of

42

AMP CGs: Minimal Separators and Structure Learning Algorithms

the work presented here would be to develop a learning algorithm via decomposition for
marginal AMP chain graphs and ancestral graphs under the faithfulness assumption. As
we mentioned before, our LCD-AMP algorithm works better than the (Stable-) PC-like in
many settings. The reason is that LCD-AMP algorithm takes advantage of local computations
that makes it robust against the choice of learning parameters. In Bayesian networks,
the concept that enables us to take advantage of local computation is Markov blanket.
Recently, (Javidian et al., 2020) extended the concept of Markov blankets to LWF CGs
and proved what variables make up the Markov blanket of a target variable in an LWF
CG. Characterizing Markov blankets in AMP CGs and designing a Markov blanket based
algorithm for learning AMP CGs nother interesting direction for future work.

Acknowledgment

We are grateful to Professor Jose M. Peña and Dr. Dag Sonntag for providing us with
code that helped in the data generating procedure. This work has been partially supported
by AFRL and DARPA (FA8750-16-2-0042). This work is also partially supported by an
ASPIRE grant from the Office of the Vice President for Research at the University of South
Carolina.

Appendix A. Proofs of Theorems 15 and 16

In Theorem 9, we showed that if we find a separator over S in (Gant(u∪v))
a then it is a p-

separator in G. On the other hand, if there exists a p-separator over S in G then there must
exist a separator over S in (Gant(u∪v))

a by removing all nodes which are not in ant(u ∪ v)
from it. This observation yield the following results.

Lemma 18 Let u and v be two non-adjacent vertices in AMP CG G, and let ρ be a chain
from u to v. If ρ is not contained in ant(u ∪ v), then ρ is blocked by any subset S of
ant(u ∪ v) \ {u, v}.

Proof Since ρ 6⊆ ant(u ∪ v), there is a sequence from s (may be u) to y (may be v) in
ρ = (u, . . . , s, t, . . . , x, y, . . . , v) such that s and y are contained in ant(u∪v) and all vertices
from t to x are out of ant(u∪v).Then the edges s−t and x−y must be oriented as s→ t and
x← y, otherwise t or x belongs to ant(u∪v). Thus there exist at least one triplex between s
and y on ρ. The middle vertex w of the triplex closest to s between s and y is not contained
in ant(u∪ v), and any descendant of w is not in ant(u∪ v). So ρ is blocked by this triplex,
and it cannot be activated conditionally on any vertex in S where S ⊆ ant(u ∪ v) \ {u, v}.

Lemma 19 Let T be a p-separation tree for the AMP CG G. For any vertex u there exists
at least one node of T that contains u and pa(u).

Proof If pa(u) is empty, the result is trivial. Otherwise let C denote the node of T which
contains u and the most elements of u’s parent. Since no set can separate u from a parent,
there must be a node of T that contains u and the parent. If u has only one parent, then we

43

Javidian, Valtorta, and Jamshidi

obtain the lemma. If u has two or more parents, we choose two arbitrary elements v and w
of u’s parent that are not contained in a single node of T but are contained in two different
nodes of T , say {u, v} ⊆ C and {u,w} ⊆ C ′ respectively, since all vertices in V appear in
T . On the chain from C to C ′ in T , all separators must contain u, otherwise they cannot
separate C from C ′. However, any separator containing u cannot separate v and w because
v → u← w is an active triplex between v and w in G. Thus we got a contradiction.

Lemma 20 Let T be a p-separation tree for AMP CG G and C a node of T . If u and v are
two vertices in C that are non-adjacent in G and belong to two different chain components,
then there exists a node C ′ of T containing u, v and a set S such that S p-separates u and
v in G.

Proof Assume that u and v are two vertices in G that are non-adjacent and belong to
two different chain components. Without loss of generality, we can suppose that v is not a
descendant of the vertex u in G, i.e., v 6∈ nd(u). According to the pairwise Markov property
for AMP chain graphs in (Andersson et al., 2001), u ⊥⊥ v|pa(u). By Lemma 19, there is
a node C1 of T that contains u and pa(u). If v ∈ C1, then S defined as the parents of u
p-separates u from v.

If v 6∈ C1, choose the node C2 that is the closest node in T to the node C1 and that
contains u and v. Consider that there is at least one parent p of u that is not contained in
C2. Thus there is a separator K connecting C2 toward C1 in T such that K p-separates p
from all vertices in C2 \K. Note that on the chain from C1 to C2 in T , all separators must
contain u, otherwise they cannot separate C1 from C2. So, we have u ∈ K but v 6∈ K (if
v ∈ K, then C2 is not the closest node of T to the node C1). In fact, for every parent p′ of u
that is contained in C1 but not in C2, K separates p′ from all vertices in C2 \K, especially
the vertex v.

Define S = [ant(u∪v)∩ (K ∪{p ∈ pa(u)|p ∈ C2})]\τu, where τu is the chain component
that includes u. It is not difficult to see that S is a subset of C2. We need to show that u
and v are p-separated by S, that is, every chain between u and v in G, say ρ, is blocked by
S.

If ρ is not contained in ant(u ∪ v), then we obtain from Lemma 18 that ρ is blocked by
S.

When ρ is contained in ant(u∪v), let x be adjacent to u on ρ, that is, ρ = (u, x, y, . . . , v).
We consider the three possible orientations of the edge between u and x. We now show that
ρ is blocked in all three cases by S.

i: u← x, so it is obvious that x is not a triplex node and we have two possible sub-cases:

1. x ∈ C2. In this case the chain ρ is blocked at x.

2. x 6∈ C2. In this case K p-separates x from v. Theorem 9 guarantees that the set
S′ = K ∩ ant(x ∪ v) also p-separates x from v. Note that S′ ∩ τu = ∅ to prevent
a partially directed cycle, and S′ ⊆ S. So, S p-separates x from v i.e., the chain
between v and x is blocked by S. Hence the chain ρ is blocked by S.

ii: u→ x. We have the following sub-cases:

44

AMP CGs: Minimal Separators and Structure Learning Algorithms

1. x ∈ ant(u). This case is impossible because a partially directed cycle would
occur.

2. x ∈ an(v). This case is impossible because v cannot be a descendant of u.

iii: u x, so x ∈ τu. In this case the chain ρ between u and v has a triplex node at
y ∈ τu that is not in S. So, the chain ρ is blocked at y and cannot be activated by S.

Proof [Proof of Theorem 15] From (Cowell et al., 1999), we know that any separator S in
junction tree T separates V1 \S and V2 \S in the triangulated graph ḠtV , where Vi denotes
the variable set of the subtree Ti induced by removing the edge with a separator S attached,
for i = 1, 2. Since the edge set of ḠtV contains that of undirected independence graph ḠV
for G, V1 \ S and V2 \ S are also separated in ḠV . Since ḠV is an undirected independence
graph for G, using the definition of p-separation tree we obtain that T is a p-separation tree
for G.

Proof [Proof of Theorem 16] (⇒) If condition (i) is the case, nothing remains to prove.
Otherwise, Lemma 20 implies condition (ii).

(⇐) Assume that u and v are not contained together in any chain component and any node
C of T . Also, assume that C1 and C2 are two nodes of T that contain u and v, respectively.
Consider that C ′1 is the most distant node from C1, between C1 and C2, that contains u
and C ′2 is the most distant node from C2, between C1 and C2, that contains v. Note that
it is possible that C ′1 = C1 or C ′2 = C2. By the condition (i) we know that C ′1 6= C ′2. The
sufficiency of condition (i) is given by the definition of the p-separation tree, because any
separator between C ′1 and C ′2 p-separates u from v.

The sufficiency of conditions (ii) is trivial by the definition of p-separation.

The following example shows that Theorem 16 cannot be strengthened.

Example 7 Consider the AMP CG G in Figure 15(a). Vertices f and h are not adja-
cent but both of them belong to the same chain component. As one can see in the Figure
15(d), vertices f and h belong to nodes tree C1 = {b, c, d, f, g, h} and C2 = {a, b, d, e, f, h}.
However, none of them contains a subset of VG that p-separates f from h.

Proof [Correctness of Algorithm 6] By the definition of p-separation trees and Theorem
16, the initializations at local and global skeleton recovery phases guarantee that no edge
is created between any two variables which are not in the same node of the p-separation
tree. Also, deleting edges at local and global skeleton recovery phases guarantees that any
other edge between two p-separated variables can be deleted in some local skeleton or in
the removal procedure at the global skeleton recovery phase. Thus the global skeleton ob-
tained after line 22 is correct. Note that, in an AMP CG, every missing edge corresponds
to at least one independency in the corresponding independence model. Therefore, each
augmented edge u v in the undirected independence graph must be deleted at some

45

Javidian, Valtorta, and Jamshidi

f g

e h

b

a

c

d

(a)

f g

e h

b

a

c

d

(b)

f g

e h

b

a

c

d

(c)

a, b, d, e, f, h

b, d, f, h

b, c, d, f, g, h

(d)

Figure 15: (a) AMP CG G, (b) augmented graph Ga, (c) triangulated graph (Ga)t, and (d)
p-separation tree T .

subgraph over a node of the p-separation tree or at some point of the removal procedure of
the global skeleton recovery. The proof of the correctness of orientation rules R1-R4 can be
found in (Peña, 2012).

46

AMP CGs: Minimal Separators and Structure Learning Algorithms

References

Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L. Winkler.
Hailfinder: A Bayesian system for forecasting severe weather. International Journal of
Forecasting, 12(1):57 – 71, 1996. Probability Judgmental Forecasting.

Silvia Acid and Luis M. de Campos. An algorithm for finding minimum d-separating sets
in belief networks. Proceedings of the Twelfth international conference on Uncertainty in
artificial intelligence, pages 3–10, 1996.

Silvia Acid and Luis M. de Campos. A hybrid methodology for learning belief networks:
Benedict. International Journal of Approximate Reasoning, 27(3):235–262, 2001.

Animashree Anandkumar, Vincent Y. F. Tan, Furong Huang, and Alan S. Willsky. High-
dimensional structure estimation in Ising models: Local separation criterion. Ann.
Statist., 40(3):1346–1375, 06 2012. doi: 10.1214/12-AOS1009. URL https://doi.org/

10.1214/12-AOS1009.

Steen A. Andersson and Michael D. Perlman. Characterizing Markov equivalence classes
for AMP chain graph models. The Annals of Statistics, 34(2):939–972, 04 2006.

Steen A. Andersson, David Madigan, and Michael D. Perlman. An alternative Markov
property for chain graphs. In Eric Horvitz and Finn V. Jensen, editors, Proceedings of
the Twelfth Conference on Uncertainty in artificial intelligence, pages 40–48, 1996.

Steen A. Andersson, David Madigan, and Michael D. Perlman. Alternative Markov prop-
erties for chain graphs. Scandinavian Journal of Statistics, 28(1):33–85, 2001.

Bryan Andrews, Joseph Ramsey, and Gregory F Cooper. Scoring Bayesian networks of
mixed variables. International journal of data science and analytics, 6(1):3–18, 2018.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection
through sparse maximum likelihood estimation for multivariate Gaussian or binary data.
Journal of Machine Learning Research, 9:485–516, 2008.

Ingo A. Beinlich, H. J. Suermondt, R. Martin Chavez, and Gregory F. Cooper. The alarm
monitoring system: A case study with two probabilistic inference techniques for belief
networks. In Jim Hunter, John Cookson, and Jeremy Wyatt, editors, AIME 89, pages
247–256, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

Anne Berry, Jean Blair, Pinar Heggernes, and Barry Peyton. Maximum cardinality search
for computing minimal triangulations of graphs. Algorithmica, 39:287–298, 2004.

John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic
networks with hidden variables. Machine Learning, 29(2):213–244, Nov 1997.

Guy Bresler, Elchanan Mossel, and Allan Sly. Reconstruction of Markov random fields from
samples: Some observations and algorithms. In Ashish Goel, Klaus Jansen, José D. P.
Rolim, and Ronitt Rubinfeld, editors, Approximation, Randomization and Combinato-
rial Optimization. Algorithms and Techniques, pages 343–356, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-85363-3.

47

https://doi.org/10.1214/12-AOS1009
https://doi.org/10.1214/12-AOS1009

Javidian, Valtorta, and Jamshidi

Facundo Bromberg, Dimitris Margaritis, and Vasant Honavar. Efficient Markov network
structure discovery using independence tests. J. Artif. Int. Res., 35(1):449–484, July
2009. ISSN 1076-9757.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467, May 1968. ISSN 1557-
9654. doi: 10.1109/TIT.1968.1054142.

Diego Colombo and Marloes H. Maathuis. Order-independent constraint-based causal struc-
ture learning. The Journal of Machine Learning Research, 15(1):3741–3782, 2014.

Gregory F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42(2):393 – 405, 1990. ISSN
0004-3702. doi: https://doi.org/10.1016/0004-3702(90)90060-D. URL http://www.

sciencedirect.com/science/article/pii/000437029090060D.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844,
9780262033848.

R. Cowell, A. P. Dawid, S. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and
expert systems. Statistics for Engineering and Information Science. Springer-Verlag, 1999.

D. R. Cox and Nanny Wermuth. Linear dependencies represented by chain graphs. Statis-
tical Science, 8(3):204–218, 1993.

D. R. Cox and Nanny Wermuth. Multivariate Dependencies-Models, Analysis and Inter-
pretation. Chapman and Hall, 1996.

Gabriel de Abreu, Rodrigo Labouriau, and David Edwards. High-dimensional graphical
model search with the graphd R package. Journal of Statistical Software, Articles, 37(1):
1–18, 2010a. ISSN 1548-7660. doi: 10.18637/jss.v037.i01. URL https://www.jstatsoft.

org/v037/i01.

Gabriel de Abreu, Rodrigo Labouriau, and David Edwards. Selecting high-dimensional
mixed graphical models using minimal AIC or BIC forests. BMC Bioinformatics, 11(18),
2010b. ISSN 1548-7660. doi: 10.18637/jss.v037.i01. URL https://www.jstatsoft.org/

v037/i01.

Mathias Drton. Discrete chain graph models. Bernoulli, 15(3):736–753, 2009.

Stefan Edelkamp and Stefan Schroedl. Heuristic Search: Theory and Applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

D. Edwards. Introduction to Graphical Modelling. 2nd Ed. Springer-Verlag, New York,
2000.

Norman Fenton and Martin Neil. Risk Assessment and Decision Analysis with Bayesian
Networks. Chapman and Hall/CRC, New York, 2nd edition, 2018.

48

http://www.sciencedirect.com/science/article/pii/000437029090060D
http://www.sciencedirect.com/science/article/pii/000437029090060D
https://www.jstatsoft.org/v037/i01
https://www.jstatsoft.org/v037/i01
https://www.jstatsoft.org/v037/i01
https://www.jstatsoft.org/v037/i01

AMP CGs: Minimal Separators and Structure Learning Algorithms

Morten Frydenberg. The chain graph Markov property. Scandinavian Journal of Statistics,
17(4):333–353, 1990.

S. Højsgaard, D. Edwards, and S. Lauritzen. Graphical Models with R. Springer, 2012.

M. A. Javidian and M. Valtorta. Finding minimal separators in LWF chain graphs. In
The 9th International Conference on Probabilistic Graphical Models (PGM 2018), pages
193–200, 2018a.

M. A. Javidian and M. Valtorta. Finding minimal separators in ancestral graphs. In Seventh
Causal Inference Workshop at the 34th Conference on Artifical Intelligence (UAI-18),
2018b.

M. A. Javidian and M. Valtorta. A decomposition-based algorithm for learning the structure
of MVR chain graphs. https://arxiv.org/abs/1806.00882, 2019.

M. A. Javidian, M. Valtorta, and P. Jamshidi. Learning LWF chain graphs: A Markov
blanket discovery approach. In Proceedings of the Thirty-Six Conference on Uncertainty
in Artificial Intelligence, UAI’20. AUAI Press, 2020.

Mohammad Ali Javidian. Properties, Learning Algorithms, and Applications of Chain
Graphs and Bayesian Hypergraphs. PhD thesis, University of South Carolina, 2019.

Mohammad Ali Javidian, Marco Valtorta, and Pooyan Jamshidi. Order-independent struc-
ture learning of multivariate regression chain graphs. In International Conference on
Scalable Uncertainty Management, pages 324–338. Springer, 2019.

Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. Springer,
2nd edition, 2007.

Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. J. Mach. Learn. Res., 8:613–636, 2007.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press, 2009.

S. Lauritzen. Graphical Models. Oxford Science Publications, 1996.

S. Lauritzen and N. Wermuth. Graphical models for associations between variables, some
of which are qualitative and some quantitative. The Annals of Statistics, 17(1):31–57,
1989.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society.
Series B (Methodological), 50(2):157–224, 1988.

Steffen L Lauritzen and Frank Jensen. Stable local computation with conditional Gaussian
distributions. Statistics and Computing, 11(2):191–203, 2001.

49

https://arxiv.org/abs/1806.00882

Javidian, Valtorta, and Jamshidi

Michael Levitz, Michael D. Perlman, and David Madigan. Separation and completeness
properties for AMP chain graph Markov models. The Annals of Statistics, 29(6):1751–
1784, 2001.

Z. Ma, X. Xie, and Z. Geng. Structural learning of chain graphs via decomposition. Journal
of Machine Learning Research, 9:2847–2880, 2008.

Alexander Motzek and Ralf Möller. Indirect causes in dynamic Bayesian networks revisited.
J. Artif. Int. Res., 59(1):1–58, May 2017. ISSN 1076-9757.

Radhakrishnan Nagarajan, Marco Scutari, and Sophie Lèbre. Bayesian Networks in R:
With Applications in Systems Biology. Springer, 2013.

Richard E. Neapolitan and Xia Jiang. Artificial Intelligence: With an Introduction to
Machine Learning. Chapman and Hall, 2nd edition, 2018.

P. Netrapalli, S. Banerjee, S. Sanghavi, and S. Shakkottai. Greedy learning of Markov
network structure. In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1295–1302, Sep. 2010.

Jose M. Peña. Finding consensus Bayesian network structures. J. Artif. Int. Res., 42(1):
661–687, September 2011. ISSN 1076-9757.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1988.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984. ISBN 0-201-
05594-5.

J. M. Peña. Learning multivariate regression chain graphs under faithfulness: Addendum.
Available at the author’s website, 2014a.

J. M. Peña. Every LWF and AMP chain graph originates from a set of causal models.
Symbolic and quantitative approaches to reasoning with uncertainty, Lecture Notes in
Comput. Sci., 9161, Lecture Notes in Artificial Intelligence, Springer, Cham, pages 325–
334, 2015.

J. M. Peña. Reasoning with alternative acyclic directed mixed graphs. Behaviormetrika,
pages 1–34, 2018a.

J. M. Peña. Identification of strong edges in AMP chain graphs. In Amir Globerson and
Ricardo Silva, editors, Proceedings of the 34th Conference on Uncertainty in artificial
intelligence, pages 33–42, 2018b.

J. M. Peña, D. Sonntag, and J. Nielsen. An inclusion optimal algorithm for chain graph
structure learning. In Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics, pages 778–786, 2014.

50

AMP CGs: Minimal Separators and Structure Learning Algorithms

Jose M. Peña. Learning Gaussian graphical models of gene networks with false discovery
rate control. In Elena Marchiori and Jason H. Moore, editors, Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics, pages 165–176, 2008.

Jose M. Peña. Learning AMP chain graphs under faithfulness. In Proceedings of the Sixth
European Workshop on Probabilistic Graphical Models, pages 251–258, 2012.

Jose M. Peña. Marginal AMP chain graphs. International Journal of Approximate Reason-
ing, 55(5):1185–1206, 2014b.

Jose M. Peña. Alternative Markov and causal properties for acyclic directed mixed graphs.
In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
UAI’16, pages 577–586, Arlington, Virginia, United States, 2016. AUAI Press.

Jose M. Peña and Manuel Gómez-Olmedo. Learning marginal AMP chain graphs under
faithfulness revisited. International Journal of Approximate Reasoning, 68:108 – 126,
2016.

Vineet K Raghu, Joseph D Ramsey, Alison Morris, Dimitrios V Manatakis, Peter Sprites,
Panos K Chrysanthis, Clark Glymour, and Panayiotis V Benos. Comparison of strategies
for scalable causal discovery of latent variable models from mixed data. International
journal of data science and analytics, 6(1):33–45, 2018.

Joseph Ramsey, Peter Spirtes, and Jiji Zhang. Adjacency-faithfulness and conservative
causal inference. In Proceedings of the Twenty-Second Conference on Uncertainty in
Artificial Intelligence, UAI’06, pages 401–408, Arlington, Virginia, United States, 2006.
AUAI Press.

Pradeep Ravikumar, Martin J. Wainwright, and John D. Lafferty. High-dimensional Ising
model selection using l1 -regularized logistic regression. Ann. Statist., 38(3):1287–1319,
06 2010. doi: 10.1214/09-AOS691. URL https://doi.org/10.1214/09-AOS691.

T. S. Richardson. Chain graphs and symmetric associations. In: Jordan M.I. (eds) Learning
in Graphical Models. NATO ASI Series (Series D: Behavioural and Social Sciences), vol
89, pages 229–259, 1998.

T. S. Richardson and P. Spirtes. Ancestral graph Markov models. The Annals of Statistics,
30(4):962–1030, 2002.

A. Roverato and L. La Rocca. On block ordering of variables in graphical modelling.
Scandinavian Journal of Statistics, 33(1):65–81, 2006.

Alberto Roverato. A unified approach to the characterization of equivalence classes of
DAGs, chain graphs with no flags and chain graphs. Scandinavian Journal of Statistics,
32(2):295–312, 2005.

Marco Scutari. Bayesian network constraint-based structure learning algorithms: Parallel
and optimized implementations in the bnlearn R package. Journal of Statistical Software,
Articles, 77(2):1–20, 2017. ISSN 1548-7660. doi: 10.18637/jss.v077.i02. URL https:

//www.jstatsoft.org/v077/i02.

51

https://doi.org/10.1214/09-AOS691
https://www.jstatsoft.org/v077/i02
https://www.jstatsoft.org/v077/i02

Javidian, Valtorta, and Jamshidi

Marco Scutari and Jean-Baptiste Denis. Bayesian Networks with Examples in R. Chapman
and Hall, 2015.

Hong Shen and Weifa Liang. Efficient enumeration of all minimal separators in a graph.
Theoretical Computer Science, 180:169–180, 1997.

D. Sonntag. Chain Graphs: Interpretations, Expressiveness and Learning Algorithms. PhD
thesis, Linköping University, 2016.

D. Sonntag and J. M. Peña. Learning multivariate regression chain graphs under faithful-
ness. Proceedings of the 6th European Workshop on Probabilistic Graphical Models, pages
299–306, 2012.

Dag Sonntag and Jose M. Peña. Chain graphs and gene networks. In Arjen Hommersom and
Peter J.F. Lucas, editors, Foundations of Biomedical Knowledge Representation: Methods
and Applications, pages 159–178. Springer, 2015.

Dag Sonntag and Jose M. Peña. Chain graph interpretations and their relations revisited.
International Journal of Approximate Reasoning, 58:39 – 56, 2015. Special Issue of the
Twelfth European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU 2013).

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search, second ed. MIT
Press, Cambridge, MA., 2000.

M. Studený, A. Roverato, and Š. Štěpánová. Two operations of merging and splitting
components in a chain graph. Kybernetika, 45(2):208–248, 2009.

Jin Tian, Azaria Paz, and Judea Pearl. Finding minimal d-separators. Technical report,
R-254, 1998.

Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78,
Oct 2006.

Benito van der Zander and Maciej Liskiewicz. Finding minimal d-separators in linear time
and applications. In Ryan Adams and Vibhav Gogate, editors, Proceedings of the 35th
Conference on Uncertainty in artificial intelligence. UAI, 2019.

Benito van der Zander, Maciej Lískiewicz, and Johannes Textor. Separators and adjust-
ment sets in causal graphs: Complete criteria and an algorithmic framework. Artificial
Intelligence, 270:1–40, 2019.

Yang Xiang. Probabilistic Reasoning in Multi-Agent Systems: A Graphical Models Approach.
Cambridge University Press, New York, NY, USA, 2002.

Xianchao Xie, Zhi Geng, and Qiang Zhao. Decomposition of structural learning about
directed acyclic graphs. Artificial Intelligence, 170(4-5):422–439, 2006.

52

	Introduction
	Basic Definitions and Concepts
	Finding Minimal Separators in AMP Chain Graphs
	Main Theorem: Minimal Separators in AMP Chain Graphs
	Algorithms for Finding Minimal Separators

	PC-like Algorithm
	Order-Dependent PC-like algorithm
	Order-Independent (Stable-) PC-like Algorithm

	LCD-AMP Algorithm: Structure Learning by Decomposition
	Constructing a p-Separation Tree from Observed Data
	The LCD-AMP Algorithm for Learning AMP Chain Graphs
	Complexity Analysis of the LCD-AMP Algorithm

	Experimental Evaluation
	Performance Evaluation Metrics
	Performance Evaluation on Random AMP Chain Graphs (Gaussian case)
	Data Generation Procedure
	Experimental Results in Low-Dimensional Settings
	Experimental Results in High-Dimensional Settings

	Performance on Discrete Bayesian Networks
	Experimental Results

	Related Work
	Finding Minimal Separators in Probabilistic Graphical Models
	PC-like Algorithms for Probabilistic Graphical Models
	Decomposition Based Learning (LCD-Like) Algorithms for PGMs

	Conclusion

