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ABSTRACT

Background: Modern systems are built using development frame-
works. These frameworks have a major impact on how the resulting
system executes, how configurations are managed, how it is tested,
and how and where it is deployed. Machine learning (ML) frame-
works and the systems developed using them differ greatly from
traditional frameworks. Naturally, the issues that manifest in such
frameworks may differ as well—as may the behavior of developers
addressing those issues.

Aims: We are interested in characterizing the system-related issues—
issues impacting performance, memory and resource usage, and
other quality attributes—that emerge in ML frameworks, and how
they differ from those in traditional frameworks.

Method: We have conducted a moderate-scale exploratory study
analyzing real-world system-related issues from 10 popular ma-
chine learning frameworks.

Results: Our findings offer implications for the development of
machine learning systems, including differences in the frequency
of occurrence of certain issue types, observations regarding the
impact of debate and time on issue correction, and differences in
the specialization of developers.

Conclusions: We hope that this exploratory study will enable
developers to improve their expectations, plan for risk, and allocate
resources accordingly when making use of the tools provided by
these frameworks to develop ML-based systems.
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« Software and its engineering — Software testing and de-
bugging; Open source model; Software evolution.
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1 INTRODUCTION

A new paradigm of software systems have emerged, called machine
learning (ML) systems [7, 16]. Traditional software systems consist
of explicit instructions to a computer written by the programmer,
whereas ML systems learn behavior from data. These systems are
designed as a skeletal code architecture—specifying high-level be-
havioral goals—layered over highly-optimized models [16]. ML sys-
tems have revolutionized business intelligence, health care, finance,
and other industries that power society.

Modern systems, both traditional and ML-based, are often pow-
ered by underlying frameworks—libraries of services that are used
for providing higher-level functionality. TensorFlow, for example,
offers a library for developing, training, or deploying models for
use in ML systems. In traditional domains, we can look to examples
like React or Flutter—frameworks for building user interfaces—or
Rancher—a framework that provides container services.

Some argue that best practices for the development and quality
assurance of traditional software systems are still largely based on
ad-hoc experience, and often more closely represent an art than
an established science [21]. ML systems and frameworks are so
different that many of the lessons learned from traditional software
development may no longer apply. ML systems differ in how they
are developed, how they execute, how configurations are managed,
how systems are tested, and how and where those systems are
deployed. Naturally, then, the faults that developers create and the
failures that manifest as a result may differ as well—as may how
communities of developers behave in correcting those issues. We
expect many differences and that those differences can be attributed
to the underlying frameworks powering such systems. Therefore,
we wish to better understand the types of issues that tend to occur in
machine learning frameworks, and how they compare and contrast
to the issues that impact frameworks in traditional paradigms.

Specifically, we are interested in characterizing and contrasting
the types of system-related issues that emerge in the infrastructure
code provided by ML frameworks (e.g., TensorFlow) versus frame-
works for more traditional tasks (i.e., React). With system-related
issues, we refer to issues affecting quality attributes, such as perfor-
mance, configuration, component interaction, and memory usage.
System-related issues are common in all types of systems [29], but
it is not yet understood how they impact ML frameworks—and
the systems built using these frameworks—and how the character-
istics of such issues differ between system paradigms. Based on
our experience in developing several ML and non-ML systems as
well as systematic mining of issues in open source frameworks
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in GitHub, we hypothesize that the system-related issues in ML
frameworks differ from traditional software frameworks in three
key areas: (1) their types and frequencies of occurrence, (2) the dif-
ficulty of fixing particular issue types, and (3) the composition and
behavior of the teams of developers engaged in fixing these issues. A
better understanding of system-related issues across domains will
enable developers to improve their expectations, plan for risk, and
better allocate resources.

In order to explore this topic, we have conducted an exploratory
study of bug reports in ML and non-ML frameworks. Guided by a
number of research questions, we compare data gathered from ML
frameworks with data from traditional software frameworks. Specif-
ically, we manually analyzed and classified 121 system-related
issues from 10 popular ML frameworks and a further 332 system-
related issues from 10 traditional software frameworks, collected
from the GitHub project of each system. Furthermore, we approxi-
mate the difficulty of fixing an issue, including time, discussion, and
patch size indicators, and examined the behavior of the community,
as it relates to correcting issues—including the number of people in-
volved in issue discussion and the level of activity involved in issue
correction, among others. We explore the collected data for trends
and differences. Our findings include a number of observations:

o Incorrect memory allocation, memory leaks, multi-threading
errors, and performance regression occur more commonly in
ML frameworks—possibly due to the need to manage large
quantities of data in parallel and the rapid pace of system
enhancement. Increased dependence on hardware selection,
like the GPU, can also lead to issues. Configuration errors
are very common in traditional software frameworks, but
rarely occur in ML frameworks.

e Issues in ML do not appear to be significantly more difficult
to address. API mismatch issues require significant time and
discussion to fix, reflecting rapidly evolving communities
debating how to best evolve their systems. Incorrect memory
allocation issues also attract significantly more participants
in discussing potential fixes. The most contentious issues
reflect an evolving field and an active community. Memory
leaks attract less participation at the pull request level, in-
dicating an area where issue commonality leads to quick
acceptance of solutions.

o Users of ML frameworks provide more detailed issue descrip-
tions. Issues are not necessarily harder to reproduce. Instead,
users may be more knowledgeable, have more development
experience, and may be more prepared to offer background
on the issue being reported than in traditional frameworks.

e Many ML frameworks developers identify as a combina-
tion of Engineer and Researcher, while many traditional
framework developers identify solely as an Engineer. ML
framework developers also tend to be more popular than the
developers of traditional frameworks. There is little consis-
tency in how long developers have had GitHub accounts.

o There is little we can say categorically about community
activity level for ML versus software frameworks. ML issues
do not attract significantly more non-developer users to take
part in discussion than software frameworks. Overall, the
two categories show similar levels of member participation.
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Table 1: Issue categories and their definitions.

Category (Short Title)

Definition

API Mismatch (API)

Compilation Error (Compl)
Configuration Error (Config)

Connection Error (Conn)
Data Race (Race)

Execution Error (Exec)
Hardware-Architecture
Mismatch (HA)

Memory Allocation (MA)

1/0 Slowdown (I/O)

Memory Leak (ML)

Model Conversion (Conv)
Multi-Threading Error (MT)
Performance Regression (PR)
Slow Synchronization (SYNC)

Unexpected Resource Usage
(RU)

Change to API version or mixed usage of APIs leading to
performance degradation.

Failure to compile the source code.

Configuration settings lead to performance degradation or
error.

Unexpected or wrongly-formatted connection request leads
to error.

Two or more threads access the same memory location con-
currently.

Unexpected error leads to the execution process crashing.
Unfit hardware architecture leads to performance degrada-
tion or compilation error.

Memory allocation leads to performance degradation.
Issues with I/O processes lead to performance degradation.
A failure in a program to release memory.

Performance degradation due to type conversion/cast.
Performance degradation due to thread interaction.
Performance degradation after a change to the system.
Synchronization between components leads to performance
degradation.

Unusual system resource usage or requests leading to error
or performance degradation.

Software frameworks members contribute more to open
source software. However, there are significant differences
between individual systems.

To summarize, we make the following contributions:

e A moderate-scale exploratory study of system-related issues
and their root causes as well as cross-comparison on ten
widely used ML and traditional software frameworks.

e An in-depth analysis, characterization, and classification of
453 system-related issues and their related patches.

e A quantitative comparison of the difficulty of fixing issues,
community behavior, and the issue fixing process.

e Actionable recommendations to the developers of ML frame-
works, as well as systems that make use of these frameworks.

e A replication package' containing all data gathered in the
process of performing this study. We hope that this ex-
ploratory study will offer assistance to the developers and
researchers building ML systems and forming the best prac-

tices for ML-based fields.

2 SYSTEM-RELATED ISSUES

We define a system-related issue as a fault in the software that im-
pacts quality attributes (non-functional properties) of the system,
rather than functional issues, which result in the software pro-
ducing the incorrect output. System-related issues tend to lead to
performance degradation, loss of security, inappropriate usage of
disc resources, or reduction in service [11]. System-related issues
are significant, as they are a critical in determining system relia-
bility and user experience. They are also useful in characterizing
categories of systems, as unlike functional issues, system-related
issued are not typically tied to system-specific requirements [3].
In this study, we have manually classified sampled issues into
fifteen categories. Those categories are listed in Table 1. We derived
these categories through manual coding [31]. More specifically, we
used open coding to transform the initial structure into unstruc-
tured text by abstracting from large amounts of textual descriptions
of issues and assigning codes to single textual description. One of
the authors read the description of a new issue and if there exist
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an existing code in the taxonomy, he will then assign it to the is-
sue, otherwise, he would create a new code for the new issue. One
of the other authors then review the codes and refine the name
and check whether the assignment was done correctly. In case of
disagreement, then they have discussed the details of each issue
to come to a resolution by renaming the issue code, assigning to
another category, or simply creating a new code for the issue.

These categories reflect the root causes of all of the sampled

issues. To help illustrate the core concept, we present here examples
of system-related issues in the studied ML frameworks:
Unexpected Resource Usage: A PyTorch user complained of “too
many resources requested” errors shortly after the release of JetPack
3.22. The developers found that the compiler lacked knowledge of
how many threads the user wished to launch with, and the kernel
was compiled to request more registers than is available on NVIDIA
TX2. The patch added launch bounds that point out the maximum
number of threads, so the kernel would not overuse registers.
Performance Regression: A Keras user reported that version
2.0.9 was extremely slow compared to 2.0.8%. For example, train-
ing a model went from 1-2 seconds to 10+ seconds, despite no
environmental changes. After examining a variety of component
interactions, the developers discovered the source of the slowdown—
a method counting individual parameters. A simple check on the
number of weights could be used without impacting functional
correctness of the code, and without incurring slowdown.
Memory Leak: A TensorFlow user reported that a simple code frag-
ment, creating a queue structure, would consume 10GB of memory4.
A contributor found that the root cause was heap fragmentation,
resulting from input being copied into new arrays on each step.
This led to rapid changes to the memory heap, which were not
handled well by malloc. The patch fixing this issue reduced the
number of unnecessary array allocations by using a function that
pulls values directly instead of copying them to a new array first.
API Mismatch: A TensorFlow user reported a crash following the
use of a method from the dataset API on a dataset containing
nested elements®. The issue was with a function used to group
input by variable length. The API was updated to correctly unpack
input with nested arguments.
Incorrect Memory Allocation: A MXNet user reported that they
were unable to use multiple GPUs for model training, while a single
GPU worked®. A contributor discovered that the issue was due
to an inability to use pinned memory for those GPUs. The patch
counts the number of GPUs and ensures that their pinned memory
is used during training.

These examples illustrate how system-related issues affect ML
frameworks, illustrating how different hardware configurations,
memory and resource constraints, and limited testing of APIs can
hinder the use of ML-based systems.

3 METHODOLOGY FOR ISSUE SAMPLING

To study differences in system-related issues between ML and tradi-
tional frameworks, we sample frameworks and their issues, classify
them, and collect additional data.

2https://github.c:om/pytorch/pytorch/issues/7680
3https://github.com/kerasf team/keras/issues/8381

4 https://github.com/tensorflow/tensorflow/issues/2942
511(tps://githubx:om/tensorﬂow/tensorﬂow/issues/17932
Shttps://github.com/apache/incubator-mxnet/issues/7000
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Table 2: The selected frameworks and indicators.

Framework Domain Watches Stars Forks Commits Contributors Issues
TensorFlow  Machine Learning 8585 127514 74602 55724 1987 28
Torch7 Scientific Computing 664 8292 2331 1337 131 10
Caffe2 Deep Learning 559 8446 2130 3680 194 7
PyTorch Machine Learning 1244 27999 6667 17915 1039 11
Theano Scientific Computing 590 8786 2483 28080 332 10
OpenCV Computer Vision 2444 34673 25213 26492 999 12
Keras Deep Learning 2013 41115 15652 5110 794 10
Chainer Deep Learning 321 4778 1263 26356 227 10
CNTK Deep Learning 1386 16110 4267 16090 199 10
MxNet Deep Learning 1173 16856 6017 9585 690 13
React ur 6632 129558 23817 10955 1295 40
ETCD Database 1268 24937 5051 15102 495 25
Flutter Mobile 2269 64674 7241 14264 393 60
Rancher Container 602 11549 1275 2686 57 70
iPython Notebook 832 13576 3812 23811 592 24
Babel Compiler 858 33145 3511 12405 726 33
AWS-CLI Cloud 564 8029 1718 6963 197 11
Drone DevOps 585 18344 1800 3436 241 9
OSQuery Operating System 707 14187 1721 5005 264 10
Grafana Log System 1212 28857 5410 21934 868 50

3.1 System Selection

In this study, we target frameworks—rather than individual systems—
because the functionality offered by frameworks will be utilized by
many systems, and will subsequently impact the behavior of such
systems. Further, individual systems typically are developed by a
smaller team of developers, have a smaller community of users, and
will have fewer reported issues.

We selected ten open-source ML frameworks and ten open-
source traditional software frameworks, as shown in Table 2. We
selected ML frameworks based on their popularity and maturity.
The popularity of each system in GitHub can be assessed from the
number of stars of a repository [5]. We sought ML frameworks
with a reasonable level of maturity. The selected frameworks have
1k-55k commits and more than a thousand forks. For contrast, we
selected a matching set of 10 traditional (non-ML) frameworks that
(a) come from a variety of different fields, and (b) are reasonably
matched to the ML frameworks in terms of their activity and popu-
larity. We devised a series of categories, and chose the most popular
systems in each field and collect the indicators listed above for each
system’s repository. We normalized the collected values for each
indicator. Then, we compared indicators for each traditional soft-
ware framework with those for the ML frameworks. In line with
propensity score matching [26], we choose one software frame-
work from each category that was the most similar to one of the
ML frameworks. For instance, React and TensorFlow are considered
reasonably similar, as judged by the collected indicators. Table 2
lists all frameworks, values for the indicators used in pairing, and
the number of issues sampled.

3.2 Sampling Issues

To understand the nature of system-related issues in ML frame-
works, we need to collect enough data to investigate different types
of issues. As we want to ensure sufficient information on each issue
and how it was fixed, we focused on closed issues—those already
fixed. Studying all system-related issues would be prohibitively
costly, so instead we sampled issues from all studied systems.

In order to avoid selection bias, we randomly sample issues
for each system to generate the sample set. We created a Python
program based on the REST API provided by GitHub to randomly
collect closed issues from each system’s repository to generate the
data set. In this data set, the data for each issue includes the issue
title, the issue description, issue timeline, number of participants
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in the issue discussion and the discussion of the corresponding
pull request, and the number of comments on the issue and the
corresponding pull request. We also collect information on the patch
that fixes the issue, including the number of code lines changed and
the number of files changed. To assess community behavior, we
collect the number of participants for each issue that are members
of the development team, the members’ number of contributions to
the project, and the number of contributions made by the creator
of the issue-closing pull request.

After that, to avoid meaningless issues, we set inclusion and
exclusion criteria to filter the data set. Issues are excluded if there
are less than three comments, a patch is not included, the issue status
is open, the item is not an issue (i.e., a pull request in the issue list, a
question, or enhancement suggestion), or the issues has been closed
due to lack of activity. The issue is included if it is a system-related
issue (not a functional issue), the patch is valid, and if the description
has enough information to classify the issue type.

3.3 Determining Sample Size

We used power statistics to compute an appropriate sample size
across all ML frameworks and all traditional software frameworks.
At confidence level of 95 percent, we set the margin of error—how
much we can expect our analysis result to reflect the view of the
overall population—to 10% for ML frameworks and 5% for tradi-
tional software frameworks (because the traditional frameworks
represent a diverse set of domains, and we, therefore, need more
observations to understand them). We use the following formula to
calculate the sample size [15]:

Z2sp(1-p)
e?

1+ Zpop) v
e“xN
where N is the population size, e is the margin of error and z is the
z-score—the number of standard deviations a given proportion is
away from the mean, resulting in 121 samples for ML frameworks
and 332 samples for traditional software frameworks. Finally, we
allocate the total sample size to each system in the group based on
the percentage of the population of closed issues that belongs to
each system. The formula for each system’s sample size is SS =
GS * (%) where SS is the system’s sample size, GS is equal to the
group sample size, SI represents the total number of closed issues
for the system, and GI is the total number of closed issues for the
group, resulting in the sample sizes listed in Table 2.

4 EXPLORATORY HYPOTHESES

Our research design is exploratory, but we guide our research using
research questions and hypotheses (conjectures) shaped by personal
experience in developing large-scale ML systems, interacting with
ML developers in industry, and a literature and open source issue
review of how ML systems differ from traditional software systems.
We will explain our expectations and use them to guide our analysis.

RQ1: What differences can be seen in the types and distribu-
tion of issues in ML versus traditional frameworks?

Yang Ren, Gregory Gay, Christian Kastner, Pooyan Jamshidi

This research question allows us to better understand whether

particular types of issues are unique to ML frameworks, or differ in
frequency of occurrence. This helps us understand whether system-
related issues affect ML frameworks differently than traditional
software frameworks, and what types of issues developers can
expect to see. This allows better risk planning and allocation of
resources. In this question, we examine a hypothesis about the
distribution of issues.
H1: There are categories of system-related issues that occur
more frequently or uniquely in ML frameworks, and cate-
gories that occur more frequently or uniquely in traditional
software frameworks.

ML-based systems differ in many aspects from traditional soft-
ware, and proper execution relies on choosing a model, training it,
tuning parameters, and correctly executing prediction processes.
We suspect that ML frameworks will suffer from system-related
issues that occur rarely, if at all, in traditional software. Likewise,
certain issues in traditional frameworks may occur rarely or be
irrelevant to ML frameworks.

RQ2: Are system-related issues more difficult to fix in ML
frameworks than in traditional frameworks?

In some ways, the development of ML frameworks is more com-
plex and less mature than traditional software frameworks. This, in
turn, may affect the difficulty of addressing system-related issues.
In this question, we examine two hypotheses about the difficulty
of issue correction and reproduction.

H2: There are categories of system-related issues in ML frame-
works that are more difficult to fix than in traditional soft-
ware frameworks.

ML frameworks have a large volume of input data, complicated
algorithms, are built on complex models, and require configura-
tion. These characteristics may impact the difficulty of fixing is-
sues. We also wish to understand whether differences in difficulty
are categorical—ML vs traditional frameworks—or dependent on
framework-specific factors. For example, TensorFlow supports mul-
tiple GPUs, while Theano is bound to a single GPU by default.
H3: System-related issues are easier to reproduce in tradi-
tional frameworks than in ML frameworks. Issue reports in
ML frameworks require that the reporter offer additional in-
formation in order to reproduce and debug the issue.

Issues in ML frameworks may arise from a more diverse pool of
configurations, hardware platforms, and deployment environments
than in traditional frameworks. To reproduce and debug issues,
developers may require additional information from the reporter.

RQ3: Are there differences in how communities behave
when identifying and fixing system-related issues between
ML frameworks and traditional frameworks?

We investigated the behavior of the open-source communities
building the studied frameworks. To answer RQ3, we investigate
three hypotheses about community behavior, examining participant
specialization and experience (H4), discussion activity (H5), and
the impact of activity level on the issue-fixing process (H6).
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Table 3: Percentage and number of issues in each category.
Bolded cells (in all tables) show significantly differing distri-
bution between groups (P-Value < 0.05, One-Way ANOVA).

Category ML Traditional
API Mismatch (API) 13% (16) 15% (56)
Configuration Error (Config) 2% (2) 41% (148)
Compilation Error (Compl) 2% (2) 0% (0)
Connection Error (Conn) 0% (0) 1% (4)
Data Race (Race) 1% (1) 0% (0)
Execution Error (Exec) 1% (1) 0% (0)
Hardware-Architecture Mismatch (HA) 1% (1) 0% (0)
Incorrect Memory Allocation (MA) 5% (6) 2% (8)
1/0 Slowdown (I/O) 9% (11) 5% (17)
Memory Leak (ML) 30% (36)  14% (50)
Model/Data Conversion (Conv) 1% (1) 0% (0)
Multi-Threading Error (MT) 13% (16) 4% (13)
Performance Regression (PR) 20% (24) 12% (42)
Slow Synchronization (SYNC) 3% (4) 7% (24)

H4: The participants in issue discussion in ML frameworks
are more experienced, are more specialized in their knowl-
edge, and attract more popularity than participants in dis-
cussions in traditional frameworks.

As ML frameworks incorporate complex algorithms, the devel-
opers of such systems require appropriate specialization in their
expertise. Solving system-related issues requires a deep understand-
ing of the complex underlying algorithms (e.g., distributed training).
This means that active developers of such systems may be more
senior than developers of generic systems and may have certain
specific areas of expertise. Because ML represents a new paradigm,
users may—in turn—pay more attention to the developers of the
systems and their contributions to ML frameworks.

H5: Discussion of system-related issues attracts a greater num-
ber of non-developer users in ML frameworks.

As ML frameworks are currently attracting a lot of attention,
there exists the possibility that issues discussion also attracts a
higher level of participation from users who are not part of the
development team. Issues may affect a greater number of users,
who in turn may experience the same or similar issues in a greater
variety of contexts.

Hé6: ML frameworks require a more active developer commu-
nity than traditional software to fix system-related issues.

The complexity of underlying ML algorithms, increase in need
for specialized knowledge, and variety of deployment environments
for ML may, in turn, require a more active community of developers
in order to address system-related issues. More developers may need
to take part in discussion, contribute to the project, and make pull
requests in order to maintain a healthy, functioning system.

5 RQ1—ISSUE CHARACTERIZATION

Our first research questions asks about the differences in the types
and distribution of issues between ML and traditional software
frameworks. More specifically, hypothesis 1 speculates whether the
exist statistically significant differences in types and distribution
of issues. Table 3 show the percentage of the total issue pool and
raw number of issues for each category for the two paradigms.
Figure 1 shows boxplots of the percentage of issues belonging to
each category for each system in the two paradigms. For clarity,
only common categories are shown.

From Figure 1, we can see that there are a number of issue types
that occur quite often in both paradigms—including memory leaks,
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performance regression, API mismatch, slow synchronization, and
multi-threading errors. However, there are categories for which
there are obvious differences in frequency. Configuration errors are
quite common for traditional frameworks, making up 41% of the
total issue pool, with a median of close to 50% on a per-system basis.
They are vanishingly rare for ML frameworks, only making up 2% of
the total pool. On a per-system basis, incorrect memory allocation
makes up a median of 10% of the issue pool for ML frameworks,
and is rarer for traditional frameworks.

To more clearly understand the major areas of difference be-
tween the system paradigms, we used a one-way analysis of vari-
ance (ANOVA) to compare the distributions of fault types between
groups of systems. In Table 3, we bold the categories where sig-
nificant difference was shown between the groups with p-value
< 0.05. We find that configuration errors occur significantly more
often in traditional frameworks. Systems of both categories are
“configured”, in the sense that their execution depends on can vary
depending on certain adjustable factors. However, in traditional
software, configuration tends to be explicit, based on providing
values in a file or through the command line. For example, a user
of AWS-CLI reported an issue that occurs when a space character
appears in a provided profile name’. Such issues are more rare in
ML frameworks, where a user rarely directly adjusts values in a
file. In ML frameworks, “configuration” tends to be more implicit,
where—for example—behavior varies based on a chosen hardware
platform or training data. This leads to other issues, as we will
discuss, but reduced the potential for explicit configuration issues.

We also find that incorrect memory allocation, memory leaks,
multi-threading errors, and performance regressions occur signif-
icantly more often in ML frameworks. ML systems must process,
manage, and make decisions using massive sets of data. Such algo-
rithms must be multi-threaded, in order to rapidly process subsets
of the dataset in parallel [9]. Likewise, the volume of data and need
to store and access it efficiently requires careful management of
memory. As a result, threading and memory errors will likely oc-
cur more often. Our observations bear this out. The field of ML
evolves rapidly, and the popularity of such systems has led to an
ever-expanding userbase. The need for rapid evolution may also
explain the increased frequency of performance regressions.

In our random sample, there were several types of issues uniquely
observed in ML—as can be seen in Table 3. These include data
races, execution errors, hardware-architecture mismatch, model/-
data conversion, and unexpected resource usage. None of these
types were common, and most of these can—without doubt—occur

7 https://github.com/aws/aws-cli/issues/2806
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in traditional frameworks as well. However, several of these is-
sue categories closely relate to important facets of ML systems,
and may occur more commonly as a result. For example, hardware-
architecture mismatch can occur because of the variety of hardware
configurations being used in ML. Many ML platforms can use GPUs
for efficient data processing, particularly using NVIDIA’s CUDA
platform [27]. As an example, an issue encountered in this study,
from OpenCV, occurred because the system did not support the
version of CUDA used by the GPU in the user’s configuration®.

Summary: Incorrect memory allocation, memory leaks, multi-
threading errors, and performance regression occur more com-
monly in ML frameworks—likely due to the need to manage large
quantities of data in memory and the rapid pace of system enhance-
ment. Increased dependence on hardware selection, like the GPU,
can also lead to issues. Configuration errors are very common in
traditional frameworks, but rarely occur in ML, as such frameworks
tend to offer fewer explicit user-defined configuration options.

6 RQ2 — ISSUE DIFFICULTY

Our second research question asks whether system-related issues
are more difficult to fix in ML frameworks than in traditional soft-
ware frameworks. We focus on the six categories of issues with a
reasonable number of samples for both traditional software and
ML frameworks: memory leaks, performance regressions, API mis-
match, I/O slowdown, incorrect memory allocation, synchroniza-
tion, and multi-threading errors. We guide our analysis using two
exploratory hypotheses: (H2) that there are categories of issues that
are more difficult to fix in ML, and (H3), that issue reporters must
provide additional information to developers of ML frameworks.

6.1 H2—Issues are More Difficult to Fix

Hypothesis 2 speculates that certain categories of issues are more
difficult to fix in ML than in software frameworks. We gathered
seven indicators that, together, present an approximation of the
effort required to fix an issue. These indicators include the number
of days between issue creation and closure, the number of comments
on the issue report, the number of participants in the issue report
discussion, the number of comments on the pull request closing the
issue, the number of participants involved in discussion of the pull
request, the number of lines of code changes in the patch fixing
the issue, and the number of files changed. Table 4 lists the median
values for each indicator for six issue types and a summary across
all types of issues. We provide details about the distribution of these
indicators in Figures 2, 3, and 4.

From Table 4, we can see that—overall—issues seem to take
slightly longer to be fixed in ML frameworks, with a median of 11
days versus 8 days. They also tend to require slightly larger patches
(26 LOC versus 23). However, neither of these indicators show a
significant difference according to the ANOVA test, and many of
the other indicators—comments on the report, participants in the
PR, and number of files changed—have the same median. Therefore,
there is little we can conclude about issue difficulty overall. ML

8 https://github.com/opencv/opencv/issues/7375
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framework issues, overall, are not more difficult to fix. It is, how-
ever, worth looking more deeply at individual categories of issues.
API mismatch issues do take longer to fix in ML, taking a median
of 57 days (compared to 7.5 days in traditional frameworks) and
demonstrating significant difference in the ANOVA test. Likewise,
there tends to be more discussion on the issue report, from more
participants. From this, we can speculate that API issues may not
actually be more difficult to fix in terms of traditional code changes.
Rather, they may be more difficult because the APIs themselves
are evolving rapidly following debate in an active, opinionated
community. The long median time to fix, and the larger number
of comments on issue reports, suggest that API mismatch issues
require debate and community deliberation to determine if they are,
in fact, actual problems or misuse of the framework. Multiple sam-
pled issues show debate between contributors before consensus is
reached on whether there is an issue® 1% 11, Once developers agree
that there is a bug, changes to the API—which have the potential
to affect a large number of users—require further debate.

This is also suggested in Figures 2 and 3, where there is a large
variance in ML frameworks for number of days and number of com-
ments. This variance suggests some contention in the discussion of
API mismatch issues. By contrast, Figure 4 shows less variance for
ML than traditional frameworks in terms of the number of com-
ments in the pull request. By the time a pull request is filed, it tends
to be rapidly accepted.

Incorrect memory allocation issues are more common in ML
frameworks, but do not necessarily appear to be more difficult to
solve. However, pull requests fixing such issues seem to attract
some debate, with significantly more participants involved at the
pull request level (confirmed by ANOVA).

Memory leaks are fixed in approximately the same amount of
time, with the same quantity of issue discussion. In fact, despite

9https://github.com/torch/torch7/issues/281
10https://github.com/opencv/opem:v/issues/6081
Uhttps://github.com/tensorflow/tensorflow/issues/25882
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Table 4: Median values for each collected data regarding issue difficulty for Hypothesis 2.

Days Comments-Rep  Comments—PR  Participants—Rep  Participants—PR LOC Files
Category ML Trad ML  Trad ML  Trad ML  Trad ML  Trad ML Trad ML Trad
API Mismatch (APT) 470 75 90 7.0 10 30 40 30 20 25 240 360 20 20
Incorrect Memory Allocation (MA) 80 115 60 65 15 00 30 25 30 00 80 235 15 25
1/O Slowdown (1/0) 130 70 40 70 10 50 35 3.0 35 3.0 305 580 10 20
Memory Leak (ML) 100 100 60 60 00 60 50 3.0 20 40 280 340 20 30
Multi-Threading Error (MT) 320 100 90 90 60 10 30 20 30 10 450 160 20 10
Performance Regression (PR) 12.5 12.0 9.0 8.0 6.0 3.0 45 4.0 5.0 2.0 255 375 2.0 2.0
Overall 11.0 8.0 7.0 7.0 1.0 3.0 4.0 3.0 3.0 3.0 26.0 23.0 2.0 2.0
70 Group . to provide detailed information on both the issue and their deploy-
£ ol mare rameuor ment environment. This could, in turn, contribute to the difficulty
c [EEETIML Framework . .
25 ; , . of correcting an issue.
T t . g . .
2.0 We measure several indicators of the information content that
£ M . T .
Sul , a user must provide. These indicators include the number of com-
5 0 i : X ments in the discussion thread before the issue is reproduced. This
I3 4 . . .
£ ) . o is determined manually for each sampled issue. We also collect the
310 . . . .
z i& & é_ ;ﬁ number of words in the issue description, the number of files at-
0 = . .
ML PR APl SYNCConiig 10 WA W tached to the issue report, and the number of lines of code attached
. Category to the issue report. Table 5 lists the median values for each indicator
Figure 4: Number of comments in the pull request. p ) ]
both for the six issue types with a reasonable number of samples
Table 5: Median values for Hypothesis 3. for both system categories and over the full pool of issues.
Overall, as shown in Table 5, ML frameworks require a higher
Comments Words Files Attached  Code Attached di b £ bef . d d
Category ML Trad ML Trad ML Trad ML  Trad median number of comments before issues are reproduced (2 to
APl 2 1 27 1045 05 o o 1), number of lines of code attached to the report (21 to 12.5), and
MA 05 2 167 70 05 1 0 7 number of words in the issue report (113 to 93.5). However, of
1/0 0.5 1 136.5 90 0 0.5 4.5 1.5 o s . .
ML 0 1 131 110 o o B 1 those, only the number of words shows statistical significance—as
ggf 5 ? i;z Ei f (1) (3)6 1-25 demonstrated using the ANOVA test. Therefore, an increase in
Overall 2 1 13 935 0 0 21 125 the amount of information that a user has to provide primarily

happening more frequently in ML frameworks, memory leaks may
be slightly easier to fix, with significantly fewer participants in the
pull request. Given increased frequency of memory leaks, devel-
opers may have a more immediate understanding of how to solve
such issues using automated tools, and the fixes for such issues
may be accepted with little need for community debate.

Summary: Broadly, issues in ML do not appear to be signifi-
cantly more difficult to address. API mismatch issues require signif-
icant time and discussion to fix, reflecting rapidly evolving commu-
nities debating how to best evolve their systems. Incorrect mem-
ory allocation issues also attract significantly more participants
in discussing potential fixes. The most contentious issues reflect
an evolving field and an active community. Memory leaks attract
less participation at the pull request level, indicating an area where
issue commonality leads to quick acceptance of solutions.

6.2 H3—Information Quantity

Our third guiding hypothesis states that more information will
be required for developers to reproduce reported system-related
issues. We hypothesize this for multiple reasons. ML systems are
often somewhat stochastic in nature, behavior is often influenced
by subtle environmental factors, and understanding an issue may
require specialized understanding of the underlying statistical al-
gorithms. Therefore, we suspect that the reporting user may need

manifests in terms of the number of words in the issue description.
Users of ML systems provide detailed descriptions of issues to the
development community. This does not necessarily suggest that
issues are harder to reproduce or solve in ML, but may instead
suggest that the users of such systems are knowledgeable, have
more development experience, and may be prepared to offer more
background on the issue being reported than the average issue
reporter in a software system.

Memory leaks, in particular, require a significantly larger num-
ber of words in the issue description. Memory leak issues are not
necessarily harder to reproduce, but do require that the user provide
a detailed account. This may not reflect the difficulty of fixing mem-
ory leaks, but rather that the increased frequency of memory leaks
in ML better prepares users to report such problems. It is possible
that the descriptive initial bug reports help ease acceptance of the
pull request, as indicated in the previous section.

API mismatch also requires a significantly higher number of
attached files with the issue description. This further suggests that
API mismatch issues are difficult to address, and can require debate
in the development community—for instance, requiring a higher
median number of comments before being confirmed as an issue.
The variance between systems is low in terms of the number of
words in the description, suggesting along with the higher median
that users—up front—provide more information on these issue in
ML frameworks.

The remaining categories offer little in the way of clear trends.
While medians may differ in various ways, the differences are not
significant according to the one-way ANOVA tests.
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Figure 5: The participants account history.
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Figure 6: The real-world role of participants.

Summary: Users of ML frameworks provide more detailed issue
descriptions. Issues are not necessarily harder to reproduce. Instead,
users may be more knowledgeable, have more development experi-
ence, and may be more prepared to offer background on the issue
being reported than in traditional frameworks.

7 RQ3 — COMMUNITY BEHAVIOR

Our third research question revolves around the behavior of the
open-source communities building the studied systems. To answer
RQ3, we investigate three hypotheses, examining participant spe-
cialization and experience (H4), discussion activity (H5), and the
impact of the community activity level on the issue-fixing process
(H6). Rather than discussing particular issue types in this question,
we focus on the differences between systems.

7.1 H4—Participant Experience

Our fourth hypothesis states that the participants in issue discus-
sion in ML frameworks are more experienced and are more spe-
cialized in their experience. We measure three indicators for this
hypothesis—the number of years that participants in issue discus-
sion have owned their GitHub account, the role of the participants,
and the number of followers participants have.

The number of years a user has owned their account partially
indicates their development experience. We did not identify any sta-
tistically significant results. Our results, shown in Figure 5, indicate
quite a bit of variance between systems.
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Figure 7: Number of unique users involved in discussion.

Our second indicator revolves around the job role of the partici-
pants in issue discussion. For this indicator, we manually gathered
the job title for each participant from their GitHub profile or linked
personal and LinkedIn pages. Figure 6 shows the results of this
process. The categories we assigned include Engineer, Researcher,
Senior Engineer, and combinations of (Senior) Engineer and Re-
searcher. We were able to identify the role of more participants in
ML. This potentially suggests that the participants in such projects
tend to have a more distinct online identity that ties open-source
development into their work role, or where their work role explic-
itly involves open-source development. The clearest difference we
see between ML and traditional frameworks, as shown in Figure 6,
is the increased importance of the role of “Researcher” in the par-
ticipant pool. More participants work as a combination of Engineer
and Researcher in ML than in traditional frameworks.

Our third indicator is the number of followers that participants
in the issue fixing process have on GitHub. This indicates user
popularity. We have removed 13 outliers, who had more than 40,000
followers. Overall, ML participants have a higher median number
of followers—62 to 54. ANOVA confirms statistical significance.

Summary: Many ML frameworks developers identify as a com-
bination of Engineer and Researcher, while many traditional frame-
work developers identify solely as an Engineer. ML framework
developers also tend to be more popular than the developers of
traditional frameworks. There is little consistency in how long
developers have had GitHub accounts.

7.2 H5—Non-Developer Users

Our fifth hypothesis states that the discussion of issues attracts
a greater number of non-developer users in ML than in software
systems. As such systems are currently quite popular, they may
have a more active and varied discussion community. To measure
the quantity, we collect the number of users from the participant
list for each issue. We then omit any users that are listed members
of the project development team (who have “write” access). An
ANOVA test fails to indicate significant differences between the
two paradigms. Figure 7 shows that the number of users that take
part in discussion varies quite a bit between frameworks.
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Table 6: Community behavior data.

System # Members % Participate # Contributions # PR Contributions
TensorFlow 2 33.33% 184 387
Torch7 1 33.33% 2503 974
Caffe2 0 0% 0 448
PyTorch 1 25.00% 1465 787
Theano 2 58.33% 1114 653
OpenCV 0 0% 0 480
Keras 0.5 16.67% 211 211
Chainer 3 75.00% 1465 1558
CNTK 0.5 12.5% 0 92
MxNet 1 14.29% 241 208
Overall 1 33.33% 366 344
React 1 25.00% 704 704
ETCD 1 33.33% 704 1954
Flutter 1 33.33% 483 809
Rancher 3 66.67% 133 133
iPython 2 66.67% 1649 1695
Babel 2 42.22% 496 356
AWS-CLI 1 25.00% 598 633
Drone 1 25.00% 68 57
OSQuery 1 33.33% 254 254
Grafana 2 33.33% 1965 1965
Overall 1 33.33% 754 704

Summary: ML issues do not attract significantly more non-
developer users to take part in discussion than software frameworks.
There is a large amount of variance in the makeup of discussion
participants between systems.

7.3 Hé6—Activity Level

Our final hypothesis is that ML frameworks require a more active
developer community than traditional frameworks in order to fix
system-related issues. We speculate that more developers may need
to take part in discussion, contribute to the project, and make pull
requests in order to maintain a healthy, functioning system.

To measure the activity level, we focus on members of each
project. The members are people who are part of the organization
that owns a project, and that have “write” access to the project
repository. This list is made available as part of a GitHub project!?.
We collect three indicators, including: (1) the percentage of members
that take part in issue discussion, (2) the number of contributions
made by a member during the year that each issue was reported,
and (3) the number of contributions (commits, pull requests) made
by the issue’s corresponding pull request creator during the year
that each pull request was created.

Table 6 shows the median values for each indicator for each
system that we studied. Immediately, we see quite a bit of vari-
ance between systems in ML. Compared to traditional projects,
ML projects vary wildly in terms of the percent of members that
participate in issue discussion—from 12.50% to 75.00% of members
taking part in discussions. In comparison, traditional frameworks
show a narrower range of percentages, with medians of 25-66.67%
of members taking part in issue discussion. Overall, however, the
median percentage of members taking part in issue discussion in
ML and traditional frameworks are quite similar.

There is quite a bit of variance in the number of contributions
made by project members. Members of the PyTorch and Chainer
communities contribute quite a lot each year, while members of

12https://github.com/orgs/tensorﬂcow/people
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the TensorFlow community contribute very little in comparison,
possibly due to a larger community. There is quite a bit of variance
for traditional frameworks as well. Overall, members of traditional
projects make more contributions on a yearly basis.

Again, there is significant variance between individual systems in
terms of the number of contributions made by the issue-fixing pull
request creator during the year that each pull request was created.
Compare with ML, pull request creators in traditional frameworks
contribute more overall.

Summary: There is little we can say categorically about com-
munity activity level for ML versus software frameworks. Overall,
the two categories show similar levels of member participation.
Software frameworks members contribute more to open source
software. However, there are significant differences between indi-
vidual systems.

8 THREATS TO VALIDITY

Internal Validity: First, our study involves manual inspections
on system-related issues in machine learning frameworks. These
subjective steps can be biased due to interpretation of intent based
on limited code comments and issue description. In order to reduce
this threat, one author analyzed the issues separately and discussed
inconsistent issues with a second author until an agreement was
reached. Second, our study investigated 453 issues from Github
for 10 machine learning frameworks and 10 traditional systems. It
is not clear how much our findings can or will generalize beyond
our dataset, especially considering the fact that machine learning
systems are evolving rapidly. However, it is not easy to expand this
dataset. First, the manual efforts required to analyze the issues were
large. We could automate the labeling process, but it would then
introduce noise in how we categorise issues. To collect and analyze
the issues, we spent approximately 960 person-hours, leading to an
average 2.11 person-hours per issue. However, we believe that this
process lead to stable conclusions for this exploratory analysis.

External Validity: The main threat to the external validity is gen-
eralisation beyond the considered frameworks and selected issues.
We selected the frameworks based on their popularity. To make the
issue taxonomy as comprehensive as possible, we labeled a large
number of issues from GitHub until we reached saturation of the
categories. Since both ML and traditional frameworks are rapidly
changing, the observations and relative numbers may change for
each corresponding category. However, due to a large sample set,
we believe that it is unlikely that the answers to the research ques-
tions would be impacted by sampling additional systems.

9 ACTIONABLE RECOMMENDATIONS

Based on our findings, we can make several recommendations to the
developers of ML frameworks, as well as systems that make use of
these frameworks. First, our results indicate that incorrect memory
allocation, memory leaks, multi-threading errors, and performance
regression occur more commonly in ML frameworks. Increased
dependence on hardware selection, like the GPU, can also lead to
issues. Developers should plan for handling these types of issues. It
would be reasonable to actively recruit or advertise for developers
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who specialize in areas such as memory management, concurrency,
or software product lines. Recruitment of developers with expertise
in these topics could lead to better development, and faster response
when an issue occurs.

We found that many ML frameworks developers identify as re-
searchers or some combination of engineer and researcher. This has
both positive and negative implications. Researchers have special-
ized knowledge in their area of focus. This can be utilized to great
benefit in developing ML frameworks. By taking advantage of this
expertise, frameworks can deliver sophisticated, highly effective
features. At the same time, it is important that overall development
of a framework can proceed without losing sight of the “big picture”.
Developers should not focus solely on their own areas of expertise
and ignore features outside of their focus area. The overall architec-
ture of a framework, as well as its usability, are extremely important
and require consensus and conversation across the team as a whole.
It is important that the development community of a project crafts
compatible API designs, coding standards, and testing standards
that are followed across the project, and that developers have some
knowledge of how their work influences the system as a whole.

We also found that the users of ML frameworks tend to provide
more detailed issue descriptions than those of traditional systems,
perhaps reflecting the complex, specialized nature of such systems.
This can be good, as more information can help developers repro-
duce and correct issues more easily. However, more text does not
necessarily imply a greater quantity of useful information. It is
important that users be given structure and guidance when report-
ing issues. ML framework developers should make use of issue
report templates to ensure that important information is provided
by reporters. TensorFlow and PyTorch communities are using tem-
plates for reporting the issues. Past experience can be quite useful
in helping users file reasonable reports. Detailed issue reports, filed
for past issues, can be used to provide examples to users filing new
issue reports. Well-crafted issue reports should be retained and
pointed to in order to help ensure that relevant details are included
in new reports.

Finally, we found that some issues such as API mismatches or
incorrect memory allocation required more time, more discussion,
and a greater number of involved users to come to a conclusion on
whether there was an issue or how to fix it. The most contentious
issue types reflect an evolving field and an active community. This is
not necessarily a negative finding. In fact, it can be quite positive—a
healthy culture where developers share ideas, debate the merits
of them, and come to a consensus on a solution will often lead
to rapid, sustainable improvement to a framework. Development
communities should encourage and expect debate. This requires,
however, the creation of moderation standards within a community
to keep discussion on-target and civil.

10 RELATED WORK

Others have tried to investigate the differences between the two
system paradigms from various perspectives. A previous empirical
study analyzed issue reports for three open source ML systems in-
cluding Apache Mahout, Lucene, and OpenNLP [32]. Programs bugs
developed in TensorFlow have also been studied empirically [44].
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However, these studies focused on particular frameworks (e.g., Ten-
sorFlow) and collected all types of program issues (not necessarily
systems-related issues) to the extent that they concluded “the small
number of performance inefficiency issues suggests either perfor-
mance issues rarely occur or these issues are difficult to detect."
We mainly focus on system-related issues, and we found that per-
formance regressions are actually common symptoms in machine
learning systems. While many prior studies exist on understand-
ing the nature of system-related issues in the traditional software
stack [1, 4, 12, 20, 38, 40], our study explores a wider range of
systems and issues, and offers a detailed comparison of machine
learning with traditional systems.

The findings of studies on traditional software systems may not
apply in ML for multiple reasons, including the fact that in the
ML stack, programming is done differently than in the traditional
software stack. For example, when the network fails in a handful of
rare cases in ML, we do not correct those predictions by correcting
the code. Rather, those predictions are fixed by including more
labeled examples of those rare cases in order to regularize the
learning process [16].

Differences between the two paradigms have been investigated
from the perspective of software engineering practices as well.
For example, a case study at Microsoft [2] details differences of
developing in the Al domain versus traditional application domains,
and how team processes and practices change. They identified three
distinguishable aspects of ML: (i) data accumulating, massaging and
cleaning is much more complex, (ii) model customization require
very different skill sets, and (iii) components are more difficult to
handle as distinct modules. The testing process is also different
in ML [8, 10, 22-25, 30, 30, 33, 35, 35, 43]. Prior studies have also
identified unique technical debt concerns for machine learning
systems [6, 28].

Many prior studies have examined performance-related issues
in traditional software [13, 17, 19, 34, 39, 40, 42]. Each of these has
informed our issue classification process. Configuration-related
issues are also a significant concern in our research. A number
of studies have been conducted on performance-related issues in
software, systems, and cloud that informed our approach [14, 18,
36, 37, 41].

11 CONCLUSION

Frameworks offer services that can be used to build software. Issues
in frameworks will impact the software built using those frame-
works. ML systems differ from traditional systems in how they
execute, how configurations are managed, how systems are tested,
and how and where they are deployed. Naturally, the issues that
manifest will differ as well—as will how communities of developers
behave in correcting those issues. We have conducted a moderate-
scale study contrasting the differences in the system-related issues
between popular ML and traditional frameworks. Our findings
offer a number of interesting observations, with implications for
the development of ML frameworks and systems that make use of
these frameworks. We hope that this exploratory study as well as
the recommendations will offer assistance to the “machine learn-
ing systems” community forming the best practices for this new
paradigm.
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A APPENDIX

A.1 Patch Code for Section 2
Resource Usage (Pytorch 7680 - Patch)

ee -7,6 +7,7 ee

aten/src/THCUNN/im2col.h

template <typename Dtype>

+ __launch_bounds__(CUDA_NUM_THREADS)

__global__ void im2col_kernel(const int n,
const Dtypex data_im,
const int height, const int width,
const int ksize_h, const int ksize_w,

@@ -58,6 +59,7 @@ void im2col (cudaStream_t
stream, const Dtypex data_im, const int chan-
nels, _consistency(self):
aten/src/THCUNN/im2col.h

template <typename Dtype, typename Acctype>

+ __launch_bounds__(CUDA_NUM_THREADS)

Performance Regression (Keras 8381 - Patch)

@@ -22,7 +22,6 @@

keras/engine/training.py

from .. import metrics as metrics_module

from ..utils.generic_utils import Progbar

- from ..utils.layer_utils import count_params

@@ -967,8 +966,8 @@ def _check_trainable_weights
_consistency(self):

keras/engine/training.py

- if (count_params(self.trainable_weights) !=

- count_params (self._collected_trainable_

- weights)):
+ if (len(self.trainable_weights) !=
+ len(self._collected_trainable_weights)):

warnings.warn(UserWarning(
'Discrepancy between trainable weights
and collected trainable'

weights, did you set ‘model.trainable®
without calling'

Memory Leak (Tensorflow 2942 - Patch)

@@ -616,7 +616,7 @@ def _feed_fn:

' to a larger type (e.g. int64).")

- np_val = np.array(subfeed_val,

- dtype=subfeed_dtype)

+ np_val = np.asarray(subfeed_val,

+ dtype=subfeed_dtype)

API (Tensorflow 17932 - Patch)

tensorflow/contrib/data/python/ops/grouping.py

@@ -140,9 +140,9 @@ def bucket_by_sequence_length:

to a larger type (e.g. int64)."')

- def element_to_bucket_id(element):

+ def element_to_bucket_id(*args):

- seq_length = element_length_func(element)
+ seq_length = element_length_func(xargs)

Try explicitly setting the type of the feed tensor'

Yang Ren, Gregory Gay, Christian Kastner, Pooyan Jamshidi

boundaries = list(bucket_boundaries)
buckets_min = [np.iinfo(np.int32).min]
+ boundaries

Memory Allocation (Incubator-Mxnet 7000 - Patch)

tensorflow/contrib/data/python/ops/grouping.py
@@ -140,9 +140,9 @@
#if MXNET_USE_CUDA
+ CUDA_CALL (cudaGetDeviceCount (&num_gpu_device));
+ CHECK_GT (num_gpu_device, 0) <<
+ "GPU usage requires at least 1 GPU";
ptr = new storage::GPUPooledStorageManager ();
#else
LOG(FATAL) << "Compile with USE_CUDA=1 to
enable GPU usage";
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