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Abstract. This paper deals with multivariate regression chain graphs
(MVR CGs), which were introduced by Cox and Wermuth in the nineties
to represent linear causal models with correlated errors. We consider the
PC-like algorithm for structure learning of MVR CGs, a constraint-based
method proposed by Sonntag and Peña in 2012. We show that the PC-
like algorithm is order-dependent, because the output can depend on the
order in which the variables are given. This order-dependence is a minor
issue in low-dimensional settings. However, it can be very pronounced in
high-dimensional settings, where it can lead to highly variable results.
We propose two modifications of the PC-like algorithm that remove part
or all of this order-dependence. Simulations under a variety of settings
demonstrate the competitive performance of our algorithms in compari-
son with the original PC-like algorithm in low-dimensional settings and
improved performance in high-dimensional settings.

Keywords: Multivariate regression chain graph · Structural learning ·
Order independence · High-dimensional data · Scalable machine learning
techniques.

1 Introduction

Chain graphs were introduced by Lauritzen, Wermuth and Frydenberg [5],[9]
as a generalization of graphs based on undirected graphs and directed acyclic
graphs (DAGs). Later Andersson, Madigan and Perlman introduced an alter-
native Markov property for chain graphs [1]. In 1993 [3], Cox and Wermuth
introduced multivariate regression chain graphs (MVR CGs). The different inter-
pretations of CGs have different merits, but none of the interpretations subsumes
another interpretation [4].

Acyclic directed mixed graphs (ADMGs), also known as semi-Markov(ian)
[12] models contain directed (→) and bidirected (↔) edges subject to the re-
striction that there are no directed cycles [15]. An ADMG that has no partially
directed cycle is called a multivariate regression chain graph. Cox and Wermuth
represented these graphs using directed edges and dashed edges, but we follow
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Richardson [15] because bidirected edges allow the m-separation criterion (de-
fined in section 2) to be viewed more directly as an extension of d-separation
than is possible with dashed edges [15].

Unlike in the other CG interpretations, the bidirected edge in MVR CGs
has a strong intuitive meaning. It can be seen to represent one or more hidden
common causes between the variables connected by it. In other words, in an
MVR CG any bidirected edge X ↔ Y can be replaced by X ← H → Y to
obtain a Bayesian network representing the same independence model over the
original variables, i.e. excluding the new variables H. These variables are called
hidden, or latent, and have been marginalized away in the CG model. See [17],[7],
[18] for details on the properties of MVR chain graphs.

Two constraint-based learning algorithms, that use a statistical analysis to
test the presence of a conditional independency, exist for learning MVR CGs: (1)
the PC-like algorithm [16], and (2) the answer set programming (ASP) algorithm
[13]. The PC-like algorithm extends the original learning algorithm for Bayesian
networks by Peter Spirtes and Clark Glymour [19]. It learns the structure of
the underlying MVR chain graph in four steps: (a) determining the skeleton:
the resulting undirected graph in this phase contains an undirected edge u − v
iff there is no set S ⊆ V \ {u, v} such that u ⊥⊥ v|S; (b) determining the v -
structures (unshielded colliders); (c) orienting some of the undirected/directed
edges into directed/bidirected edges according to a set of rules applied iteratively;
(d) transforming the resulting graph in the previous step into an MVR CG.
The essential recovery algorithm obtained after step (c) contains all directed
and bidirected edges that are present in every MVR CG of the same Markov
equivalence class.

In this paper, we show that the PC-like algorithm is order-dependent, in the
sense that the output can depend on the order in which the variables are given.
We propose several modifications of the PC-like algorithm that remove part or all
of this order-dependence, but do not change the result when perfect conditional
independence information is used. When applied to data, the modified algorithms
are partly or fully order-independent. Proofs, implementations in R, and details
of experimental results can be found in the supplementary material at https:
//github.com/majavid/SUM2019.

2 Definitions and Concepts

Below we briefly list some of the most important concepts used in this paper.
If there is an arrow from a pointing towards b, a is said to be a parent of b.

The set of parents of b is denoted as pa(b). If there is a bidirected edge between
a and b, a and b are said to be neighbors. The set of neighbors of a vertex a
is denoted as ne(a). The expressions pa(A) and ne(A) denote the collection of
parents and neighbors of vertices in A that are not themselves elements of A.
The boundary bd(A) of a subset A of vertices is the set of vertices in V \A that
are parents or neighbors to vertices in A.

A path of length n from a to b is a sequence a = a0, . . . , an = b of distinct
vertices such that (ai → ai+1) ∈ E, for all i = 1, . . . , n. A chain of length n from
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a to b is a sequence a = a0, . . . , an = b of distinct vertices such that (ai → ai+1) ∈
E, or (ai+1 → ai) ∈ E, or (ai+1 ↔ ai) ∈ E, for all i = 1, . . . , n. We say that u is
an ancestor of v and v is a descendant of u if there is a path from u to v in G.
The set of ancestors of v is denoted as an(v), and we define An(v) = an(v) ∪ v.
We apply this definition to sets: an(X) = {α|α is an ancestor of β for some β ∈
X}. A partially directed cycle in a graph G is a sequence of n distinct vertices
v1, . . . , vn(n ≥ 3),and vn+1 ≡ v1, such that ∀i(1 ≤ i ≤ n) either vi ↔ vi+1 or
vi → vi+1, and ∃j(1 ≤ j ≤ n) such that vi → vi+1.

A graph with only undirected edges is called an undirected graph (UG).
A graph with only directed edges and without directed cycles is called a di-
rected acyclic graph (DAG). Acyclic directed mixed graphs, also known as semi-
Markov(ian) [12] models contain directed (→) and bidirected (↔) edges subject
to the restriction that there are no directed cycles [15]. A graph that has no
partially directed cycles is called a chain graph.

A nonendpoint vertex ζ on a chain is a collider on the chain if the edges
preceding and succeeding ζ on the chain have an arrowhead at ζ, that is,→ ζ ←
, or ↔ ζ ↔, or ↔ ζ ←, or → ζ ↔. A nonendpoint vertex ζ on a chain which is
not a collider is a noncollider on the chain. A chain between vertices α and β in
chain graph G is said to be m-connecting given a set Z (possibly empty), with
α, β /∈ Z, if every noncollider on the path is not in Z, and every collider on the
path is in AnG(Z).

A chain that is not m-connecting given Z is said to be blocked given (or by)
Z. If there is no chain m-connecting α and β given Z, then α and β are said to
be m-separated given Z. Sets X and Y are m-separated given Z, if for every pair
α, β, with α ∈ X and β ∈ Y , α and β are m-separated given Z (X, Y , and Z are
disjoint sets; X,Y are nonempty). We denote the independence model resulting
from applying the m-separation criterion to G, by =m(G). This is an extension
of Pearl’s d-separation criterion [11] to MVR chain graphs in that in a DAG D,
a chain is d-connecting if and only if it is m-connecting.

We say that two MVR CGs G and H are Markov equivalent or that they are
in the same Markov equivalence class iff =m(G) = =m(H). If G and H have the
same adjacencies and unshielded colliders, then =m(G) = =m(H) [21].

Just like for many other probabilistic graphical models there might exist
multiple MVR CGs that represent the same independence model. Sometimes
it can however be desirable to have a unique graphical representation of the
different representable independence models in the MVR CGs interpretation. A
graph G∗ is said to be the essential MVR CG of an MVR CG G if it has the
same skeleton as G and contains all and only the arrowheads common to every
MVR CG in the Markov equivalence class of G. One thing that can be noted
here is that an essential MVR CG does not need to be a MVR CG. Instead these
graphs can contain three types of edges, undirected, directed and bidirected [17].
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3 Order-Dependent PC-like Algorithm

In this section, we show that the PC-like algorithm proposed by Sonntag and
Peña in [16] is order-dependent, in the sense that the output can depend on the
order in which the variables are given. The PC-like algorithm for learning MVR
CGs under the faithfulness assumption is formally described in Algorithm 1.

Fig. 1. The Rules [16]

In applications, we do not have perfect conditional independence information.
Instead, we assume that we have an i.i.d. sample of size n of variables V =
(X1, . . . , Xp). In the PC-like algorithm [16] all conditional independence queries
are estimated by statistical conditional independence tests at some pre-specified
significance level (p value) α. For example, if the distribution of V is multivariate
Gaussian, one can test for zero partial correlation, see, e.g., [8]. For this purpose,
we use the gaussCItest() function from the R package pcalg throughout this paper.
Let order(V ) denote an ordering on the variables in V . We now consider the role
of order(V ) in every step of the algorithm.

In the skeleton recovery phase of the PC-like algorithm [16], the order of
variables affects the estimation of the skeleton and the separating sets. In par-
ticular, as noted for the special case of Bayesian networks in [2], for each level
of i, the order of variables determines the order in which pairs of adjacent ver-
tices and subsets S of their adjacency sets are considered (see lines 4 and 5 in
Algorithm 1). The skeleton H is updated after each edge removal. Hence, the
adjacency sets typically change within one level of i, and this affects which other
conditional independencies are checked, since the algorithm only conditions on
subsets of the adjacency sets. When we have perfect conditional independence
information, all orderings on the variables lead to the same output. In the sam-
ple version, however, we typically make mistakes in keeping or removing edges,
because conditional independence relationships have to be estimated from data.
In such cases, the resulting changes in the adjacency sets can lead to different
skeletons, as illustrated in Example 1.

Moreover, different variable orderings can lead to different separating sets
in the skeleton recovery phase. When we have perfect conditional independence
information, this is not important, because any valid separating set leads to
the correct v -structure decision in the orientation phase. In the sample version,
however, different separating sets in the skeleton recovery phase of the algorithm
may yield different decisions about v -structures in the orientation phase. This is
illustrated in Example 2.

https://cran.r-project.org/web/packages/pcalg
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Algorithm 1: The order-dependent PC-like algorithm for learning MVR
chain graphs [16]

Input: A set V of nodes and a probability distribution p faithful to an
unknown MVR CG G and an ordering order(V ) on the variables.

Output: An MVR CG G′ s.t. G and G′ are Markov equivalent and G′ has
exactly the minimum set of bidirected edges for its equivalence class.

1 Let H denote the complete undirected graph over V ;
/* Skeleton Recovery */

2 for i← 0 to |VH | − 2 do
3 while possible do
4 Select any ordered pair of nodes u and v in H such that u ∈ adH(v) and

|adH(u) \ v| ≥ i using order(V );
/* adH(x) := {y ∈ V |x y, y x, or x y} */

5 if there exists S ⊆ (adH(u) \ v) s.t. |S| = i and u ⊥⊥p v|S (i.e., u is
independent of v given S in the probability distribution p) then

6 Set Suv = Svu = S;
7 Remove the edge u v from H;

8 end

9 end

10 end
/* v-structure Recovery */

11 for each m-separator Suv do
12 if u w v appears in the skeleton and w is not in Suv then

/* u w means u w or u w. Also, w v means

w v or w v. */

13 Determine a v-structure u w v;

14 end

15 end
16 Apply rules 1-3 in Figure 1 while possible;

/* After this line, the learned graph is the essential graph of MVR

CG G. */

17 Let G′
u be the subgraph of G′ containing only the nodes and the undirected

edges in G′;
18 Let T be the junction tree of G′

u;
/* If G′

u is disconnected, the cliques belonging to different

connected components can be linked with empty separators, as

described in [6, Theorem 4.8]. */

19 Order the cliques C1, · · · , Cn of G′
u s.t. C1 is the root of T and if Ci is closer to

the root than Cj in T then Ci < Cj ;
20 Order the nodes such that if A ∈ Ci, B ∈ Cj , and Ci < Cj then A < B;
21 Orient the undirected edges in G′ according to the ordering obtained in line 21.

Finally, we consider the role of order(V ) on the orientation rules in the es-
sential graph recovery phase of the sample version of the PC-like algorithm.
Example 3 illustrates that different variable orderings can lead to different ori-
entations, even if the skeleton and separating sets are order-independent.
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Example 1 (Order-dependent skeleton of the PC-like algorithm.). Suppose that
the distribution of V = {a, b, c, d, e} is faithful to the DAG in Figure 2(a).
This DAG encodes the following conditional independencies (using the notation
defined in line 5 of Algorithm 1) with minimal separating sets: a ⊥⊥ d|{b, c} and
a ⊥⊥ e|{b, c}.

Suppose that we have an i.i.d. sample of (a, b, c, d, e), and that the following
conditional independencies with minimal separating sets are judged to hold at
some significance level α: a ⊥⊥ d|{b, c}, a ⊥⊥ e|{b, c, d}, and c ⊥⊥ e|{a, b, d}. Thus,
the first two are correct, while the third is false.

We now apply the skeleton recovery phase of the PC-like algorithm with two
different orderings: order1(V ) = (d, e, a, c, b) and order2(V ) = (d, c, e, a, b). The
resulting skeletons are shown in Figures 2(b) and 2(c), respectively.

e

d

a

b c

(a)

e

d

a

b c

(b)

e

d

a

b c

(c)

Fig. 2. (a) The DAG G, (b) the skeleton returned by Algorithm 1 with order1(V ), (c)
the skeleton returned by Algorithm 1 with order2(V ).

We see that the skeletons are different, and that both are incorrect as the
edge c e is missing. The skeleton for order2(V ) contains an additional error,
as there is an additional edge a e. We now go through Algorithm 1 to see
what happened. We start with a complete undirected graph on V . When i = 0,
variables are tested for marginal independence, and the algorithm correctly does
not remove any edge. Also, when i = 1, the algorithm correctly does not remove
any edge. When i = 2, there is a pair of vertices that is thought to be condition-
ally independent given a subset of size two, and the algorithm correctly removes
the edge between a and d. When i = 3, there are two pairs of vertices that are
thought to be conditionally independent given a subset of size three. Table 1
shows the trace table of Algorithm 1 for i = 3 and order1(V ) = (d, e, a, c, b).

Table 1. The trace table of Algorithm 1 for i = 3 and order1(V ) = (d, e, a, c, b).

Ordered Pair (u, v) adH(u) Suv Is Suv ⊆ adH(u) \ {v}? Is u v removed?

(e, a) {a, b, c, d} {b, c, d} Yes Yes

(e, c) {b, c, d} {a, b, d} No No

(c, e) {a, b, d, e} {a, b, d} Yes Yes

Table 2 shows the trace table of Algorithm 1 for i = 3 and order2(V ) =
(d, c, e, a, b).
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Table 2. The trace table of Algorithm 1 for i = 3 and order2(V ) = (d, c, e, a, b).

Ordered Pair (u, v) adH(u) Suv Is Suv ⊆ adH(u) \ {v}? Is u v removed?

(c, e) {a, b, d, e} {a, b, d} Yes Yes

(e, a) {a, b, d} {b, c, d} No No

(a, e) {b, c, e} {b, c, d} No No

Example 2 (Order-dependent separating sets and v-structures of the PC-like al-
gorithm.). Suppose that the distribution of V = {a, b, c, d, e} is faithful to the
DAG in Figure 3(a). This DAG encodes the following conditional independencies
with minimal separating sets: a ⊥⊥ d|b, a ⊥⊥ e|{b, c}, a ⊥⊥ e|{c, d}, b ⊥⊥ c, b ⊥⊥ e|d,
and c ⊥⊥ d.

Suppose that we have an i.i.d. sample of (a, b, c, d, e). Assume that all true
conditional independencies are judged to hold except c ⊥⊥ d. Suppose that c ⊥⊥
d|b and c ⊥⊥ d|e are thought to hold. Thus, the first is correct, while the second is
false. We now apply the v -structure recovery phase of the PC-like algorithm with
two different orderings: order1(V ) = (d, c, b, a, e) and order3(V ) = (c, d, e, a, b).
The resulting CGs are shown in Figures 3(b) and 3(c), respectively. Note that
while the separating set for vertices c and d with order1(V ) is Sdc = Scd = {b},
the separating set for them with order2(V ) is Scd = Sdc = {e}.
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b c

(a)

ed

a

b c

(b)

ed

a

b c

(c)

Fig. 3. (a) The DAG G, (b) the CG returned after the v -structure recovery phase of
Algorithm 1 with order1(V ), (c) the CG returned after the v -structure recovery phase
of Algorithm 1 with order3(V ).

This illustrates that order-dependent separating sets in the skeleton recovery
phase of the sample version of the PC-algorithm can lead to order-dependent
v -structures.

Example 3 (Order-dependent orientation rules of the PC-like algorithm.). Con-
sider the graph in Figure 4, and assume that this is the output of the sample
version of the PC-like algorithm after v -structure recovery. Also, consider that
c ∈ Sa,d and d ∈ Sb,f . Thus, we have two v-structures, namely a c e
and b d f , and four unshielded triples, namely (e, c, d), (c, d, f), (a, c, d),
and (b, d, c). Thus, we then apply the orientation rules in the essential recovery
phase of the algorithm, starting with rule R1. If one of the two unshielded triples
(e, c, d) or (a, c, d) is considered first, we obtain c d. On the other hand, if
one of the unshielded triples (b, d, c) or (c, d, f) is considered first, then we obtain
c d. Note that we have no issues with overwriting of edges here, since as soon
as the edge c d is oriented, all edges are oriented and no further orientation
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rules are applied. These examples illustrate that the essential graph recovery
phase of the PC-like algorithm can be order-dependent regardless of the output
of the previous steps.

e d

a b

c f

Fig. 4. Possible mixed graph after v -structure recovery phase of the sample version of
the PC-like algorithm.

4 Order Independent Algorithms for Learning MVR CGs

We now propose several modifications of the original PC-like algorithm (and
hence also of the related algorithms) that remove the order-dependence in the
various stages of the algorithm, analogously to what Colombo and Maathuis [2]
did for the original PC algorithm in the case of DAGs. For this purpose, we
discuss the skeleton, v -structures, and the orientation rules, respectively.

4.1 Order-Independent Skeleton Recovery

We first consider estimation of the skeleton in the adjacency search of the PC-
like algorithm. The pseudocode for our modification is given in Algorithm 2. The
resulting PC-like algorithm in Algorithm 2 is called stable PC-like.

The main difference between Algorithms 1 and 2 is given by the for-loop on
lines 3-5 in the latter one, which computes and stores the adjacency sets aH(vi) of
all variables after each new size i of the conditioning sets. These stored adjacency
sets aH(vi) are used whenever we search for conditioning sets of this given size
i. Consequently, an edge deletion on line 10 no longer affects which conditional
independencies are checked for other pairs of variables at this level of i.

In other words, at each level of i, Algorithm 2 records which edges should
be removed, but for the purpose of the adjacency sets it removes these edges
only when it goes to the next value of i. Besides resolving the order-dependence
in the estimation of the skeleton, our algorithm has the advantage that it is
easily parallelizable at each level of i. The stable PC-like algorithm is correct,
i.e. it returns an MVR CG to which the given probability distribution is faithful
(Theorem 1), and it yields order-independent skeletons in the sample version
(Theorem 2). We illustrate the algorithm in Example 4.

Theorem 1. Let the distribution of V be faithful to an MVR CG G, and assume
that we are given perfect conditional independence information about all pairs of
variables (u, v) in V given subsets S ⊆ V \ {u, v}. Then the output of the stable
PC-like algorithm is an MVR CG that has exactly the minimum set of bidirected
edges for its equivalence class.

Theorem 2. The skeleton resulting from the sample version of the stable PC-
like algorithm is order-independent.
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Example 4 (Order-independent skeletons). We go back to Example 1, and con-
sider the sample version of Algorithm 2. The algorithm now outputs the skeleton
shown in Figure 2(b) for both orderings order1(V ) and order2(V ). We again go
through the algorithm step by step. We start with a complete undirected graph
on V . No conditional independence found when i = 0. Also, when i = 1, the
algorithm correctly does not remove any edge. When i = 2, the algorithm first
computes the new adjacency sets: aH(v) = V \ {v},∀v ∈ V . There is a pair
of variables that is thought to be conditionally independent given a subset of
size two, namely (a, d). Since the sets aH(v) are not updated after edge re-
movals, it does not matter in which order we consider the ordered pair. Any
ordering leads to the removal of edge between a and d. When i = 3, the al-
gorithm first computes the new adjacency sets: aH(a) = aH(d) = {b, c, e} and
aH(v) = V \{v}, for v = b, c, e. There are two pairs of variables that are thought
to be conditionally independent given a subset of size three, namely (a, e) and
(c, e). Since the sets aH(v) are not updated after edge removals, it does not
matter in which order we consider the ordered pair. Any ordering leads to the
removal of both edges a e and c e.

Algorithm 2: The order-independent (stable) PC-like algorithm for learn-
ing MVR chain graphs.

Input: A set V of nodes and a probability distribution p faithful to an
unknown MVR CG G and an ordering order(V ) on the variables.

Output: An MVR CG G′ s.t. G and G′ are Markov equivalent and G′ has
exactly the minimum set of bidirected edges for its equivalence class.

1 Let H denote the complete undirected graph over V = {v1, . . . , vn};
/* Skeleton Recovery */

2 for i← 0 to |VH | − 2 do
3 for j ← 1 to |VH | do
4 Set aH(vi) = adH(vi);
5 end
6 while possible do
7 Select any ordered pair of nodes u and v in H such that u ∈ aH(v) and

|aH(u) \ v| ≥ i using order(V );
8 if there exists S ⊆ (aH(u) \ v) s.t. |S| = i and u ⊥⊥p v|S (i.e., u is

independent of v given S in the probability distribution p) then
9 Set Suv = Svu = S;

10 Remove the edge u v from H;

11 end

12 end

13 end
/* v-structure Recovery and orientation rules */

14 Follow the same procedures in Algorithm 1 (lines: 11-21).

4.2 Order-Independent v-structures Recovery

We propose two methods to resolve the order-dependence in the determination
of the v -structures, using the conservative PC algorithm (CPC) of Ramsey et al.
[14] and the majority rule PC-like algorithm (MPC) of Colombo & Maathuis [2].
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The Conservative PC-like algorithm (CPC-like algorithm) works as
follows. Let H be the undirected graph resulting from the skeleton recovery phase
of the PC-like algorithm (Algorithm 1). For all unshielded triples (Xi, Xj , Xk)
in H, determine all subsets S of adH(Xi) and of adH(Xk) that make Xi and
Xk conditionally independent, i.e., that satisfy Xi ⊥⊥p Xk|S. We refer to such
sets as separating sets. The triple (Xi, Xj , Xk) is labelled as unambiguous if at
least one such separating set is found and either Xj is in all separating sets or in
none of them; otherwise it is labelled as ambiguous. If the triple is unambiguous,
it is oriented as v -structure if and only if Xj is in none of the separating sets.
Moreover, in the v -structure recovery phase of the PC-like algorithm (Algorithm
1, lines 11-15), the orientation rules are adapted so that only unambiguous triples
are oriented. The output of the CPC-like algorithm is a mixed graph in which
ambiguous triples are marked. We refer to the combination of the stable PC-like
and CPC-like algorithms as the stable CPC-like algorithm.

In the case of DAGs, Colombo and Maathuis [2] found that the CPC-algorithm
can be very conservative, in the sense that very few unshielded triples are un-
ambiguous in the sample version, where conditional independence relationships
have to be estimated from data. They proposed a minor modification of the
CPC approach, called Majority rule PC algorithm (MPC) to mitigate the (un-
necessary) severity of CPC-like approach. We similarly propose the Majority
rule PC-like algorithm (MPC-like) for MVR CGs. As in the CPC-like al-
gorithm, we first determine all subsets S of adH(Xi) and of adH(Xk) that make
Xi and Xk conditionally independent, i.e., that satisfy Xi ⊥⊥p Xk|S. The triple
(Xi, Xj , Xk) is labelled as (α, β)-unambiguous if at least one such separating set
is found or Xj is in no more than α% or no less than β% of the separating sets,
for 0 ≤ α ≤ β ≤ 100. Otherwise it is labelled as ambiguous. (As an example,
consider α = 30 and β = 60.) If a triple is unambiguous, it is oriented as a
v -structure if and only if Xj is in less than α% of the separating sets. As in
the CPC-like algorithm, the orientation rules in the v -structure recovery phase
of the PC-like algorithm (Algorithm 1, lines 11-15) are adapted so that only
unambiguous triples are oriented, and the output is a mixed graph in which am-
biguous triples are marked. Note that the CPC-like algorithm is the special case
of the MPC-like algorithm with α = 0 and β = 100. We refer to the combination
of the stable PC-like and MPC-like algorithms as the stable MPC-like algorithm.
Theorem 3. Let the distribution of V be faithful to an MVR CG G, and assume
that we are given perfect conditional independence information about all pairs of
variables (u, v) in V given subsets S ⊆ V \{u, v}. Then the output of the (stable)
CPC/MPC-like algorithm is an MVR CG that is Markov equivalent with G that
has exactly the minimum set of bidirected edges for its equivalence class.
Theorem 4. The decisions about v-structures in the sample version of the stable
CPC/MPC-like algorithm is order-independent.
Example 5 (Order-independent decisions about v-structures). We consider the
sample versions of the stable CPC/MPC-like algorithm, using the same input
as in Example 2. In particular, we assume that all conditional independencies
induced by the MVR CG in Figure 3(a) are judged to hold except c ⊥⊥ d. Suppose
that c ⊥⊥ d|b and c ⊥⊥ d|e are thought to hold. Let α = β = 50.
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Denote the skeleton after the skeleton recovery phase by H. We consider
the unshielded triple (c, e, d). First, we compute aH(c) = {a, d, e} and aH(d) =
{a, b, c, e}, when i = 1. We now consider all subsets S of these adjacency sets,
and check whether c ⊥⊥ d|S. The following separating sets are found: {b}, {e},
and {b, e}. Since e is in some but not all of these separating sets, the stable CPC-
like algorithm determines that the triple is ambiguous, and no orientations are
performed. Since e is in more than half of the separating sets, stable MPC-like
determines that the triple is unambiguous and not a v -structure. The output of
both algorithms is given in Figure 3(c).

At this point it should be clear why the modified PC-like algorithm is labeled
“conservative”: it is more cautious than the (stable) PC-like algorithm in drawing
unambiguous conclusions about orientations. As we showed in Example 5, the
output of the (stable) CPC-like algorithm may not be collider equivalent with
the true MVR CG G, if the resulting CG contains an ambiguous triple.

4.3 Order-Independent Orientation Rules

Even when the skeleton and the determination of the v -structures are order-
independent, Example 3 showed that there might be some order-dependent steps
left in the sample version. Regarding the orientation rules, we note that the PC-
like algorithm does not suffer from conflicting v -structures (as shown in [2] for
the PC-algorithm in the case of DAGs), because bi-directed edges are allowed.
However, the three orientation rules still suffer from order-dependence issues (see
Example 3 and Figure 4). To solve this problem, we can use lists of candidate
edges for each orientation rule as follows: we first generate a list of all edges
that can be oriented by rule R1. We orient all these edges, creating bi-directed
edges if there are conflicts. We do the same for rules R2 and R3, and iterate this
procedure until no more edges can be oriented.

When using this procedure, we add the letter L (standing for lists), e.g.,
(stable) LCPC-like and (stable) LMPC-like. The (stable) LCPC-like and (stable)
LMPC-like algorithms are fully order-independent in the sample versions. The
procedure is illustrated in Example 6.

Theorem 5. Let the distribution of V be faithful to an MVR CG G, and assume
that we are given perfect conditional independence information about all pairs of
variables (u, v) in V given subsets S ⊆ V \{u, v}. Then the output of the (stable)
LCPC/LMPC-like algorithm is an MVR CG that is Markov equivalent with G
that has exactly the minimum set of bidirected edges for its equivalence class.

Theorem 6. The sample versions of stable CPC-like and stable MPC-like al-
gorithms are fully order-independent.

Example 6. Consider the structure shown in Figure 4. As a first step, we con-
struct a list containing all candidate structures eligible for orientation rule R1 in
the phase of the essential graph recovery. The list contains the unshielded triples
(e, c, d), (c, d, f), (a, c, d), and (b, d, c). Now, we go through each element in the
list and we orient the edges accordingly, allowing bi-directed edges. This yields
the edge orientation c d, regardless of the ordering of the variables.
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5 Evaluation
In this section, we compare the performance of our algorithms (Table 3) with
the original PC-like learning algorithm by running them on randomly generated
MVR chain graphs in low-dimensional and high-dimensional data, respectively.
We report on the Gaussian case only because of space limitations.

We evaluate the performance of the proposed algorithms in terms of the six
measurements that are commonly used [2,8,10,20] for constraint-based learning
algorithms: (a) the true positive rate (TPR) (also known as sensitivity, recall, and
hit rate), (b) the false positive rate (FPR) (also known as fall-out), (c) the true
discovery rate (TDR) (also known as precision or positive predictive value), (d)
accuracy (ACC) for the skeleton, (e) the structural Hamming distance (SHD)
(this is the metric described in [20] to compare the structure of the learned
and the original graphs), and (f) run-time for the LCG recovery algorithms. In
principle, large values of TPR, TDR, and ACC, and small values of FPR and
SHD indicate good performance. All of these six measurements are computed on
the essential graphs of the CGs, rather than the CGs directly, to avoid spurious
differences due to random orientation of undirected edges.

Table 3. Order-dependence issues and corresponding modifications of the PC-like
algorithm that remove the problem. “Yes” indicates that the corresponding aspect of
the graph is estimated order-independently in the sample version.

skeleton v -structures decisions edges orientations

PC-like No No No

stable PC-like Yes No No

stable CPC/MPC-like Yes Yes No

stable LCPC/LMPC-like Yes Yes Yes

Figure 5 shows that: (a) as we expected [10,8], all algorithms work well on
sparse graphs (N = 2), (b) for all algorithms, typically the TPR, TDR, and
ACC increase with sample size, (c) for all algorithms, typically the SHD and FPR
decrease with sample size, (d) a large significance level (α = 0.05) typically yields
large TPR, FPR, and SHD, (e) while the stable PC-like algorithm has a better
TDR and FPR in comparison with the original PC-like algorithm, the original
PC-like algorithm has a better TPR (as observed in the case of DAGs [2]). This
can be explained by the fact that the stable PC-like algorithm tends to perform
more tests than the original PC-like algorithm, and (h) while the original PC-
like algorithm has a (slightly) better SHD in comparison with the stable PC-like
algorithm in low-dimensional data, the stable PC-like algorithm has a better
SHD in high-dimensional data. Also, (very) small variances indicate that the
order-independent versions of the PC-like algorithm in high-dimensional data are
stable. When considering average running times versus sample sizes, as shown in
Figure 5, we observe that: (a) the average run time increases when sample size
increases; (b) generally, the average run time for the original PC-like algorithm
is (slightly) better than that for the stable PC-like algorithm in both low and
high dimensional settings.
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Fig. 5. The first two rows show the performance of the original (OPC) and stable PC-
like (SPC) algorithms for randomly generated Gaussian chain graph models: average
over 30 repetitions with 50 variables correspond to N = 2, and the significance level α =
0.001. The last two rows show the performance of the original (OPC) and stable PC-
like (SPC) algorithms for randomly generated Gaussian chain graph models: average
over 30 repetitions with 1000 variables correspond to N = 2, sample size S=50, and
the significance level α = 0.05, 0.01, 0.005, 0.001.
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In summary, empirical simulations show that our algorithms achieve com-
petitive results with the original PC-like learning algorithm; in particular, in the
Gaussian case the order-independent algorithms achieve output of better qual-
ity than the original PC-like algorithm, especially in high-dimensional settings.
Since we know of no score-based learning algorithms for MVR chain graphs (and,
in fact, for any kind of chain graphs), we plan to investigate the feasibility of a
scalable algorithm of this kind.
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